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Abstract

Real-world data often comes in compressed form. Analyzing compressed data directly (without first
decompressing it) can save space and time by orders of magnitude. In this work, we focus on fundamental
sequence comparison problems and try to quantify the gain in time complexity when the underlying data is
highly compressible. We consider grammar compression, which unifies many practically relevant compression
schemes such as the Lempel–Ziv family, dictionary methods, and others. For two strings of total length N
and total compressed size n, it is known that the edit distance and a longest common subsequence (LCS) can
be computed exactly in time Õ(nN), as opposed to O(N2) for the uncompressed setting. Many real-world
applications need to align multiple sequences simultaneously, and the fastest known exact algorithms for median
edit distance and LCS of k strings run in O(Nk) time, whereas the one for center edit distance has a time
complexity of O(N2k). This naturally raises the question if compression can help to reduce the running time
significantly for k ≥ 3, perhaps to O(Nk/2nk/2) or, more optimistically, to O(Nnk−1).1

Unfortunately, we show new lower bounds that rule out any improvement beyond Ω(Nk−1n) time for any of
these problems assuming the Strong Exponential Time Hypothesis (SETH), where again N and n represent the
total length and the total compressed size, respectively. This answers an open question of Abboud, Backurs,
Bringmann, and Künnemann (FOCS’17).

In presence of such negative results, we ask if allowing approximation can help, and we show that
approximation and compression together can be surprisingly effective for both multiple and two strings.

We develop an Õ(Nk/2nk/2)-time FPTAS for the median edit distance of k sequences, leading to a saving
of nearly half the dimensions for highly-compressible sequences. In comparison, no O(Nk−Ω(1))-time PTAS is
known for the median edit distance problem in the uncompressed setting. We obtain an improvement from
Õ(N2k) to Õ(Nk/2+o(k)nk/2) for the center edit distance problem. For two strings, we get an Õ(N2/3n4/3)-time
FPTAS for both edit distance and LCS; note that this running time is o(N) whenever n� N1/4. In contrast,
for uncompressed strings, there is not even a subquadratic algorithm for LCS that has less than polynomial
gap in the approximation factor. Building on the insight from our approximation algorithms, we also obtain
several new and improved results for many fundamental distance measures including the edit, Hamming, and
shift distances.

1 Introduction

With the information explosion, almost all real-world data comes in a compressed form. While compression
is primarily intended to save storage space and transmission bandwidth, processing compressed data directly
often provides an opportunity to reduce computation time and energy by several orders of magnitude. In this
work, we focus on sequential data such as natural-language texts, biological sequences (nucleic acid sequences,
including DNA, and amino acid sequences, including proteins), and computer codes. Sequential data often contains
highly repetitive pattern. Modern technology (e.g., high-throughput sequencing) has led to an astonishingly rapid
accumulation of such data, so much so that without proper data compression and algorithms over compressed
data, it is not possible to utilize the wealth of information in them [BPS13, BDY16, GWH19, HPWO19].

Grammar compression represents strings as straight-line programs (SLPs), and provides a mathematically
elegant way to unify algorithm design principles for processing compressed data [Loh12]. It is equivalent to many
well-known compression schemes up to logarithmic factors and moderate constants [Ryt03, KP18, KK20] such as
the celebrated LZ77 [ZL77] and RLBWT [BW94] schemes, and at least as strong as byte-pair encoding [Gag94],
Re-Pair [LM00], Sequitur [NW97], further members of the Lempel–Ziv family [ZL78, Wel84], and many more
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1In this paper, we assume that k is a constant; thus, the O(·) and Ω(·) notation may hide factors with exponential dependence on k.
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popular schemes (the list keeps growing). Therefore, following the lead of a large body of previous work
(including [Tis15, Jeż15, ABBK17, BWK19, CKW20]), we work with grammar-compressed data.

In this work, we ask whether fundamental sequence similarity measures can be computed faster for compressed
data. This research is motivated in part by the success of computing edit distance and longest common subsequence
(LCS) of two strings [Gaw12, HLLW13, Tis15] much faster than the “decompress-and-solve” approach: If we let
N denote the total length and n denote the total compressed size of the input strings, then the edit distance
and the LCS length can be computed exactly in time Õ(nN) in contrast to O(N2) time for the uncompressed
setting. Therefore, for highly compressible sequences where, say, n = polylogN , the running time reduces to Õ(N).
Abboud, Backurs, Bringmann, and Künnemann [ABBK17] asked whether it is possible to improve upon Õ(nN),
noting that: “For example, an O(n2N0.1) bound could lead to major real-world improvements.” In general, any
sublinear dependency on N would be preferable; unfortunately, [ABBK17] shows that Õ(Nn) is essentially optimal
under the Strong Exponential Time Hypothesis (SETH).

There are many real-world applications which deal with multiple sequences. A survey by Nature [NMN14]
reports multiple sequence alignment as one of the most used modeling methods in biology, with [THG94] among
the top-10 papers cited of all time (citation count 63105). Some of the basic measures for multiple sequence
similarity include the LCS length and the cost of the median and center strings under edit distance. Abboud,
Backurs, and V.-Williams [ABV15] showed that exact computation of k-LCS requires Ω(Nk−o(1)) time (under
SETH), and a similar result has been recently shown for both median and center k-edit distance [HBGT20]. A
simple extension of the basic dynamic programming for two strings solves the median k-edit distance problems in
O(Nk) time whereas the best bound known for the center k-edit distance is O(N2k) [NR05]. The two-string lower
bound in the compressed setting leaves open the possibility of reducing the running times of the k-LCS and the
median k-edit distance problems for compressed strings: It might be feasible to achieve runtimes of O(Nk/2nk/2)
or even O(Nnk−1), and a substantial reduction of the exponent at N could lead to significant savings. This
raises the following questions:

1. Does compression allow for significantly reducing the running time for multi-sequence similarity problems?
2. For the case of two highly compressible strings, what relaxations of the LCS and the edit distance problems

could allow circumventing the lower bounds and achieving sublinear dependency on N?

Lower Bounds: Compression does not help with exact bounds much! Unfortunately, we show that
computing the k-LCS, median k-edit distance, and center k-edit distance all require Ω((Nk−1n)1−o(1)) time under
SETH. Therefore, the potential gain from compression becomes insignificant as k grows. Intuitively, SETH states
that CNF-satisfiability requires 2n−o(n) time [IP01]. Even more specifically, we use the k-Orthogonal Vectors
problem (k-OV) [Vas18]. At a high level, k-OV takes as input a list L with n zero-one vectors of dimension d. We
must return YES if there exist k vectors that, when multiplied element-wise, form the all zeros vector. The k-OV
conjecture, which is implied by SETH, states that k-OV cannot be solved in O(nk−Ω(1)) time.

Theorem 1.1. If the k′-OV hypothesis is true for all constants k′, then for any constant ε ∈ (0, 1] grammar-

compressed k-LCS requires
(
Nk−1n

)1−o(1)
time when the alphabet size is |Σ| = Θ(k) and n = N ε±o(1). Here, N

denotes the total length of the k input strings and n is their total compressed size.

We prove similar lower bounds for median and center k-edit distance (Theorem 6.2 and Theorem 6.8).
Sections 6.2, 6.6, and 6.9 contain our lower bound results.

Abboud, Backurs, Bringmann, and Künnemann [ABBK17] left an open question whether their Ω((Nn)1−o(1))
lower bound for LCS also holds for computing the edit distance of two strings. We answer this question
affirmatively and extend the argument to the k-string setting. Moreover, we note that for a seemingly simpler
problem of computing the shift distance [AIK08, AIKH13, AGMP13, GKK+20], we show that compression does
not help to reduce even a single dimension (Section 8).

Algorithms: Effectiveness of Approximation & Compression. In presence of such negative results, relaxing
the median and center k-edit distance to circumvent the Ω((Nk−1n)1−o(1)) lower bound becomes even more
important.
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Can we use compression and approximation together to achieve much better approximation guarantees and,
simultaneously, circumvent the exact computation lower bounds?

To the best of our knowledge, even for two strings, there is no previous work on approximating the edit distance
of grammar-compressed strings. On the other hand, even after a long line of research in developing fast algorithms
for approximate edit distance for the uncompressed setting (see e.g. [BEK+03, BJKK04, BES06, AKO10, AO12,
CDG+18, GRS20, BR20, KS20, AN20]), the best approximation ratio achievable in truly subquadratic time is
currently 3 + ε [GRS20], and the fastest constant-factor approximation algorithm runs in O(n1+ε) time [AN20]
with an approximation factor that has doubly-exponential dependence on 1

ε . The situation is even worse for LCS
approximation, where we do not know how to design a subquadratic algorithm with sub-polynomial approximation
gap [HSSS19, RSSS19]. We are also unaware of any previous research on approximating LCS of two compressed
strings.

In the case of multiple strings, there is a classic O(N2)-time (2− 2/k)-approximation for median edit distance
and an O(N2)-time 2-approximation for center edit distance [Gus97]. Combined with the results of [AN20],
this yields an O(N1+ε)-time constant-factor approximation for both versions. Nevertheless, a PTAS, that is, a
(1 + ε)-approximation algorithm for every constant ε > 0, would be much more desirable for practical applications.

Surprisingly, we show that already when an (1+ε)-approximation is allowed for an arbitrary constant ε > 0, the
median k-edit distance computation time reduces to Õ(Nk/2nk/2) compared to the Ω((Nk−1n)1−o(1)) lower bound
for exact algorithms. In other words, we can save k/2 dimensions by allowing approximation and compression. For
ε = o(1), the running time of our algorithm increases by an ε−O(k) factor, so we even obtain an FPTAS whereas
no prior work in the uncompressed setting gives a (1 + ε)-approximation in O(Nk−Ω(1)) time. The reduction
in time for center k-edit distance is even more dramatic (and technically more complex) from exact O(N2k) to
Õ(Nk/2+o(k)nk/2) for a (1 + ε) approximation.

For edit distance between two strings, we develop a more efficient FPTAS whose running time is
Õ(N2/3n4/3ε−1/3), which is sublinear in N as long as n� N1/4. A slightly more sophisticated Õ(N2/3n4/3ε−1/3)-
time algorithm also provides a (1 + ε)-approximation of the LCS length. In contrast, a comparable result for the
uncompressed setting is an O(N1.95)-time algorithm of [RSSS19], which returns a common subsequence of length
Ω(N/λ4), providing an O(λ3)-factor approximation. Even when the alphabet size is 2, so far, there does not exist
any (1 + ε) approximation in subquadratic time [RS20].

