Assessing Correlation Power Analysis (CPA) Attack Resilience of
Transistor-Level Logic Locking

Ivan Miketic
Stony Brook University
Stony Brook, NY, USA

Zhiming Zhang
University of New Hampshire
Durham, NH, USA

ABSTRACT

Logic locking has demonstrated its potential to protect the intellec-
tual property of integrated circuits (ICs). The security strength of
logic locking is typically evaluated through functional and struc-
tural analysis-based attacks. There is limited work analyzing logic
locking techniques’ resilience against power-based side-channel
attacks. To fill this gap, we propose an attack flow for the corre-
lation power analysis (CPA) attack on the circuits encrypted with
transistor-level logic locking. Our case studies indicate that CPA
attacks outperform DPA attacks in terms of key recovery rate (KRR).
To improve the CPA attack resilience of an existing transistor-level
logic locking technique, we propose a logic-cone conjunction (LCC)
method to enlarge the key space and reduce the correlation between
the locking key and the power consumption of locked circuits. The
experimental results show that the LCC method successfully re-
duces the KRR from 100% to 0% by using cyclic logic structures. The
FPGA emulation indicates that the proposed method incurs 2.6%
more delay and 1.5% more power consumption than the baseline.

CCS CONCEPTS

« Security and privacy — Key management; Side-channel anal-
ysis and countermeasures; « Hardware — Transistors.

KEYWORDS
Logic locking, CPA, DPA, guessing entropy, attack resilience.

ACM Reference Format:

Zhiming Zhang, Ivan Miketic, Emre Salman, and Qiaoyan Yu. 2021. Assess-
ing Correlation Power Analysis (CPA) Attack Resilience of Transistor-Level
Logic Locking. In Proceedings of the Great Lakes Symposium on VLSI 2021
(GLSVLSI 21), June 22-25, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3453688.3461508

1 INTRODUCTION

Outsourcing modern integrated circuit (IC) manufacturing brings
security threats to the chip supply chain [12]. Untrusted IC foundries
having access to design source files could tamper with or reverse
engineer the original netlist. Various logic locking-based counter-
measures [2, 5, 9, 12] are used to mitigate intellectual property (IP)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 21, June 22-25, 2021, Virtual Event, USA.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8393-6/21/06...$15.00
https://doi.org/10.1145/3453688.3461508

Emre Salman
Stony Brook University
Stony Brook, NY, USA

Qiaoyan Yu
University of New Hampshire
Durham, NH, USA

piracy attacks. Logic locking techniques utilize key-controlled logic
gates or transistors to encrypt the original design netlist.
Although logic locking has the potential to thwart IP piracy,
the ‘arm race’ is still going on between the enhancement of lock-
ing techniques and advanced attacks, such as Boolean Satisfia-
bility (SAT) based attacks, sensitization attacks, and key removal
attacks [6, 10, 13]. Most existing efforts focus on improving the
locking algorithms to thwart the attacks mentioned above. There is
limited work quantitatively assessing the resilience of logic locking
techniques against power-based side-channel analysis attacks. The
work [9] performs differential power analysis (DPA) attacks on gate-
level logic locking and concludes that the locking technique has a
natural defense capability against DPA attacks. However, that work
does not evaluate the logic locking technique in the context of the
correlation power analysis (CPA) attack, which is more advanced
than DPA. To facilitate the logic locking techniques to advance
further, we make the following contributions in this work:

e We expand the security analysis and quantitative assessment
from gate-level to transistor-level locking techniques.

e We propose a practical attack flow to enable the CPA attack
on the ICs protected with logic locking techniques. We fur-
ther compare the key recovery rate (KRR) of the proposed
CPA attack with that of the DPA attack introduced in [9].

o A logic-cone conjunction (LCC) is proposed to strengthen
the resilience of transistor-level locking against CPA attacks.

