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Abstract

In order for a mobile robot to be able to effectively operate in complex, dynamic environments it must be capable of
understanding both where and what the objects around them are. In this paper we introduce the semantic probabil-
ity hypothesis density (SPHD) filter, which allows robots to simultaneously track multiple classes of targets despite
measurement uncertainty, including false positive detections, false negative detections, measurement noise, and target
misclassification. The SPHD filter is capable of incorporating a different motion model for each type of target and of
functioning in situations where the number of targets is unknown and time-varying. To demonstrate the efficacy of
the SPHD filter, we conduct both simulated and hardware tests with multiple target types containing both static and
dynamic targets. We show that the SPHD filter allows effective tracking of multiple classes of targets even with detection
error to some level, and performs better than a collection of PHD filters running in parallel, one for each target class.
We also provide a detailed methodology that practitioners can use to fit the probabilistic sensor models necessary to run
the SPHD filter.
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1. Introduction

Multi-target tracking is a fundamental problem in robotics,
wherein a robot simultaneously estimates the states of a
potentially large number of individual objects. These ob-
jects can be either static or dynamic, and may leave or
enter the search space over time. In addition to tracking
the kinematic or dynamic state of each target, as is stan-
dard, it is important for robots to be capable of tracking
the semantic state, i.e., the type of object. For example, a
last-mile delivery robot must be able to recognize various
building facilities such as gates, doorways, yards, etc. and
localize them as it is moving around a neighborhood in
order to decide a safe place to drop a package. Achieving

Figure 1: Turtlebot 2 with a depth camera and lidar.

been investigated in recent decades to track multiple ob-
jects from a sequence of video frames [5, 6]. However, such

this requires a robot to be equipped with a sensor capable
of measuring both geometric information and the semantic
label, such as an RGB-D camera. While real-time machine
vision algorithms are reaching high levels of object classi-
fication accuracy [1, 2, 3, 4], there may still be significant
uncertainty in the semantic label and it is often at the
expense of high false positive rates.

Multi-target tracking (MTT) algorithms were originally
developed to track dynamic objects. The MTT task is
challenging due to the difficulty of solving the data as-
sociation problem (i.e., matching measurements to tar-
gets), which is further exacerbated by the possibility of
false positive or false negative detections. In computer vi-
sion communities, tracking-by-detection techniques have
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methods only work for detecting objects using RGB cam-
eras, and there exist limitations in estimating object states
such as three-dimensional pose. Stone et al. [7] discuss in
their book a number of probabilistic, multi-target track-
ing approaches, including the multiple hypothesis tracker
(MHT) [8], joint probabilistic data association (JPDA) [9],
and the probability hypothesis density (PHD) filter [10].
All of these approaches simultaneously solve the data as-
sociation and tracking problems in different ways. The
MHT makes hard associations and maintains a tree over
the history of these associations. This results in unique
tracks for each target. However, the number of branches
in the tree grows quickly, requiring aggressive pruning al-
gorithms that can lead to suboptimal performance. The
JPDA makes soft associations and uses multiple measure-
ments to update each target at each time step, which does
not scale well with the number of targets. Finally, the
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PHD does not require any explicit choice for data associ-
ation. As a result, the PHD does not actually distinguish
between individual objects but rather represents the spa-
tial density of objects. We argue that while it does not
work for all tasks that require multiple target tracking,
this is sufficient for a great amount of tasks, where it is
only important to know what and where objects are but
not to distinguish between objects of the same type. For
example, navigating through an office environment does
not require the robot to know which chair it is passing by,
only that a chair is nearby. However, currently none of
these existing trackers are able to utilize semantic mea-
surements to track multiple types.

A number of methods have been provided for labeled
tracking with the PHD filter, i.e., uniquely identifying
each individual object. Lin et al. [11] proposed a track
labeling method by extracting peaks from the estimated
PHD and correlating these over time. Vo et al. [12, 13]
proposed a multi-target tracking filter using multi-object
conjugate priors constructed by labeled RFSs, which is
the first RFS-based multi-target filter that produces track-
valued estimate in a principled manner. While these meth-
ods successfully solved the data association problem and
thus realized multi-target labeled tracking, the huge com-
putational load for each target to match its label may not
be necessary in many scenarios where targets are classi-
fied by labels and labeling within a class is not important,
and may decrease the real-time performance, making it
challenging to apply in many real-world scenarios.

The PHD filter has been used in other contexts within
robotics in the past. Mullane et al. [14] proposed an inte-
grated Bayesian frame-work for SLAM in the general case
of uncertain feature number and data association. This
approach was then extended to track two types of objects,
one static and one dynamic [15, 16], however this lacks
the ability to differentiate between different types of static
and/or dynamic objects. Dames and Kumar [17] enabled
a decentralized team of robot to autonomously explore an
environment to detect and localize an unknown number of
targets using the PHD filter. Dames [18] later introduced
a distributed algorithm for multiple robots to search and
track multiple targets in a coordinated manner using the
PHD filter.

Note in this paper we consider the task of mapping as
a subset of multi-target tracking wherein all targets are
stationary. Most existing approaches to robot localiza-
tion and mapping collect low-level geometric features such
as points, lines, and planes [19]. However, by doing this
robots only have the ability to plan paths and navigate
through a geometrical map, which is different from com-
prehending the environment the way a human does and
navigating from place to place [20]. Recently, other meth-
ods for semantic localization (using the same mathemati-
cal underpinnings as the PHD filter) [21, 22] and semantic
SLAM [23, 24, 25, 26, 27] have been proposed. However,
these works assume that all objects in the map are sta-
tionary, which is often not the case in complex, real-world

environments.

This paper extends the results of our previous con-
ference paper [28], which first introduced the semantic
probability hypothesis density (SPHD) filter and provided
proof-of-concept experiments in a simulated environment.
The key contributions of this work over [28] are: 1) an
extended discussion of the SPHD filter, 2) hardware vali-
dation in three distinct scenarios, and 3) a detailed guide
to experimentally deriving the probabilistic sensor models
used within the SPHD filter. The SPHD filter can be easily
generalized to a multi-robot setting using the approaches
from the authors’ past work [17, 18].

