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(e.g., bias correction) can themselves strongly distort projected climate vulnerabilities and misrepresent their inferred financial consequences.
Overall, our results indicate a need to move beyond standard deterministic climate projection and error management frameworks that are
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Introduction

The planning and management of water resources depend heavily
on projections of water supply and demand (Loucks and van Beek
2017; Wurbs 1995), strongly shaping water infrastructures and
institutions (Malek et al. 2018; Trindade et al. 2019; Yoder et al.
2017). The challenge of infrastructure investment for climate

adaptation represents a balance between financial stability and
the capacity to meet system demands (Baum et al. 2018; Trindade
et al. 2019). Moreover, governments often confront high economic
costs, political contention, and social conflicts (Gizelis andWooden
2010; Petersen-Perlman et al. 2017) as they seek to change water-
related infrastructures or institutions. These factors promote institu-
tional inertia that favors reactive, postevent responses. Ignoring
projections can lead to maladaptive and myopic actions that
ultimately reduce our ability to respond to changes and reduce the
vulnerability of water-dependent sectors to stressors (Lamontagne
et al. 2019). Projections of future water resource availability can
also shape the perceptions of farmers, irrigation district managers,
and water and power utilities about their individual vulnerabilities
to climate change, therefore influencing local investment and
water-stress hedging decisions (Mase et al. 2017; Mills et al.
2016; Udmale et al. 2014).

Typical model-driven projections of water supply vulnerabilities
to climate change consists of (1) dynamically downscaling climate
projections to inform simulation of unregulated streamflow that en-
ters river systems (Clark et al. 2011; Overgaard et al. 2006) using
hydrologic land-surface models (LSMs), and (2) the use of the
resulting streamflow projections to simulate the allocative water
balance dynamics across water-dependent sectors (Wurbs 1995)
using water management models (WMMs) (Brown et al. 2015).
Unregulated streamflow simulations require forcing data from
observed meteorological inputs or a combination of global circulation
models and regional atmospheric models. Streamflow projections
contain errors due to biases in meteorological and soil data as well
as model calibration, scale, and limits in process representations
(Beven 1993, 2016; Gaganis 2009). A large body of literature has
explored how these errors are generated and how they can be catego-
rized (Gupta and Govindaraju 2019; Gupta et al. 2008; Nearing et al.
2016; Refsgaard et al. 2006; Vogel 2017; Wagener et al. 2010).
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However, it is poorly understood how LSM errors propagate
into WMMs, which are themselves subject to errors, and combine
to yield biases in our end-point decision-relevant measures of
climate vulnerability (e.g., reduced crop yields, water shortages,
or financial risks). Recent studies have begun to formally analyze
the propagation of uncertainty of inflow water regimes within water
management models (e.g., Hassanzadeh et al. 2016; Marton and
Paseka 2017; Nazemi and Wheater 2014; Sordo-Ward et al. 2016).
These efforts mainly focus on internal variability or uncertainty that
results from ensemble simulations based on synthetically generated
streamflow time series. Although understanding the effects of
observation record limits and internal variability is important, it
is fundamentally different than the error perturbation analyses con-
tributed here. The implications of errors within the broadly used
top-down GCM- and LSM- based deterministic simulated stream-
flow projection products is not well understood in terms of its
effects on water management models.

It is worth mentioning here that synthetic generation of stream-
flow time series is commonly used as an alternative bottom up way
of exploring streamflow changes and uncertainty (Borgomeo et al.
2015; Herman et al. 2016; Kirsch et al. 2013; Quinn et al. 2018,
2020; Steinschneider et al. 2015). These methods often employ
statistical techniques to construct streamflow time series that are
nonstationary and more diverse, although they still maintain a rea-
sonable level of statistical consistency with the past observations.
Overall, streamflow scenarios have been used to make up for the
lack of long-term streamflow observations. These scenarios also
allow us to investigate cases that have not been occurred during
the observation periods such as low-frequency extreme wet and
dry events, and multiyear droughts.

Here, we focus on climate-driven vulnerabilities in the
California water supply system, which represents one of the most
institutionally complex water infrastructure systems in the world.
The system (Fig. 1) includes thousands of kilometers of convey-
ance canals and dozens of dams that are operated to satisfy a broad
spectrum of objectives, including two statewide water delivery
projects—the State Water Project (SWP) and the Central Valley
Project (CVP). The map in Fig. 1 indicates the locations of various
dams and reservoirs in California, the state’s main agricultural
areas, and the spatial distribution of almond, one of the most im-
portant crops in California. The figure also shows the capacity of
the dams of the two main water delivery projects in California and
the San Luis dam that is shared between the two projects.

California’s water supply is highly dependent on the surface
water inflows from the Sierra Nevada mountains into its northern
reservoirs. The state has experienced substantial flood and drought
events in the past (Howitt et al. 2014; Mann and Gleick 2015), and
climate change is expected to worsen the situation (Mann and
Gleick 2015; Mote et al. 2005; Tanaka et al. 2006). This vulner-
ability is motivating a myriad of propositions to improve Califor-
nia’s water infrastructures and institutions (Forsythe et al. 2017;
Nishikawa 2016; Sandoval-Solis 2020). Groundwater resources
and water banks are among the most crucial and vulnerable parts
of the water supply in California (Kiparsky et al. 2017; Nishikawa
2016), particularly for the agricultural sector, and are the subject of
emerging regulations (Forsythe et al. 2017).

A significant portion of California’s annual precipitation is gen-
erated through atmospheric rivers during the winter and early
spring (Dettinger et al. 2011), which must be stored to meet
summer agricultural demands (Christian-Smith 2013; Kocis and
Dahlke 2017). Therefore, water stakeholders in California recharge
their groundwater resources during these short-lived extreme events
to use it later when surface water is not sufficient to meet the
demand (Ghasemizade et al. 2019; Scanlon et al. 2016). This

management regime potentially increases the sensitivity of irriga-
tion focused drought projections to short-term (daily) errors in
simulated flood events. To date, the implications of this issue have
not been explored in detail.

In this study, we show how errors from a well-established
coupled atmosphere–land modeling system [weather research
and forecasting model using the Noah-multi-parameterization land
surface model (WRF-Noah-MP)] (Cai et al. 2014; Skamarock et al.
2005, 2008) (Figs. S1 and S2) propagate into a California-specific
WMM [i.e., California Food-Energy-Water Systems Model (CAL-
FEWS)] (Zeff et al. 2021) and impact the simulation of systemwide
water supply, groundwater extraction, and annual revenue of
irrigation districts in the Central Valley.

We trace how errors in a single dynamically downscaled deter-
ministic streamflow scenario for a recent historically observed
period can strongly bias the important water balance dynamics
for key actors and infrastructure systems. This work highlights
the strong interdependence between errors in flood and drought
extremes, which are shown to be nonlinear, path-dependent, and
amplified in modeled operations of conveyance and storage infra-
structures. In other words, the simulation of various system stake-
holders depends on the history of exposure of the stakeholder to
streamflow errors as well as their flow paths through other system
components. Moreover, we show that standard methods for man-
aging and reducing these hydrologic errors exacerbate these water
balance distortions as well as associated inferences of climate
vulnerabilities for the region.

Methods

In this study, we explore how errors in dynamically downscaled
projections of surface hydrology impact important California water
management systems using CALFEWS (Zeff et al. 2021). The
model adaptively allocates water across scales and sectors using
a detailed representation of the state’s infrastructure and institu-
tions. Our analysis compare CALFEWS simulations of critical
components of the California water distribution system under four
sources of streamflow inputs: (1) observed streamflow from the
California Department of Water Resources’ Data Exchange Center
(CDEC); (2) raw WRF-Noah-MP streamflow outputs [no ground-
water correction (NGW)]; (3) WRF-Noah-MP streamflow outputs
with an expert-driven manual removal of groundwater biases
[groundwater-corrected (CGW)]; and (4) WRF-Noah-MP stream-
flow data that reduced errors via an automatic bias-correction
method using quantile mapping [bias-corrected (BC)].

In this section, we describe the computational framework that
was used to conduct the simulation-based analyses that underlie this
study (Fig. S1). To that effect, we first introduce the regional atmos-
pheric land-surface model (WRF-Noah-MP) that generated our
dynamically downscaled streamflow data sets. We then summarize
the water management model used in this study (CALFEWS) (Zeff
et al. 2021). Finally, we then describe the methods used here to
produce our bias-corrected data sets.

WRF-Noah-MP Streamflow Projections

The input streamflow data to our WMM was generated using the
Weather Research and Forecast (WRF) regional climate model
(Skamarock et al. 2005, 2008; Tang and Dennis 2014). The version
of WRF used to generate the streamflow inputs to CALFEWS is
integrated with the Noah-MP LSM (Barlage et al. 2015), a mecha-
nistic hydrologic LSM that simulates key surface water and energy
fluxes and states required by WRF as a surface boundary condition.
Noah-MP also simulates surface runoff and subflow, cold-season
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processes, vegetation dynamics, soil water movement, frozen soil,
and infiltration processes (Cai et al. 2014; Ingwersen and Streck
2011; Liu et al. 2016).