2 RELATED WORK
2.1 Gate- and Transistor-Level Logic Locking

Gate-level logic locking techniques shown in Fig. 1(a) insert key
gates to the original netlist so that the nets that the key gates
control will be altered if incorrect locking keys are applied [7, 9].
The transistor-level logic locking method introduced in the work [2]
locks the pull-up and pull-down networks with PMOS and NMOS
transistors, respectively. A simplified version of that transistor-level
locking is depicted in Figs. 1(b) and (c). As shown, that transistor-
level logic locking has two configurations: PMOS serial locking
plus NMOS parallel locking (PSLNPL) and PMOS parallel locking
plus NMOS serial locking (PPLNSL). If a wrong key is applied to
the circuit locked with PSLNPL, the PMOS locking transistor is
turned off and the active NMOS locking transistor pulls the output
of the locked gate down to the ground. As a result, the wrong key
leads the gate output to be a constant 0. If the circuit is locked with
PPLNSL, the wrong key yields a constant 1 at the output.

2.2 Existing Attacks on Logic Locking

The existing attacks on logic locking fall into two categories: func-
tional or structural analysis-based attacks. The methods in the

(a) ()
Figure 1: Locking techniques at gate and transistor levels. (a)

XOR-based gate-level locking, and transistor-level locking
with (b) PSLNPL and (c) PPLNSL configurations.

former category use the carefully designed input patterns and key
guesses to derive the locking keys [11]. Structural analysis based
attacks first remove the locking units and then recover the orig-
inal design. For example, the work [1] applies machine learning
to predict the structural changes made by IC synthesis tools. The
existing functional and structural attacks on logic locking have
their limitations. Functional attacks often involve high computing
complexity and the attack efficiency heavily relies on the specific
targets. Structural attacks are not applicable in the locking schemes
that do not change the gate-level netlist. Side-channel attacks ex-
ploit the security vulnerabilities of the hardware implementation to
break most of encryption systems. Current DPA and CPA attacks
leverage the data-dependency between the power consumption and
the internal signal switching of the target encryption system to
retrieve the secret key. However, there is limited work available to
investigate DPA and CPA attacks on logic locking techniques. To
enhance the security of logic locking, it is imperative to conduct a
comprehensive evaluation of the DPA and CPA attack resilience of
various logic locking techniques.

3 ANALYSIS AND ASSESSMENT ON DPA
ATTACK RESILIENCE OF
TRANSISTOR-LEVEL LOGIC LOCKING

We performed DPA attacks on an ISCAS’85 benchmark circuit, ¢17.
As c17 has two output ports N22 and N23, there are two logic cones
highlighted in the two dash-line boxes shown in Fig 2. The two
transistor-level locking configurations, PSLNPL and PPLNSL, were
applied to the NAND and OR-AND-INVERT (OAI) gates. The differ-
ence of means (DoM) [3, 9] measured in the process of DPA attacks
was used in the key retrieval. Since the target circuit consumes
distinct power when it generates the final output 1 and 0, the DPA
attack selects the key that yields the highest DoM as the correct
key. As shown in Figs. 3 and 4, the DoM for the wrong key guess
is higher than that for the correct key guess in most of the cases
(the only exception is the N22 cone locked by PPLNSL). Thus, we
conclude that the DPA attack fails to retrieve the locking keys.
We zoomed in the three failed cases in the DPA experiments for
c17 and found that their primary outputs were constant regardless
of what primary inputs were provided. When the PSLNPL configu-
ration is used in locking, the real key for both Key0 and Key1 is 0. If
the guessed Key0 is wrong, the output of the locked NAND will be
constant 0. That causes N22 to be constant 1, as shown in Fig. 5(a).
If the guessed Key1 is incorrect, the net n5 will be constant 0 and
N23 will be constant 1, as shown in Fig. 5(b). In either case, the key
retrieved by the DPA attack is wrong because all the power traces

N22 Cone

Figure 2: c17 with transistor-level logic locking.

x10* x10*

7 7
—+— Correct Key

6 Wrong Key | 6f

5 1 5

4 4

—+— Correct Key|
Wrong Key

= 1 =
8 8

3fs 1 3
2 2
0

0
0 20 40 60 80 100 0 20 40 60 80 100

No. of Traces No. of Traces

@ (b)
Figure 3: DoM for (a) N22 cone and (b) N23 cone in c17 locked
with PSLNPL.