2. The Semantic PHD (SPHD) Filter

A robot is tasked with exploring an environment FE C
R"™ which, at time ¢, contains a set of targets X(t) =
{x1(t),...,2,(t)}.} This set X encodes both the num-
ber of targets (i.e., the cardinality of the set | X (¢)|) and
the state of each target (i.e., the elements of the set x;(t)).
The key to defining the SPHD filter is to augment the dy-
namic state of each individual target (i.e., the standard
state in tracking algorithms) with a discrete class label,
e.g., v € X = R? x C, where C = {c1,...,cx} is a set of
discrete class labels. We differentiate these two parts of
the single-target state space as the metric part ™ € A™
(e.g., X™ = R?) and the semantic part z° € X* = C, so
X = X" x X%, Note that within the environment there are
multiple targets of multiple classes and there may be mul-
tiple targets of each class, so not every target is uniquely
identifiable. The number of targets of each class of tar-
gets is unknown and may change over time due to the
motion of targets into and out of the environment. The
number of target classes is not constrained so long as the
robot is equipped with a classification algorithm to detect
each class. For example, instead of simply using the class
“person,” as we do in our experiments, a robot could dis-
tinguish between people in different states, e.g., “person
sitting,” “person standing,” “person walking,” and others.

The pose of the robot at time ¢ is given by ¢(t) €
SO(n). At each time step, the robot collects a set of local
measurements, Z(t) = {z1(t),...,2zmn(t)}. The number of
measurements (i.e., | Z(t)|) changes over time due to false
positive and false negative detections as well as motion of
the robot and targets causing targets to enter and leave the
sensor field of view (FoV). Like the target state space, the
measurement space also contains a metric and semantic
component, Z = Z™ x Z°. For example, running an object
detection algorithm on an RGB image would yield a set
of detected objects, each of which includes bearing (2™ €
Z™) and class label (2° € Z° = C).

IFor compactness of notation, in the remainder of the paper we
will drop the dependence on time except where necessary.



2.1. Random Finite Sets

The sets X and Z from above are realizations of ran-
dom finite sets (RFSs). An RFS is a set containing a ran-
dom number of random elements, e.g., each of the n ele-
ments z; in the set X = {x1,...,2,} is a vector indicating
the state of a single target. See [29] for a more thorough
treatment of the mathematics presented in this section. In
deriving the PHD filter, Mahler [10] assumes that: 1) the
clutter and true measurement RFSs are independent and
2) the clutter, target, and birth RFSs are Poisson. The
first assumption is standard for target localization tasks.
The second assumption is a result of assuming that the
number of points in each finite region is independent if the
regions do not overlap [30]. A Poisson RFS is one that
has independently and identically distributed (i.i.d.) ele-
ments and where the number of elements follows a Poisson
distribution. The likelihood of such an RFS X is

p(X) = e [] o), (1)

zeX

where v(-) is the Probability Hypothesis Density (PHD),
A = [pv(z)dz, and p(X = @) = e~*. The PHD is a
density function over the state space of the targets, with
the unique property that the integral of the PHD over a
region S C X is the expected cardinality of an RFS X
in that region. Note that by introducing this semantic
component to the target state, the cardinality of objects
both overall and specific to one (or more) classes can be
retrieved by conditioning on z°. The PHD is also the
first statistical moment of a distribution over RFSs. Note
that it is not a probability density function, but it may be
turned into one by normalizing by the expected cardinality,

p(x) = A" w(z). (2)

2.2. SPHD Models

The (S)PHD filter recursively updates the PHD using
models of target motion and the measurement sets col-
lected by the robots. Targets may move about within the
environment, may appear in the environment, or may dis-
appear from the environment. Each of these phenomena
is explained by a separate target model.

e The target motion model, f(x | ), describes the
probability of a target transitioning from an initial
state £ to a new state x. While this may, in theory,
allow targets to transition between different classes
(e.g., sitting person, standing person, and walking
person could be different classes), we do not test this
possibility in this paper. Instead, in our experiments
we assume there is a collection of class-dependent
metric motion models, f(z™ | £&™,&° = ¢), Ve € C,
and that the class cannot change over time.

e The birth model, b(x), is a PHD that describes
both the number and states (including classes) of
the new targets entering the environment. For many

situations the birth PHD will only be non-zero near
the boundaries of the environment, where new tar-
gets can enter the area of interest, and only for dy-
namic objects.

e The survival probability, p(x), models the sur-
vival (and conversely the disappearance) of a target
with state x.

The birth and survival models also typically take the form
of a collection of class dependent models, i.e., the birth
and survival process is different for each class type.

Each robot is equipped with a sensor to detect targets.
This sensor may experience false negative detections, re-
turn noisy measurements to true targets, or receive false
positive detections. Each of these phenomena is covered
by a different sensor model.

e The detection model, py(z | ¢), of a robot with
state ¢ detecting a target with state x characterizes
the true (and false negative) detections. Note that
the probability of detection is identically zero for all
x outside the sensor field of view (FoV). In theory
the detection likelihood could be different for each
class, but in the experiments within this paper we
assume that it is independent of class, i.e., pg(x |

q) = pa(x™ | q).

e The observation model, g(z | z, ¢), returns a mea-
surement z for a target with state x that is detected
by a robot with state ¢q. Like the target state space,
the measurement also contains two separate parts:
the metric part 2™ and the semantic part z° € C.
We assume that these two parts are independent con-
ditioned on the target state, so that the observation
model becomes:

g(Z | :I;,q) — gs(zs | {L‘S)gm(zwl | xm’q) (3)

An example of a metric part could be the range
and bearing to a target, equivalent to the measure-
ment models in standard non-semantic mapping and
tracking tasks. The class part is represented by a
confusion matrix which describes the probability of
detecting class z° conditioned on the true class z°.
This takes the form of a confusion matrix where each
row matrix represents the instances of the true class
while each column represents the instances of the
measured class. For example, the entry in row 2 col-
umn 4 represent the probability of measuring class 4
given that the true target is of class 2. Mathemati-
cally, this is a right stochastic matrix.

e The false positive (or clutter) measurements are
modeled by the clutter PHD, ~v(z | ¢), which de-
scribes both the number and locations (in measure-
ment space) of the clutter measurements. As with
the detection model, in this paper we assume that
this is independent of the class, though nothing about



the theory of the SPHD filter requires this to be the
case.