Improved Exact Algorithms in Compressed Setting. Interestingly, the insights behind our approximation
algorithms also lead to new exact algorithms. In particular, we show that the edit distance can be computed in
time Õ(n

√
ND), where D is an upper bound on the edit distance. This improves upon the state-of-the-art bound

of Õ(min(nN, n+D2)) [Tis15, LV88, MSU97] whenever D � N1/3n2/3.
For this problem, the first improvements compared to the uncompressed settings were given in [Tis09, HLLW09].

Then, Tiskin [Tis15] obtained an O(nN logN)-time algorithm and subsequent works [HLLW13, Gaw12] reduced the
O(logN) factor. However, when the distanceD is small, the edit distance can be computed inO(N+D2) time [LV88]
in the uncompressed setting. The O(N) term in the running time of the Landau–Vishkin algorithm [LV88] is
solely needed to construct a data structure efficiently answering the Longest Common Extension (LCE) queries.
However, already the results of Mehlhorn, Sundar, and Uhrig [MSU97] yield Õ(1)-time LCE queries after Õ(n)-time
preprocessing of the grammars representing X and Y . This gives rise to an Õ(n+D2)-time algorithm computing
the edit distance. With a more modern implementation of LCE queries in compressed strings by I [I17], the factor
hidden within the Õ(·) notation can be reduced to O(logN).

While the Õ(n+D2)-time algorithm is very fast if D is small, its efficiency quickly degrades with increasing D
and the Õ(nN)-time algorithm becomes more suitable already forD �

√
nN . With a time complexity of Õ(n

√
ND),

our algorithm improves upon the previous algorithms whenever
3
√
n2N � δE(X,Y )� N . Nevertheless, the current

lower bounds allow for a hypothetical holy-grail algorithm achieving the running time of Õ(min (nD, n+D2))
which we leave as an interesting open question.

We also get improved results for the Hamming distance, which is a more basic measure trivially computable
in O(N) time. Here, we present an O(n

√
N)-time algorithm which improves upon the O(n1.41N0.593) bound

of [ABBK17]. Additionally, we note that natural generalizations to multiple strings (including the median Hamming
distance) can be computed in O(nN1−1/k) time.
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2 Preliminaries

For two integers i ≤ j, we write [i . . j] to denote the set {i, . . . , j} and [i . . j) to denote {i, . . . , j − 1}. The notions
(i . . j] and (i . . j) are defined analogously.

A string is a sequence of characters from a fixed alphabet Σ. We write Σ∗ to denote the set of all strings over
Σ, and we define Σ+ = Σ∗ \ {γ}, where γ denotes the empty string. The length of a string X is denoted by |X|
and, for a position i ∈ [1 . . |X|] in X, the character of X at position i is denoted by X[i]. For an integer N ≥ 0,
the set of length-N strings over Σ is denoted by ΣN .

For two positions i ≤ j in X, we write X[i . . j] to denote the fragment of X starting at positions i and ending
at position j; this fragment is an occurrence of X[i] · · ·X[j] as a substring of X. The fragments X[i . . j), X(i . . j],
and X(i . . j) are defined similarly.

A morphism is a function f : Σ∗1 → Σ∗2 such that f(X) =©|X|i=1f(X[i]), where © denotes the concatenation
operator. Note that every function mapping Σ1 to Σ∗2 can be uniquely extended to a morphism.

2.1 Straight-Line Programs A straight-line program is a tuple G = (S,Σ, rhs, S), where S is a finite sequence
of symbols, Σ ⊆ S is a set of terminal symbols, rhs : (S \ Σ)→ S∗ is the production (or right-hand side) function,
and S ∈ S is the start symbol, and the symbols in S are ordered so that B precedes A if B occurs in rhs(A). We
also write A→ B1 · · ·Bk instead of rhs(A) = B1 · · ·Bk.

The set S \ Σ of non-terminals is denoted by N. The size of G is |G| := |S|+
∑
A∈N |rhs(A)|: the number of

symbols plus the total length of productions. The expansion function exp : S→ Σ+ is defined recursively:

exp(A) =

{
A if A ∈ Σ,

©k
i=1 exp(Bi) if A→©k

i=1Bi.

We say that G is a grammar-compressed representation of exp(S). The exp function naturally extends to a
morphism exp : S∗ → Σ∗ with exp(©m

i=1Ai) =©m
i=1 exp(Ai).

For a symbol A ∈ S, we denote |A| = | exp(A)|. In this work, we assume a word RAM machine with machine
words of Ω(log |S|) bits. In this setting, one can compute |A| for all A ∈ S in O(|G|) time. Consequently, we
assume that |A| is stored along with A in the straight-line programs given to our algorithms.

A straight-line program G is in Chomsky normal form if |rhs(A)| = 2 for all A ∈ N. Given an arbitrary
straight-line program G, an equivalent straight-line program G′ in Chomsky normal form can be constructed in
O(|G|) time; moreover, |G| = O(|G′|). Thus, without loss of generality, we assume that all straight-line programs
given to our algorithms are already in the Chomsky normal form.

3 FPTAS for Compressed Edit Distance of Two Strings

The edit distance δE(X,Y ) of two strings X,Y ∈ Σ∗ is defined as the minimum number of character insertions,
deletions, and substitutions needed to transform X into Y .

In this section, we prove the following result.

Theorem 3.1. Given a straight-line program GX of size n generating a string X of length N > 0, a straight-line
program GY of size m generating a string Y of length M > 0, and a parameter ε ∈ (0, 1], an integer between
δE(X,Y ) and (1 + ε)δE(X,Y ) can be computed in Õ

(
(nm(N +M))2/3ε−1/3

)
time.

Let $ /∈ Σ and let ·$ : Σ∗ → (Σ ∪ {$})∗ be a morphism defined with a$ = a$ for a ∈ Σ. Then,
δE(X,Y ) = 1

2δD(X$, Y $) [Tis15]. Moreover, if X is represented by a straight line program G, then X$ can be
represented using a straight-line program of size 2|G|+ 1. This reduction allows computing δD instead of δE .

Definition 3.1. (Alignment graph) For two strings X and Y , the alignment graph GX,Y is a weighted
undirected graph with vertex set {vx,y : x ∈ [0 . . |X|], y ∈ [0 . . |Y |]} and edges:

• vx,y−1 ↔ vx,y of length 1, for x ∈ [0 . . |X|] and y ∈ [1 . . |Y |];
• vx−1,y ↔ vx,y of length 1, for x ∈ [1 . . |X|] and y ∈ [0 . . |Y |];
• vx−1,y−1 ↔ vx,y of length 0, for x ∈ [1 . . |X|] and y ∈ [1 . . |Y |] such that X[x] = Y [y].
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Observation 3.1. Let d be the metric induced by GX,Y . All x, x′ ∈ [0 . . |X|] and y, y′ ∈ [0 . . |Y |], satisfy

d(vx,y, vx′,y′) =


δD(X(x . . x′], Y (y . . y′]) if x ≤ x′ and y ≤ y′,
δD(X(x′ . . x], Y (y′ . . y]) if x′ ≤ x and y′ ≤ y,
|x− x′|+ |y − y′| otherwise.

For two ranges [x . . x′] ⊆ [0 . . |X|] and [y . . y′] ⊆ [0 . . |Y |], the subgraph of GX,Y induced by {vx̄,ȳ : x̄ ∈ [x . . x′],

ȳ ∈ [y . . y′]} is denoted G
[x. .x′],[y. .y′]
X,Y and called a block in GX,Y . For a block B, we distinguish the input

vertices inB = (vx′,y, vx′−1,y, . . . , vx,y, vx,y+1, . . . , vx,y′) and the output vertices outB = (vx′,y, vx′,y+1, . . . , vx′,y′ ,
vx′−1,y′ , . . . , vx,y′); both sequences consist of |B| := (x′ − x) + (y′ − y) + 1 vertices. The DISTB table is a
|B| × |B| matrix with entries DISTB [i, j] = d(inBi , outBj ) for i, j ∈ [1 . . |B|]. The DISTB table satisfies the Monge
property [Tis15]: DISTB [i, j] +DISTB [i′, j′] ≤ DISTB [i, j′] +DISTB [i, j′] holds for all i, i′, j, j′ ∈ [1 . . |B|] such

that i ≤ i′ and j ≤ j′. For two strings X,Y ∈ Σ∗, we also define DISTX,Y to be DISTB for B = G
[0. .|X|],[0. .|Y |]
X,Y .

By Observation 3.1, if B = G
[x. .x′],[y. .y′]
X,Y , then DISTB = DISTX(x. .x′],Y (y. .y′].

Box decomposition For two strings X,Y ∈ Σ∗, the box decomposition B of the graph GX,Y is defined based
on decompositions X = X1 ◦ · · · ◦XpX and Y = Y1 ◦ · · · ◦ YpY into non-empty fragments, called phrases.

Let us define sets {bX0 , . . . , bXpX} and {bY0 , . . . , bYpY } of phrase boundaries in X and Y , respectively, so that

the phrases are Xi = X(bXi−1 . . b
X
i ] for i ∈ [1 . . pX ] and Yj = Y (bYj−1 . . b

Y
j ] for j ∈ [1 . . pY ]. A vertex vx,y is a

boundary vertex if x is a phrase boundary in X or y is a phrase boundary in Y , and a grid vertex if both x
is a phrase boundary in X and y is a phrase boundary in Y . The box decomposition B is an indexed family

(Bi,j)i∈[1. .pX ],j∈[1. .pY ] of boxes Bi,j := G
[bXi−1. .b

X
i ],[bYj−1. .b

Y
j ]

X,Y .

3.1 Portal-Respecting Walks Hermelin et al. [HLLW13] applied a box decomposition obtained via an analogue
of Corollary 3.1 to determine δD(X,Y ) using a dynamic-programming procedure computing δD(X[1 . . x], Y [1 . . y])
for all boundary vertices vx,y. We reduce the number of DP states by considering only a selection P of boundary
vertices, called portals. This allows improving the running time from Õ(NMτ ) to Õ(|P|), but reduces the search
space from the family of all walks v0,0 ; vx,y to walks that cross box boundaries only at portals. Below, we
formally define such portal-respecting walks and provide a construction suitable for approximating δD(X,Y ).

Definition 3.2. Let B be a box decomposition of GX,Y and let P be a set portals (selected boundary vertices).
We say that a walk W is a portal-respecting (i, j)-walk if W is a concatenation of walks W ′ and W ′′ such that:

• W ′′ starts at an input portal of Bi,j and is entirely contained within Bi,j, and
• W ′ is the empty walk at v0,0, a portal-respecting (i− 1, j)-walk, or a portal-respecting (i, j − 1)-walk.