5 x10% x10°*

Wrong Key
5 —+—Correct Key| | 5

Wrong Key
—+—Correct Key|

0 20 40

60 80 100 0 20 40 60 80 100
No. of Traces No. of Traces

(@) (b)
Figure 4: DoM for (a) N22 cone and (b) N23 cone in c17 locked
ng R&y0=1 constant 0

with PPLNSL.
Keyl=1 n5isconstant 0
ot gy - [R s contnt 1
0 - N2 OAI (locked) > 0
n2 N7

(@ (b)
Figure 5: The impact of transistor-level locking key bit in
the PSLNPL configuration on (a) N22 cone and (b) N23 cone.

are grouped to the set that stores the power traces for the scenarios
of output 1. The constant output of the locking gate will lead to a
similar DPA failure in the PPLNSL configuration. Our case study
reveals that if the wrong key guess causes the primary output of
the locked netlist to be constant, the DoM metric used in the DPA
attack will mislead the key retrieval. In addition, transistor-level
logic locking has some resilience against DPA attacks because of
its constant output induced by a wrong key.

4 PROPOSED ATTACK FLOW FOR CPA
ATTACKS ON LOCKED CIRCUITS

4.1 Attack Flow

CPA is more powerful than DPA in key retrieval because the Pear-
son Correlation Coefficient (PCC) metric used in CPA attacks will
not be affected by the constant output feature. The hypothetical
power consumption in CPA attacks is usually formed using the

Target netlist

Logic-cone
extraction
Logic cones
Select the
smallest cone
Smallest cone

Input
patterns| Generate
estimated outputs 2

Estimated output:

LG
guesses?

Done

Figure 6: The proposed flow for the CPA attack on a general
circuit protected by logic locking,.

Hamming distance or Hamming weight model. No matter which
power estimation model is used, the hypothetical power will be
constant once the estimated output is constant. Based on the char-
acteristic of PCC, a constant sequence will have no correlation
with the real power consumption. Then, the wrong key guess can
be easily excluded by CPA. Hence, it is necessary to evaluate the
resilience of transistor-level logic locking against CPA attacks. In
this work, inspired by the divide-and-conquer strategy of [9], we
modify the conventional CPA attack flow for cryptosystems and
propose a feasible general power estimation procedure. Our CPA
attack on the transistor-level logic locking includes four steps.

Step 1: logic cone extraction. The flow of estimated power
generation is depicted in Fig. 6. First, the logic cones of the locked
netlist are extracted based on the primary outputs. To facilitate the
logic cone extraction, we develop a Python script and Algorithm 1
shows the its pseudo-code. The script returns the logic function
of each logic cone, which will be used as the selection function
(SelFunc) in the CPA attack. Given a locked netlist, Algorithm 1
searches for the logic gate (G) that generates each primary output
of the netlist. The inputs of G will be the target of the next search
until all the new targets are either the primary inputs or the key
inputs of the netlist. The located G during this process will form
the final SelFunc for the primary out. This process is repeated for
each primary output until all logic cones are completed.

Step 2: divide-and-conquer-based power estimation. The
CPA attack starts from the smallest logic cone, which includes the
least number of locking key bits. This ascending order is adopted
for two main reasons. First, the ratio of the number of keys to the
number of primary inputs (#Keys/#Primary Inputs) of a smaller
cone is smaller, too. As a result, retrieving the keys in a smaller cone
is easier than in a larger one [9]. Second, some keys may appear
in multiple cones and the keys that have been previously retrieved
in the smaller cones can be used in the attack of the current cone.
In this case, the attack will be more likely to succeed since the
number of unresolved keys is reduced. Next, a set of input patterns
with a random key guess are fed to the extracted selection function
(SelFunc in Step 1) of the cone and the estimated outputs for the
key guess are calculated. We utilize a Hamming distance model to

Algorithm 1: Proposed logic cone extraction.