In this study, we compare four sources of streamflow inputs for
CALFEWS. The first one is our observed streamflow baseline from

CDEC. We also considered three variants of WRF-Noah-MP-
simulated streamflow scenarios: (1) raw WRF-Noah-MP (NGW);
(2) CGW; and (3) BC. The first two simulated streamflow scenarios
(CGWand NGW)were developed byHoltzman et al. (2020), and the
BC scenario was developed in this study (Supplemental Materials).

Fig. 1. Study area of this study (state of California). (Map data ©2015 Google.)
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To develop NGW and CGW, Holtzman et al. (2020) used two
different parameterizations of WRF-Noah-MP. Their baseline WRF
setup and parameterization were consistent with Wrzesien et al.
(2015), with a spatial resolution of 9 km (27-km outer domain).
However, Holtzman et al. (2020) showed that the default WRF
parameterizations can lead to biased streamflow simulations in
California. Therefore, they published a series of modifications to
improve the simulated streamflow. The NGW is a direct output
of WRF-Noah-MP after improvement of its internal parameteriza-
tions. The CGW, on the other hand, was developed by ex-post
statistical correction of NGW-simulated streamflow to make up for
the lack of a groundwater representation in the original WRF-
Noah-MP setup.

To develop the NGW streamflow scenario, Holtzman et al.
(2020) made the following major modifications:
• The rain-snow partitioning formulation was changed from a

function of air temperature to a more-sophisticated WRF micro-
physics scheme. This allows the model to accumulate more
accurate amounts of snow during the winter months.

• They updated the depth of subsurface runoff generation because
WRF’s default runoff generation depth was between 1 and 2 m
in all locations. This ignores the fact that, in higher elevations,
soil is generally shallower, and assumption of runoff generation
from assumed deeper soil layers can potentially lead to unrea-
sonable base flow generation and biased streamflow timing. To
respond to this problem, Holtzman et al. (2020) assumed runoff
generation from a shallower layer (10–30 cm).

• Slope to calculate subsurface flow was another parameter that
Holtzman et al. (2020) changed to improve the simulation of
subsurface flow. The default value of WRF-Noah-MP was 0.1,
but they changed this to 0.5. The higher subsurface flow slope
was able to improve the simulation of the streamflow amount.

• Holtzman et al. (2020) also changed the sand and ice soil
types to sandy loam to decrease the occurrence of unrealistically
large transient soil moisture changes at the beginning of the
simulation.

• Soil porosity of sandy-loam soil was modified from a default
value of 0.434 to 0.52. The reason was that their initial simu-
lations indicated that the water-holding capacity of the default
modeled soils was not high enough, which led to earlier stream-
flow peaks.

• Finally, they used a constant value for snow capacitance (0.2) of
the Thompson microphysics scheme (Thompson et al. 2008) to
ensure a more reasonable simulation of snowflake shape in
WRF-Noah-MP.
In regions with significant surface water–groundwater interac-

tions (Criss and Davisson 1996; Shaw et al. 2014) such as the Sierra
Nevada watersheds, the lack of groundwater representations can
lead to biases in simulation of magnitude and timing of runoff
and river flow. Because WRF-Noah-MP’s NGW setup did not
include a mechanistic simulation of groundwater dynamics (Barlage
et al. 2015), a postprocessing groundwater correction module was
utilized in the development of the CGW streamflow scenario. The
GW correction was performed using an offline statistical relation-
ship that was utilized to improve the NGW streamflow.

The corrected streamflow on a given day was obtained as a
weighted sum of three quantities: (1) original NGW daily stream-
flow, (2) average NGW streamflow over the last 365 days, and
(3) an intercept term, which was set so that the correction did
not change the overall mean NGW streamflow over the entire
simulation period. The weights were constant in time over the
simulation period but were allowed to vary across spatial locations.
Conceptually, the 365-day running-average term represents re-
leases from medium-term groundwater storage, and the intercept

represents base flow due to long-term groundwater storage that is
released over a timescale of many years. Including both these terms
helped model spatial variation in the residence time of groundwater.

Values of the correction weights were obtained separately for
each streamflow location using the following procedure. First, both
NGW and observed full natural flows (i.e., gauged flows with cor-
rections for upstream human activities) were normalized by divid-
ing by their overall mean value. Then, linear regression was used to
obtain the weight values that minimized the mean square error be-
tween the corrected normalized NGWand the normalized observa-
tions. The correction coefficients were fit on normalized flows
instead of raw flows because the primary goal of the correction
was to remedy errors in the NGW seasonality pattern, not to correct
any overall bias. Results presented by Holtzman et al. (2020) sug-
gested that this model substantially improves on the uncorrected
Noah-MP results (i.e., the NGW scenario) using a soil-only mod-
eling system. Noah-MP does include an optional groundwater
model, but it is often impractical to use because it takes many
simulation years to spin up (Niu et al. 2007).

There are other approaches that past studies have utilized to
improve the representation of groundwater dynamics in their
streamflow simulations. For example, past studies have developed
and incorporated simple groundwater modules (Niu et al. 2007;
Yang and Xie 2003) or dynamically integrated their land-surface
hydrologic models into well-established groundwater models
(Faunt et al. 2009; Kim et al. 2008; Molina-Navarro et al. 2019;
Xu et al. 2012). A few other studies have used statistical bias-
correction approaches to match the overall statistical moments
of their simulated streamflow with observations, which implicitly
takes into account groundwater dynamics (Hamlet and Lettenmaier
1999; Tiwari et al. 2021). Finally, there are other methods, such as
Bayesian filtering methods (Ait-El-Fquih et al. 2016; Panzeri et al.
2014; Rajabi et al. 2018) or offline postprocessing procedures
(Holtzman et al. 2020; Trabucchi et al. 2021), that implicitly
improve the representation of groundwater dynamics and overall
quality of streamflow simulations.

California Food-Energy-Water Systems Model

We use a water management model (Fig. S1) that has been devel-
oped to simulate north-central California agrohydrologic systems.
The CALFEWS model (Zeff et al. 2021) abstracts critical institu-
tional and infrastructure elements (>1,000) that capture the com-
plex dynamics for how north-central California’s water balance
is managed given the region’s extreme streamflow variability.
CALFEWS simulates the daily timescale operation of dams, water
conveyance systems, groundwater banks, and water allocation
decisions.

CALFEWS exploits state-aware rules that allow it to abstract the
highly dynamic and adaptive operational behaviors of the system
while complying with the institutional constraints that shape the
storage and conveyance of water. More specifically, CALFEWS
includes the operation of 12 major reservoirs in north-central
California (Fig. 1). However, most of the water is conveyed from
northern dams such as Shasta and Oroville to central California’s
agricultural areas. The model mimics the operation of these dams in
terms of water storage, flood prevention, and water release for agri-
cultural and environmental services. The dams provide water to a
complex transfer system that conveys water to the agricultural and
urban areas of California, which are mainly located in the central
and southern parts of the state (Fig. 1). The conveyance systems are
based on two statewide water-transfer projects: SWP and CVP.
Both projects own the storage and conveyance water infrastructures
that are included in the CALFEWS model. CALFEWS also takes
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into account all the major river water rights holders in the Tulare
Basin (e.g., Kings, Kaweah, Tule, and Kern).

The CALFEWS model takes several environmental constraints
into account. The model simulates delta-related environmental con-
cerns such as saltwater intrusion, minimum outflow from the delta,
and constraints in the old and middle river flow. It also captures
other minimum flow regulations in California rivers and their
reaches. There are also nonenvironmental constraints that are en-
forced in the model, such as pumping limitations, canal capacity
limitations, and water rights constraints. The model includes over
30 irrigation districts, 10 distinct imported water contract and
storage allocations, and nine major water banks in the system.
Additionally, the model simulates the water redistribution system

in the agricultural areas. For example, it captures direct ground-
water banking partnerships and in-lieu exchanges.

CALFEWS does not have a physically based groundwater
model that can mechanistically simulate groundwater dynamics,
but it does have a water balance accounting model that distributes
water to individual irrigation districts and groundwater banks based
on surface water allocations, carryover storage reservations in
surface water reservoirs, and the ownership of individual aquifer
recharge and recover assets. The model also simulates claims to
excess floodwater flows based on access and conveyance con-
straints. The detailed operational rules used within CALFEWS en-
able estimation of the annual revenue and financial stability at the
irrigation district scale.

