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Abstract— This paper proposes a novel neural network-based
control policy to enable a mobile robot to navigate safety
through environments filled with both static obstacles, such as
tables and chairs, and dense crowds of pedestrians. The network
architecture uses early fusion to combine a short history
of lidar data with kinematic data about nearby pedestrians.
This kinematic data is key to enable safe robot navigation in
these uncontrolled, human-filled environments. The network is
trained in a supervised setting, using expert demonstrations
to learn safe navigation behaviors. A series of experiments in
detailed simulated environments demonstrate the efficacy of
this policy, which is able to achieve a higher success rate than
either standard model-based planners or state-of-the-art neural
network control policies that use only raw sensor data.

I. INTRODUCTION

Mobile robots are increasingly being used in complex,
dynamic, and human-filled environments, such as provid-
ing contact-free services during the COVID-19 pandemic,
providing customer service in supermarkets, and delivering
materials to doctors in hospitals. It is easy to safely avoid
static obstacles, such as tables, boxes and chairs, which can
be pre-mapped. The main challenge lies in safely navigating
around people and other robots, which dynamically move.
There are many unknowns in these situations, including the
number of pedestrians, the destination for each pedestrian,
and the relative speed between the pedestrian and robot, all
of which affect the safety [1].

There is extensive prior work on robot navigation, which
we divide into two categories: model-based and learning-
based. A typical model-based approach is the ROS [2]
navigation stack, which uses costmaps to store information
about obstacles and the dynamic window approach (DWA)
planner [3]. Many other model-based approaches use models
of human social interactions to drive robot motion, using
social forces [4], [5], Gaussian mixture models (GMM) [6],
or a combination of potential functions and limit cycles
[7]. All of those model-based approaches require knowledge
of the pedestrian kinematics, require multi-stage procedures
with preprocessed sensor data, and often require carefully
hand-tuning model parameters, making them difficult to
implement and generalize to new scenarios.

With the success of deep learning in the computer vi-
sion area, many researchers started to apply learning-based
approaches to other problems, including robot navigation.
Different from the traditional model-based approaches with
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multi-stage procedures, several recent works use deep neural
networks to learn control policies that generate steering
commands directly from raw sensor data, e.g., lidar or
cameras [8]-[10]. These policies are trained via supervised
learning methods, using expert demonstrations to learn safe
navigation behavior. However, these end-to-end approaches
only focus on static environments.

For navigation in dynamic environments, deep reinforce-
ment learning (DRL) in more commonly used. Fan et al. [11]
propose a fully decentralized multi-robot collision avoidance
framework using 2-D lidar range data, which is trained
using the proximal policy optimization (PPO) algorithm [12].
Sathyamoorthy et al. [13] expand this PPO training policy
by using a late fusion network to combine raw lidar data
with pedestrian trajectory predictions. Other DRL methods
use attention-based networks, which model robot-human
interactions with a self-attention model [14], [15] or encode
the crowd state with a graph convolutional networks (GCN)
[16]. These works all show the importance of leveraging
information about pedestrian motion to enable safe naviga-
tion in dynamic environments. However, Scholler et al. [17]
recently noted that learning-based methods of trajectory
prediction often result in behavior that is specific to certain
environments, and that the constant velocity kinematic model
generalizes much better to new situations. Furthermore, a
good reward function is hard to design and DRL networks
are also hard to train, though it can be simplified to some
degree, for example using AutoRL [18].

In this paper, our primary contribution is the first super-
vised learning-based navigation policy focusing on crowded
dynamic environments. Our solution combines model-based
and learning-based approaches, an idea also suggested in
a recent survey on deep learning in robotics [19], which
allows us to avoid hand-tuning parameters and to incorpo-
rate preprocessed sensor data. While other approaches have
modeled pedestrian motion, they do so by relying on complex
trajectory predictions [13] or abstract human attention infor-
mation [14]-[16]. Our approach is much simpler and more
easily interpretable, requiring only the current kinematics
(i.e., position and velocity) of pedestrians. Another key
distinction is that we use an early fusion architecture, which
greatly simplifies our convolutional neural network (CNN)
architecture (compared to late fusion architectures such as
[13]) and allows us to fully exploit the input features at an
early stage [20]. We demonstrate the efficacy of our approach
through a series of simulated experiments, showing that our
approach is safer and generalizes to new environments and
crowd sizes better than traditional model-based controllers
[2] and standard end-to-end approaches [8].