Data: Locked netlist

Result: Logic function of each logic cone

PrimaryOut|] « Find primary outputs;

Primaryln[] < Find primary inputs;

Key[] « Find key inputs;

i=1;

while i < length(PrimaryOut[]) do

Target < PrimaryOut|[i];

while Target ¢ PrimaryIn[] && Target ¢ Key[] do
SelFunc < Target;
Search logic gate G(Input, Target);
Substitute G(Input, Target) into SelFunc;
Target < Input;

end

return SelFunc;

i=i+1;

end

generate the estimated power. The same process will be repeated
for all key guesses and all logic cones.

Step 3: power trace collection. Similarly, the real power trace
collection starts from the smallest logic cone and follows the as-
cending order. For each cone, the same set of the input patterns
used in the power estimation are applied to the chip under attack
and the physical power consumption is collected. Since only the
inputs of the cone currently under attack will be fed with the input
patterns, the switching activities of other cones will be minimized
and thus there is limited interference from other cones. In parallel
with the power consumption measuring, the output patterns of the
same cone under attack are recorded from the chip to verify the
retrieved key values.

Step 4: correlation analysis. We calculate the PCC between
the estimated power and the real power consumption to retrieve
the keys of each logic cone. The key guess which yields the highest
PCC is considered as the correct key retrieved by the CPA attack.

4.2 CPA Resilience Assessment of
Transistor-level Locking

The proposed CPA attack flow was employed to perform a quanti-
tative assessment on the transistor-level PSLNPL and PPLNSL lock-
ing [2]. Circuits c17, ¢432, and ¢880 were locked and implemented
with a FreePDK45 technology [8] for transistor-level simulation
and on a SAKURA-G FPGA board for hardware emulation. The
power traces for those two platforms were measured in Cadence
Virtuoso and the ChipWhipserer software, respectively.

In the transistor-level simulation of the c17 locked with PSLNPL
configuration, we observe that the PCC for the correct key guess is
higher than that for the wrong key guess after 40 power traces. This
observation holds true for both N22 and N23 logic cones, as shown
in Figs. 7 and 8. This means that the locking keys in both cones can
be successfully retrieved by the CPA attack. In the case of the N23
cone locked with the PPLNSL configuration, the estimated power
consumption has no correlation with the real power traces because
the wrong key1 leads to a constant 0 on the output of the N23

—+—Correct Key
Wrong Key
06 { 06
Q - Q
o o
4 4

—+—Correct Key
Wrong Key

2

0 20 40 60 80 100 0 20 40 60 80 100
No. of Traces No. of Traces

(@) (b)

Figure 7: PCC for (a) N22 cone and (b) N23 cone in ¢17 locked
with PSLNPL.

Wrong Key
|—#+—Correct Key

Wrong Key
—+—Correct Key

0 20 40 60 80 100 0 20 40 60 80 100
No. of Traces No. of Traces

(@ (b)
Figure 8: PCC for (a) N22 cone and (b) N23 cone in ¢17 locked
with PPLNSL.

®1000 ®2000 = 4000 m1000 ®2000 =4000

KR
KRR (%)

80 80
= 60 60
40 40
20 l 20 I I l
0 o
XOR PSLNPL PPLNSL XOR PSLNPL PPLNSL

Locking configurations Locking configurations

(@ (b)
Figure 9: KRR results for (a) c432 (b) c880.

logic cone. Based on the Hamming distance model, the estimated
power consumption is constant 0, too. Thus, no valid PCC can be
calculated. In summary, our attack flow enables the CPA attack to
retrieve all the locking key bits in c17. In contrast, the DPA attack
only partially recovers the locking key.

Next, the key recovery rate (KRR) [9] defined in Eq. (1) is used to
assess the efficiency of CPA attacks on the benchmark circuits pro-
tected with XOR-based gate-level logic locking and the transistor-
level PSLNPL and PPLNSL logic locking. Due to the different circuit
scale, 7 and 11 key bits were applied to c432 and c880, respectively.