Fig. 2. Comparison between the observed (CDEC) and simulated streamflow scenarios at Shasta Dam. The simulated streamflow scenarios include
raw WRF-Noah-MP flow (NGW), WRF-Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC): (a) average monthly inflow;
(b) average annual inflow; and monthly separated probability density function of daily streamflow for (c) observed; (d) no groundwater correction;
(e) groundwater-corrected; and (f) bias-corrected scenarios.
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Although capturing the diverse range of institutional and infra-
structure operational considerations that shape water allocation
decisions is nontrivial, and CALFEWS is subject to representational
limits, the model does reasonably capture the complex dynamics
of the infrastructure systems and their operations (more details
on the CFEWS-HIS baselines for major storages and Sacramento-
San Joaquin Delta exports are given in the Supplemental Materials
and Fig. 2). Also, more details and baseline capabilities of
CALFEWS are available from Zeff et al. (2021).

Quantile Mapping-Based Bias Correction

In this study, we used the frequently employed statistical bias-
correction technique called quantile mapping (Cannon et al. 2015)
to remove systematic biases of raw WRF-Noah-MP streamflow
data. To do this, we developed and used an R version 4.1 package
called biascorrection (Supplemental Materials) that follows the
methodology described by Hamlet and Lettenmaier (1999). In
short, the bias-correction module uses the historical observed
streamflow to create the monthly flow quantiles of each individual
month. After that, it uses the simulated streamflow data to create
simulated monthly flow quantiles. Afterwards, the bias-correction
module creates the monthly bias-corrected flow by swapping each
month of the simulated flow with the same quantile from the
observed streamflow.

Because hydrologic models can simulate the average annual
flow reasonably well, after constructing the monthly bias-corrected
flow, we adjust them to make sure that their average annual flow is
consistent with what the WRF-Noah-MP model has simulated.
Finally, we disaggregate the monthly bias-corrected flow to daily
by multiplying the raw daily simulated flow of each month by the
simulated bias-corrected ratio of that month.

Results and Discussions

Diagnosing Streamflow Errors across Timescales

The Shasta Reservoir represents a key storage project for the CVP
as well as flood control in northern California. As a means of
distinguishing floods, seasonal transitions, and drought periods
for the Shasta Reservoir system, our error analysis is formulated
across daily, monthly, and annual timescales (Figs. 2 and
S5–S12). We show that the raw streamflow output of the WRF-
Noah-MP model (NGW scenario) systematically underestimates
streamflow during low flow periods [Fig. 2(a)]. Previous literature
has attributed these biases mainly to the significant computational
and conceptual constraints associated with representing ground-
water processes in Noah-MP (Cai et al. 2014; Holtzman et al.
2020). Our results [Fig. 2(a)] demonstrate that the groundwater-
corrected streamflows (CGW) reduce errors during low-flow
periods.

However, the expert-based CGW calibration [Figs. 2(a and e)]
yields a consistent underestimation during high-flow periods. More
broadly, the distributions of the observed and the simulated stream-
flow scenarios at the daily time step [Figs. 2(c–f)] show that the
CGW scenario significantly reduces the range of variability in
streamflow and extremes. The water added during the low-flow
periods is drawn from the high-flow periods. More specifically,
from extreme flood events such as atmospheric rivers. Atmospheric
rivers (and other extreme flow events) are a crucial component of
water availability in California, and the presence or absence of them
is what distinguishes a drought year from a wet year (Diffenbaugh
et al. 2015). We also show that the quantile mapping-based
bias-correction scenario (BC) enhances aggregated monthly and

annual model performance in a manner comparable to the CGW,
improving the representation of streamflow during dry periods
(e.g., Fig. 2).

However, similar to the CGW scenario, statistical bias-
correction deteriorates the representation of streamflow during
high-flow periods, which dampens interseasonal variability. The
streamflow error management methods (i.e., BC and CGW) do
not improve the entire distribution of flows critical to north-central
California. A key concern that emerges from these results is how
these streamflow biases could create path-dependent and persistent
errors that propagate into the other components of the California
water system and affect our perception of downstream multisector
climate vulnerabilities. Although we only explain the results for
Shasta Dam here, our analysis demonstrate that the simulated
inflow time series into other California reservoirs (e.g., Oroville,
Folsom, Pine Flat, New Melones, Millerton, Isabella, Don Pedro,
and Yuba Dam) are predominantly in agreement with the Shasta
Dam (Figs. S5–S12).

Errors in the Main North-to-South Surface Water
Transfers

The two major pumping stations at the Sacramento-San Joaquin
River Delta play a crucial role in California’s north-to-south water
transfer projects. Pumping rates from these stations to the SWP and
CVP are among the most important indicators of the systemwide
water availability in California, particularly for users in the water-
scarce San Joaquin Valley as well as Southern California. Here, we
compare CALFEWS-simulated pumping rates using the different
sources of streamflow inputs with the actual observed historical
pumping rates as recorded in CDEC. Our results [Figs. 3(a and b)
and S13] show that, in general, the LSM-based streamflow results
(CGW, NGW, and BC) introduce significant errors compared with
the CFEWS-HIS simulation (CALFEWS simulations under
observed streamflow inputs). Although, at least in some cases,
the baseline (CFEWS-HIS) results do show nonnegligible devia-
tions from the observed pumping rates [Figs. 3(a and b)], the error
distribution is relatively consistent during wet and dry years
[Fig. 3(c)].

Capturing the diverse range of institutional and infrastructure op-
erational considerations that shape pumping from the Sacramento-
San Joaquin River Delta is nontrivial. As mentioned previously,
CALFEWS itself is subject to representational limits. Nonetheless,
the CFEWS-HIS results largely capture key trends and dynamics.
In the case of the NGW results (raw WRF-Noah-MP streamflow
outputs), the underestimation of reservoir inflow during the summer
causes a systematic underestimation of the pumping rate to the
CVP during that season [Figs. 2(a and d)]. These errors, which over-
lap in timing with peak irrigation demand, create consequential
biases for projections of agricultural productivity and groundwater
extraction.

Efforts to address these biases in the CGW and BC results do
partially address the pumping underestimation issue, at least in
some instances [Figs. 2(e and f)]. However, these scenarios also
produce higher pumping biases when estimating the pumping rates
to the CVP and SWP (SWP pumping rate errors in Fig. S13). These
overestimation biases become more pronounced in key CA drought
years (e.g., 2014 and 2015). Put simply, the groundwater correction
and quantile-mapped bias correction falsely overestimate delta
water deliveries in the evaluated drought years.

The overestimation issue appears more frequently in the CGW
case, primarily during high-flow periods in the winter and early
spring. This effect is most pronounced in drier years [Fig. 3(e)]
because the manual deterministic improvements in the representation
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of dry months can eliminate many low-flow days that naturally
exist in the observed record [Figs. 2(c and e)]. Also, because
the system transitions from the 2013–2015 drought to a wetter year
in 2016, the CGW’s bias leads to an overly optimistic inference of
drought recovery.

The BC scenario more closely follows the distribution of the raw
simulated results [Fig. 3(f)]; however, it also amplifies some of the
extreme flood events, leading to overestimated project pumping for
several periods. Moreover, as discussed previously, both the BC
and CGW streamflow scenarios tend to underestimate flow during

the high-flow periods, which can significantly affect the magnitude
and timing of dam storage in the spring and winter. The biases in
the delta-to-project deliveries also imply that LSM streamflow er-
rors can significantly influence projections of energy supply and
demand in California.

Groundwater Banks

Groundwater banks (GWBs) are critical components of California’s
water system. In California, GWBs are used as additional sources

Fig. 3. Pumping rate to Central Valley Project comparing observed pumping to CVP with simulations of CALFEWS under different streamflow
scenarios, i.e., CDEC (CFEWS-HIS), NGW, CGW, and BC across (a) monthly; (b) annual; and daily times scales for (c) CFEWS-HIS minus
observed (CVP); (d) no GW correction minus observed (CVP); (e) GW corrected minus observed (CVP); and (f) bias-corrected minus observed
(CVP). Root-mean square error (RMSE) is given in cubic meters per second.
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of storage that help capture excess water during flood events to
hedge against droughts (Ghasemizade et al. 2019). For example,
from 2012 to 2017, GWBs provided the system with more than
40 km3 of drought relief water (Xiao et al. 2017), playing a key
role in California agricultural systems seeking to avoid yield losses
and in some cases complete bankruptcy (Diffenbaugh et al. 2015;
Sarhadi et al. 2018).

Our results indicate that upstream streamflow errors propagate
into GWB simulations and significantly degrade the simulated
banked storages [Figs. 4(a and b); Table S5], recharge to GWBs
[Figs. 4(c and d)], and extraction from GWBs [Figs. 4(e and f)].

Fig. 4 shows how different streamflow scenarios, i.e., observed
(CFEWS-HIS), raw WRF-Noah-MP output (NGW), CGW, and
BC affect CALFEWS simulation of groundwater banks of the
Central Valley.