Let us fix a box decomposition B of GX,Y , and a set of portals P. For a box Bi,j ∈ B, let Pi,j = P ∩ outBi,j

denote the output portals of Bi,j . Moreover, for a vertex vx,y ∈ Bi,j , we denote dx,y = d(v0,0, vx,y) =
δD(X[1 . . x], Y [1 . . y]) and let Di,j

x,y be the minimum length of a portal-preserving (i, j)-walk ending at vx,y.

Lemma 3.1. Given a set of portals P for a box decomposition B of GX,Y , the the length of the shortest portal-
respecting (pX , pY )-walk ending at v|X|,|Y | can be computed in Õ(|P|) time provided Õ(1)-time random access to
the DIST matrices of all the boxes of B.

Proof. For each box Bi,j ∈ B, our algorithm computes Di,j
x,y for all vertices vx,y ∈ Pi,j . For this, the boxes Bi,j

containing any output portal are processed in the order of non-decreasing values i+ j.
If (i, j) = (1, 1), then Definition 3.2 and Observation 3.1 yield D1,1

x,y = d(v0,0, vx,y), and this value can be

retrieved from the DISTB1,1
matrix in Õ(1) time. Thus, we henceforth assume (i, j) 6= (1, 1).

Consider a portal-respecting (i, j)-walk W to a vertex vx,y ∈ outBi,j . By Definition 3.2, W is a concatenation
of two walks W ′ and W ′′ such that W ′′ starts at a vertex vx′,y′ ∈ P ∩ inBi,j and is entirely contained within Bi,j ,
whereas W ′ is a portal-respecting (i, j − 1)-walk to vx′,y′ or a portal respecting (i− 1, j)-walk to vx′,y′ . Observe
that, for a fixed portal vx′,y′ ∈ P∩ inBi,j , the lengths of W ′ and W ′′ can be optimized independently. Consequently,
by Observation 3.1,

Di,j
x,y = max

(
max

vx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
, max
vx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

})
.
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A matrix (indexed by vx,y ∈ Pi,j and all vertices Pi−1,j ∩ inBi,j ) containing the values Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

can be obtained from a submatrix of the DISTBi,j matrix by adding Di−1,j
x′,y′ to all entries in the column of

vx′,y′ . These modifications preserve the Monge property, so the resulting matrix is a Monge matrix with
Õ(1)-time random access. Consequently, the SMAWK algorithm [AKM+87] allows computing row-minima, i.e.,
the values maxvx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
. A symmetric procedure allows computing the values

maxvx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

}
, which lets us derive the costs Di,j

x,y for all the vertices vx,y ∈ Pi,j .

The SMAWK algorithm takes nearly linear time with respect to the sum of matrix dimensions, so the overall time
complexity is Õ(|P ∩Bi,j |).

Each vertex belongs to at most four boxes, so the overall running time is Õ(|P|).

Lemma 3.2. Let B be a box decomposition of the graph GX,Y for X,Y ∈ Σ+ and let α > 0 be a real number.
Suppose that P consists of all the grid vertices and all the boundary vertices vx,y of B satisfying |x−y| = b(1+α)rc
for some integer r. Then, every vertex vx,y ∈ Bi,j satisfies Di,j

x,y ≤ (1 + 2α)i+jdx,y.

Proof. We proceed by induction on i+ j. The base case is trivially satisfied due to D1,1
x,y = dx,y for vx,y ∈ B1,1.

We henceforth fix vx,y ∈ Bi,j with (i, j) 6= (1, 1). By Observation 3.1, there is a shortest path from v0,0 to vx,y
contained within GX[1. .x],Y [1. .y]. Let vx′,y′ be the first vertex of Bi,j on this path. Observe that vx′,y′ ∈ inBi,j and

dx,y = dx′,y′ + d(vx′,y′ , vx,y). By symmetry, we may assume without loss of generality that vx′,y′ ∈ outBi−1,j .
Let us choose vx′,y′′ ∈ Pi−1,j ∩outBi−1,j as close as possible to vx′,y′ . Since grid vertices are portals, such vx′,y′′

exists. Moreover, by the choice of the remaining portals, d(vx′,y′ , vx′,y′′) ≤ α|x′ − y′| ≤ αdx′,y′ . Let us construct a
portal-respecting (i, j)-walk to vx,y by concatenating a shortest portal-respecting (i− 1, j)-walk to vx′,y′′ and a
shortest path from vx′,y′′ to vx,y (by Observation 3.1, we may assume that this path is contained in Bi,j). This proves
Di,j
x,y ≤ Di−1,j

x,y + d(vx′,y′′ , vx,y). The inductive assumption further yields Di−1,j
x,y ≤ (1 + 2α)i+j−3dx′,y′′ , and thus

Di,j
x,y ≤ (1+2α)i+j−3dx′,y′′+d(vx′,y′′ , vx,y) ≤ (1+2α)i+j−3(dx′,y′+d(vx′,y′ , vx′,y′′))+d(vx′,y′ , vx′,y′′)+dx,y−dx′,y′ ≤

(1 + 2α)i+j−3(dx′,y′ + αdx′,y′) + αdx′,y′ + dx,y − dx′,y′ ≤ (1 + 2α)i+j−2dx,y.

3.2 A Grammar-Based Box Decomposition Hermelin et al. [HLLW13] presented an algorithm that, given
two grammar-compressed strings X,Y ∈ Σ+ and an integer parameter τ , constructs a box decomposition B of
GX,Y with pX = O(d 1

τ |X|e) and pY = O(d 1
τ |Y |e), along with an oracle providing random access to the DISTBi,j

matrices of all the boxes Bi,j . However, their construction costs Ω(|X|+ |Y |) time, which is prohibitive in most
of our applications. In this section, we achieve the same goal avoiding the linear dependency on the lengths of
X and Y . The bottleneck of [HLLW13] is constructing appropriate decompositions of X and Y into phrases.
In the following lemma, we implement an analogous step more efficiently by building a grammar-compressed
representation of the sequence of phrases, with each phrase represented by a symbol in an auxiliary grammar.

Lemma 3.3. Given a straight-line program G generating a string X and an integer τ ≥ 1, in O(|G|) time one
can construct straight-line programs G+ and GP of size O(|G|) such that:

• the terminal symbols of GP are the symbols A of G+ satisfying |A| ≤ τ ,
• GP generates a string P such that expG+(P ) = X and |P | ≤

⌈
3
τ |X|

⌉
.

Proof. If τ ≥ |X|, then we simply set G+ = G and set GP to be a grammar with no non-terminals whose starting
symbol is the starting symbol of G; this construction clearly satisfies the required conditions.

We henceforth assume that τ < |X|. The grammar G+ is constructed by adding new non-terminals to G. As
for GP , we include as terminals all symbols A of G+ with |A| ≤ τ , and we add further symbols as non-terminals.
For every symbol A of G with |A| > τ , we introduce three new non-terminals:

• L(A) and R(A) to G+, satisfying |L(A)| ≤ τ and |R(A)| ≤ τ ,
• M(A) to GP .

The productions for L(A), R(A), and M(A) are determined based on the production A→ BLBR:

1. If |BL| ≤ τ and |BR| ≤ τ , then L(A)→ BL, R(A)→ BR, and M(A)→ γ.
2. If |BL| > τ and |BR| > τ , then L(A)→ L(BL), R(A)→ R(BR), and M(A)→M(BL)R(BL)L(BR)M(BR).
3. If |BL| > τ and |BR| ≤ τ , then L(A)→ L(BL) and:

(a) R(A)→ R(BL)BR and M(A)→M(BL) if |R(BL)|+ |BR| ≤ τ ,
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(b) R(A)→ BR and M(A)→M(BL)R(BL) otherwise.

4. If |BL| ≤ τ and |BR| > τ , then R(A)→ R(BR) and:

(a) L(A)→ BLL(BR) and M(A)→M(BR) if |BL|+ |L(BR)| ≤ τ ,
(b) L(A)→ BL and M(A)→ L(BR)M(BR) otherwise.

Additionally, for the starting symbol S of G, we add a starting symbol SP → L(S)M(S)R(S) to GP .
A simple inductive argument shows that every symbol A of G with |A| > τ satisfies

expG(A) = expG+(L(A) ◦ expGP (M(A)) ◦R(A)).

In particular, P = expGP (SP ) satisfies expG+(P ) = expG(S) = X.
It remains to prove that |P | < 3

τ |X|. For this, we inductively show that every symbol A of G with |A| > τ
satisfies |L(A)|+ |R(A)|+ τ(|M(A)|+ 2) < 3|A|. To prove this claim, we analyze the cases based on the production
A→ BLBR.

1. If |BL| ≤ τ and |BR| ≤ τ , then

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |A|+ 2τ < 3|A|.

2. If |BL| > τ and |BR| > τ , then

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |L(BL)|+ |R(BR)|+ τ(|M(BL)|+ 2 + |M(BR)|+ 2) <

|L(BL)|+ |R(BL)|+ τ(|M(BL)|+ 2) + |L(BR)|+ |R(BR)|+ τ(|M(BR)|+ 2) < 3|BL|+ 3|BR| = 3|A|.

3. If |BL| > τ , |BR| ≤ τ , then

• If |R(BL)|+ |BR| ≤ τ , then

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |L(BL)|+ |R(BL)|+ |BR|+ τ(|M(BL)|+ 2) <

3|BL|+ |BR| < 3|A|.

• Otherwise,

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |L(BL)|+ |BR|+ τ(|M(BL)|+ 3) <

|L(BL)|+ |BR|+ τ(|M(BL)|+ 2) + |R(BL)|+ |BR| < 3|BL|+ 2|BR| < 3|A|.

4. The case involving |BL| ≤ τ and |BR| > τ is symmetric to the previous one.

In particular, this claim holds for A = S, so |SP | = |M(S)|+ 2 < 1
τ (3|S| − |L(S)| − |R(S)|) < 3

τ |S| =
3
τ |X|.

As for constructing the DIST matrices, we use the original implementation from [HLLW13].

Lemma 3.4. ([HLLW13, Section 5]) Given straight-line programs GX and GY and an integer τ ≥ 1,
in Õ(|GX ||GY |τ) time one can construct a data structure that provides Õ(1)-time random access to the
DISTexp(AX),exp(AY ) matrices for all symbols AX of GX and AY of GY satisfying |AX | ≤ τ and |AY | ≤ τ .

Combining Lemmas 3.3 and 3.4, we complete our construction.

Corollary 3.1. Given a straight-line program GX of size n generating a string X of length N > 0, a straight-line
program GY of size m generating a string Y of length M > 0, and an integer τ ∈ [1 . . N + M ], one can in
Õ(N+M

τ + nmτ) time construct a box decomposition B = (Bi,j)i∈[1. .pX ],j∈[1. .pY ] of GX,Y with pX = O(dNτ e) and

pY = O(dMτ e), along with an oracle providing Õ(1)-time random access to the DISTBi,j matrices.