II. SAFE NAVIGATION POLICY

In this section, we describe the underlying problem of safe
navigation through crowded dynamic environments, present
our deep learning approach, and describe the data structures
used to represent the sensor and pedestrian data. Note: We
assume the task-level planning is taken care of by some
external agent, our method simply requires the robot to know
the relative location of its goal.

A. Problem Formulation

In order to safely navigate to a goal through a dynamic
environment with moving pedestrians, the robot must extract
useful information from sensors and process this information
to get the state of the environment, s. The robot then uses
this state to compute the suitable steering velocities via a
control policy, which takes the form of a parametric model

u = my(s), (D

where u are the steering velocities and 6 are our model
parameters. The steering velocities consist of u = [v,, w,],
where v, is the translational velocity and w, is the rota-
tional velocity in the robot’s local coordinate frame. Note:
Although discretizing the steering velocities would simplify
this problem, continuous velocities give a more accurate
and safer navigation behavior. The state s = [r,p, g] has
three components in our model: lidar data (r), pedestrian
kinematics (p), and the goal position (g). Note, all data
in the state s is expressed in the local robot frame. This
allows our method to be robust to errors in robot localization
with respect to a global reference frame, which happens
more frequently in densely-packed dynamic environment as
there are fewer stationary landmarks for the robot to localize
itself against. Additionally, relative data is more natural for
planning purposes since navigating in a dense crowd is more
about going with the flow of traffic than meeting some
absolute velocity constraints.

B. Network Architecture

We use a deep neural network, outlined in Fig. 1, to rep-
resent the parametric model 7y due to its amazing function
approximation capabilities. One key feature of our network
is the use of early fusion to combine three separate feature
maps, one representing the lidar data r and two representing
pedestrian kinematics p. Compared with late fusion, early
fusion has two obvious advantages [20]. First, early fusion
can fully exploit the input information since features are
fused at the early stage. Second, it has low memory and
computation requirements compared to late fusion, making it
more suitable for embedded devices and real-time operation.

We combine the three input feature maps using concate-
nation fusion, where they are simply stacked along the depth
dimension. The concatenated maps are then passed through
one 2-D convolutional layer, six bottleneck residual blocks
[21] with two block skip connections, and two 2-D pooling
layers. Every convolutional layer in our deep neural network
is followed with one batch normalization layer and one ReLU
action layer. At the end of this early fusion network block,
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Fig. 1. The architecture of our deep neural network. Our input data consists
of three separate channels, one from lidar and two containing pedestrian
data, each of which is an 80 x 80 array. These 3-channel input data are fed
to the deep neural network consisting of 1 convolutional layer, 6 bottleneck
residual blocks [21], and 2 pooling layers. The output of this chain, along
with the relative pose of the goal, are fused in a fully connected layer.
The resulting outputs of our network are the linear and angular steering
velocities. The values “3x 3" or “1x 1” in the convolutional layer or pooling
layer denote the kernel size. The letters “C” and “S” in the related layers
denote the number of output channels and the stride length, respectively.

we can extract the high-level features of lidar and pedestrian
information. Then, we fuse those high-level features with
the goal information in single a fully connected layer. The
goal position is a sub-goal point extracted from a nominal
path by the pure pursuit algorithm [22], and is represented
by the Cartesian coordinates of the goal in the robot’s local
coordinate frame, g = (g, gy]. The final steering velocities
u = [v,,w,] are generated directly from this fully connect
layer without the ReLU action layer.

We use a supervised learning framework to find the model
parameters 6 from expert demonstrations, .. We use mean
square error (MSE) between the expert velocity and the
learned velocity as our loss function

N
L(s) = 3 Irolss) — . @
i=1

where N is the number of training data tuples s; and 4,
are the expert examples. We use Adam optimizer [23], a
stochastic gradient descent method, to find the optimal model
parameters 60*. We use the step decay with an initial learning
rate of 103 as the learning rate schedule and set the mini-
batch size to 128 during the training process.

C. Pedestrian Data Preprocessing

One key contribution of our work is the inclusion of
preprocessed data as the input to our CNN control policy. To
extract information about pedestrians, we first feed the raw
sensor data into an object detector to extract instantaneous
estimates of pedestrian locations. These estimates are fed
into a multi-target tracker, which performs data association
to yield a collection of target tracks containing position and
velocity information. Finally, we put this kinematic data
into data structures specifically designed for our network
architecture. We hypothesize that this detailed information
about the motion of individual pedestrians will enable the
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Fig. 2. The preprocessing process for pedestrian data. We get estimates of
pedestrian kinematics from the YOLOV3 detector and an MHT tracker. We
convert the resulting data into two 80 x 80 occupancy grid maps, where
the pedestrian position determines the cell ID and the velocity gives us the
value in that cell. Finally, we standardize the data before feeding them into
our network.

robot to more safely navigate. Note, we using a combination
of a stereo camera and 2D lidar.