For example, the simulated streamflow scenarios (NGW, CGW,
and BC) all lead to systematic overestimations of water storage in
two groundwater banks of California: Kern Water Bank (Kern) and
Berrenda Mesa Project (Berrenda) [Figs. 4(a and b)].

There are two main factors influencing this overestimation.
First, groundwater banks have slower turnover times relative to
the other components of the system, allowing water to stay in

Fig. 4. Groundwater storage, recharge, and extraction: (a) water storage in Kern water bank; (b) water storage in Berrenda Mesa water bank;
(c) annual recharge into banks for Buena Vista SWP; (d) annual recharge into banks for Wonderful SWP; (e) annual extraction from banks for
Buena Vista SWP; and (f) annual extraction from banks for Wonderful SWP. Root-mean square error (RMSE) is given in millions of cubic meters.
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them for longer periods of time (i.e., higher residence times). This
implies that if streamflow inputs have systematic errors in over-
estimating available water, the errors will not dissipate immedi-
ately, and the GWBs can substantially accumulate long-lasting
erroneous storage contributions. For example, during the Spring
of 2010, our simulated streamflow scenarios (NGW, CGW, and
BC) consistently overestimated inflow to upstream reservoirs
(Fig. S14). Our results [Figs. 4(c and d)] clearly show how a portion
of the overestimated water ended up recharging the groundwater
system. This erroneous recharge causes a spike in groundwater stor-
age compared with the CFEWS-HIS baseline [Figs. 4(a and b)], and
this gap remained to the end of our simulation period 6 years later.

The second major factor influencing the overestimation of avail-
able storages in GWBs within the NGW, BC, and CGW projections
is their overestimation of the average annual pumping to the CVP
[Fig. 2(b)]. These overestimation errors ultimately contribute to
higher groundwater recharge and lower water deficits and, thus,
lower groundwater extraction.

Our results emphasize that when evaluating water management
options and vulnerabilities in California, drought years and flood
years are tightly coupled. This implies that, if a modeling frame-
work struggles to capture floods and wet periods well, it would not
be able to capture the dynamic impacts of droughts. These conse-
quential, long-lasting, and path-dependent errors also highlight that
extra attention should be paid to statistical and deterministic bias-
correction methods (e.g., BC and CGW) that inadvertently shift the
dynamic water balances associated with highly consequential
extreme events [Figs. 2(e and f)]. The overestimation of groundwater
bank storage can be also attributed to the fact that the recharge
capacities in the groundwater banks are significantly higher than
groundwater extraction capacities. This difference increases the
residence time of error in groundwater systems and further demon-
strate the contrasting sensitivity of the system to errors during wet
and dry periods.

Moreover, our results indicate that the water extractions and
recharge of various irrigation districts show distinctly different
responses to streamflow scenarios. This is due to their unique
institutional contexts as defined by their level of water right senio-
rity, contracts, water supply projects (CVP versus SWP), and geo-
graphical location in California (Table S6). The persistence and
path-dependence of errors in downscaled hydrologic projections
strongly depend on the institutionally complex infrastructure
systems of the north-central California water system. Infrastructure
elements or users with the most secure water rights, or most advan-
tageous positions within the water distribution network, receive
their total water demand more frequently; therefore, overestimation
or underestimation errors for available inflow to the system are
themselves institutionally allocated across the complex network
of other water right holders.

Financial Dynamics of Irrigation Districts

Errors in streamflow projections and the current standard appro-
aches for managing them also strongly shape our ability to infer
the financial stability of irrigation districts. Irrigation districts
are cooperative water management institutions that facilitate the
delivery and storage of water. They are also responsible for the
maintenance of water storage and delivery infrastructure. These
operational activities are the primary source of irrigation districts’
income. Generally, a lower amount of systemwide water supply
reduces the total volume of water that they are able to convey and
sell to their retail customers, leading to lower overall revenues,
which can cause potential financial instability, higher borrowing
costs, lower investment in infrastructure maintenance, and an inability

to retain trained staff, all of which have detrimental consequences
for the wellbeing of the region’s agriculture.

Our results show that streamflow errors significantly influence
our ability to infer the revenue vulnerabilities of irrigation districts
[Fig. 5(a)]. To estimate these revenues, given the unfortunate dearth
of transparently recorded water price data, we explore here 100
plausible water price scenarios that represent five plausible trajec-
tories of water price change during drought years (Supplemental
Materials).

Fig. 5 shows how different streamflow scenarios, i.e., baseline
CFEWS-HIS, raw WRF-Noah-MP output, CGW, and BC, affect
the simulation of financial stability for the Central Valley’s irriga-
tion districts. Figs. 5(a, c, and d) show how the distributions and
uncertainty bounds are generated from our 100 water price realiza-
tions, and the solid lines demonstrates the average of all those water
price scenarios. Figs. 5(e and f) show the probability density func-
tion of average yearly revenue across different irrigation districts
and under the observed, NGW, CGW, and BC conditions.

More specifically, the five baseline trajectories that have been
used to generate our 100 synthetic water price scenarios represent
−20%, 0%, þ20%, þ50%, and þ80% changes in water price dur-
ing drought years. The biases in revenue vulnerability results stem
from different operational activities such as surface water delivery,
aquifer recharge and groundwater pumping. Consequently, all of
the previously discussed surface-water and groundwater sources
of errors contribute to the resulting errors for irrigation districts’
financial dynamics. We estimate that the combined annual expected
costs of the errors among the 26 simulated irrigation districts totals
to about $114 million, $91 million, and $81 million under the
CGW, NGW, and BC scenarios, respectively.

Such a costly misperception (ranging from underestimation of
−81% to overestimation of þ111% of average annual revenues
among individual districts) of irrigation districts’ revenues could
lead to infrastructure investment and financial decisions that would
likely harm them as well as the broader water dependent north-
central California systems. We also highlight that susceptibility
of different irrigation districts to streamflow errors depends on
the details of their specific institutional contexts [Figs. 5(c and d)].

For example, our analysis suggests that SWP irrigation districts
are more sensitive to streamflow errors [Fig. 5(a)], mainly because
they tend to rely closely on error-prone water balance dynamics. In
addition, various other institutional factors such as water right se-
niority level of districts, degree of their dependence on groundwater
versus surface-water systems, and the geographical location of dis-
tricts contribute to their susceptibility or immunity to headwater
streamflow errors.

Our analysis indicates that, on average, the expert-based and
automatic error management methods (CGW and BC) tend to
systematically overestimate irrigation districts’ annual revenues
[Figs. 5(a and b)]. The reason is that, under these scenarios, surface
water delivery during summertime is generally higher, and higher
supply increases the income of irrigation districts. However, as dis-
cussed previously, these errors also compounded with groundwater
errors that can stem from failures in capturing key flood events.
Given that these groundwater biases have longer residence times,
they adversely impact irrigation districts’ revenue estimates over
the longer term.

It is concerning that these biases are very pronounced and more
clearly emerge during extreme drought years. For example, the rel-
ative error is significantly higher during 2015, which was the most
significant drought year in our study period [Fig. 5(c)]. Further-
more, as the tail of the revenue probability density functions
suggest, simulated streamflow scenarios perform exceptionally
poorly during extreme low-revenue periods [Figs. 5(e and f) and
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S16–S21]. Again, this result is of significant concern because these
extreme drought years can trigger major investments or inform
planned institutional changes.

Finally, our analysis (Fig. S22) suggests that our broad envelope
of water pricing scenarios do not substantially modify the core in-
sights from the revenue impacts shown in Fig. 5. However, water
pricing strongly depends on projections of statewide availability of
water (Medellín-Azuara et al. 2012) and is a factor that should be
studied closely for its interactions with streamflow error propaga-
tion. Although fully exploring these dependencies is beyond the
scope of this study, future work that employs hydroeconomic mod-
els that capture the interactions between water supply availability
estimates and water rates would provide more comprehensive

understanding of the compound dynamics of human–natural
system under uncertainty.

Do Streamflow Corrections Increase the Error
in Modeled Impacts?

Our results suggest that, at least in some cases, the expert-based
manual groundwater bias correction and quantile mapping-based
bias correction increase the bias and deteriorate the quality of the
CALFEWS simulations. This is slightly counterintuitive, consider-
ing the fact that there are severe and well-known biases in the NGW
streamflow simulation results fromWRF-Noah-MP, especially dur-
ing low-flow periods [Figs. 4(c and e)], and the standard aggregated

Fig. 5. Financial stability of irrigation districts: (a) mean error in revenue of irrigation districts; (b) annual mean error and total basinwide revenue;
(c and e) irrigation district—semitropic; and (d and f) irrigation district—North Kern. Root-mean square error (RMSE) is given in millions of dollars.
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accuracy model performance metrics (e.g., NSE) are higher for the
CGW and BC. One reason for the increases in error is that, among
the many features of a streamflow time series (including average
annual magnitude, average flow magnitude in different seasons,
and seasonality), any specific bias-correction method will optimize
error in terms of only some of those features, whereas errors in
other features may even be increased.