No. Retrieved Key Bits
No. Inserted Key Bits

KRR = 1)
To accelerate the attack speed, we also examined the proposed
CPA attack in an FPGA platform. The KRR of the CPA attack on
c432 and c880 is shown in Fig. 9. With 4000 power traces, our CPA
attack retrieved all the key bits for c432 no matter which locking
configuration was used; for the bigger circuit c880, the CPA attack
also achieved a 100% KRR in the PPLNSL configuration.
Furthermore, we swept the number of key bits inserted in c432
from 1 key bit per cone to 3 key bits per cone for both the gate-level
and transistor-level logic locking techniques. As indicated in Fig. 10,
given 800 power traces, all three locking methods achieve the KRR
of 0% as the number of key bits increases. Our case study indicates

mikeybit ®2keybits 3 key bits

85.71%

KRR
I 71.43%

R R R
o O o
N N N
< < <
R =
55 pgps &
PSLNPL PPLNSL XOR

LOCKING CONFIGURATION

Figure 10: Impact of the number of key bits per cone on KRR.

that increasing the key space will improve the resilience against the
CPA attack. Our quantitative assessment motivates us to develop a
mitigation method to enlarge the key space and the logic cone size
interested in the CPA attack.

5 PROPOSED LOGIC-CONE CONJUNCTION
(LCC) METHOD AGAINST CPA ATTACKS

The CPA attack in Section 4 follows the divide-and-conquer strat-
egy to break the locked circuit cone by cone. To thwart the cone-
based brute force attack, the work [4] uses MUX-based key gates
to connect logic cones so that the key space and the cone size for
one single cone is expanded. Inspired by that work, we propose a
logic-cone conjunction (LCC) method to mitigate the CPA attack
on transistor-level logic locking circuits. The MUX-based attack
mitigation method uses multiplexers to create a small overlap area
between two logic cones. However, there will always be some keys
out of the overlap area. Those keys will not help in expanding the
key space unless the two nets connected by the multiplexers are
both primary outputs. In contrast, our LCC method embeds one
entire logic cone into another one such that the key space can be
enlarged significantly. Typically, increasing the number of key bits
is a common practice to raise the difficulty of CPA attacks. The
proposed LCC method does not induce additional key bit insertion;
instead, our method makes full use of the existing locking keys in a
locked circuit to maximize the key space of each logic cone. The key
space means the number of all possible distinct key combinations.

The proposed LCC inserts a key-controlled dummy connection
dmc;; between two independent logic cones C; and C; to extend
the size of each logic cone. To maximize the key space after our
logic-cone conjunction, the selected independent logic cones C; and

Cj should use the exclusive key vectors, z-, and I?;, respectively.
The LCC method will increase the key space for the logic cone C;
from 2Ki to 2Ki*Kj In the best case, K; + K; will be equal to the
number of all key bits inserted in the locked circuit.

Figures 11 (a) and (b) illustrate how the proposed LCC method is
applied to the PSLNPL and PPLNSL transistor-level locking circuits.
Conel and Cone2 are dependent due to the original connection
ogciz. In contrast, Conel and Cone3 are originally independent
since there is no logic overlap between them.

For the configuration of PSLNPL shown in Fig. 11(a), designers
can insert one key bit, Key1, to the NAND gate in Cone2. The
correct key value for Key1 should be logic 0 since Conel and Cone2
are originally connected and Cone2 needs signal ogci2 to switch
normally. Note that inserting Key1 is an important step in LCC. In
Cone 3, a dummy NAND locked by the PSLNPL configuration with
the key bit Key2 is added. This NAND gate is driven by the output

—

S
Key3=0 \
D el

L— 09612

—
Key1=0)

T Key1=1]
N1 maintained Cone2 N1maintained Cone2
NI

N1
L— dmey,

N3 maintained

Key3=1
/// ogcy,

P —
P

dmey;

N3 maintained

P
e

Key2=1 N3 Key2=0 N3
Cone3 Cone3
e | —
- Constant 0 %o a non-controlling input Constant 1 to a non-controlling input
~J dme,, ~J dmes,;
(a) (b)