These three target models and three sensor models
are all necessary to utilize the (S)PHD filter In practice,
the user can either specify the models based on experi-
ence/intuition or learn models in a data-driven manner,
as we have done numerous times in the past [17, 31, 32].
In this paper, we present a detailed example of how to
learn these models for a given scenario, including the steps
taken to set up the experiment and collect and analyze
the data. We have found that obtaining accurate detec-
tion and clutter models is essential to obtaining a correct
target estimate. In particular, if these models do not ac-
curately reflect the true behavior of the sensor then often
the PHD will contain the correct number of peaks but the
weight in each peak will not be close to 1. As a result,
in practice we have found that counting the number of
peaks in the final PHD to be a more reliable estimate of
the target number than integrating the PHD.

2.8. SPHD Prediction and Update Steps

Using these target and sensor models from above, the
SPHD filter prediction and update equations are:

v(z,t) = (1—palx | q)o(x,t) + > Yzq(2)0(2, 1) (5)

ne(w) =7(z | @) + / e g(@)o(z) da (6)
E
wz,q(x) :g(z | l‘,q)pd(l‘ | q)7 (7)

where 9, ((z) is the probability of a sensor at ¢ receiving
measurement z from a target with state = and 7, is a
normalization term. Note that these take the equivalent
form to those of the standard PHD filter, except that in our
case both the target state space and measurement space
include a discrete class label from the set C. The SPHD
filter recursively applies (4) and (5) to track the first order
statistical moment of RFS for each target.

The addition of the discrete label space offers advan-
tages beyond simply providing a mechanism to track the
type of object. Due to the mathematical form of the PHD,
the standard PHD filter does not perform well when tar-
gets are densely clustered. When a group of targets are
close (compared to the sensor noise), all of the targets
would appear as one combined peak in the density func-
tion rather than being separate discrete peaks. However,
the SPHD filter provides a way to separate targets out
based on the class label. For example, a person seated on
a chair next to a desk in front of a computer could show
up as 4 distinct targets with separate class labels in the
SPHD filter instead of a single peak of size 4 in the stan-
dard PHD filter. Adding in the semantic information will
help because it provides a way to separate out targets of
different types.

2.4. The Parallel PHD Filters Method

As a point of comparison, we will test the SPHD filter
against the standard PHD filter since none of the existing
methods provide a combined static/dynamic semantic tar-
get solution. In the latter case, we will have multiple PHD
filters running in parallel, one for each target class. Each
of these separate PHD filters will use the target models for
their respective classes. The measured class will be used to
funnel the measurements to their respective PHD filters,
which will use class-agnostic sensor models. In particu-
lar, the observation model g of the standard PHD filter
only contains the metric portion ¢™. This implies that
the filters completely trust the observed class, which is a
reasonable assumption when the confusion matrix is close
to the identity. Most of the semantic mapping work makes
the same assumption.

3. Simulations

We demonstrate the results by a series of simulations
using ROS Kinetic running on Ubuntu 16.04. The source
code for our SPHD filter implementatio is available at
https://github.com/TempleRAIL/PHD-Filter. For sim-
plicity, in each simulation we use only one robot to search
for a small number of (static and/or dynamic) targets.
The robot is a differential drive robot with a maximum
linear velocity of 0.4 m/s and a maximum angular velocity
of 1.2rad/s. The PHD is represented by a uniform grid of
particles [33] with a resolution of 0.2m. The initial weight
of each particle is identical, meaning that the targets are
uniformly likely to be appear in the environment, and the
initial number of targets is set to 1.

3.1. OSPA Error

We measure the error between the estimated target
set and the true target set using the Optimal SubPattern
Assignment (OSPA) metric [34]. The error between two
sets X,Y, where | X| = m < |Y| = n without loss of
generality, is

1/p

1 m
d(X7 Y) = <m ﬂnelhn Zd(S(xia y‘n'(l))p + 5P(n - m) )
"i=1

(8)
where ¢ is a cutoff distance, ds(x,y) = min(d, ||z —y]|), and
IT,, is the set of all permutations of the set {1,2,...,n}.
OSPA finds the lowest cost assignment, where elements
x € X and y € Y can be matched only if they are within
distance ¢ of each other. This can be efficiently computed
using the Hungarian algorithm [35, 36]. We use 6 = 10m
and p=1.

The OSPA error describes the average error in the tar-
get positions with a maximum per target error of §. Given
that we use § = 10 m, when a target is found there is typ-
ically a drop in the OSPA of around 10/n (if there are
n targets), indicating that the error for that target went
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Figure 2: The 40 x 30 m environment for stationary target search.
Markers show an example of target distribution of 3 classes: person
(red), chair (green) and table (blue).

from 10 m to around 0 m. Therefore, an OSPA near 0 im-
plies that all targets have been precisely tracked and there
are no spurious targets in the estimate.

To extract the estimated target set from our PHD, we
take advantage of the grid structure of the PHD. We use a
convolution operation to identify the local maxima over a
5 x5 grid of particles (1 x 1 m area) for each type. We then
discard any local maxima that do not have a sufficiently
high weight. The true target set comes from our a priori
knowledge, but is unknown to the robot during operation.

3.2. Stationary Targets

Our first scenario will test the SPHD filter’s ability to
track multiple types of stationary targets in the simulated
office environment shown in Fig. 2. This is representative
of an environment where a service robot needs to track
multiple classes of targets in order to deliver packages,
interact with people, etc. The robot navigates through
the environment via a sequence of predefined waypoints,
traversing this route twice during each trial (for a total
approximate travel time of 1900s). The set of waypoints
ensure that the robot see the entire environment twice to
observe the differences between first seeing an object and
re-observing it later.

3.2.1. Target Models

There are three classes of targets: person, chair, and ta-
ble, with 30 targets of each class. All targets are randomly
distributed in the environment. Both chairs and table are
static, meaning the target motion model is the identity
map, the survival probability is unity, and the birth PHD
is zero. This was true for both the ground truth motion
of the targets and the models used by the robots in the
(S)PHD prediction equation (4).

While in general people may enter or leave the environ-
ment and may move about within the environment, in this
first test all people remain stationary. Thus the ground
truth target models are the same as for chairs and tables.
However, the models used within the (S)PHD filters are

Table 1: Confusion matrices for different trials.