Also, capturing the properties of extreme events is very impor-
tant, as the severity and persistence of streamflow during low- and
high-flow periods affect the operation of many components of
the north-central California water infrastructure and institutional
systems (Hanak et al. 2018; Scanlon et al. 2016). As such, we rec-
ommend that future studies claiming to improve simulated repre-
sentation of hydrologic systems for the purpose of informing water
resource decision making move beyond typical bulk hydrograph
metrics (e.g., RMSE, Nash Sutcliffe efficiency (NSE), and
Kling-Gupta efficiency) because they do not capture important
nonlinear water balance dynamics that shape water resources man-
agement. Although these metrics are easy to calculate, our results
suggest that they can provide a misleading sense of improvement.

Additionally, there is a close relationship between floods and
droughts in California’s water system. Floodwater is often either
stored in surface reservoirs or controlled and diverted toward re-
charge basins, feeding groundwater banks. Later, the banked/stored
water is used by irrigation districts (Dettinger et al. 2011; Xiao et al.
2017). Therefore, error generated during high-flow periods will
propagate into low-flow years and affect the simulation of system
wide water availability, groundwater extraction, and irrigation district
revenue during water-shortage periods, when the north-central Cali-
fornian water system is more vulnerable. In other words, errors across
the time and space pool can transfer and reside in the institutionally
complex infrastructure systems. We use our north-central California
example to argue that, in each region, one or more characteristics of
flow might be more important to capture, and the interaction of these
properties (high- and low- flow periods) must be known in order for a
reasonable understanding of the system to be gained.

Finally, we warn that the complex institutional and infrastruc-
ture contexts of the errors in simulated streamflow projections are
critical to understanding the consequences of any error manage-
ment strategies. Deterministic bias corrections that are commonly
used in climate scenario modeling exacerbate this issue because
they ignore the water resources system context in which they
are employed. Our results highlight that the impact of changing
hydrology on water resources in climate projections cannot be
treated as being dominantly a natural systems modeling problem.

Conclusions

In this study, we explored how our management of the well-known
errors and biases in coupled land-atmosphere modeling systems
(e.g., WRF-Noah-MP) used to simulate current hydrology (as in
this study) and increasingly to project regional climate change im-
pacts (Huang et al. 2018; Musselman et al. 2018; Schwartz et al.
2017; Wrzesien and Pavelsky 2020) can strongly distort our per-
ceptions of vulnerabilities in institutionally complex major global
water resources systems such as the north-central California case
analyzed in this study. We show how streamflow errors from an
atmospheric and land-surface hydrologic model, WRF-Noah-MP,
propagate into a water management model, CALFEWS, and affect
perceptions of systemwide water supplies, groundwater banking,
and the annual revenue of irrigation districts. We show that the
north-central California water management infrastructures serve
their intended purpose, highly coupling the water balance dynamics

of floods and droughts. The infrastructures likewise shape the res-
idence times and conveyance of water balance errors across ex-
treme events.

We show that these errors have long, multiyear residence times
and become more consequential during severe drought periods.
This is concerning because the inferences we draw from simulating
extreme drought years are more likely than other years to shape
perceptions and trigger institutional and infrastructural changes.
We also show that errors and their effects can be unique and path-
dependent, as illustrated in the north-central California system’s
dependencies on different major water delivery projects (CVP ver-
sus SWP), the network of water rights, and the complex water port-
folios for each irrigation district. We show that ex-post corrections
of raw WRF-Noah-MP outputs do not necessarily reduce biases in
the simulation of key processes and, in some cases, can strongly
degrade system simulations.

Finally, our results indicate that the need for future research to
more fully engage with how institutional and infrastructure context
shapes the efficacy of bias-correction choices in our climate vulner-
ability assessments for complex water resources systems. We show
that they can strongly distort our inferences of climate-driven vul-
nerabilities given the highly interdependent nature of the human
and natural processes that WMMs simulate. The results of this
study also highlight the necessity of considering alternative para-
digms of water resources vulnerability assessments, such as explor-
atory modeling (e.g., Hadjimichael et al. 2020), which can more
fully incorporate and address the key errors and uncertainties that
shape projections of climate change vulnerabilities.

Data Availability Statement

All data sets and scripts used in this study are available in the
GitHub repository of the paper. The CALFEWS model is an
open-source software and its latest version can be obtained from
its DOI repository (https://doi.org/10.31224/osf.io/sqr7e). Also,
the biascorrection R package can be found here (https://github
.com/keyvan-malek/biascorrection).

Acknowledgments

This material is based upon work supported by the National Science
Foundation (NSF), Innovations at the Nexus of Food- Energy-Water
Systems, Track 2 (Award 1639268). The views expressed in this
work represent those of the authors and do not necessarily reflect
the views or policies of the National Science Foundation. Keyvan
Malek conducted simulations and wrote the first draft of the manu-
script. Patrick Reed supervised the project. Keyvan Malek, Patrick
Reed, Harrison Zeff, Andrew Hamilton, Melissa Wrzesien, Natan
Holtzman, Scott Steinschneider, Jonathan Herman, and Tamlin
Pavelsky participated in development of the paper’s central ideas,
its study design, and the final version of the manuscript.

Supplemental Materials

Notes S1–S5, Figs. S1–S22, and Tables S1–S6 are available online
in the ASCE Library (www.ascelibrary.org).

References

Ait-El-Fquih, B., M. El Gharamti, and I. Hoteit. 2016. “A Bayesian con-
sistent dual ensemble Kalman filter for state-parameter estimation in

© ASCE 04021095-11 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(1): 04021095 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

17
4.

20
8.

17
1.

15
4 

on
 0

1/
26

/2
2.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

https://doi.org/10.31224/osf.io/sqr7e
https://github.com/keyvan-malek/biascorrection
https://github.com/keyvan-malek/biascorrection
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001493#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001493#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001493#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001493#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001493#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001493#supplMaterial
http://www.ascelibrary.org


subsurface hydrology.” Hydrol. Earth Syst. Sci. 20 (8): 3289–3307.
https://doi.org/10.5194/hess-20-3289-2016.

Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.-L. Yang, and G.-Y.
Niu. 2015. “The effect of groundwater interaction in North American
regional climate simulations with WRF/Noah-MP.” Clim. Change
129 (3): 485–498. https://doi.org/10.1007/s10584-014-1308-8.

Baum, R., G. W. Characklis, and M. L. Serre. 2018. “Effects of geographic
diversification on risk pooling to mitigate drought-related financial
losses for water utilities.” Water Resour. Res. 54 (4): 2561–2579.
https://doi.org/10.1002/2017WR021468.

Beven, K. 1993. “Research perspectives in hydrology prophecy, reality and
uncertainty in distributed hydrological modelling.” Adv. Water Resour.
16 (1): 41–51. https://doi.org/10.1016/0309-1708(93)90028-E.

Beven, K. 2016. “Facets of uncertainty: Epistemic uncertainty, non-
stationarity, likelihood, hypothesis testing, and communication.”
Hydrol. Sci. J. 61 (9): 1652–1665. https://doi.org/10.1080/02626667
.2015.1031761.

Borgomeo, E., C. L. Farmer, and J. W. Hall. 2015. “Numerical rivers: A
synthetic streamflow generator for water resources vulnerability assess-
ments.” Water Resour. Res. 51 (7): 5382–5405. https://doi.org/10.1002
/2014WR016827.

Brown, C. M., J. R. Lund, X. Cai, P. M. Reed, E. A. Zagona, A. Ostfeld,
J. Hall, G. W. Characklis, W. Yu, and L. Brekke. 2015. “The future
of water resources systems analysis: Toward a scientific framework
for sustainable water management.” Water Resour. Res. 51 (8): 6110–
6124. https://doi.org/10.1002/2015WR017114.

Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell. 2014.
“Hydrological evaluation of the Noah-MP land surface model for
the Mississippi River Basin.” J. Geophys. Res.: Atmos. 119 (1): 23–
38. https://doi.org/10.1002/2013JD020792.

Cannon, A. J., S. R. Sobie, and T. Q. Murdock. 2015. “Bias correction of
GCM precipitation by quantile mapping: How well do methods pre-
serve changes in quantiles and extremes?” J. Clim. 28 (17): 6938–
6959. https://doi.org/10.1175/JCLI-D-14-00754.1.

Christian-Smith, J. 2013. Improving water management through ground-
water banking: Kern County and the Rosedale-Rio Bravo Water
Storage District. Washington, DC: Pacific Institute FarmWater Success
Stories.

Clark, M. P., J. Hendrikx, A. G. Slater, D. Kavetski, B. Anderson, N. J.
Cullen, T. Kerr, E. Ö. Hreinsson, and R. A.Woods. 2011. “Representing
spatial variability of snow water equivalent in hydrologic and land-
surface models: A review.” Water Resour. Res. 47 (7): 11. https://doi
.org/10.1029/2011WR010745.