Figure 11: LCC diagram for (a) PSLNPL and (b) PPLNSL con-
figurations.

signal dmc13 from Conel and the net N2, which is any existing
net in Cone3. The correct key value for Key2 should be logic 1,
which forces the output of the NAND to be constant 0. As the
constant 0 will be given to an input of an OR gate, the dummy
connection dmci3 will not interrupt the original Cone3 operation.
Because 0 is the non-controlling bit of an OR gate, its output will
be determined by the original net N3. The output of the Cone3
dmecs; is brought back to Conel to form a cyclic structure between
Conel and Cone3 using a similar dummy connection. The dummy
conjunction between Conel and Cone3 will increase the key space
for both cones. In this case, the key space for Conel (Cone3) is
increased from 2K1 (2K3) to 2K1+Ks Fyrthermore, no matter which
cone is attacked, the cyclic logic structure makes the other cones
also switch, thus inducing noise to the power traces collected for
CPA attacks. The power noise blurs the correlation between the
locking key and the power traces.

The LCC for PPLNSL configuration can be implemented in a
similar way. As shown in Fig. 11(b), we replace the OR gate with an
AND gate and the correct Key2 is logic 0. This is because applying a
logic 0 to the NAND gate locked with PPLNSL will lead to a constant
1, which is the non-controlling bit for the AND gate. The logic gates
used in Fig. 11 can be substituted with other gates as long as the
normal operations of the revised cones can be maintained when
the correct key is provided. To achieve the maximum key space,
there could be more than two cones in the conjunction.

The proposed LCC significantly improves the CPA resilience of
the transistor-level logic locking for two reasons. First, it signif-
icantly enlarges the key space for every single cone to mitigate
the cone-based CPA attack. Second, as the LCC method forms the
connected cones as a cyclic structure, no matter which cone in the
structure is attacked, all other cones will switch. The increased
switching activities lead to some power noise, which interferes
with the power trace measurement for CPA attacks.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup

We performed the experimental verification and evaluation for
the proposed LCC through FPGA emulations. Both PSLNPL and
PPLNSL configurations, with and without LCC, were applied to the
ISCAS benchmark circuit ¢432 and implemented in a SAKURA-G
FPGA board. The power traces were collected using ChipWhisperer

100 100

—o—Baseline.
—e—LCC

80 80

—o—Baseline.
—e—LCC

KRR (%)

40 40

20 20

1000 2000 3000 4000 1000 2000 3000 4000
No. of Power Traces No. of Power Traces

(@) (b)
Figure 12: KRR comparison for (a) PSLNPL and (b) PPLNSL
configurations.

= PSLNPL Baseline PSLNPL LCC PPLNSL Baseline PPLNSL LCC

100

a2 80
9
£ 60
w
&
£ 40
a
S
3 20
0 M R)
O = N MO <N OO A NMS W OIS 0
NN SN ON0ODNDONMS WM OMNOOO O
NS OO NS O MNMWUMNOO - MW 0
A A A A AN NN NN Nm N M

—

No. of Power Traces

Figure 13: Guessing entropy comparison.

software. The CPA algorithm was realized in MATLAB and the
Xilinx Vivado design suite. The hardware overhead of LCC was
assessed in the Xilinx PlanAhead and XPower Analyzer software.

Seven key bits were inserted to c432 for both PSLNPL and PPLNSL
configurations following the fault analysis-based logic locking
(FLL) [5] to achieve the maximum output corruptibility. c432 has
seven logic cones for the primary outputs N223, N329, N370, N421,
N430, N431, and N432. N223 is also an input for the logic cone of
N329. Furthermore, N329 is fed to the logic cone of N370. Finally,
N370 drives the logic cones for N421, N430, N431, and N432. Based
on the locked netlist, we found that connecting the output of N421
cone to N223 cone can help to maximize the key space and induce
the largest amount of noise to the power traces. In the following
experiments, we assume that there is an extra key beside the seven
keys to lock the dummy connection logic between N421 and N223
cones and this extra key is known to the CPA attacker for a fair
comparison with the baseline.