Observed Person | Chair | Table
True
Person 0.9 0.05 0.05
Chair 0.1 0.8 0.1
Table 0.15 0.15 0.7
(a) Confusion matrix 1
Observed Person | Chair | Table
True
Person 0.8 0.15 0.05
Chair 0.2 0.7 0.1
Table 0.2 0.25 0.55
(b) Confusion matrix 2
Observed Person | Chair | Table
True
Person 0.7 0.15 0.15
Chair 0.15 0.6 0.25
Table 0.25 0.25 0.5
(c) Confusion matrix 3
Observed Person | Chair
True
Person 0.9 0.1
Chair 0.1 0.9

(d) Confusion matrix 4

different. The motion model is a truncated Gaussian ran-
dom walk with spherical covariance matrix with standard
deviation 0.01 m per time step (0.1s). The probability of
survival is

pa(w) = {”x‘aE” lz = 9| < 1m o)

1 else

where OF is the boundary of the environment. This model
says that people within 1 m of the boundary of the environ-
ment have a probability of disappearance that is propor-
tional to the distance from the boundary, while all people
within the center of the environment always persist from
one time step to the next. The birth model is uniform,
b(x) = 1.0 - 10~ meaning the location of a new person is
uniform and the robot expects 0.12 new people per time
step (calculated as b times the area of the environment).
When analyzing the results we will examine the effects of
the mismatch in the true target models and those used in
the SPHD filter.

3.2.2. Sensor Models
We assume that the robot carries an RGB-D camera
with a forward-facing 120° field of view (FoV) and 5m



maximum detection range.? This sensor returns the range Extension Video Description

and bearing to each detected target (the metric part z™) 1 Simulation of static targets

and a class label for each target (the semantic part, z°). 2 Simulation of mixed static and dynamic targets

The detection model and clutter of the sensor is shown as 3 Hardware test of mixed static and dynamic targets

) 4 Hardware test of small confusing targets
1—0.02]z™ —¢|| « in FoV
pa(z | q) = (10)

0 else Table 2: Multimedia extensions show videos of experiments using

v(2]q)=15-10"3 (11)
The total expected number of clutter detections per mea-
surement set, found by integrating the clutter PHD over
the sensor FoV, is [v(z | ¢) dz = 0.04. We assume that
the range-bearing (metric) measurement model g™ (z™ |
™, q) follows a multivariate Gaussian distribution with
mean p(x,q) (the position of the target in the robot’s sen-
sor frame) and diagonal covariance 3 (so that the noise of
range and bearing measurements are independent). The
standard deviation of the range and bearing noise are 0.02 m
and 2.0 degrees respectively. We will test several different
confusion matrices, ¢g°(z° | z*), for these three classes,
which are given in Table 1.

To simulate the sensor data in these trials, we directly
use these sensor models along with the ground truth data
about the robot and targets. To generate a measurement
from a true target we start from the relative position of
that target with respect to the robot. Using the relative
position, we can calculate the detection probability, pg.
We then draw a uniform random number 7 in the interval
[0,1] and if » < p4 then the target was detected and we can
use the measurement model g to generate the measurement
that the robot will receive (i.e., draw a vector from the
multivariate Gaussian distribution ¢”* to get 2™ and use
the true object class along with the confusion matrix to
randomly sample z°). If » > p,; then the target is not
detected (i.e., there was a false negative). To generate false
positive detections we first draw a Poisson random number
from a distribution with parameter [~v(z | ¢)dz = 0.04
to get the number of false positive measurements in the
measurement set. Then, for each false positive, we draw
the specific measurement using the clutter model «y (in our
case, this is uniformly at random from within the sensor
field of view).

3.2.3. Results

As we previously mentioned, we compare the SPHD
filter, which simultaneously tracks all classes, to a set of
parallel PHD filters method, which each track a single tar-
get type. For each method we use three different confusion
matrices (CM), shown in Tables 2a—2c. We conduct 5 tri-
als for each configuration (SPHD vs. parallel PHD and
each confusion matrix). Each trial has a different target

2This is the maximum FoV. When working in a known occupancy
map, we use ray tracing to determine the true FoV to account for
occlusions caused by the static environment. Alternatively, the poly-
gon defined by the lidar detections can be used to limit the FoV to
handle occlusions from other obstacles (e.g., people).

both simulations and hardware.

distributions. However, the target distributions are the
same across different configurations, so, for example, trial
1 using the SPHD filter with CM1 has the same target con-
figuration as trial 1 using parallel PHD filters with CM3.
Figure 3 show the average OSPA errors for each class over
all 5 trials, and Extension 1 (Table 2) shows a typical sim-
ulation run.

Figure 3a shows the results of using the SPHD filter
with confusion matrix 1 (Table 2a), which has the high-
est classification accuracy. This is expected as CM1 is the
closest to the identity matrix. We see that the OSPA er-
rors decrease in the first half of time since the robot keeps
exploring new area in the environment. In the second half
of time the robot passes through the environment for the
second time, during which time the OSPA error fluctu-
ates slightly due to the appearance of new clutter/missed
detections, the correction of previous clutter/missed de-
tections, and classification errors. We can see that all
of the classes have a similar OSPA error throughout and
that each of these is approximately the same as the class-
agnostic OSPA error (All Classes label), which uses only
metric information. This indicates that the tracking per-
formance is not limited by classification error, but rather
by other phenomena, such as clutter /missed detections or
sensor noise. This is despite the fact that each class has
only a 70-90% chance of being correctly identified on a
per-frame basis.

Figure 3d shows the results of the same scenario using
the parallel PHD filters. We can see that the OSPA error
follows a similar trend, decreasing steadily during the first
pass and then leveling out after that. However, the final
OSPA error is significantly higher than with the SPHD.
From these results we can see that the parallel PHD filters
have a much more difficult time dealing with misclassifi-
cations.

Figures 3b—3f show the results with the other confu-
sion matrices (Tables 2b and Table 2c), which have signif-
icantly higher rates of misclassification. We can see that
the class-agnostic OSPA is very similar between all three
SPHD tests. This indicates that all of the differences be-
tween the class-dependent OSPA lines are likely due to the
differences in the confusion matrix. We can see that the
SPHD filter follows a similar trend during the first 500s
in every case. After this, we see that the confusion ma-
trix with a higher chance of misclassification has a higher
OSPA, a very intuitive result. Despite this, the OSPA
continues to steadily, if slowly, decrease (eventually reach-
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Figure 3: Results of the two methods for stationary target tracking with different confusion matrices (CM) to classify targets. Each figure
shows the average OSPA errors over 5 runs of tracking each of the three classes: person, chair and table. We also plot the class-agnostic
OSPA error in the case of the SPHD filter. This is not available for the case of multiple PHD filters since there is no single PHD filter for all

targets.



