

key-controlled transistors can be inserted into a logic gate

with two styles: PMOS serial locking plus NMOS parallel

locking (PSLNPL) and PMOS parallel locking plus NMOS

serial locking (PPLNSL). The wrong key in the PSLNPL style

will lead the NAND gate output to be a constant 0. Likewise

in the configuration of PPLNSL, the wrong key will yield a

constant 1 at the output of NAND. Multiple key-controlled

transistors are used to lock one single logic gate in [8] so that

the key-interference achieved by locking can thwart the key

sensitization attack with minor hardware cost. The work [9]

substitutes the conventional CMOS transistors with silicon

nanowire based field effect transistors, where a locking key bit

controls the logic output of the modified gate via the polarity

gate, to reduce the overhead induced by logic locking.

There is limited work discussing the DPA and CPA attack

resilience of logic locking techniques. In the existing literature,

only DPA attacks are performed on gate-level logic locking [3]

but CPA attacks have not been examined in the context of

logic locking techniques. This work provides a comprehensive

analysis of DPA and CPA attacks on both gate- and transistor-

level logic locking and then proposes possible ways to revise

the locking configuration to improve its attack resilience.

III. THEORETICAL BASIS OF DPA AND CPA

DPA and CPA attacks retrieve the crypto key from the

hardware implementation of encryption systems. Both attacks

leverage the correlation between the crypto key and the switch-

ing activities of the crypto hardware module to significantly

shorten the time spent on key guessing compared to brute force

attacks.

DPA attacks [10] have drawn significant attention over

the last two decades. DPA exploits the fact that the power

consumption of a chip is correlated with its internal data

switching to retrieve the secret key applied in the crypto

hardware module. DPA attackers need to collect power traces

from their target chip that runs the encryption algorithm with

an unknown secret key and a set of known plaintexts. The same

plaintexts will be used to calculate the outputs of encryption

with different guessing keys. Next, the collected power traces

and the calculated outputs will be utilized to guess the correct

key applied in the crypto module. The key guessing process

relies on a statistical metric difference of means (DoM).

Let’s denote the target encryption process as E(p, k), in

which E stands for the encryption algorithm and the variables p

and k represent a plaintext and an encryption key, respectively.

A ciphertext c is the output of E(p, k). Attackers first randomly

guess a key, kguess and then calculate a set of ciphertexts, C,

with regards to a group of plaintexts P . The same process

is repeated for different kguess while P remains the same.

The same P will be applied to the real chip to produce the

corresponding power traces T . Each guessing key kguess will

have a specific C for P . In DPA attacks, depending on whether

each calculated element c is 0 or 1, the corresponding power

trace t in T for the current p is first classified to one of the

two subsets T0 and T1. Next, the DoM defined in Eq. (1) is

calculated for each guessing key kguess. The DPA attack will

consider the kguess that yields the highest DoM as the correct

key.

DoM = |T0− T1| (1)

Where T0 and T1 are the averages of T0 and T1, respectively.

The experimental setup for CPA and DPA attacks is the

same. However, the statistical analysis approach employed in

CPA is different. In CPA attacks, attackers adopt a power

estimation model, either Hamming distance or Hamming

weight [11], to generate hypothetical power consumption [11]

and then use the metric Pearson Correlation Coefficient

(PCC) [12] to retrieve the secret key. A hypothetical power

consumption Thyp is estimated based on the set C for each

kguess using the power estimation model. Equation (2) de-

scribes how the PCC is calculated.

PCC =
E[Thyp · T]− E[Thyp] · E[T]

√

E[T 2

hyp]− (E[Thyp])2 ·
√

E[T 2]− (E[T])2

(2)

Each guessing key kguess will have its own PCC. The kguess
that has the highest PCC will be considered as the correct key

by the CPA attack.

In the next section, we use the two metrics, DoM and PCC,

to analyze the DPA and CPA attack resilience of logic locking

applied at gate and transistor levels.

IV. DPA AND CPA ATTACK RESILIENCE OF GATE-LEVEL

AND TRANSISTOR-LEVEL LOGIC LOCKING

A. Resilience against DPA Attack

We performed the DPA attack on an ISCAS’85 benchmark

circuit, c17. As the circuit c17 has two output ports N22 and

N23, there are two logic cones highlighted by the two dash-

line boxes shown in Fig 2. The c17 locked by XOR-based gate

locking is shown in Fig. 2(a). We also applied PSLNPL and

PPLNSL to the NAND and OR-AND-INVERT (OAI) logic

gates in c17, as shown in Fig. 2(b). The detailed experimental

setup is described in Section VI-A.

The DoM measured by the DPA attack on c17 protected

with three logic locking methods are reported in Figs. 3, 4

and 5. For the N22 cone, Fig. 3(a) shows that the DoM line

for the correct key is above that for the wrong key, which

indicates that the locking key bit applied in the N22 cone can

be retrieved by the DPA attack. For the N23 cone, as shown

in Fig. 3(b), the DoM lines for the correct and wrong keys

are overlapped, which means that the DPA attack does not

find the correct key. Overall, Fig. 3 confirms that gate-level

logic locking has 50% resilience against the DPA attack. Based

on the measured DoM metrics for PSLNPL and PPLNSL

transistor-level locking shown in Figs. 4 and 5, we conclude

that the DPA attack fails to retrieve the locking key bits in

75% of the test cases.