1) Object Detector: To detect pedestrians, we fuse data
from the camera and lidar sensors. The camera data is passed
into the YOLOv3 detection algorithm [24] to find labeled
bounding boxes for each pedestrian. In parallel, the lidar data
is passed into a leg-detection algorithm [25]. We associate
the data from these sensors by projecting the laser scan points
into the camera image and use this ensemble detector with
strong robustness to detect pedestrians and measure their
relative positions. Note, we found that the leg detections from
the lidar provide a more accurate estimate of the location
of each pedestrian while the camera data provides more
robust labeling. However, it is possible to use either sensor
individually if one desires.

2) Object Tracking: The resulting point estimates of
pedestrians are fed into a multiple hypothesis tracker (MHT)
[26]. We elect to use the MHT over other multi-target
trackers since it was recently shown to achieve state-of-the-
art results in the MOT (Multiple Object Tracking) Challenge
[27], which involves tracking a large number of people in a
crowded scene. One distinction from previous work with the
MHT, we perform the tracking in the robot’s local coordinate
frame instead of a global reference frame. The MHT outputs
a list of tracks, each containing the relative position and
velocity of a single pedestrian. Note, while the MHT can give
us past information about the motion of pedestrians, we only
use current information because most of data is redundant
for motion prediction and consequently ignored by neural
networks [17]. We use the constant velocity motion model for
pedestrians, as Scholler et al. [17] recommend, and update
the MHT at a rate of 10 Hz. We also tested the inclusion of
both past and future (i.e., predicted) pedestrian data, which
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Fig. 3. The preprocessing process for lidar data. The input is raw lidar data
containing 10 x 720 points, since there are 10 scans with 720 measurements
per scan. First, we use pooling to downsample each scan to yield a 20 x 80
array. Second, we repeat this subarray four times to construct an 80 x 80
lidar array. Finally, we normalize the data in this array before feeding it
into our CNN network.

either decreased or did not improve the performance.

3) Data Structure: Given that the number of pedestrians
in a crowd varies greatly based on both time and location,
we cannot simply use the direct output of the MHT as
our network architecture requires a uniformly-sized input.
Instead we encode the pedestrian kinematics into occupancy
grid-style maps, as Fig. 2 shows. The basic procedure starts
with setting the parameters of the grid. We use an 80 x 80
grid with 0.25m cells, for a total area of 20 x 20m. We
selected this cell size as it is small relative to the size of the
targets (i.e., people) being tracked, ensuring that each cell
in the resulting grid will only have at most one pedestrian
in it. We use two simultaneous grids, each one containing
information about target velocity in a different direction, here
v, and v, separately. Note, we use Cartesian instead of polar
coordinates as we found these to yield superior performance
(results not included due to page limitations).

These x and y velocity grids form our pedestrian kinematic
data p. Before this is fed into our early fusion network, we
use the standardization procedure:
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where pp and op are the mean and standard deviation of
the data in the map. Compared with min-max normalization,
standardization does not have a bounding range and is more
robust to outliers.

D. Lidar Data Preprocessing

Most initial works using CNN-based controller for robot
navigation used the entire lidar scan message. However, our
early fusion architecture requires that lidar feature map to be
the same size as the pedestrian feature maps. Thus, we need
to convert the lidar data into an 80 x 80 feature map.



One interesting argument proposed by Pfieffer et al. [28] is
that using the entire lidar scan causes the resulting network to
overfit to the specific environment(s) it was trained in, as the
CNN learns to extract map features when presented with a
dense point cloud. Instead, they use a minimum pooling step
to downsample their lidar scan from 1080 data points to 36,
with this change leading to better navigation performance
in the training environment and better generalizability to
other environments. Note: Using minimum pooling is a
conservative choice, as this will return the nearest lidar return
within each section of the scan.