Figure 4: Example of the 20 X 20m environment (gray square)
with markers showing the distribution of 2 classes: people (black)
and chairs (red). Note that people may move anywhere within the
22 x 22m area (white square), allowing them to enter and leave the
observed environment.

ing the class-agnostic levels in Figure 3b). This indicates
that the SPHD filter is able to perform well even with
high error rates, provided that it receives sufficient data.
On the other hand, the parallel PHD filters do not show
this trend. Instead, the OSPA error simply levels out and
does not increase or decrease by a significant amount af-
ter about 750s. This indicates that by explicitly including
the target class within the state, the SPHD filter is able
to benefit from re-observations of the same targets to cor-
rect past mistakes. Finally, the OSPA error in the case of
the parallel PHD filters fluctuates more wildly than in the
case of the SPHD filter. This is likely due to the SPHD
filter’s superior ability to handle uncertainty in the class
of targets.

3.3. Moving Targets

We also want to test the SPHD filter’s ability to track
a combination of static and mobile targets. In this case,
the robot monitors an open 20 x 20 m environment that
originally contains 10 people and 10 chairs. The robot is
placed statically in the middle of the environment with a
sensor FoV that covers the whole environment. We make
this choice because the focus of this work is to demonstrate
the capabilities of the SPHD filter, not to develop a control
strategy for target search and tracking. Active sensing will
be left as future work, perhaps using some of the authors’
previous work on target tracking controllers [17, 18].

3.83.1. Target Models

Just like the last test, chairs are stationary in both
their ground truth motion and in their SPHD filter motion
model. The robot uses the same motion model for people
in the SPHD filter as in the static target case. However,
instead of standing still, people are continuously moving
at 0.3m/s towards random waypoints, uniformly sampled
from a 22 x 22m area, shown in Fig. 4. This leaves 1 m
outside of the environment for each boundary so that peo-
ple may occasionally leave or enter the robot’s area. When
a person reaches their destination, they select a new way-
point and repeat this process. Note that again there is a
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Figure 5: Results of the SPHD filter tracking both dynamic and
static targets. Figure 5a shows the OSPA errors of person and chair
class over 350s. Figure 5b shows boxplots of the average OSPA errors
of both classes as well as all targets.

discrepancy between the true and modeled motion of the
people. In particular, the true velocity of the people is
3 standard deviations from the mean, making this a very
challenging tracking task.

8.8.2. Sensor Models

The detection probability is 0.99 in the entire environ-
ment. The clutter model, v, and the metric observation
model, ¢", are identical to those from the static target
case. Table 2d shows the confusion matrix assumption of
the sensor classifying these four classes in this environ-
ment.

3.3.3. Results

Extension 2 in Table 2 shows a typical simulation run,
with the corresponding OSPA error in Figure 5a. During
the 350 s of searching, both static and dynamic targets are
well tracked most of time. Compared with the stationary
target tracking test using CM1 (Table 2a), where the prob-
ability of a person being classified correctly is also 0.9, the
OSPA error fluctuates more and the overall OSPA error is
a little higher. This is not surprising given that the targets
are now moving and there is a larger difference between the
true and assumed motion model for the people.

Figure 5b shows boxplots of the average OSPA error
over a run, providing a clearer view of the steady-state
behavior. We can see that the chair class has a lower stan-
dard deviation compared to the person class, which is not
surprising given that the true and assumed motion models
for the chair match. Also, the median OSPA error is lower



for the person that it is for the chair class, though not sig-
nificantly. Both of these medians are higher (by about 1)
than the class-agnostic OSPA. Given the definition of the
OSPA error and the fact that there are 10 targets of each
type, this means that the SPHD filter is misclassifying one
target of each type.

3.4. Computation time

We conducted our simulations on a workstation equipped
with a 3.7 GHz Intel Xeon E3-1240 v6 and 16 GB of RAM
and we implemented the SPHD filter in C++ using ROS
libraries. In our trials, each recursion of both the PHD
filter and the SPHD filter took approximately 5-10 ms per
class, depending on the number of particles within the sen-
sor field of view, the number of measurements received,
and also on the other processes concurrently running on
the computer. We did not see any significant difference
between the time per class using the parallel PHD filters
versus the single SPHD filter.

Extrapolating from these results, we could expect real-
time operation in these scenarios using sensors that re-
ceive data at 30-50Hz. This is at or above the frame
rate of most image-based sensors. However, in practice,
most processors available onboard mobile robots are less
capable than the Xeon that we used. To address this,
the PHD update step is highly parallelizable, so one could
use multi-threading or GPU-based computation to signifi-
cantly decrease run time. Finally, deploying our system in
hardware requires the use of an image-based classification
algorithm. These tend to run more slowly than the SPHD
filter updates, and thus we do not expect the SPHD filter
to be the computational bottleneck in the perception and
estimation pipeline.

4. Hardware Validation

We conduct semantic mapping tests using hardware
to validate our proposed state estimation algorithms. We
choose to use a Kobuki Turtlebot 2, shown in Fig 1, which
has a maximum velocity 0.5m/s and is equipped with a
Jetson TX2 embedded computer, a Hokuyo UTM-30LX
lidar, and a Stereolabs ZED stereo camera. The Hokuyo
lidar has a maximum range of 30 m, a FoV of 270°, and
an angular resolution of 0.25°. The ZED camera has a
minimum detection range of 0.5 m, a maximum range 10 m,
and a FoV of 90°. The robot localizes itself using the
amcl ROS package, which requires a pre-built map of the
environment (that does not include the targets) and the
lidar.

4.1. Measurement Fxtraction

The ZED stereo camera is used for object detection.
First, the raw RGB image data from the ZED camera is
passed into the YOLOv3 detection algorithm [1] to find
the object classes and labeled bounding boxes for each
object. With the bounding boxes of each object, we then

extract the pixel coordinates of a small square area (i.e., 25
pixel points) around the center pixel point of this object.
Next, we use the pixel coordinates to extract the position
measurements of these 25 pixel points from the 3-D point
cloud data and average the positions to get the resulting
position estimate.