6.2 Improved Resilience against CPA Attack

We collected 4000 power traces for the assessment of KRR. As
shown in Fig. 12, the CPA attack successfully retrieves all the 7
keys (100% KRR) of the baseline c432 for both locking configurations.
In contrast, the KRR of the c432 protected with LCC decreases from
100% to 0% for both PSLNPL and PPLNSL locking configurations.
We also zoom in the guessing entropy for the baseline and the LCC-
protected c432. As shown in Fig. 13, the guessing entropy of the
baseline is close to 0 while the proposed LCC improves the entropy
to a much higher level. Both KRR and guessing entropy indicate
that the LCC method successfully enhances the locking circuit’s
resilience against the CPA attack.

The improved attack resilience is originated from the cyclic struc-
ture generated by LCC. Because of the cyclic logic loop, the uninter-
ested cones will have logic switching when the target cone is under

Table 1: Comparison of Cone Interference (CI).

cones PSLNPL PPLNSL
Baseline | LCC | Baseline | LCC

N432 81.44% 82.37% 81.86% 81.45%
N431 81.30% 81.75% 81.45% 82.11%
N430 82.13% 82.05% 82.19% 81.13%
N421 90.32% 90.02% 90.62% 90.59%
N370 83.42% 82.53% 82.81% 83.25%
N329 | 27.96% | 86.72% | 26.84% | 86.60%
N223 0% 95% 0% 94.87%

m Baseline wLCC

5.907
5737 5756
5.7 5.64 I
55 .
PSLNPL PPLNSL
Transistor-level locking configurations

Delay (ns)

w
Y

Figure 14: Delay overhead.

attack. Consequently, LCC yields some power noise and thus un-
dermines the CPA attack. We use a metric Cone Inter ference(CI)
expressed in Eq. (2) to evaluate the noise induced by LCC.

ol = Switching Events of Uninterested Cones

Switching Events of Entire Circuit @
In which Switching Events of Uninterested Cones is the total
number of bit flips on the primary outputs of the logic cones that the
attacker is not interested in. Switching Events of Entire Circuit
is the total number of bit flips on all the primary outputs of the
circuit. Based on the results shown in Table 1, LCC significantly
improves the cone interference in the attacks to N223 and N329
cones. This is because LCC forces all 7 cones of ¢432 to switch no
matter which one is under attack. Because cones N223 and N329
are the smallest cones that are included in any other cone of c432,
interfering with the power traces of these two cones is extremely
important to securing the entire circuit. The cone interference for
the LCC protected c432 and the baseline are comparably high after
N329. Since all the remaining cones are driven by all the primary
inputs of ¢432, all 7 cones of c432 will switch when any of the logic
cones N370, N421, N430, N431, and N432 is under attack.

6.3 Overhead on Delay and Power

As the proposed LCC makes full use of the existing locking keys
to expand the key space without inducing new key insertions, the
hardware cost for our method is minor. The critical-path delay was
measured via the Xilinx PlanAhead software. As shown in Fig. 14,
the proposed LCC only increases the delay by 1.72% and 2.62% for
the PSLNPL and PPLNSL configurations, respectively.

The power overhead was measured via the Xilinx XPower Ana-
lyzer. Based on the results shown in Fig. 15, for the PSLNPL based
logic locking, LCC consumes 1% and 1.54% more power when the
correct keys and the wrong keys are applied, respectively. For the
PPLNSL configuration, LCC leads to 1.34% and 1.88% more power
consumption for the scenarios that the correct and wrong keys
were applied, respectively.

mBaseline W Countermeasure mBaseline ® Countermeasure

0299 0302 0298 0302

02 016 0.163

. 0.15
0.1 0.065 0.066 01 I

0.05 0.05

. o .

Correct keys Wrong keys
Key configurations

Correct keys Wrong keys

Key configurations.

(a) ®)
Figure 15: Power overhead for (a) PSLNPL and (b) PPLNSL
configurations.