Motivated by this, we explore the use of different lidar
preprocessing operations, including reshaping the raw lidar
data, projecting scan points into an occupancy grid map,
minimum pooling, average pooling, and more. We found
that using a combination of minimum pooling and average
pooling to extract two separate distance measurements per
scan region, as Fig. 3 shows, yielded the best performance
(results not included due to page limitations). We hypothesize
that this combination allows the robot to avoid collisions
with nearby obstacles (minimum pooling) while also better
understanding the geometry of the free space around it
(average pooling). In the end, each individual lidar scan
results in 80 minimum pooled values and 80 average pooled
values. We then use a short history of lidar data, as we
found that this contains more useful information than only
the current scan, while keeping data from beyond a certain
time period resulted in no improvement or even degraded
performance. The length of this time window is the effective
time constant for pedestrian information, which we found to
be 0.5s, or 10 scans.

To put the lidar data into a format that is compatible
with the pedestrian map so that the two data sources can
be fused early, we stack the historical data in a 2D array,
using alternating rows of minimum pooling and average
pooling. The resulting array is 20 x 80, so we then stack
four copies of this to create an 80 x 80 array of the same
size the pedestrian map. Note, we do not require there to
be any spatial correlations between lidar data and pedestrian
kinematics data. Also, changing the size of the pedestrian
map will also require changes to the parameters of lidar
processing pipeline as the two data sources must be of
compatible sizes. Finally, just like the pedestrian data, we
apply the standardization procedure prior to feed the lidar
data r into the early fusion network:

N /j'r’ )
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where p, and o, are the average value and standard deviation
of the entire scan data structure.

III. RESULTS

Unfortunately, the COVID-19 pandemic has prevented us
from conducting real-world experiments because our method
is centered around navigation through dense crowds. As a
result, we have used Gazebo [29] to simulate the robot and
PEDSIM [30], a microscopic pedestrian crowd simulation
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(a) Lobby world (b) Square world

Fig. 4.  Gazebo simulation environments. The lobby world has two
configurations with 34 pedestrians and 50 pedestrians respectively, while
the square world only has one configuration with 34 pedestrians. The green
curve is the robot trajectory and the red point is the goal point.

library based on social forces, to simulate pedestrian motion.
This section describes this setup in greater detail, presents
the procedure we used to train our network, and compares
the results to other methods.

We use PyTorch to implement our CNN [31]. To train our
network, we use the Owl’s Nest high-performance computing
(HPC) machine learning server, which has 40 CPU cores and
512GB of RAM, and 8x NVIDIA Tesla Volta V100 GPUs
with NVlink2. We run all simulations on a desktop computer
with an Intel Core 17-6800K CPU and a GeForce GTX 1080
GPU with 8 GB memory. This computer runs Ubuntu 16.04
and we use ROS Kinetic Kame and Gazebo 9.13.1.

A. Simulation Configuration

PEDSIM uses the social forces model to guide the motion
of individual pedestrians. The basic equation used is

Fp _ Flcles 4 ngs + ]_;\I[;er7 (5)

where F, is the resultant force that determines the motion of
a pedestrian; Fges pulls a pedestrian towards a destination;
ngs pushes a pedestrian away from static obstacles; FP"
models interactions with other pedestrians (e.g., collision
avoidance or grouping). We added another repulsive social
force F;Ob between pedestrians and the robot to model
the way people would naturally avoid collisions, thereby
allowing our control policy to learn this behavior.

Figure 4(a) shows the main environment, a replica of
the lobby in the College of Engineering building at Temple
University, that we used to train and test our policy. This
environment is roughly 25 x 10 m in size and is filled with
a number of static obstacles (e.g., chairs, tables, a security
desk, waste bins, and pillars). The second environment,
shown in Fig. 4(b), is an artificially created environment that
is about 20 x 20m in size. Using these two worlds, we set
up three scenarios:

o Lobby world with 34 pedestrians: used to collect
training data and test basic navigation performance.

« Lobby world with 50 pedestrians: used to test gener-
alization across different crowd densities.

e Square world with 34 pedestrians: used to test gen-
eralization to unseen environments.



The robot model is a Kobuki Turtlebot 2, which has
a maximum velocity of 0.5m/s, equipped with a Hokuyo
UTM-30LX lidar and a Stereolabs ZED stereo camera. The
Hokuyo lidar has a maximum range of 30 m, a FOV of 270°,
and an angular resolution of 0.25° while the ZED camera has
a minimum range of 0.5m, a maximum range of 10 m, and
a FOV of 90°.