According to the analysis in the previous section, the

wrong locking key at the transistor-level locking will lead

to a constant output. This characteristic could form a natural

defense line to thwart the DPA attack. When the constant

output induced by the wrong key is fed to another logic gate

0 200 400 600 800

No. of Traces

0

0.2

0.4

0.6

0.8

1
P

C
C

Correct Key

Wrong Key

(a)

0 200 400 600 800

No. of Traces

0.2

0.4

0.6

0.8

1

P
C

C

Correct Key

Wrong Key

(b)

Fig. 7: PCC for (a) N22 cone and (b) N23 cone in c17 locked

with XOR-based gate-level locking.

0 20 40 60 80 100

No. of Traces

0

0.2

0.4

0.6

0.8

1

P
C

C

Correct Key

Wrong Key

(a)

0 20 40 60 80 100

No. of Traces

0

0.2

0.4

0.6

0.8

1

P
C

C

Correct Key

Wrong Key

(b)

Fig. 8: PCC for (a) N22 cone and (b) N23 cone in c17 locked

with PSLNPL.

0 20 40 60 80 100

No. of Traces

0

0.2

0.4

0.6

0.8

1

P
C

C

Wrong Key

Correct Key

(a)

0 20 40 60 80 100

No. of Traces

0

0.2

0.4

0.6

0.8

1

P
C

C

Wrong Key

Correct Key

(b)

Fig. 9: PCC for (a) N22 cone and (b) N23 cone in c17 locked

with PPLNSL.

constant sequence will have no correlation with the real power

consumption T . As a result, the wrong key guess can be easily

excluded by the CPA attack.

On the other hand, the CPA attack can be mitigated by the

gate-level logic locking, as shown in Fig. 7(b). The XOR-

based gate-level locking will lead the locked gate to produce

a flipped output if a wrong key is applied. Once the wrong

output is propagated to the primary output of the logic cone,

the PCCs for the wrong and correct key cases will be the

same, no matter which power model is employed in power

estimation. If the Hamming distance model is used, Thyp for

the wrong key guess will be identical with the one for the

correct key and so is PCC. For example, the original output

sequence is [10010] and the flipped sequence is [01101]. Then,

the Thyp based on the Hamming distance model is [1011] for

both sequences. If the Hamming weight model is adopted,

Thyp for the wrong key guess will toggle oppositely to the

one for the correct key guess. Although this flipped Thyp for

the wrong key results in a reversed PCC, the |PCC| is still the

same with the one for the correct key guess. Consequently,

the CPA attack cannot differentiate the wrong key from the

correct key for either case. We zoomed in the failed CPA case

in the c17 locked with the XOR-based locking and found that

its primary output was indeed flipped when a wrong key was

given. However, it is not always possible to propagate the

constant output in bigger circuits. The CPA resilience provided

by the gate-level locking only happens in rare cases.

V. DPA AND CPA ATTACK RESILIENCE ENHANCEMENT

In this section, we summarize the existing effort that in-

vestigates the resilience enhancement against DPA and CPA

attacks and propose a new strategy that facilitates to search

for better key insertion locations for defending CPA attacks.

The work [3] evaluates the DPA resilience of gate-level logic

locking techniques. That work also provides two suggestions

to harden the locking circuit against DPA attacks: (1) increase

the ratio of key bits to the number of primary inputs of the

logic cone, and (2) insert key bits in a way that the locked

circuit functions closely to the original circuit even when a

wrong key is given.

To the best of our knowledge, there is no prior work

available discussing how to enhance the transistor-level logic

locking with respect to the CPA attack resilience. To fill this

gap, we propose a new guideline (composed of three rules) for

the optimal key insertion locations in PSLNPL and PPLNSL

based transistor-level locking configuration.

• Rule 1: Avoid inserting a key bit to a gate, whose wrong

constant output can be propagated to the primary outputs

of the locked circuits.

• Rule 2: Use the PSLNPL configuration to lock the gates

that have logic 0 as their majority output (e.g., AND and

NOR gates).

• Rule 3: Use the PPLNSL configuration to lock the gates

that have logic 1 as their majority output (e.g., OR and

NAND gates).

As we observed in Section IV-B, the wrong key induced

constant primary output will result in an invalid PCC in the

CPA algorithm and thus those wrong key guesses can be easily

eliminated from the attack process. The proposed rule 1 defers

the quick key elimination. In some cases, the primary output

may be reversely constant (e.g., logic 1 at the primary output

but logic 0 at the gate output), which should be avoided, too.

Output corruptibility is a classic metric evaluating the ability

of logic locking techniques in altering the original logic

function when wrong keys are given. Usually, a higher output

corruptibility will provide a better defense to IP piracy attacks

or counterfeiting. However, a lower output corruptibility is

more favorable in the sense of thwarting the CPA attack. We

denote the difference between the PCC values for a wrong key

and a correct key as DIFFPCC . As the CPA attack retrieves

the correct key by searching for the key yielding the highest

PCC, we suggest exploring countermeasures against the CPA

attack that can minimize DIFFPCC . A method that lowers

the output corruptibility helps to achieve a smaller DIFFPCC

and obtain a better CPA attack resilience.

Inspired on the relation between the output corruptibility

and the CPA resilience, the proposed rules 2 and 3 will

enable the transistor-level logic locking to reduce the output