There are three things should be noted. First, there
are two primary sources of clutter detections, misclassified
objects and multiple detections (e.g., the reflection of an
object on glass or the polished floor), which causes multiple
simultaneous bounding boxes for a single object. Second,
if the object is too close to or too far away from the robot
then may be no data associated with it in the point cloud.
So even if an object is detected by YOLOv3 algorithm, we
cannot always generate a full measurement of it. Third,
the performance of the image processing pipeline depends
on the level of illumination in the environment. In our
trials we train and test a model in the same ambient con-
ditions. For long term operation, where the robot may ex-
perience multiple illumination levels, one solution would
be to use the procedure outlined below in Sec. 4.3.1 to
learn several different sensor models for different ambient
conditions. Then the robot can use the observed illumina-
tion levels to determine which model to use at any given
instant. This would not affect the theory behind the SPHD
filter, but would require additional engineering work.

4.2. Semantic Mapping With Large Objects

We first test semantic mapping using the SPHD filter
in the lobby of the Temple University College of Engineer-
ing building, shown in Fig 6a. We performed two test
cases in this environments. In both of these cases we use
the default YOLOv3-tiny model trained from Microsoft
COCO dataset [37] to detect objects. The robot navigates
through a series of user-defined way points using the stan-
dard ROS navigation stack [38].

4.2.1. Stationary Targets

The first test case has three classes of static objects:
chairs (single sofas), tables, and umbrellas. We select these
classes due to their large sizes and distinct shapes, making
them reliable to detect and easy to identify. We use class-
agnostic sensor models

09 3m<r(z,q) <bm
pa(z | q,0) = and |b(z,q) — 0] <45°, (12)
0 else
glr,b| z,q,0) =N(r,b]| z,0.115), (13)
c(z | q,0) =0.01. (14)

We also assume that the class recognition is always cor-
rect, which is equivalent to the confusion matrix being the
identity matrix. This assumption was backed up in our
trials, where we did not experience any misclassification.
The robot drove through the loop within the area marked
in green Fig 6a, which took approximately 1minute. Fig-
ure 6b shows the resulting PHD estimate. We see that all



(a) Lobby—Ground Truth

(b) Lobby-PHD

Figure 6: Fig 6a: Ground truth map in the Temple University
College of Engineering building lobby map. There are three classes
of objects: dining tables (light gray rectangles), chairs (single sofas)
and umbrellas. Fig 6b: The resulting semantic map, with the PHD
for dining tables (red), chairs (green), and umbrellas (blue).

eight chairs and three umbrellas have been localized and
correctly identified, as indicated by the green and blue
PHD peaks. However, only one out of three tables was
localized, since the other two were occluded by chairs and
could not be recognized by YOLOv3. Both object loca-
tions and classes are correct compared with the ground
truth, indicating a successful semantic mapping of the en-
vironment based on objects it can find.

4.2.2. Mized Stationary and Dynamics Targets

The second test has two target classes: umbrellas and
people. In the test, the person walks through an L-shaped
path (at approximately 0.2m/s), shown in Fig. 7a, with
the umbrella placed at the turning point. The robot is
manually controlled to follow the person as they walk from
the start location to the end location.

Extension 3 in Table 2 shows a video of the trial, with
the cumulative PHD over the time interval given in Fig-
ure 7b. We see that as the person moves, the sequence
of (green) peaks is consistent with the true trajectory of
the person. We can also see that the umbrella is correctly
localized and that both classes are consistently classified,
as shown by peaks with separate colors. This test demon-
strates that the SPHD filter is able to track both static
and moving targets while distinguishing their class labels.

4.8. Semantic Mapping With Small Confusing Objects

The final hardware test stresses the system’s ability to
distinguish between target classes. There are four classes
of objects, shown in Fig 8, each a distinct brand of 500 ml
water bottle. The bottles are all of very similar size, shape,
and coloration, making distinguishing between them very
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Figure 7: Ground truth of a moving person from a start point to
an end point and a stationary umbrella and the result of semantic
mapping. The person is walking through an L-shape trajectory and
the robot is following him, keeping him inside its field of view at all
time, as shown in Fig 7a. In Fig 7b, the cumulative PHD of the
person over time is shown as green peaks and the blue peak shows
the cumulative PHD of the umbrella.

Figure 8: Four brands of water bottles.

challenging. In other words, we expect the confusion ma-
trix to be far from the identity matrix. Note: to improve
the ability of pose measurement using point cloud, we dis-
solve condensed milk in all bottled waters to make them
opaque.

4.3.1. Sensor Characterization

In our previous tests, the sensor models were all based
on heuristics and rough observation. In these trials, we
can no longer do this, especially given that the target
classes are easily confused with one another. Instead we
will demonstrate how to experimentally determine the sen-
sor models, providing a template for other researchers who
wish to use the SPHD filter.

Experimental Setup. In general, the sensor characteriza-
tion procedure only requires one dataset with known tar-
get classes and positions to train the object detector, and
develop the sensor models necessary to utilize the PHD
filter. However, in order to facilitate the acquisition of a



diversified detection dataset, we collect two datasets in this
experiment: one called detection dataset to train the ob-
ject detector, and one called measurement-model dataset
to learn the observation, detection, and clutter models.

To collect our detection dataset, the robot drove around
the lobby and lab environment in the College of Engineer-
ing building at Temple University for 30 min, collecting
around 5,000 RGB images of 48 water bottles (12 of each
brand) at random positions. We then manually label these
images using the Labellmg tool® with the Pascal VOC
dataset format. Figure 8 shows an example of a labeled
image. With this detection dataset, we train a custom
YOLOv3-tiny model using the pre-trained YOLOv3-tiny
model to bootstrap the learning procedure.

To collect our measurement-model dataset, we drove
the robot (running our YOLOv3 algorithm) around the
lobby environment for 20 min to collect measurements of
12 targets (3 of each brand) at known positions. We again
manually label the dataset using the same procedure to
get the ground truth data. The resulting dataset contained
2725 measurement sets with a total of 3492 individual mea-
surements (i.e., YOLOv3 detection bounding boxes with
accompanying point cloud data). We also have to deter-
mine the measurement-to-target association in order to la-
bel each measurement as coming from a target or clutter
and to count the false negative detections. Note, while we
do have the ground truth positions of all water bottles, the
robot has some (small) uncertainty in its estimated pose
from amcl. Therefore, the sensor models (specifically the
covariance in the metric observation model) will encapsu-
late both these small errors in robot localization as well
as the errors in the relative range/bearing from the robot
to the target. To account for both of these sources of un-
certainty, we use a gating procedure to associate measure-
ments, wherein a measurement is associated with a target
if it is within the sensor field of view and within three
standard deviations of a target (using the estimated robot
pose as if it were ground truth). In this gating procedure,
we also account for the fact that the SPHD filter assumes
at most one measurement per target by associating only
the closest measurement to a target (e.g., in the case of
multiple bounding boxes per target). If no measurement
is associated to a target, the target is labeled as a false
negative detection. We use this to derive the three sensor
models for the SPHD filter.