Proof. First, we use Lemma 3.3 to obtain grammars G+
X and GP

X . The string PX represented by GP
X satisfies

X = expG+
X

(PX), so it can be interpreted as a decomposition of X into pX := |PX | phrases, with the ith phrase

Xi being an occurrence of expG+
X

(PX [i]). The decomposition of Y is obtained in the same way based on grammars

G+
Y and GP

Y constructed for Y .
The box decomposition B is based on these decompositions of X and Y . Note that each box Bi,j satisfies

DISTBi,j = DISTexp
G

+
X

(PX [i]),exp
G

+
Y

(PY [j]).

Due to |PX [i]| ≤ τ and |PY [j]| ≤ τ , Lemma 3.4 applied to G+
X and G+

Y provides Õ(1)-time oracle access to all
these matrices. Storing PX and PY , we can point to DISTBi,j in O(1) time given i, j.
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3.3 Algorithm

Proposition 3.1. Given a straight-line program GX of size n generating a string X of length N > 0, a straight-
line program GY of size m generating a string Y of length M > 0, and a parameter ε ∈ (0, 1], a (1+ε)-approximation
of δD(X,Y ) can be computed in Õ

(
(nm(N +M))2/3ε−1/3

)
time.

Proof. The algorithm uses Corollary 3.1 and Lemma 3.1 with the set of portals P defined as in Lemma 3.2, where
α = Ω( ε

pX+pY −2 ) = Ω( ετ
N+M ) is chosen so that (1 + 2α)pX+pY −2 = 1 + ε. Lemma 3.2 guarantees that the resulting

value is a (1 + ε)-approximation of δD(X,Y ). The number of portals is O
(
NM
τ2 + N

τ log1+αM + M
τ log1+αN

)
=

Õ
( (N+M)2

ετ2

)
, so the overall running time is Õ

(
nmτ + (N+M)2

ετ2

)
. Optimizing τ ∈ [1 . . N + M ], we get

Õ(nm + ε−1 + (nm(N + M))2/3ε−1/3) time. If the first term dominates, then nm ≥ (nm(N + M))2/3ε−1/3 ≥
(N + M)2ε−1. However, O(NM) = O((N + M)2ε−1) time is enough to compute δD(X,Y ) exactly without
compression. If the second term dominates, then ε−1 ≥ (nm(N + M))2/3ε−1/3 ≥ nm(N + M). However,
Õ(
√
nm(N + M)) = Õ(nm(N + M)) time is enough to compute δD(X,Y ) exactly using Proposition 3.2 with

D = N +M .

Theorem 3.1 follows through the reduction from δE to δD.

3.4 Exact Output-Sensitive Algorithm In this section we prove Theorem 3.2:

Theorem 3.2. Given a straight-line program GX of size n generating a string X of length N > 0 and a straight-
line program GY of size m generating a string Y of length M > 0, the edit distance δE(X,Y ) can be computed in

Õ
(√

(1 + δE(X,Y ))nm(N +M)
)

time.

The algorithm behind Theorem 3.2 reduces the problem to a decision version (asking whether δE(X,Y ) ≤ D for a
threshold D) and then uses the same scheme with all boundary vertices (x, y) satisfying |x− y| ≤ D selected as
portals.

Lemma 3.5. Let B be a box decomposition of the graph GX,Y for X,Y ∈ Σ+ and let D ≥ 0 be an integer. Suppose
that P consists of all the boundary vertices vx,y of B satisfying |x− y| ≤ D. Then, every vertex vx,y ∈ Bi,j with
dx,y ≤ D satisfies Di,j

x,y = dx,y.

Proof. We proceed by induction on i+ j. The base case is trivially satisfied due to D1,1
x,y = dx,y for vx,y ∈ B1,1.

We henceforth fix vx,y ∈ Bi,j with (i, j) 6= (1, 1) and dx,y ≤ D. By Observation 3.1, there is a shortest path
from v0,0 to vx,y contained within GX[1. .x],Y [1. .y]. Let vx′,y′ be the first vertex on this path that belongs to Bi,j .

Observe that vx′,y′ ∈ inBi,j and dx,y = dx′,y′ + d(vx′,y′ , vx,y). Consequently, |x′ − y′| ≤ dx′,y′ ≤ dx,y ≤ D, so
vx′,y′ ∈ Pi−1,j ∪Pi,j−1. By symmetry, we may assume without loss of generality that vx′,y′ ∈ Pi−1,j .

Let us construct a portal-respecting (i, j)-walk to vx,y by concatenating a shortest portal-respecting (i− 1, j)-
walk to vx′,y′ and a shortest path from vx′,y′ to vx,y (by Observation 3.1 applied to GX(x′. .x],Y (y′. .y], we may assume

that this path is contained in Bi,j). This proves Di,j
x,y ≤ Di−1,j

x′,y′ + d(vx′,y′ , vx,y) = Di,j
x,y ≤ Di−1,j

x′,y′ + dx,y − dx′,y′ .
The inductive assumption yields Di−1,j

x′,y′ = dx′,y′ , and thus Di,j
x,y ≤ dx,y holds as claimed.

Proposition 3.2. Given a straight-line program GX of size n generating a string X of length N > 0, a straight-
line program GY of size m generating a string Y of length M > 0, and an integer D ∈ [1 . . N +M ], one can in

Õ
(√

nmD(N +M)
)

time compute δD(X,Y ) or certify that δD(X,Y ) > D.

Proof. The algorithm uses Corollary 3.1 and Lemma 3.1 with the set of portals P defined as in Lemma 3.5.
The latter lemma guarantees that the resulting value is δD(X,Y ) provided that δD(X,Y ) ≤ D. Otherwise, the
resulting value exceeds D, certifying that δD(X,Y ) > D.

The number of portals is O(D · N+M
τ ), so the overall running time is Õ(nmτ + D · N+M

τ ). Optimizing

τ ∈ [1 . . N +M ], we get Õ(nm+D +
√
nmD(N +M)) time. Since D ≤ N +M , the second term is dominated

by the third one. If the first term dominates, then nm > D(N +M), and thus
√
nmD(N +M) ≥ D(N +M).

However, Õ(N +M +D2) = Õ(D(N +M)) time suffices solve the problem for uncompressed strings [LV88].

Theorem 3.2 follows through exponential search and the reduction from δE to δD.
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3.5 LCS Approximation In this section we prove Theorem 3.3:

Theorem 3.3. Given a straight-line program GX of size n generating a string X of length N > 0, a straight-line
program GY of size m generating a string Y of length M > 0, and a parameter ε ∈ (0, 1], a (1 + ε)-approximation
of LCS(X,Y ) can be computed in Õ

(
(nm(N +M))2/3ε−1/3

)
time.

The algorithm behind Theorem 3.3 is essentially the same as that of Theorem 3.1, and this is why the running
times coincide. The main difference is that the output portals of the box Bi,j are chosen adaptively while the
dynamic-programming algorithm processes Bi,j .

As for LCS approximation, our choice of portals is adaptive. For a box Bi,j ∈ B, let Pi,j = P ∩ outBi,j .
Observe that the value Di,j

x,y for vx,y ∈ Bi,j depends only on Pi′,j′ with i′ + j′ < i+ j. Hence, except for the grid

vertices (all included in P), we may select the portals Pi,j based on the values Di,j
x,y for vx,y ∈ outBi,j .

For vx,y ∈ Bi.j , let `x,y = 1
2 (|X|+ |Y | − dx,y) = LCS(X[1 . . x], Y [1 . . y]) and Li,jx,y = 1

2 (|X|+ |Y | −Di,j
x,y).

Lemma 3.6. Let B be a box decomposition of the graph GX,Y for X,Y ∈ Σ+ and let α > 0 be a real number.
Suppose that P consists of all the grid vertices and, for each box Bi,j ∈ B, all vertices vx,y ∈ outBi,j such that:

• vx−1,y ∈ outBi,j and blog1+α L
i,j
x,yc > blog1+α L

i,j
x−1,yc, or

• vx,y−1 ∈ outBi,j and blog1+α L
i,j
x,yc > blog1+α L

i,j
x,y−1c.

Then, for each vertex vx,y ∈ Bi,j, we have Li,jx,y ≥ (1 + α)2−i−j`x,y.

Proof. We proceed by induction on i + j. The base case is trivially satisfied due to L1,1
x,y = `x,y for vx,y ∈ B1,1.

Thus, we henceforth fix a vertex vx,y ∈ Bi,j with (i, j) 6= (1, 1). By Observation 3.1, there is a shortest path from
v0,0 to vx,y contained within GX[1. .x],Y [1. .y]. Let vx′,y′ be the first vertex on this path that belong to Bi,j . Observe

that vx′,y′ ∈ inBi,j and `x,y = `x′,y′ + LCS(X(x′ . . x], Y (y′ . . y]). By symmetry, we may assume without loss of
generality that vx′,y′ ∈ outBi−1,j .

Consider the largest value y′′ ∈ [1 . . y′] such that vx′,y′′ ∈ Pi−1,j . Since grid vertices are portals, such vx′,y′′

exits. Moreover, by the choice of the remaining portals, Li−1,j
x′,y′ ≤ (1 + α)Li−1,j

x′,y′′ . Let us construct a portal-
respecting (i, j) walk to vx,y by concatenating a shortest portal-respecting (i− 1, j)-walk to vx′,y′′ and a shortest
path from vx′,y′′ to vx,y (by Observation 3.1, we may assume that this path is contained Bi,j). This proves that

Di,j
x,y ≤ D

i−1,j
x′,y′′ +d(vx′,y′′ , vx,y) ≤ Di−1,j

x′,y′′ + y′− y′′+d(vx′,y′ , vx,y), i.e., Li,jx,y ≥ L
i−1,j
x′,y′′ + LCS(X(x′ . . x], Y (y′ . . y]) ≥

(1 + α)−1Li−1,j
x′,y′ + `x,y − `x′,y′ . The inductive assumption further yields Li−1,j

x′,y′ ≥ (1 + α)3−i−j`x′,y′ , and thus

Li,jx,y ≥ (1 + α)2−i−j`x′,y′ + `x,y − `x′,y′ ≥ (1 + α)2−i−j`x,y holds as claimed.

Lemma 3.7. Given Õ(1)-time random access to the DISTBi,j matrix, the values Di−1,j
x′,y′ for all vertices vx′,y′ ∈

Pi−1,j (if i > 1), and the values Di,j−1
x′,y′ for all vertices vx′,y′ ∈ Pi,j−1 (if j > 1), the values Di,j

x,y for any q query

vertices vx,y ∈ outBi,j can be computed in Õ(q + |P ∩ inBi,j |) time.