Criss, R. E., and M. L. Davisson. 1996. “Isotopic imaging of surface water/
groundwater interactions, Sacramento Valley, California.” J. Hydrol.
178 (1): 205–222. https://doi.org/10.1016/0022-1694(96)83733-4.

Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011.
“Atmospheric Rivers, floods and the water resources of California.”
Water, Molecular Diver. Preserv. Int. 3 (2): 445–478. https://doi.org/10
.3390/w3020445.

Diffenbaugh, N. S., D. L. Swain, and D. Touma. 2015. “Anthropogenic
warming has increased drought risk in California.” Proc. Nat. Acad.
Sci. 112 (13): 3931–3936. https://doi.org/10.1073/pnas.1422385112.

Faunt, C. C., R. T. Hanson, K. Belitz, W. Schmid, S. P. Predmore, D. L.
Rewis, and K. Mcpherson. 2009. “Chapter C. Numerical model of the
hydrologic landscape and groundwater flow in California’s Central
Valley.” In Groundwater availability of the Central Valley aquifer of
California, 121–212. Reston, VA: USGS.

Forsythe, L. M., I. M. Jones, and D. J. Kemp. 2017. “A report card:
Progress under California’s sustainable groundwater management act
(SGMA).” U. Denv. Water L. Rev. 21: 199.

Gaganis, P. 2009. “Model calibration/parameter estimation techniques and
conceptual model error.” In Uncertainties in environmental modelling
and consequences for policy making, 129–154. Berlin: Springer.

Ghasemizade, M., K. O. Asante, C. Petersen, T. Kocis, H. E. Dahlke, and
T. Harter. 2019. “An integrated approach toward sustainability via
groundwater banking in the southern Central Valley, California.” Water
Resour. Res. 55 (4): 2742–2759. https://doi.org/10.1029/2018WR024069.

Gizelis, T.-I., and A. E. Wooden. 2010. “Water resources, institutions, &
intrastate conflict.” Political Geogr. 29 (8): 444–453. https://doi.org/10
.1016/j.polgeo.2010.10.005.

Gupta, A., and R. S. Govindaraju. 2019. “Propagation of structural uncer-
tainty in watershed hydrologic models.” J. Hydrol. 575 (Jan): 66–81.
https://doi.org/10.1016/j.jhydrol.2019.05.026.

Gupta, H. V., T. Wagener, and Y. Liu. 2008. “Reconciling theory with ob-
servations: Elements of a diagnostic approach to model evaluation.”Hy-
drol. Process. 22 (18): 3802–3813. https://doi.org/10.1002/hyp.6989.

Hadjimichael, A., J. Quinn, E. Wilson, P. Reed, L. Basdekas, D. Yates, and
M. Garrison. 2020. “Defining robustness, vulnerabilities, and conse-
quential scenarios for diverse stakeholder interests in institutionally
complex river basins.” Earth’s Future 8 (7): e2020EF001503. https://
doi.org/10.1029/2020EF001503.

Hamlet, A. F., and D. P. Lettenmaier. 1999. “Effects of climate change on
hydrology and water resources in the Columbia River Basin1.” J. Am.
Water Resour. Assoc. 35 (6): 1597–1623. https://doi.org/10.1111/j
.1752-1688.1999.tb04240.x.

Hanak, E., J. Jezdimirovic, S. Green, and A. Escriva-Bou. 2018. Replen-
ishing groundwater in the San Joaquin Valley. San Francisco: Public
Policy Institute of California.

Hassanzadeh, E., A. Elshorbagy, H. Wheater, P. Gober, and A. Nazemi.
2016. “Integrating supply uncertainties from stochastic modeling into
integrated water resource management: Case study of the Saskatchewan
River Basin.” J. Water Resour. Plann. Manage. 142 (2): 05015006.
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000581.

Herman, J. D., H. B. Zeff, J. R. Lamontagne, P. M. Reed, and G. W.
Characklis. 2016. “Synthetic drought scenario generation to support
bottom-up water supply vulnerability assessments.” J. Water Resour.
Plann. Manage. 142 (11): 04016050. https://doi.org/10.1061/(ASCE)
WR.1943-5452.0000701.

Holtzman, N. M., T. M. Pavelsky, J. S. Cohen, M. L. Wrzesien, and J. D.
Herman. 2020. “Tailoring WRF and Noah-MP to improve process rep-
resentation of Sierra Nevada Runoff: Diagnostic evaluation and appli-
cations.” J. Adv. Model. Earth Syst. 12 (3): e2019MS001832. https://doi
.org/10.1029/2019MS001832.

Howitt, R., J. Medellín-Azuara, D. MacEwan, J. Lund, and D. Sumner.
2014. Economic analysis of the 2014 drought for California agricul-
ture. San Francisco: Univ. of California.

Huang, X., A. D. Hall, and N. Berg. 2018. “Anthropogenic warming
impacts on today’s Sierra Nevada snowpack and flood risk.” Geophys.
Res. Lett. 45 (12): 6215–6222. https://doi.org/10.1029/2018GL077432.

Ingwersen, J., and T. Streck. 2011. “NOAH-GECROS: A coupled land
surface-crop growth model for simulating water and energy exchange
between croplands and atmosphere.” AGU Fall Meeting Abstracts
1 (18): 0958.

Kim, N. W., I. M. Chung, Y. S. Won, and J. G. Arnold. 2008. “Development
and application of the integrated SWAT–MODFLOWmodel.” J. Hydrol.
356 (1): 1–16. https://doi.org/10.1016/j.jhydrol.2008.02.024.

Kiparsky, M., A. Milman, D. Owen, and A. T. Fisher. 2017. “The impor-
tance of institutional design for distributed local-level governance of
groundwater: The case of California’s sustainable groundwater manage-
ment act.” Water 9 (10): 755. https://doi.org/10.3390/w9100755.

Kirsch, B. R., G. W. Characklis, and H. B. Zeff. 2013. “Evaluating the
impact of alternative hydro-climate scenarios on transfer agreements:
Practical improvement for generating synthetic streamflows.” J. Water
Resour. Plann. Manage. 139 (4): 396–406. https://doi.org/10.1061
/(ASCE)WR.1943-5452.0000287.

Kocis, T. N., and H. E. Dahlke. 2017. “Availability of high-magnitude
streamflow for groundwater banking in the Central Valley, California.”
Environ. Res. Lett. 12 (8): 084009. https://doi.org/10.1088/1748-9326
/aa7b1b.

Lamontagne, J. R., P. M. Reed, G. Marangoni, K. Keller, and G. G. Garner.
2019. “Robust abatement pathways to tolerable climate futures require
immediate global action.” Nat. Clim. Change 9 (4): 290–294. https://doi
.org/10.1038/s41558-019-0426-8.

Liu, X., F. Chen, M. Barlage, G. Zhou, and D. Niyogi. 2016. “Noah-
MP-Crop: Introducing dynamic crop growth in the Noah-MP land
surface model.” J. Geophys. Res. Atmos. 121 (23): 13953–13972.
https://doi.org/10.1002/2016JD025597.

© ASCE 04021095-12 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(1): 04021095 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

17
4.

20
8.

17
1.

15
4 

on
 0

1/
26

/2
2.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

https://doi.org/10.5194/hess-20-3289-2016
https://doi.org/10.1007/s10584-014-1308-8
https://doi.org/10.1002/2017WR021468
https://doi.org/10.1016/0309-1708(93)90028-E
https://doi.org/10.1080/02626667.2015.1031761
https://doi.org/10.1080/02626667.2015.1031761
https://doi.org/10.1002/2014WR016827
https://doi.org/10.1002/2014WR016827
https://doi.org/10.1002/2015WR017114
https://doi.org/10.1002/2013JD020792
https://doi.org/10.1175/JCLI-D-14-00754.1
https://doi.org/10.1029/2011WR010745
https://doi.org/10.1029/2011WR010745
https://doi.org/10.1016/0022-1694(96)83733-4
https://doi.org/10.3390/w3020445
https://doi.org/10.3390/w3020445
https://doi.org/10.1073/pnas.1422385112
https://doi.org/10.1029/2018WR024069
https://doi.org/10.1016/j.polgeo.2010.10.005
https://doi.org/10.1016/j.polgeo.2010.10.005
https://doi.org/10.1016/j.jhydrol.2019.05.026
https://doi.org/10.1002/hyp.6989
https://doi.org/10.1029/2020EF001503
https://doi.org/10.1029/2020EF001503
https://doi.org/10.1111/j.1752-1688.1999.tb04240.x
https://doi.org/10.1111/j.1752-1688.1999.tb04240.x
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000581
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000701
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000701
https://doi.org/10.1029/2019MS001832
https://doi.org/10.1029/2019MS001832
https://doi.org/10.1029/2018GL077432
https://doi.org/10.1016/j.jhydrol.2008.02.024
https://doi.org/10.3390/w9100755
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000287
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000287
https://doi.org/10.1088/1748-9326/aa7b1b
https://doi.org/10.1088/1748-9326/aa7b1b
https://doi.org/10.1038/s41558-019-0426-8
https://doi.org/10.1038/s41558-019-0426-8
https://doi.org/10.1002/2016JD025597


Loucks, D. P., and E. van Beek. 2017. Water resource systems planning
and management: An introduction to methods, models, and applica-
tions, edited by D. P. Loucks and E. van Beek, 1–49. Berlin: Springer.