B. Data Collection

Before we can find the optimal 6* that minimizes (2),
we first need to collect a navigation dataset with expert
demonstrations u to train our deep neural network. In the
future, once crowds can safely gather again, we plan to
collect data from actual humans navigating through crowds.
In the simulation, we first tried teleoperating the robot.
However, we found this to be very time consuming and it did
not lead to reliable behavior. On the other hand, we found
the DWA planner from the ROS navigation stack can achieve
relatively good navigation performance in our simulation
environment. So as a trade-off result, like many other similar
works [8], [28], we use the DWA planner as our expert.

To collect our training data, the robot was repeatedly
assigned to reach a random goal within the free space
of the map. PEDSIM controlled the behavior of the 34
pedestrians, which were divided into clusters with a few
members each and with each cluster following a series of
way points to circulate through the environment. During
navigation we recorded the state s and the expert steering
velocities u (i.e., the output of DWA). Every time that the
robot collided with an obstacle, we stopped recording data,
truncated the data shortly before the collision, and restarted
the simulation to avoid learning behavior that would result in
unsafe collisions. Although truncating data near a collision
may still lead to undesirable behavior, this data is a very
small percentage of the total dataset so we dot not expect
it to have a significant effect on the resulting policy. The
final dataset contains 157,809 (r,p, g, ) tuples, which we
divided into three separate subsets for training (103,121
tuples), validation during training (22,349 tuples), and final
testing (32,339 tuples).

C. Training Results

Using the training dataset from Sec. III-B, we trained three
neural networks to demonstrate the efficacy of our novel
early fusion neural network with the pedestrian motion in-
formation. The first neural network is a state-of-the-art, end-
to-end network that uses raw lidar data and the relative goal
position as its input [8]. The second one is our architecture
using only lidar data and the relative goal, to make a direct
comparison with [8]. The last one is our full architecture,
including the pedestrian data.

As in [9], we use the following two metrics to evaluate
the regression performance of each network:

+ Root mean square error (RMSE):
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Fig. 5. Validation loss curves during training process, where all three
networks converge to stable values.

TABLE I
TRAINING RESULTS

[ Method [ RMSE [ EVA | #of Params [ FPS |
Pfeiffer et al. [8] 0.4265 1.0419 50.732 M 696.675
Lidar 0.1794 | 0.1774 28.925 M 266.982
Lidar + Pedestrian 0.1673 | 0.1543 28.939 M 255.127
« Explained variance ratio (EVA):
N - 2
EVA== 5 7

Zij\;1 (W — pa)

Figure 5 shows the validation loss curves for each net-
work during training and Table I shows the final training
results after 3000 epochs. We can observe that although our
novel network architecture is nearly two times smaller than
Pfeiffer’s network [8], it yields significantly better regression
performance with smaller RMSE and EVA. Furthermore, our
network with pedestrian motion information performs better
than only using lidar data, demonstrating that pedestrian
motion can help train the deep neural network. Finally, due to
the use of early fusion, the addition of pedestrian data has a
negligible effect on the number of parameters (only a 0.05%
increase). All three methods are clearly capable of real-time
processing, with the average frames per second (FPS) of over
250, far above the 40 Hz of the sensors.

D. Navigation Results

While achieving superior loss during training is encourag-
ing, we ultimately care about the resulting behavior of our
policy during navigation. We test each of the policies from
Sec. III-C, along with the DWA planner [3], in each of the
three scenarios from Sec. III-A. We compare the performance
using the following metrics, which are commonly used in the
autonomous navigation literature [11], [13], [16]:

o Success rate: the fraction of collision-free trials.

o Average time: the average travel time of trials.

o Average length: the average trajectory length of trials.

o Average speed: the average speed during trials.

In each scenario, we run 4 tests from the same initial
conditions, where each test consists of the robot navigating



TABLE I
NAVIGATION RESULTS

[ Environment | Method [[ Success Rate | Average Time (s) [ Average Length (m) [ Average Speed (m/s) |
DWA [3] 0.79 12.468 5.164 0.414
Lobby world Pfeiffer et al. [8] 0.73 17.549 5.589 0.318
with 34 pedestrians Lidar 0.78 14.788 5.483 0.371
Lidar + Pedestrian 0.84 15.732 5.598 0.356
DWA [3] 0.67 13.586 5.164 0.380
Lobby world Pfeiffer et al. [8] 0.64 18.203 5.858 0.322
with 50 pedestrians Lidar 0.68 14.635 5.411 0.370
Lidar + Pedestrian 0.78 18.229 5.823 0.319
DWA [3] 0.72 21.319 8.601 0.403
Square world Pfeiffer et al. [8] 0.54 57.979 10.826 0.187
with 34 pedestrians Lidar 0.62 29.950 9.968 0.333
Lidar + Pedestrian 0.75 26.370 9.330 0.354
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Fig. 6. Robot reactions to moving pedestrians using each of the control policies. Each figure shows the pedestrians (colored figures), the current velocity
of each pedestrian (colored arrows), the robot (black circle), the nominal path to the goal (green line), and the computed velocity (green arrow). When
the robot encounters a group of pedestrians, (a) DWA [3], (b) Pfeiffer’s policy [8], and (c) our lidar-only CNN are more likely to move forward along the
nominal path and ignore those pedestrians until the last moment. (d) On the other hand, our CNN-based policy with pedestrian information reacts earlier.