Proof. If (i, j) = (1, 1), then Definition 3.2 and Observation 3.1 yield D1,1
x,y = d(v0,0, vx,y), and this value can be

retrieved from the DISTB1,1
matrix in Õ(1) time. Thus, we henceforth assume (i, j) 6= (1, 1).

Consider a portal-respecting (i, j)-walk W to a vertex vx,y ∈ outBi,j . By Definition 3.2, W is a concatenation
of two walks W ′ and W ′′ such that W ′′ starts at a vertex vx′,y′ ∈ P ∩ inBi,j and is entirely contained within Bi,j ,
whereas W ′ is a portal-respecting (i, j − 1)-walk to vx′,y′ or a portal respecting (i− 1, j)-walk to vx′,y′ . Observe
that, for a fixed portal vx′,y′ ∈ P∩ inBi,j , the lengths of W ′ and W ′′ can be optimized independently. Consequently,
by Observation 3.1,

Di,j
x,y = max

(
max

vx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
, max
vx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

})
.

A matrix (indexed by the query vertices vx,y ∈ outBi,j and all vertices Pi−1,j ∩ inBi,j ) containing the values

Di−1,j
x′,y′ + d(vx′,y′ , vx,y) can be obtained from a submatrix of the DISTBi,j matrix by adding Di−1,j

x′,y′ to all entries in
the column of vx′,y′ . These modifications preserve the Monge property, so the resulting matrix is a Monge matrix
with Õ(1)-time random access. Consequently, the SMAWK algorithm [AKM+87] allows computing row-minima,
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i.e., the values maxvx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
. A symmetric procedure allows computing the

values maxvx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

}
, which lets us derive the costs Di,j

x,y for all the query vertices

vx,y ∈ outBi,j . The SMAWK algorithm takes nearly linear time with respect to the sum of matrix dimensions, so
the overall time complexity is Õ(q + |P ∩ inBi,j |).

Lemma 3.8. Given a box decomposition B of GX,Y , a parameter ε ∈ (0, 1], and Õ(1)-time random access to the
DIST matrices of all the boxes of B, a (1 + ε)-approximation of LCS(X,Y ) can be computed in Õ(ε−1(pX + pY )2)
time.

Proof. Let us choose α = Ω( ε
pX+pY −2 ) so that (1 + α)pX+pY −2 = 1 + ε. We process boxes Bi,j ∈ B in the order

of non-decreasing values i+ j, constructing the output portals Pi,j according to Lemma 3.6 and computing the
values Li,jx,y for all vx,y ∈ Pi,j . By Lemma 3.6, the value LpX ,pY|X|,|Y | is guaranteed to be a (1 + ε)-approximation of

LCS(X,Y ).
The ordering of boxes lets us compute the values Li,jx,y for any q vertices v ∈ outBi,j in Õ(q + |P ∩ inBi,j |)

time. By symmetry, we may focus without loss of generality on the right boundary of Bi,j , i.e., vertices vx,y
with x = bXi and y ∈ [bYj−1 . . b

Y
j ]. Note that the corresponding values Li,jx,y are non-decreasing: Di,j

x,y ≤ D
i,j
x,y−1 + 1

implies Li,jx,y ≥ Li,jx,y−1. First, we apply Lemma 3.7 to derive Li,jx,y for the two extreme values y ∈ {bYj−1, b
Y
j }.

Next, for each value r ∈ [blog1+α L
i,j

x,bYj−1

c . . blog1+α L
i,j

x,bYj
c], we binary search for the smallest y ∈ [bYj−1 . . b

Y
j ]

such that log1+α L
i,j
x,y ≥ r, and include vx,y in Pi,j . The binary searches are executed in parallel, with

Lemma 3.7 applied to determine Li,jx,y for all the current pivots. This way, the algorithm is implemented in

Õ(1 + log1+α L
i,j

x,bYj
− log1+α L

i,j

y,bYj−1,y
+ |P ∩ inBi,j |) time. Due to Li,j

y,bYj−1

≥ Li,j−1

y,bYj−1

, the first term sums up to

Õ(log1+α |Y |) = Õ(ε−1(pX + pY )) across j ∈ [1 . . pY ], and to Õ(ε−1(pX + pY )2) across Bi,j ∈ B. This also bounds

the number of portals created, so the second term, which sums up to |P| across all boxes, is also Õ(ε−1(pX + pY )2).

Proof. [Proof of Theorem 3.3] The algorithm uses Corollary 3.1 and Lemma 3.8. Due to pX+pY = N+M
τ , the overall

running time is Õ
(
nmτ+ (N+M)2

ετ2

)
. Optimizing τ , we get the running time of Õ(nm+ε−1 +(nm(N+M))2/3ε−1/3).

If the first term dominates, then nm ≥ (nm(N + M))2/3ε−1/3 ≥ (N + M)2ε−1. However, O(NM) =
O((N + M)2ε−1) time is enough to compute LCS(X,Y ) exactly without compression. If the second term
dominates, then ε−1 ≥ (nm(N + M))2/3ε−1/3 ≥ nm(N + M). However, Õ(

√
nm(N + M)) = Õ(nm(N + M))

time is enough to compute LCS(X,Y ) exactly using Proposition 3.2 with D = N +M .

4 FPTAS For Compressed Median k-Edit Distance

The median k-edit distance is defined as below.

Definition 4.1. The (median) edit distance δE(X1, . . . , Xk) of k strings X1, . . . , Xk is the minimum total number
of edits (insertions, deletions, and substitutions) needed to make all strings Xi equal some string X∗. That is,

δE(X1, . . . , Xk) = minX∗
∑k
i=1 δE(Xi, X

∗).

For the (median) edit distance between k strings, we show that allowing (1 + ε)-approximation gives an
algorithm circumventing the bound in Theorem 6.2:

Theorem 4.1. Given k = O(1) straight-line programs GXi of total size n generating strings Xi of total length
N > 0 and a parameter ε ∈ (0, 1], an integer between δE(X1, . . . , Xk) and (1 + ε)δE(X1, . . . , Xk) can be computed
in Õ

(
ε−O(k)nk/2Nk/2

)
time.

To prove the above theorem, we use a different set of techniques than in the two-string case. Most approaches
for speeding up the textbook DP algorithm for two (compressible) strings, including the aforementioned results in
this paper, rely on the ability to perform computations involving DIST matrices efficiently. These computations
crucially depend on the fact that DIST matrices satisfy the Monge property. However, for the natural high-
dimensional generalization of DIST matrices, we do not know of any analog of the Monge property they satisfy
that allows us to perform similar computations even for three-string similarity problems. Indeed, most natural
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generalizations of the Monge property seem to not hold even in the three-string setting (see Section 9 for more
details). Thus, it appears unlikely that, for example, an algorithm that partitions the DP table into boxes and
computes the DP values on the boundary of each box using computations involving DIST matrices would be
substantially more efficient than the textbook edit-distance algorithm, even in the three-string setting.

This motivates us to instead use the window-respecting alignment scheme that has appeared in approximation
algorithms for edit distance (e.g., [CDG+18, GRS20]).

4.1 Window-Respecting Alignments We will assume that δE(X1, . . . , Xk) lies between D and 2D for some
known D at the loss of a logN factor in the runtime. We partition X1 into d|X1|/τe disjoint windows W1,1 to
W1,N/τ each of length τ (without loss of generality; we could always e.g. pad each string with an equal amount of a
new dummy character to ensure |X1| is a multiple of τ , without asymptotically affecting their size or compression
size). That is, W1,j = X1[(j − 1)τ + 1, jτ ].

We define for X2, . . . , Xk possibly overlapping windows indexed by (i) ∆, a guess for the (signed) difference
between the length of W and the corresponding window in X1 and (ii) the starting position p of the window.
More formally, the windows are indexed by Wi,∆,p. Throughout the section, let σ := max{bεDτ/|X1|c, 1} and
Rd(x) denote x rounded down to the nearest multiple of σ. Then Wi,∆,p = Xi[pσ + 1 . . Rd(pσ + τ + ∆)] (or is the
empty string “starting” at position pσ + 1 if Rd(min{pσ + τ + ∆, |Xi|}) < pσ + 1). If Rd(pσ + τ + ∆) > |X1|,
Wi,∆,p is not included in our set of windows. We will define this window for:

• All ∆ in {0, 1,−1, b(1 + ε)c,−b(1 + ε)c, b(1 + ε)2c, . . . b(1 + ε)dlog1+ε 2τ/ε2ec} ∪ {−τ} for which τ + ∆ ≥ 0,
• All p from 0 to b|Xi|/σc.
It suffices to consider windows of size at most 2τ/ε2 by the following lemma:

Lemma 4.1. Given X1, X2, . . . , Xk and a parameter τ , for J = |X1|/τ , let X∗ be the string such that
δE(X1, X2, . . . Xn) =

∑
i δE(Xi, X

∗). There exists a partition of each X1 into substrings {X1,j}j∈[J], disjoint
substrings of the other Xi, {Xi,j}j∈[J], and a partition of X∗ into substrings {X∗j }j∈[J] such that:

• |X1,j | = τ for all j.
• For any j and j < j′, Xi,j appears before Xi,j′ in Xi.
• maxi,j |Xi,j | ≤ 2τ/ε2.
• ∑

j∈[J]

δE(Xij , X
∗
j ) + |Xi| −

∑
j∈[J]

|Xi,j | ≤ (1 + 3ε)δE(Xi, X
∗),

Which implies:∑
j∈[J]

δE(X1,j , X2,j , . . . , Xk,j) +
∑
i>1

(|Xi| −
∑
j∈[J]

|Xi,j |) ≤ (1 + 3ε)δE(X1, X2, . . . Xk).

That is, the cost of the alignment that aligns X1,j with each Xi,j, and then deletes all characters in X2 to
Xk that are unaligned with some X1,j is at most (1 + 3ε)δE(X1, X2, . . . Xk).

Effectively, Lemma 4.1 says that there is a near-optimal alignment that aligns the windows of X1 to substrings
of the other strings that are not more than 1/ε2 times larger.

Proof. We partition X1 into substrings of length τ , {X1,j}j∈[J]. X
∗ can be partitioned into substrings {X̃∗j }j∈[J]

such that δE(X1, X
∗) =

∑
j∈[J] δE(X1,j , X̃

∗
j ).