7 CONCLUSION

Logic locking has been broadly used to prevent ICs from design
piracy attacks. Steady progress has been made on improving the
resilience of logic locking against various functional-based attacks.
However, limited works evaluate the strength of logic locking tech-
niques on resisting power analysis attacks. This work proposes
a CPA attack flow that is applicable to the transistor-level logic
locking. Our analysis and experimental results indicate that the
proposed CPA attack outperforms the DPA attack in transistor-level
logic locking and achieves a 100% KRR in the locked c432 with 4000
power traces. Furthermore, we propose a logic-cone conjunction
method to enlarge the key space. Our case study on c432 shows that
our method can successfully reduce the KRR to zero with negligible
overhead on delay and power.

ACKNOWLEDGMENTS

This work is partially supported by NSF award CNS-1652474 and
NSF/SRC award CNS-1717130.

REFERENCES

[1] P.Chakraborty, J. Cruz, and S. Bhunia. 2018. SAIL: Machine Learning Guided
Structural Analysis Attack on Hardware Obfuscation. In Proc. AsianHOST’18.
56-61.

[2] J. Dofe, Chen Yan, S. Kontak, E. Salman, and Q. Yu. 2016. Transistor-level camou-
flaged logic locking method for monolithic 3D IC security. In Proc. AsianHOST"16.
1-6.

[3] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Proc. CRYPTO’99, Michael Wiener (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 388-397.

[4] Y.Lee and N. A. Touba. 2015. Improving logic obfuscation via logic cone analysis.
In Proc. LATS’15. 1-6.

[5] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri.
2015. Fault Analysis-Based Logic Encryption. IEEE Trans Comput 64, 2 (2015),
410-424.

[6] V.S. Rathor and G. K. Sharma. 2019. A Lightweight Robust Logic Locking
Technique to Thwart Sensitization and Cone Based Attacks. IEEE Trans. Emerg.
Topics Comput. (2019), 1-1.

[7] J. A.Roy, F. Koushanfar, and I. L. Markov. 2008. EPIC: Ending Piracy of Integrated
Circuits. In Proc. DATE’08. 1069-1074.

[8] S. M. Satheesh and E. Salman. 2012. Power Distribution in TSV-Based 3-D
Processor-Memory Stacks. IEEE Trans. Emerg. Sel. Topics Circuits Syst 2, 4 (Dec
2012), 692-703.

[9] A. Sengupta, B. Mazumdar, M. Yasin, and O. Sinanoglu. 2020. Logic Locking
With Provable Security Against Power Analysis Attacks. IEEE TCAD 39, 4 (2020),
766-778.

[10] P. Subramanyan, S. Ray, and S. Malik. 2015. Evaluating the security of logic

encryption algorithms. In Proc. HOST’15. 137-143.

M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri. 2016. On Improving the

Security of Logic Locking. IEEE TCAD 35, 9 (2016), 1411-1424.

[12] D. Zhang, X. Wang, M. T. Rahman, and M. Tehranipoor. 2018. An On-Chip
Dynamically Obfuscated Wrapper for Protecting Supply Chain Against IP and IC
Piracies. IEEE Trans Very Large Scale Integr VLSI Syst 26, 11 (2018), 2456—2469.

[13] J. Zhou and X. Zhang. 2020. A New Logic-Locking Scheme Resilient to Gate
Removal Attack. In Proc. ISCAS’20. 1-5.

[11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Gate- and Transistor-Level Logic Locking
	2.2 Existing Attacks on Logic Locking

	3 Analysis and Assessment on DPA Attack Resilience of Transistor-Level Logic Locking
	4 Proposed Attack Flow for CPA Attacks on Locked Circuits
	4.1 Attack Flow
	4.2 CPA Resilience Assessment of Transistor-level Locking

	5 Proposed Logic-Cone Conjunction (LCC) Method against CPA Attacks
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Improved Resilience against CPA Attack
	6.3 Overhead on Delay and Power

	7 Conclusion
	Acknowledgments
	References