Observation Model. As we discussed in the definition of
the SPHD filter, the sensor observation model (3) is com-
posed of separate semantic and metric components. The
semantic part is modeled by a confusion matrix, which we
can directly calculate from our detection dataset using the
ground truth and estimated labels. Table 3 shows the re-
sulting confusion matrix. We see that Aquafina is the most
easily recognized, which makes sense given that it has the

3https://github.com/tzutalin /labellmg

11

bserved Aquafinal] Deer |Kirkland| Nestle
True
Aquafina 0.993 0 0 0.007
Deer 0 0.940 0.042 0.018
Kirkland 0 0 0.850 0.150
Nestle 0 0.252 0.032 0.716

Table 3: Confusion matrix for bottles.

most distinct shape of the four brands. We also see that
there are some significant sources of ambiguity, with the
Nestle brand only being correctly classified 71.6% of the
time. Note that in practice we avoid having 0 entries in the
confusion matrix by adding a small number to each entry
in the confusion matrix (0.001) and then normalizing each
row to ensure that it remains a right stochastic matrix.

The metric component of our observation model is the
range and bearing of each detected target. We assume
that these range and bearing measurements are corrupted
by zero-mean Gaussian noise with covariance ¥, which is
independent of the robot pose, target class, and the range
and bearing to the target. Mathematically, this is:

mm | m. N 1 L) TS ()

9 a0 = e (15)
where p = [r(a:,q),b(x,q)]T, r(z,q) and b(x,q) are the
target range and bearing in the local sensor frame, ¥ =
diag(o?,02), and o, and 0, are measurement noise param-
eters.

To find the covariance values, we use our measurement-
model dataset. As we stated above, this covariance value
is used in the gating procedure to determine the number
of correct associations. Since no accurate ground-truth
localization data is available in the experimental environ-
ment, we fit the noise parameter ¥ by performing a grid
search over o, (0 to 0.50m) and o} values (0 to 10.00°).
For each point, we compute both the fraction of measure-
ments (Frac) considered true detections (using the gating
procedure) and the sum-of-squares error (SSE) between
the measurements and ground truth data. We seek to find
the parameter values that maximizes the number of true
detections (i.e., higher Frac) while minimizing the SSE
between them.

Figure 9 shows the resulting values for our dataset. We
see that the SSE data mostly depends upon the bearing
noise, increasing in a roughly linear fashion as a function
of op. Therefore, minimizing o}, will minimize the SSE. On
the other hand, the Frac data sharply increases for small
o, and o}, values, reaching a plateau near o, = 0.25 m and
op = 3.00°. Therefore, we select this point as our optimal
measurement noise. We also will use the associations re-
sulting from this gate to fit the detection and clutter mod-
els. Using these values, the measurement dataset contains
910 true detections and 1581 false negative detections.
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Figure 9: The grid search contour figure where the Frac and SSE as
a function of the measurement noise parameters o, and oy.
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Figure 10: Geometric pictograms of the stereo camera detection
model, where Op, /Opg are the left/right aperture centers, F¢ is the
intersection point of binocular filed of view, and r is the range. (a)
Pixel imaging pictogram, where d; is the diameter of the target,
Osep is the angular separation between adjacent pixel beams. (b)
Binocular depth estimation pictogram, where the light blue shaded
area staring from F¢ is the binocular field cone, dy, is the minimum
working distance for the depth estimation, and d, is optimal working
distance for the depth estimation.
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Detection Model. As previously noted, one valid detection
includes not only the object class but also its position. In
the other word, the detection model depends on the object
class detection from raw RGB image data and the object
position estimation from 3-D point cloud data. Therefore,
our detection model must account for the physics of both
pixel imaging and binocular depth estimation, as Fig. 10
shows.

From the physics of a stereo camera, we can see that a
suitable range r between the camera and the object is im-
portant to the object detection and that when 7 is too far,
pixel imaging limits the object class detection performance
since there are not enough pixels to accurately recognize
objects. Geometrically, each pixel beam in an image in-
tersects a target that is within % of the beam, where d;
is the target diameter, while the arc length between two
beams emitted from two adjacent pixels (separated by an-
gle fsep) of a image sensor at a range r is rfp. This
yields the width (in pixels) of an object at distance r of
Tg:ep. We assume that the detection probability at high
ranges is limited by this value, and that the two quantities
are proportional.

From the principle of binocular depth estimation, only
the targets within the binocular field cone can have binoc-
ular disparity and depth estimate. The minimum working
distance to the binocular field cone is d,,, while the opti-
mal working distance which offers the best depth accuracy
is do. When 7 is too close, binocular depth estimation
limits the object position estimation performance. We as-
sume that the detection probability is independent of the
bearing and that it is proportional to the relative distance
from the optimal value, given by =d=

These two phenomena result in the follovvlng detection

r— dm dt

model:
0
d, P r036p> ’ )

]]-(b S [bmina bmax]) ]]-(T S [Tmina Tmax])

pa(x; q) = max (min (pd,b ,Dd

(16)

where 1(-) is an indicator function, r = r(x,q) and b =
b(x,q) are the target range and bearing in the local sensor
frame and pgp, pap are the proportionality constants (for
the binocular and pixel imaging phenomena, respectively)
to be fit. To get a reliable detection probability, the target
range and bearing are limited to fall within [rmin, 7"max]
and [bmin, bmax] respectively. For our sensor and target
configuration, d,, = 0.5m, d, = 1m, d; = 6.67cm, Oy, =
0.07°, —bmin = 45°, and rpy, = 0.50m, rpa. =
1.50 m.

To find the optimal parameter values, we use the as-
sociated data from the previous step. We then bin this
labeled data as a function of the true range to the target
(in 0.2m increments) computing the probability of detect-
ing a target within each range bin using the true and false
negative detection data. Similar to modeling the observa-
tion model, we use a grid search algorithm to search over
pap (0 to 1 in steps of 0.01) and pg, (0 to 0.1 in steps of

bmax =
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Figure 11: Best fit detection model to 910 true detections, and 1581
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Figure 12: Best fit model for the clutter cardinality, using 734 clutter
measurements from 2725 measurement sets.