First, we will “realign” X1 and X∗ to ensure no X̃∗j is much larger than X1,j . Call a contiguous subsequence

of [J ], [j . . j′] := {j, j + 1, . . . j′}, “skewed” if
∑
m∈[j. .j′] |X1,m| < ε

2

∑
m∈[j. .j′] |X̃∗m|. Let us take a “maximal” set

S of disjoint skewed contiguous subsequences, i.e. a set S such that (i) all the subsequences in S are disjoint (ii)
for every contiguous subsequence s in S, there is no skewed contiguous subsequence s′ such that s ⊂ s′ and (iii)
there is no skewed contiguous subsequence that is not in S but also is completely disjoint from every element of S.

For each skewed contiguous subsequence [j . . j′] in S, note that j′ + 1 does not appear in any element of S
(otherwise, [j . . j′] and this element can be combined to form a longer skewed contiguous subsequence, violating
(ii)), and [j . . j′ + 1] is not skewed (again, [j . . j′ + 1] being skewed would violate (ii) since [j . . j′] ⊂ [j . . j′ + 1]).
Take S and replace each [j . . j′] with [j . . j′ + 1] to get S′. For each [j . . j′ + 1] ∈ S′, we have:
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(4.1)
ε

2

∑
m∈[j. .j′+1]

|X̃∗m| ≤
∑

m∈[j. .j′+1]

|X1,m| ≤ 2
∑

m∈[j. .j′]

|X1,m| < ε
∑

m∈[j. .j′+1]

|X̃∗m|.

The right hand side of (4.1) implies:

δE(©m∈[j. .j′+1]X1,m,©m∈[j. .j′+1]X̃
∗
m) ≥ (1− ε)| ©m∈[j. .j′+1] X̃

∗
m|.

It also implies that for any partition of ©m∈[j. .j′+1]X̃
∗
m into substrings {X∗m}m∈[j. .j′+1], we have:∑

m∈[j. .j′+1]

δE(X1,m, X
∗
m) ≤ (1 + ε)| ©m∈[j. .j′+1] X̃

∗
m|.

And so if ε is sufficiently small:∑
m∈∪e∈S′e

δE(X1,m, X
∗
m) ≤ 1 + ε

1− ε
∑

m∈∪e∈S′e
δE(X1,m, X̃

∗
m) ≤ (1 + 3ε)

∑
m∈∪e∈S′e

δE(X1,m, X̃
∗
m)

In particular, because of the left hand side of (4.1), we can choose the partition of ©m∈[j. .j′+1]X̃
∗
m that splits

it into substrings {X∗m}m∈[j. .j′+1], each of length at most 2τ/ε.

Now if we set X∗m = X̃∗m for any m not in a subsequence in S′, we trivially have:∑
m/∈∪e∈S′e

δE(X1,m, X
∗
m) ≤

∑
m/∈∪e∈S′e

δE(X1,m, X̃
∗
m)

And also X∗m ≤ 2τ/ε for all such m (otherwise, m should appear in some subsequence in S′ by condition (iii)).
So we’ve found a partition of X∗ into substrings {X∗j }j∈[J] such that |X∗j | ≤ 1

ε |X1,j | for all j, and:∑
j∈[J]

δE(X1,j , X
∗
j ) ≤ (1 + 3ε)

∑
j∈[J]

δE(X1,j , X̃
∗
j ).

Now, we will use this partition to determine {Xi,j}i>1,j∈[J]. For each i, Xi can be partitioned into substrings
X ′i,j such that δE(Xi, X

∗) =
∑
j∈[J] δE(X ′i,j , X

∗
j ). If |X ′i,j | ≤ 2τ/ε2, we set Xi,j = X ′i,j . If any X ′i,j has length

larger than 2τ/ε2 > |X∗j |/ε, then δE(X ′i,j , X
∗
j ) ≥ (1− ε)|X ′i,j |. On the other hand:

δE(γ,X∗j ) + |X ′i,j | ≤ (1 + ε)|X ′i,j | ≤
1 + ε

1− ε
δE(X ′i,j , X

∗
j ) ≤ (1 + 3ε)δE(X ′i,j , X

∗
j )

for the empty string γ. So we can now choose Xi,j to be any empty substring of X ′i,j . These choices of Xi,j give
the properties of the lemma, completing the proof.

Let W1 be the set of all windows we partition X1 into, and Wi be the set of windows we define for Xi. Let
s(W ) denote the index of the first character in W , and e(W ) denote the index of the last character. For k strings,
we define a window-respecting alignment as follows:

Definition 4.2. A window respecting alignment is a function f :W1 →W1 ×W2 × · · · ×Wk with the following
properties:

• For all W ∈ W1, f(W )1 = W .
• For any j < j′ and any i, e(f(W1,j)i) < s(f(W1,j′)i).

Let ri(f) denote the number of characters in Xi that are not contained in f(W )i for any W ∈ W1. The cost
of a window-respecting alignment is defined as follows:

δE(f) :=
∑
j∈[J]

δE(f(W1,j)) +
∑
i

ri(f).

Let F be the set of all window-respecting alignments. The following lemma shows that window-respecting
alignments approximate normal alignments:
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Lemma 4.2.
δE(X1, X2, . . . Xk) ≤ min

f∈F
δE(f) ≤ (1 + 13εk)δE(X1, X2, . . . Xk).

Proof. The first inequality follows because for any f , there is an alignment that for all j exactly aligns W1,j

with the windows in f(Wi,j) at cost at most δE(f(Wi,j)), and uses
∑
i ri(f) deletions to handle the remaining

characters in each string.
Next, we show that there exists f ∈ F such that δE(f) ≤ (1+εk)δE(X1, X2, . . . Xk). Let us take the substrings

Xi,j given by Lemma 4.1. Note that W1,j = X1,j .
If |Xi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ− 1), let Wi,j be the empty window “starting” at index e(Wi,j−1) + 1,

or if j = 1, at index 1. Then we have |Xi,j | − |Wi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1).
Otherwise, let Wi,j be the longest window Wi,∆,p that is a substring of Xi,j . Note that |Xi,j | and |W1,j | differ

by at most δE(W1,j , X2,j . . . Xk,j) and |Wi,j | ≤ 2τ/ε2 for all i, j. If ε is a sufficiently small constant, this implies
there is a choice of Wi,j such that |Xi,j | − |Wi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1). We can identify Wi,j as
follows: Take Xi,j and delete at most σ−1 characters from the beginning until it starts at pσ+1 for some integer p

to get X̃i,j . We have |Xi,j |−|X̃i,j | ≤ σ−1, and so |X̃i,j | and |W1,j | differ by at most δE(W1,j , X2,j . . . Xk,j)+(σ−1)
characters. Choose ∆ such that 1

1+ε (δE(W1,j , X2,j . . . Xk,j) + (σ − 1)) ≤ ∆ ≤ δE(W1,j , X2,j . . . Xk,j) + (σ − 1).

Wi,∆,p is a prefix of X̃i,j containing all but at most the last ε(δE(W1,j , X2,j . . . Xk,j) + (σ− 1)) + (σ− 1) characters

of X̃i,j . In turn, if ε is sufficiently small we have |Xi,j | − |Wi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1).
In turn, by triangle inequality and since σ − 1 ≤ εkDτ/|X1|:

δE(W1,j ,W2,j . . .Wk,j) ≤ (1 + εk)δE(W1,j , X2,j . . . Xk,j) + 3εkDτ/|X1|.
We now choose f(W1,j) = (W1,j ,W2,j . . .Wk,j). We also have that the number of characters f does not align

within X2,j , X3,j . . . Xk,j is at most εkδE(W1,j , X2,j . . . Xk,j) + 3εkDτ/|X1|.
Putting it all together and using Lemma 4.1 we get:

δE(f) :=
∑
j∈[J]

δE(f(W1,j)) +
∑
i

ri(f)

≤(1 + εk)
∑
j

δE(W1,j , X2,j . . . Xk,j) +
|X1|
τ
· 3εkDτ

|X1|

+ εk
∑
j

δE(W1,j , X2,j . . . Xk,j) +
|X1|
τ
· 3εkDτ

|X1|
+
∑
i

(|Xi| −
∑
j∈[J]

|Xi,j |)

≤(1 + 2εk)
∑
j

δE(X1,j , X2,j , . . . Xk,j) + 6εkδE(X1, X2, . . . , Xk) +
∑
i

(|Xi| −
∑
j∈[J]

|Xi,j |)

≤(1 + 13εk)δE(X1, X2, . . . Xk).

4.2 An Efficient Algorithm for Window-Respecting Alignments Our algorithm, denoted k-ED-Alg, is
as follows:

1. Let D := {1, 2, 4, . . . , 2kτ/ε2}. For X1 and each d in D, identify a set W̃1,d of “representative” strings such

that (i) |W̃1,d| = O(nτ/εd) and (ii) for every window W1,i, there is some string shiftd(W1,i) ∈ W̃1,d in
such that δE(Wi,∆,p, shiftd(Wi,∆,p)) ≤ εd.

2. For each other string Xi,each value of d in D, and each value of ∆, identify a set of “representative” length
τ + ∆ strings W̃i,d,∆ such that (i) |W̃i,d,∆| = O(n(τ + ∆)/εd), and (ii) for every window Wi,∆,p, there is

some string shiftd(Wi,∆,p) ∈ W̃i,d,∆ such that δE(Wi,∆,p, shiftd(Wi,∆,p)) ≤ εd.

3. Let W̃i,d = ∪∆W̃i,d,∆. For each d ∈ D and every k-tuple of strings W̃1,d, W̃2,d . . . W̃k,d in W̃1,d ×
W̃2,d × · · · × W̃k,d, compute the median distance of this k-tuple if it is less than d. Store this as

δ̃E(W̃1,d, W̃2,d . . . W̃k,d) + εkd. If the true median distance of these windows is greater than d, store

δ̃E(W̃1,d, W̃2,d . . . W̃k,d) =∞ instead.
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4. Our algorithm solves the following dynamic program:

c(x1, x2, . . . xk) = min


mini6=1 c(x1, x2, . . . , xi − σ, . . . , xk) + σ

minW1,...Wk∈W1×···×Wk:∀ie(Wi)=xi,W1=···=Wk
[c(s(W1)− 1, . . . , s(Wk)− 1)]

minW1,...Wk∈W1×···×Wk:∀ie(Wi)=xi [c(s(W1)− 1, . . . , s(Wk)− 1)

+ mind∈D δ̃E(shiftd(W1), . . . , shiftd(Wk))]

For every k-tuple such that x1 is a multiple of τ , x2, . . . , xk are all multiples of σ, and such that |xi−x1| ≤ 4D
for all i.
The base case is c(0, 0, . . . , 0) = 0, and our final output is c(|X1|, Ru(N2), . . . Ru(Nk)), where Ru(x) denotes
x rounded up to the nearest multiple of σ.