through the same sequence of 25 goal points. Although the
initial conditions of each test are the same, each trial yields
different navigation behavior due to sensor noise, social
force interactions, etc. Table II summarizes our results. See
the accompanying video for a demonstration of the safe
navigation behavior of our CNN-based control policy.

We first focus on the original environment used for testing,
the lobby world with 34 pedestrians, where we observe
several interesting phenomena. First, our novel CNN-based
policies with preprocessed data have a higher success rate
and a higher average speed than Pfeiffer’s policy [8], which
uses raw lidar data. This demonstrates that the combination
of model-based and learning-based approaches can yield
better navigation performance than a purely learning-based
approach. Second, despite the fact that our proposed CNN
policy with lidar-only input has similar training results and
average speed to our policy with pedestrian data, the latter
has a significantly higher success rate. This shows that pedes-
trian information is useful and plays a key role in enabling
safe navigation in crowded and dynamic environments.

Our proposed CNN-based policy with pedestrian motion
data has a higher success rate than the DWA planner [3],
albeit with a lower average speed. We believe there are
two main reasons for this. First, because we removed all
collisions from our training dataset, our proposed network
only learned the safe navigation behaviors from the expert
(DWA). Second, the pedestrian kinematics help our network
understand the motion of pedestrians and learn safe steering
behaviors better. Figure 6 demonstrates this, where we can
see that our proposed CNN-based policy with pedestrian

motion data is more likely to change its heading direction
early to avoid pedestrians. As a result of this early avoidance
behavior, our CNN-based policy travels a longer distance and
takes longer to reach the goal. However, we believe this is
worth doing to prevent collisions and that this slowdown
could be reduced with better expert data.

The only observable trend in the failure cases of our
controller was a slightly increased rate of collisions near
the goal location or in particularly dense crowds, though
neither occurred regularly. We hypothesize that collisions in
dense crowds were more common due to two factors: 1)
we used the DWA planner, which fails more often in dense
crowds, as our expert, and 2) the social force model breaks
down in these situations, with pedestrians often bumping into
one another. Future work will aim to mitigate this issue by
using an experienced human expert to train our system and
real pedestrians to train/test our system (once the COVID-19
pandemic subsides and it is again safe to conduct real-world
experiments with dense crowds of people).

Table II also shows that our policy generalizes better to
new environments and crowd sizes than the other approaches,
particularly the lidar-only CNNs. Notably, the difference in
the success rate between our CNN policy and that of Pfeiffer
et al. [8] is much larger in the more crowded environment and
the unseen environment than that in the training environment.
These results demonstrate that our CNN-based policy is able
to more easily transfer the learned navigation policies to the
more crowded (with almost 50% more people) environments
and unseen environments. Despite these improvements, the
generalizability of our policy is still limited, with the robot



missing the goal or moving erratically in some unfamiliar
scenarios. Future work will mitigate this issue by training
our CNN-based policy in different environments and with
different crowd sizes.

IV. CONCLUSION

In this paper we proposed a novel CNN-based control
policy to enable a robot to safely navigate through crowded
dynamic environments. Our approach differs from prior re-
search in two key ways. First, we use preprocessed data about
pedestrian kinematics as opposed to raw sensor data. Second,
we use a novel early fusion architecture to fuse a history of
lidar data with the pedestrian kinematics. We demonstrate
though extensive training and navigation experiments that
this pedestrian kinematic data plays a key role in dynamic
navigation and that our CNN-based policy has a significantly
higher success rate than standard model-based planners
or CNN policies with only sensor data. Furthermore, our
proposed CNN-based policy generalizes better to different
crowd sizes and unseen dynamic environments. Finally, our
policy only requires information in the robot’s local frame,
making it robust to errors in localization that are common in
crowded, dynamic environments.
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