0.001). For each parameter configuration, we compute the
sum-of-squares error between the data and the parameter-
ized model, with the best fit model parameters being

pap =0.74, pap =0.014.
Figure 11 shows the resulting model against the data.

Clutter Model. Based on the underlying assumptions of
the SPHD filter, the clutter cardinality is assumed to fol-

low a Poisson distribution with mean p (where p = [ ¢(z) dz).

Therefore, to find p we can fit a Poisson distribution to
the empirical distribution of the number of clutter mea-
surements per measurement set Z(t). Figure 12 shows the
resulting cardinality model, where the optimal p = 0.28,
meaning there are an average of 0.28 clutter detections per
measurement set.

As we noted when describing the measurement extrac-
tion procedure, clutter (i.e., false positive) measurements
arise due to clutter items (e.g., trash cans and reflective
glass) and redundant detections. To avoid over fitting our
clutter model to a specific environment, we assume that
clutter detections are uniformly distributed with the sen-
sor’s field of view and that they are independent of the
robot pose:

c(z) = K
%(bmax = bmin) (Thhax — T?nin)
X ]l(b(x’q) € [bminabmax]) ]I(T(l‘,q) S [Tminvrmax])
(17)
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Figure 13: Best fit clutter probability density function, using 734
clutter measurements from 2725 measurement sets.

where 1(+) is an indicator function, and u is the expected
number of clutter measurements per scan. Figure 13 shows
the best fit model against the empirical distribution of
clutter (i.e., the histogram of clutter detections). We see
that the model is close except near the very corners of the
field of view.

4.3.2. Results

While we used both the lobby and lab environments
to collect the measurement dataset, we use only the lab
environment, shown in Fig. 14a, to test the resulting SPHD
filter models. The robot starts in the lower right corner
and traverses one clockwise loop within the rectangular
environment. Figure 14b shows the ground truth class
labels, where there are 6 bottles of each class.

Extension 4 in Table 2 shows a video of the trial, in-
cluding the first-person view from the robot and the es-
timated SPHD. Figure 14c shows the robot’s trajectory
(the flags and blue curve) and the final PHD for each ob-
ject class. While most of the peaks are apparent to see, a
few of them are too small to view (indicating that the car-
dinality count is low). Even though the peaks are small,
they are still present and we can more easily see them if
we run our peak extraction method. Figure 14d shows the
locations of all extracted peaks, where we can see that all
bottles have been correctly classified and the estimated lo-
cations coincide with the true locations shown in Fig 14b.
There is only one clutter target (of class Kirkland) in the
upper right corner, but the cardinality of this is near zero.
If the robot had completed multiple circuits this would
have likely disappeared.

Figure 15 demonstrates the process of object state es-
timation as the robot drives in the environment at four
points along the robot’s trajectory. At each point, we show
the robot camera view with current object detections and
the PHD. We can see that multiple bottles are misclassi-
fied within each frame, with the class errors rates coincid-
ing closely with the confusion matrix in Table 3. Despite
this, the prominent peaks within the PHD are correct, with
the height of each peak tending to grow towards 1 as the
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Figure 14: True and estimated states of bottles. Figure 14a and
Figure 14b show the environment setup and the true positions and
brands of bottles respectively. Each grid in Fig 14b is 0.7m x 0.7 m.
Figure 14c shows robot’s trajectory, marked by the blue line with
the start point (blue flag) and the end point (red flag), and the final
PHD of different classes of bottles, marked by colored surfaces in
3D environment. Figure 14d shows a Rviz screenshot of estimated
positions and brands of bottles in the environment extracted from
the PHD peaks. In all above figures, green, blue, red and white
correspond to Nestle, Deer, Kirkland and Aquafina respectively.

target was observed multiple times. We also saw many
false positive targets appear during the process, such as
the red peak in Fig 15d, due to the noisy point cloud mea-
surement. However, the resulting PHD only had a single
clutter target with weight near 0.

While we only demonstrate a single run, this perfor-
mance was typical, with correct classification and localiza-
tion of the true targets and the occasional clutter target.
One challenge that we will address in future work is the
temporal variance in our sensor model, specifically due to
changes in illumination causing variations in performance.
For example, the error rate of bottle classification increases
as the environment gets darker. Similarly, the point cloud
pose measurement accuracy also varies with illumination
levels. Despite this, the SPHD filter still generally per-
formed well. We expect that training the classification
and sensor models using a wider range of data will alle-
viate, but not completely eliminate, this issue. Another
direction of future work is to learn (or adapt) the sensor
model parameters online.

5. Conclusion

In this paper we propose the semantic PHD filter algo-
rithm, a RFS-based multi-target tracking algorithm which
uses both metric and semantic information to simultane-
ously track multiple classes of targets. Mathematically,
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the key to defining the SPHD filter is to augment both
the target state space and the measurement space with a
discrete set of class labels. The various target and sensor
models within the standard PHD filter framework utilize
this additional label state to differentiate between target
types. Some models, like the target motion model, are
defined separately for each individual class while others,
like the observation model, must contain a single model
for all target types. Using these models, the SPHD filter
can then iteratively propagate the PHD and handle uncer-
tainty, such as the possibility of target misclassification, in
a theoretically principled manner.

To demonstrate the efficacy of the SPHD filter, we con-
duct a series of experiments in both simulated and real
environments and using a mixture of static and dynamic
targets. In our simulated tests, we found that the SPHD
filter outperforms a system that utilizes multiple standard
PHD filters (one for each class) in parallel. In particular,
the SPHD filter demonstrates an ability to recover from
prior misclassifications, even when the probability of cor-
rect classification is barely over 50%. In our hardware
tests, we demonstrated the ability of the SPHD filter to
work in real-world settings, including in settings where the
correct classification rate for an object is barely 70%. We
also provided a template for how to carefully character-
ize the sensor models used within the SPHD filter, from
data collection and labeling to find optimal sensor mod-
els. While the details of this procedure were specific to
our sensor and targets, the same general process can be
used in any other setting with the SPHD (or PHD) filter.
Directions for future work include using multiple robots to
search for and track multi-class targets in a coordinated
manner and applying active control algorithms to enable
one or more robots to search for and track dynamic tar-
gets.
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