At a high-level, in steps 1 and 2 of k-ED-Alg we exploit the compression of the input strings to identify a
small set of “representative” strings for each Xi, such that for each window in Xi there is a representative string
within small edit distance of that window. In step 3, we then compute the median distance between k-tuples of
representative strings (instead of between all k-tuples of windows). Since all windows are within a small distance
of some representative string, this also gives for all k-tuples of windows a reasonable approximation of their
median distance. Step 4 of k-ED-Alg uses these approximations to solve a natural DP for finding an optimal
window-respecting alignment. This DP is the same as the standard DP for edit distance, but instead of matching
characters we are only allowed to match windows, at cost equal to (the approximation of) their median distance.

We first bound the runtime of k-ED-Alg. The following lemmas show that Steps 1 and 2 of k-ED-Alg can
be performed efficiently (as well as their correctness):

Lemma 4.3. Given a straight-line program G of size n that generates a string X of size n, a length parameter τ ,
and a parameter δmax ≤ τ , there exists an algorithm that in time O(|X|) finds (an implicit representation of) a set
S of O(nτ/δmax) substrings of length at most τ such that for every length τ substring of X, x, there is a string
shift(x) in S such that δE(x, shift(x)) ≤ δmax. We can also construct a data structure that identifies shift(x)
given the starting location of x in X using O(|X|) preprocessing time and O(1) query time.

Proof. If δmax ≥ τ , we can trivially choose S that only contains the empty substring, and the data structure just
returns the empty substring for any query. So assume δmax < τ .

Given that G has size n, the optimal LZ77 factorization of X has size at most n [Ryt03]. We will first show
the existence of S for any X that has an LZ77 factorization of size at most n. For brevity, we will not go into the
details of LZ77 factorization here. The key property we need is that a string X that has a LZ77 factorization of
size n can be written as X1 ◦X2 ◦X3, where X1 is a string with LZ77 factorization of size n− 1, X2 is a substring
of X1, and X3 is a single character. Moreover, the factorization gives the location of X2 in X1.

Inductively, suppose we have constructed S, a set of at most 3(n− 1)τ/δmax substrings that has the desired
properties for X1. For all “good” indices i < |X2| − τ , the length τ substring starting at the ith character in X2 is
fully contained in X2, and thus is a substring in X1. This leaves at most τ + 1 “bad” indices where the length
τ substring starting at these indices may not have a nearby string in S: those starting at indices |X1| − τ + 1
to |X1| of X1, and the substring starting at index |X2| − τ + 2 of X2. Consider the length τ substring starting
at every (δmax/2)-th position in indices |X1| = τ + 1 to |X1| of X1, as well as the length τ substring starting at
index |X2| − τ + 2 of X2. This set of strings has size at most 2τ/δmax + 1 ≤ 3τ/δmax, and every length τ substring
starting at a bad index is within edit distance δmax of some string in this set. So adding these strings to S gives
that S now has size at most 3nτ/δmax and has the desired properties.

For an efficient implementation of this procedure, we can compute the optimal LZ77 factorization in O(|X|)
time [RPE81]. Given the LZ77 factorization, we decompose X into X1 ◦X2 ◦X3 as before, and recursively compute
an array A for indices in [1 . . |X1| − τ + 1] and set B with the following property: the length τ substrings starting
at indices i and A[i] are within edit distance δmax, and A has at most 3(n− 1)τ/δmax distinct values, which are
exactly the values in B.

Since the LZ77 factorization gives us the position of X2 in X1, we can fill in A for the “good” indices in X2 in
time linear in the number of good indices. We can also fill in the values of A for the bad indices, in time linear in
the number of bad indices, and add these values to B. Overall, the algorithm takes linear time to compute A,B.
A now serves as the desired efficient data structure, and B as our implicit representation of S.
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There are O(logN) values of d and Õ(logN/ε) values of ∆, so we can do Steps 1 and 2 in time Õ(N/ε) time.
We also show that Step 3 can be performed efficiently:

Lemma 4.4. Given strings X1, X2, . . . Xk, there exists a data structure that can be computed in O(
∑
i |Xi|) time

that can answer queries of the following form in O(dk) time: Given indices s1, s2, . . . , sk and e1, e2, . . . , ek,
if δE(X1[s1 . . e1], X2[s2 . . e2], . . . Xk[sk . . ek]) ≤ d, output δE(X1[s1 . . e1], X2[s2 . . e2], . . . Xk[sk . . ek]), otherwise
output ∞.

Proof. Given X1, X2, . . . Xk, let Slided2,d3,...dk(j) = max{q : X1[j . . q] = X2[j+d2 . . q+d2] = X3[j+d3 . . q+d3] =
· · · = Xk[j + dk . . q + dk]}. We can rewrite Slided2,d3,...dk(j) as mini∈{2,3,...,k}max{q : X1[j . . j + q] =
Xi[j + di . . q + di]}. Section 2.3 of [LMS98] shows that we can compute max{q : X1[j . . j + q] = Xi[j + di; q + di]}
for any i, j, di in O(1) time after O(|X1|+ |Xi|) preprocessing time. So we can compute Slided2,d3,...dk(i) in O(1)
time after O(

∑
i |Xi|) preprocessing time (recall that k = O(1)).

Let Lh(d2, d3, . . . dk) be the largest value of j such that δE(X1[1 . . j], X2[1 . . j+d2], X3[1 . . j+d3], . . . , Xk[1 . . j+
dk]) ≤ h. We have the following recurrence relation:

Lh(d2, d3 . . . , dk) = Slide

max


Lh−1(d2 + 1, d3 + 1 . . . , dk + 1)

maxi L
h−1(d2, d3, . . . , di − 1, . . . , dk)

maxe∈{0,1}k L
h−w(d2 − e2 + e1, d3 − e2 + e1, . . . , dk − ek + e1)

for w = mini:ei=1 |{j 6= i : Xi[xi] 6= Xj [xj ] ∨ ej = 0}|




The first case considers deleting from X1, the second case considers deleting a character from any of
X2, X3, . . . Xk, and the third case considers inserting characters into some subset of the strings (for which ei = 0),
and then matching the inserted characters with a character in the remaining strings (for which ei = 1), such that
we use at most w insertions or substitutions.

Each Lh(·) only depends on O(1) other values, and so we can compute each value in O(1) time. In turn,
we can compute the values Lh(d2, d3, . . . dk) for all 0 ≤ h ≤ d, 0 ≤ d2 + d3 + · · · + dk ≤ d in O(dk) time. Our
output for the edit distance is the smallest h such that Lh(|X2| − |X1|, |X3| − |X1|, . . . , |Xk| − |X1|) ≥ |X1|, or ∞
if Ld(|X2| − |X1|, |X3| − |X1|, . . . , |Xk| − |X1|) < |X1|.

The total number of strings in any W̃i,d is
∑

∆∈D O(n(τ+∆)/εd) = O(nτ/ε3d). In turn, combined with Lemma 4.4,

the total time needed to compute δ̃E for all k-tuples in W̃1,d × W̃2,d × · · · × W̃k,d is O(nkτk/ε3k). There are

O(logN) choices of d, so in total this step takes time Õ(nkτk/ε3k).
For Step 4, it takes O(1) time to process the first case in the recurrence relation. For the second and third

case, there are O(logN) values of d, O(logN/ε) values of ∆, and for each i, xi,∆ there is 1 window Wi,∆,p such
that ẽ(Wi) = xi. Lemma 4.4 gives an O(1)-time method to determine if W1 = W2 = · · · = Wk in the second case,
and we have precomputed all the necessary values in the third case. So, the time to compute each c(x1, x2, . . . xk)
is O((log2N/ε)k).

The number of tuples x1, x2, . . . xk such that
∑
i6=1 |xi − x1| ≤ D is O(NDk−1). Of these, fraction

O( 1
dεDτ/Nek−1τ

) satisfy that x1 is a multiple of τ and x2 . . . xk are multiples of dεDτ/Ne. So the number of

entries we need to compute is O(Nk/εkτk), and the total time to compute all these entries is Õ(Nk/ε2kτk).
Putting it all together, Steps 3 and 4 dominate the runtime with total runtime Õ(Nk/ε2kτk + nkτk/ε3k).

Setting τ = (N/nε)1/2, we get an overall runtime of Õ(Nk/2nk/2ε−5k/2).
We complete our analysis by showing that the final value computed by k-ED-Alg is close to δE(X1, X2, . . . Xk).

Lemma 4.5. k-ED-Alg outputs D̃ such that

δE(X1, X2, . . . Xk) ≤ D̃ ≤ (1 + 19εk)δE(X1, X2, . . . Xk).

Proof. Consider any window-respecting alignment for which f(W1,j) = (W1,j ,W2,j , . . . ,Wk,j). If
δE(W1,j ,W2,j , . . . ,Wk,j) > 0, let dj be the smallest value in D such that dj ≥ δE(W1,j ,W2,j , . . . ,Wk,j) + εkdj . By
Lemma 4.3, for every j and if ε is sufficiently small, by triangle inequality we have:
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δE(W1,j ,W2,j , . . . ,Wk,j) ≤ [δ̃E(shiftdj (W1,j), shiftdj (W2,j), . . . , shiftdj (Wk,j))] + εkdj

≤ δE(W1,j ,W2,j , . . . ,Wk,j) + 2εkdj

≤ (1 + 5εk)δE(W1,j ,W2,j , . . . ,Wk,j).

The first inequality implies that any path through the DP table for c has total cost at least that of some
window-respecting alignment, which by Lemma 4.2 gives the first inequality in the lemma statement. The second
inequality implies that for the best window-respecting alignment, there is a path through the DP table such
that the cost of the path through the DP table is no more than (1 + 5ε) times the cost of the window-respecting
alignment. Furthermore, this path only goes through points in the DP table such that |xi − x1| ≤ 4D for all i, i.e.
is considered by k-ED-Alg. Combined with Lemma 4.2 this gives the second inequality in the lemma statement
if ε is sufficiently small.

We can now compute a (1 + ε)-approximation of the edit distance by rescaling ε appropriately and running
k-ED-Alg for all D that are powers of 2, giving Theorem 4.1. One could also extract the alignment achieving
this edit distance by using standard techniques to retrieve a path through the DP table, and applying these same
techniques to the DP tables used in invocations of Lemma 4.4 as a subroutine; we omit the details here.

5 FPTAS For Center Distance

The center distance problem is defined as follows:

Definition 5.1. The center (edit) distance δCE(X1, . . . , Xk) of k strings X1, . . . , Xk is defined as
δCE(X1, . . . , Xk) = minX∗ maxi δE(Xi, X

∗). That is, it is the smallest value D such that by making at most D
edits to each Xi, we can transform them all into the same string X∗.