Malek, K., J. Adam, C. Stockle, M. Brady, and K. Rajagopalan. 2018.
“When should irrigators invest in more water-efficient technologies
as an adaptation to climate change?” Water Resour. Res. 54 (11):
8999–9032. https://doi.org/10.1029/2018WR022767.

Mann, M. E., and P. H. Gleick. 2015. “Climate change and California
drought in the 21st century.” Proc. Nat. Acad. Sci. 112 (13): 3858–
3859. https://doi.org/10.1073/pnas.1503667112.

Marton, D., and S. Paseka. 2017. “Uncertainty impact on water manage-
ment analysis of open water reservoir.” Environ. Multidiscip. Digital
4 (1): 10. https://doi.org/10.3390/environments4010010.

Mase, A. S., B. M. Gramig, and L. S. Prokopy. 2017. “Climate change
beliefs, risk perceptions, and adaptation behavior among Midwestern
U.S. crop farmers.” Clim. Risk Manage. 15 (Apr): 8–17. https://doi
.org/10.1016/j.crm.2016.11.004.

Medellín-Azuara, J., J. A. Vergati, D. A. Sumner, R. E. Howitt, and J. R.
Lund. 2012. Analysis of effects of reduced supply of water on agricul-
tural production and irrigation water use in Southern California.
San Francisco: Univ. of California.

Mills, M., K. Mutafoglu, V. M. Adams, C. Archibald, J. Bell, and J. X.
Leon. 2016. “Perceived and projected flood risk and adaptation in
coastal Southeast Queensland, Australia.” Clim. Change 136 (3):
523–537. https://doi.org/10.1007/s10584-016-1644-y.

Molina-Navarro, E., R. T. Bailey, H. E. Andersen, H. Thodsen, A. Nielsen,
S. Park, J. S. Jensen, J. B. Jensen, and D. Trolle. 2019. “Comparison
of abstraction scenarios simulated by SWAT and SWAT-MODFLOW.”
Hydrol. Sci. J. 64 (4): 434–454. https://doi.org/10.1080/02626667.2019
.1590583.

Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier. 2005.
“Declining mountain snowpack in western North America.” Bull. Am.
Meteorol. Soc. 86 (1): 39–50. https://doi.org/10.1175/BAMS-86-1-39.

Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu,
M. Barlage, and R. Rasmussen. 2018. “Projected increases and shifts in
rain-on-snow flood risk over western North America.” Nat. Clim.
Change 8 (9): 808–812. https://doi.org/10.1038/s41558-018-0236-4.

Nazemi, A., and H. S. Wheater. 2014. “How can the uncertainty in the
natural inflow regime propagate into the assessment of water resource
systems?” Adv. Water Resour. 63 (4): 131–142. https://doi.org/10.1016
/j.advwatres.2013.11.009.

Nearing, G. S., Y. Tian, H. V. Gupta, M. P. Clark, K. W. Harrison, and
S. V. Weijs. 2016. “A philosophical basis for hydrological uncertainty.”
Hydrol. Sci. J. 61 (9): 1666–1678. https://doi.org/10.1080/02626667
.2016.1183009.

Nishikawa, K. 2016. “The end of an era: California’s first attempt to
manage its groundwater resources through its sustainable ground-
water management act and its impact on almond farmers.” Environ.
Claims J. 28 (3): 206–222. https://doi.org/10.1080/10406026.2016
.1129294.

Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su. 2007.
“Development of a simple groundwater model for use in climate
models and evaluation with gravity recovery and climate experiment
data.” J. Geophys. Res. Atmos. 112 (7): 16. https://doi.org/10.1029
/2006JD007522.

Overgaard, J., D. Rosbjerg, and M. B. Butts. 2006. “Land-surface
modelling in hydrological perspective? A review.” Biogeosciences
3 (2): 229–241. https://doi.org/10.5194/bg-3-229-2006.

Panzeri, M., M. Riva, A. Guadagnini, and S. P. Neuman. 2014. “Com-
parison of ensemble Kalman filter groundwater-data assimilation
methods based on stochastic moment equations and Monte Carlo sim-
ulation.” Adv. Water Resour. 66 (Jan): 8–18. https://doi.org/10.1016/j
.advwatres.2014.01.007.

Petersen-Perlman, J. D., J. C. Veilleux, and A. T. Wolf. 2017. “International
water conflict and cooperation: Challenges and opportunities.” Water
Int. 42 (2): 105–120. https://doi.org/10.1080/02508060.2017.1276041.

Quinn, J. D., A. Hadjimichael, P. M. Reed, and S. Steinschneider. 2020.
“Can exploratory modeling of water scarcity vulnerabilities and robust-
ness be scenario neutral?” Earth’s Future 8 (11): e2020EF001650.
https://doi.org/10.1029/2020EF001650.

Quinn, J. D., P. M. Reed, M. Giuliani, A. Castelletti, J. W. Oyler, and R. E.
Nicholas. 2018. “Exploring how changing monsoonal dynamics
and human pressures challenge multireservoir management for flood
protection, hydropower production, and agricultural water supply.”
Water Resour. Res. 54 (7): 4638–4662. https://doi.org/10.1029
/2018WR022743.

Rajabi, M. M., B. Ataie-Ashtiani, and C. T. Simmons. 2018. “Model-data
interaction in groundwater studies: Review of methods, applications
and future directions.” J. Hydrol. 567 (Dec): 457–477. https://doi.org
/10.1016/j.jhydrol.2018.09.053.

Refsgaard, J. C., J. P. van der Sluijs, J. Brown, and P. van der Keur. 2006. “A
framework for dealing with uncertainty due to model structure error.”
Adv. Water Resour. 29 (11): 1586–1597. https://doi.org/10.1016/j
.advwatres.2005.11.013.

Sandoval-Solis, S. 2020. “Water resources management in California.”
In Integrated water resource management: Cases from Africa, Asia,
Australia, Latin America and USA, 35–44. Berlin: Springer.

Sarhadi, A., M. C. Ausín, M. P. Wiper, D. Touma, and N. S. Diffenbaugh.
2018. “Multidimensional risk in a nonstationary climate: Joint proba-
bility of increasingly severe warm and dry conditions.” Sci. Adv. 4 (11):
eaau3487. https://doi.org/10.1126/sciadv.aau3487.

Scanlon, B. R., R. C. Reedy, C. C. Faunt, D. Pool, and K. Uhlman. 2016.
“Enhancing drought resilience with conjunctive use and managed aqui-
fer recharge in California and Arizona.” Environ. Res. Lett. 11 (3):
035013. https://doi.org/10.1088/1748-9326/11/4/049501.

Schwartz, M., A. Hall, F. Sun, D. Walton, and N. Berg. 2017. “Significant
and inevitable end-of-twenty-first-century advances in surface runoff
timing in California’s Sierra Nevada.” J. Hydrometeorol. 18 (12):
3181–3197. https://doi.org/10.1175/JHM-D-16-0257.1.

Shaw, G. D., M. H. Conklin, G. J. Nimz, and F. Liu. 2014. “Groundwater
and surface water flow to the Merced River, Yosemite Valley,
California: 36Cl and Cl—Evidence.” Water Resour. Res. 50 (3):
1943–1959. https://doi.org/10.1002/2013WR014222.

Skamarock, W. C., J. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G.
Duda, X.-Y. Huang, W. Wang, and J. Powers. 2008. A description of the
advanced research WRF version 3. Boulder, CO: National Center for
Atmospheric Research.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W.
Wang, and J. G. Powers. 2005. A description of the advanced research
WRF version 2. Boulder, CO: National Center for Atmospheric Research.

Sordo-Ward, Á., I. Granados, F. Martín-Carrasco, and L. Garrote. 2016.
“Impact of hydrological uncertainty on water management decisions.”
Water Resour. Manage. 30 (14): 5535–5551. https://doi.org/10.1007
/s11269-016-1505-5.

Steinschneider, S., S. Wi, and C. Brown. 2015. “The integrated effects of
climate and hydrologic uncertainty on future flood risk assessments.”
Hydrol. Process. 29 (12): 2823–2839. https://doi.org/10.1002/hyp
.10409.

Tanaka, S. K., T. Zhu, J. R. Lund, R. E. Howitt, M.W. Jenkins,M. A. Pulido,
M. Tauber, R. S. Ritzema, and I. C. Ferreira. 2006. “Climate warming
and water management adaptation for California.” Clim. Change
76 (3–4): 361–387. https://doi.org/10.1007/s10584-006-9079-5.

Tang, C., and R. L. Dennis. 2014. “How reliable is the offline linkage of
weather research & Forecasting model (WRF) and variable infiltration
capacity (VIC) model?” Glob. Planet. Change 116 (Jan): 1–9. https://
doi.org/10.1016/j.gloplacha.2014.01.014.

Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall. 2008.
“Explicit forecasts of winter precipitation using an improved bulk mi-
crophysics scheme. Part II: Implementation of a new snow parameter-
ization.” Mon. Weather Rev. 136 (12): 5095–5115. https://doi.org/10
.1175/2008MWR2387.1.

Tiwari, A. D., P. Mukhopadhyay, and V. Mishra. 2021. “Influence of bias
correction of meteorological and streamflow forecast on hydrological
prediction in India.” J. Hydrometeorol. 1 (Apr): 124. https://doi.org/10
.1175/JHM-D-20-0235.1.

Trabucchi, M., D. Fernàndez-Garcia, and J. Carrera. 2021. “Automatic
calibration of groundwater models with bias correction and data filter-
ing: Working with drawdown data.” Water Resour. Res. 57 (3):
e2020WR028097. https://doi.org/10.1029/2020WR028097.

© ASCE 04021095-13 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(1): 04021095 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

17
4.

20
8.

17
1.

15
4 

on
 0

1/
26

/2
2.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

https://doi.org/10.1029/2018WR022767
https://doi.org/10.1073/pnas.1503667112
https://doi.org/10.3390/environments4010010
https://doi.org/10.1016/j.crm.2016.11.004
https://doi.org/10.1016/j.crm.2016.11.004
https://doi.org/10.1007/s10584-016-1644-y
https://doi.org/10.1080/02626667.2019.1590583
https://doi.org/10.1080/02626667.2019.1590583
https://doi.org/10.1175/BAMS-86-1-39
https://doi.org/10.1038/s41558-018-0236-4
https://doi.org/10.1016/j.advwatres.2013.11.009
https://doi.org/10.1016/j.advwatres.2013.11.009
https://doi.org/10.1080/02626667.2016.1183009
https://doi.org/10.1080/02626667.2016.1183009
https://doi.org/10.1080/10406026.2016.1129294
https://doi.org/10.1080/10406026.2016.1129294
https://doi.org/10.1029/2006JD007522
https://doi.org/10.1029/2006JD007522
https://doi.org/10.5194/bg-3-229-2006
https://doi.org/10.1016/j.advwatres.2014.01.007
https://doi.org/10.1016/j.advwatres.2014.01.007
https://doi.org/10.1080/02508060.2017.1276041
https://doi.org/10.1029/2020EF001650
https://doi.org/10.1029/2018WR022743
https://doi.org/10.1029/2018WR022743
https://doi.org/10.1016/j.jhydrol.2018.09.053
https://doi.org/10.1016/j.jhydrol.2018.09.053
https://doi.org/10.1016/j.advwatres.2005.11.013
https://doi.org/10.1016/j.advwatres.2005.11.013
https://doi.org/10.1126/sciadv.aau3487
https://doi.org/10.1088/1748-9326/11/4/049501
https://doi.org/10.1175/JHM-D-16-0257.1
https://doi.org/10.1002/2013WR014222
https://doi.org/10.1007/s11269-016-1505-5
https://doi.org/10.1007/s11269-016-1505-5
https://doi.org/10.1002/hyp.10409
https://doi.org/10.1002/hyp.10409
https://doi.org/10.1007/s10584-006-9079-5
https://doi.org/10.1016/j.gloplacha.2014.01.014
https://doi.org/10.1016/j.gloplacha.2014.01.014
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/JHM-D-20-0235.1
https://doi.org/10.1175/JHM-D-20-0235.1
https://doi.org/10.1029/2020WR028097


Trindade, B. C., P. M. Reed, and G.W. Characklis. 2019. “Deeply uncertain
pathways: Integrated multi-city regional water supply infrastructure in-
vestment and portfolio management.” Adv. Water Resour. 134 (4):
103442. https://doi.org/10.1016/j.advwatres.2019.103442.

Udmale, P., Y. Ichikawa, S. Manandhar, H. Ishidaira, and A. S. Kiem. 2014.
“Farmers’ perception of drought impacts, local adaptation and admin-
istrative mitigation measures in Maharashtra State, India.” Int. J. Dis-
aster Risk Reduct. 10 (45): 250–269. https://doi.org/10.1016/j.ijdrr
.2014.09.011.

Vogel, R. M. 2017. “Stochastic watershed models for hydrologic risk man-
agement.”Water Secur. 1 (Apr): 28–35. https://doi.org/10.1016/j.wasec
.2017.06.001.

Wagener, T., M. Sivapalan, P. A. Troch, B. L. McGlynn, C. J. Harman,
H. V. Gupta, P. Kumar, P. S. C. Rao, N. B. Basu, and J. S. Wilson.
2010. “The future of hydrology: An evolving science for a changing
world.” Water Resour. Res. 46 (5): 10. https://doi.org/10.1029
/2009WR008906.

Wrzesien, M. L., and T. M. Pavelsky. 2020. “Projected changes to extreme
runoff and precipitation events from a downscaled simulation over the
western United States.” Front. Earth Sci. 7: 355. https://doi.org/10.3389
/feart.2019.00355.

Wrzesien, M. L., T. M. Pavelsky, S. B. Kapnick, M. T. Durand, and T. H.
Painter. 2015. “Evaluation of snow cover fraction for regional climate
simulations in the Sierra Nevada.” Int. J. Climatol. 35 (9): 2472–2484.
https://doi.org/10.1002/joc.4136.

Wurbs, R. A. 1995. Water management models: A guide to software.
London: Pearson Education.

Xiao, M., A. Koppa, Z. Mekonnen, B. R. Pagán, S. Zhan, Q. Cao, A.
Aierken, H. Lee, and D. P. Lettenmaier. 2017. “How much groundwater
did California’s Central Valley lose during the 2012–2016 drought?”
Geophys. Res. Lett. 44 (10): 4872–4879. https://doi.org/10.1002
/2017GL073333.

Xu, X., G. Huang, H. Zhan, Z. Qu, and Q. Huang. 2012. “Integration of
SWAP and MODFLOW-2000 for modeling groundwater dynamics in
shallow water table areas.” J. Hydrol. 412–413 (4): 170–181. https://doi
.org/10.1016/j.jhydrol.2011.07.002.

Yang, H., and Z. Xie. 2003. “A new method to dynamically simulate
groundwater table in land surface model VIC.” Progress Nat. Sci.
13 (11): 819–825. https://doi.org/10.1080/10020070312331344490.

Yoder, J., J. Adam, M. Brady, J. Cook, S. Katz, S. Johnston, K. Malek, J.
McMillan, and Q. Yang. 2017. “Benefit-cost analysis of integrated
water resource management: Accounting for interdependence in the
Yakima Basin integrated plan.” J. Am. Water Resour. Assoc. 53 (2):
456–477. https://doi.org/10.1111/1752-1688.12507.

Zeff, H. B., A. L. Hamilton, K. Malek, J. D. Herman, J. S. Cohen, J.
Medellin-Azuara, P. M. Reed, and G. W. Characklis. 2021. “California’s
food-energy-water system: An open source simulation model of adap-
tive surface and groundwater management in the Central Valley.”
Environ. Modell. Software 141 (Jul): 105052. https://doi.org/10.1016/j
.envsoft.2021.105052.

© ASCE 04021095-14 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(1): 04021095 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

17
4.

20
8.

17
1.

15
4 

on
 0

1/
26

/2
2.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

https://doi.org/10.1016/j.advwatres.2019.103442
https://doi.org/10.1016/j.ijdrr.2014.09.011
https://doi.org/10.1016/j.ijdrr.2014.09.011
https://doi.org/10.1016/j.wasec.2017.06.001
https://doi.org/10.1016/j.wasec.2017.06.001
https://doi.org/10.1029/2009WR008906
https://doi.org/10.1029/2009WR008906
https://doi.org/10.3389/feart.2019.00355
https://doi.org/10.3389/feart.2019.00355
https://doi.org/10.1002/joc.4136
https://doi.org/10.1002/2017GL073333
https://doi.org/10.1002/2017GL073333
https://doi.org/10.1016/j.jhydrol.2011.07.002
https://doi.org/10.1016/j.jhydrol.2011.07.002
https://doi.org/10.1080/10020070312331344490
https://doi.org/10.1111/1752-1688.12507
https://doi.org/10.1016/j.envsoft.2021.105052
https://doi.org/10.1016/j.envsoft.2021.105052