In this section we prove Theorem 5.1:

Theorem 5.1. Given k = O(1) straight-line programs GXi of total size n generating strings Xi of total length
N > 0 and a parameter ε ∈ (0, 1], an integer between δCE(X1, . . . , Xk) and (1+ε)δCE(X1, . . . , Xk) can be computed
in O

(
ε−O(k)nk/2Nk/2+o(1)

)
time.

Prior to our work, the best known algorithm result for the center distance problem was the exact O(N2k)-time
algorithm of [NR05]. Our framework for the algorithm is similar to the framework from the previous section which
uses window-respecting alignments.

Our algorithm will actually solve a more general problem of computing an approximation of a set of values
which we call the edit tuples. We again assume δCE(X1, . . . , Xk) lies between D and 2D for some known (power of
2) D.

Definition 5.2. Given strings X1, X2, . . . , Xk, an edit tuple of these strings is a vector v ∈ Zk≥0 such that there

exists X∗ for which δE(Xi, X
∗) ≤ vi for all i. We denote the set of all edit tuples in {0, 1, . . . , D}k of X1, X2, . . . Xn

by tupD(X1, X2, . . . Xk).
We say that S is a ∆-approximation of tupD(X1, X2, . . . Xk) if for each v ∈ S, there is a vector

v′ ∈ tupD(X1, X2, . . . Xk) such that v′ ≤ v, and for each v ∈ tupD(X1, X2, . . . Xk), there is a vector v′ ∈ S
such that v′ ≤ v + ∆ · 1. Here a ≤ b denotes ai ≤ bi for all i and 1 denotes the all ones vector.

We will use again use the window-respecting alignment framework. However, our algorithm is now recursive,
and thus we need to be careful about choosing the windows to operate with in each level of recursion. Let
` = O(log logN) be a parameter and τ0 = N > τ1 > · · · > τ` = N1/ log logN be a sequence such that for all i < `,
τm/τm−1 = Θ(N1/ log logN ) and is integer (that is, these ratios are not necessarily the same but are all within
a constant factor of N1/ log logN ). We will also eventually choose a sequence of error parameters for each level

ε0, ε1, . . . , ε`. Let D = {1, 2, 4, . . . , N}, and for each d ∈ D let σm(d) := max{ εm+1dτm+1

τm
+ εm+1Dτm+1

|X1| , 1} rounded

down to the nearest power of 2. For each i > 0, for τm, each d ∈ D, the corresponding εm, σm(d), and Rd defined

Copyright © 2022
Copyright for this paper is retained by authors2882

D
ow

nl
oa

de
d 

01
/2

6/
22

 to
 7

0.
95

.8
1.

18
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



as the function rounding down to the nearest multiple of σm(d), we define windows in each string just as in
Section 4. In particular, for X1 we have windows W1,m,p that are again just a partition of X1 into substrings of
length τm, and for X2, . . . , Xk we have windows Wi,m,d,∆,p = Xi[pσm(d) + 1 . . Rd(pσm(d) + τm + ∆)], where the
set of possible ∆ is defined by εm and τm. We will refer to these as the windows at level m. Note that we are
using the same guess D to define windows at all levels of recursion, even though at lower levels of recursion the
center distance between the substrings we consider is likely to be much smaller even if our guess is accurate at the
first level.

We note some properties of our recursion that motivate this choice of windows: In the ith level of recursion, if
our subproblems’ input is X ′1, . . . , X

′
k, then we will have the guarantee that X ′1 is a window in X1 of length τm

and X ′2, . . . , X
′
k are one of the windows in X2, . . . , Xk corresponding to τm. When we are solving a subproblem

involving a length τm substring of X1, we will use the windows defined by τ = τm+1. In addition, when we are
solving this subproblem, by our requirement that all σm(d) be a power of 2, we have the following property: the
windows defined on the full strings X1, . . . Xk for τm+1 that are contained within X ′1, . . . , X

′
k, are equivalent to

the windows we would define within X ′1, . . . , X
′
k if we used the same choice of parameters τm+1, σm+1. We will

refer to this set of windows as the windows at level m+ 1 restricted to X ′1, . . . , X
′
k.

To give some intuition behind the choice of σm(d), which is crucial for our analysis: The term with d is a
“local” term. It contributes to the approximation error locally, only adding error proportional to our center distance
estimate for the current tuple of windows, and also helps us keep the number of entries in the DP table within
one call small. The term with D is a “global” term. It contributes to the approximation error globally; across all
recursive calls, the final approximation error accumulated at the top level due to this term will be something like
εD. It also keeps the number of windows across all recursive calls small.

Now, for a fixed level m and the corresponding windows, we can define window respecting alignments of
X1, . . . , Xk identically to Definition 4.2. If we are considering a window-respecting alignment of substrings
X ′1, . . . , X

′
k instead of the full strings, we simply restrict to the windows contained within these substrings, and

then define window-respecting alignments of X ′1, . . . , X
′
k as before using these sets of windows. We define the edit

tuples of a window-respecting alignment f , tupD(f), to be:

[~j∈[J]tupmaxi |f(W1,j)i|(f(W1,j)) ~ {r(f)}] ∩ {0, 1, . . . D}k

Where ~ is the convolution of sets of vectors, i.e. ~iSi = {
∑
i vi|vi ∈ Si∀i}, and r(f) is the vector whose

ith entry is ri(f) = |Xi| −
∑
j |f(W1,j)i|, i.e., the number of characters in Xi not in any window. Similarly

to Lemma 4.2, we can show window-respecting alignments approximate the best standard alignment.

Lemma 5.1. Let d be any value in D. Let X ′1, . . . , X
′
k be windows in X1, . . . , Xk at the same level m. Let F

be the set of window-respecting alignments of X ′1, . . . , X
′
k, using the windows at level m + 1 parametrized by d,

restricted to X ′1, . . . , X
′
k. Then we have that ∪f∈Ftup3d(f) is a (13εm+1kd+ 6εm+1Dτm/|X1|)-approximation of

tup2d(X
′
1, X

′
2, . . . X

′
k).

Proof. First, we will show that for any f and v ∈ tup3d(f), v is also an edit tuple of X ′1, X
′
2, . . . , X

′
k. Let

J = τm/τm+1. For v ∈ tup3d(f(W1,j)), it can be decomposed as
∑
j∈[J] vj + r(f), where vj is an edit tuple of

f(W1,j). By deleting the ri(f) characters in each Xi that are not in any Wi,j , we get the string ©jWi,j for each i,
and

∑
j∈[J] vj is clearly a valid edit tuple for these strings. So v is an edit tuple of X ′1, X

′
2, . . . , X

′
k.

It now suffices to show that for any edit tuple v of X ′1, . . . X
′
k in {0, 1, . . . , 2d}k, there exists f and v′ in

tup3d(f) such that v′ ≤ v + (9εm+1kd+ 6εm+1Dτm/|X1|) · 1. Fix any such v. We partition X ′1 into substrings of
length τm+1, {X1,j}j∈[J]. Let X∗ be the string such that δE(X ′i, X

∗) ≤ v[i] for all i. Using the same procedure
as in Lemma 4.1, we can find a partition of X∗ into substrings {X∗j } such that each X∗j has length at most
2τm+1/εm+1 and: ∑

j∈[J]

δE(X1,j , X
∗
j ) ≤ (1 + 3εm+1)v[1] ≤ v[1] + 6εm+1d.

Given this partition, again using the same procedure as in Lemma 4.1, we can find disjoint substrings of Xi,
Xi,j , for all i > 1 such that each Xi,j has length at most 2τ/ε2m+1 and∑

j∈[J]

δE(Xi,j , X
∗
j ) + |Xi| −

∑
j∈[J]

|Xi,j | ≤ (1 + 3εm+1)v[i] ≤ v[i] + 6εm+1d.
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Now, let W1,j = X1,j for all j. Similarly to Lemma 4.2, for each i, if |Xi,j | ≤ 2εm+1 maxi′ δE(Xi′,j , X
∗
j ) +

6εm+1Dτm+1/|X1|, let Wi,j be the empty window “starting” at index e(Wi,j−1) + 1 (or index 1 if j = 1).
Otherwise, let Wi,j be the longest window Wi,m+1,∆,p that is a substring of Xi,j . Note that |Xi,j | and |Wi,j | differ
by at most 2 maxi′ δE(Xi′,j , X

∗
j ). If εm+1 is a sufficiently small constant, similarly to the proof of Lemma 4.2,

this implies there is a choice of Wi,j such that |Xi,j | − |Wi,j | ≤ εm+1 maxi′ δE(Xi′,j , X
∗
j ) + 3(σm(d) − 1) ≤

εm+1 maxi′ δE(Xi′,j , X
∗
j ) + 6[ εm+1dτm+1

τm
+ εm+1Dτm+1

|X1| ]. Note that
∑
j∈[J] maxi δE(Xi,j , X

∗
j ) ≤ k ||v||∞ ≤ 2kd. This

implies ri(f)− (|Xi| −
∑
j∈[J] |Xi,j |) is at most 5εm+1kd. We also have by triangle inequality that:

δE(Wi,j , X
∗
j ) ≤ δE(Xi,j , X

∗
j ) + εmax

i′
δE(Xi′,j , X

∗
j ) + 6[

εm+1dτm+1

τm
+
εm+1Dτm+1

|X1|
].

Now consider the alignment that chooses f(W1,j) = (W1,j ,W2,j , . . . ,Wk,j). For each j, by the above inequalities,
one edit tuple for f(W1,j) = (W1,j ,W2,j , . . . ,Wk,j) arising from a window-respecting alignment is element-wise at
most:

(δE(X1,j , X
∗
j ),

δE(X2,j , X
∗
j ) + εm+1 max

i
δE(Xi,j , X

∗
j ) + 6[

εm+1dτm+1

τm
+
εm+1Dτm+1

|X1|
],

. . . ,

δE(Xk,j , X
∗
j ) + εm+1 max

i
δE(Xi,j , X

∗
j ) + 6[

εm+1dτm+1

τm
+
εm+1Dτm+1

|X1|
])

So summing up these edit tuples, and adding r(f), we get a vector arising from a window-respecting
alignment that is at element-wise at most v + (εm+1k ||v||∞ + 11εm+1kd+ 6εm+1Dτm/|X1|) · 1 ≤ v + (13εm+1kd+
6εm+1Dτm/|X1|) · 1.

We are now ready to state our algorithm. Our recursive algorithm for computing a sparse approximation of
tupD(X1, X2, . . . Xk), denoted k-CED-Alg, is defined as follows:

k-CED-Alg(X ′1, X
′
2, . . . , X

′
k, d, m):

Let Wi denote the windows at level m+ 1 parametrized by d restricted to X ′1, X
′
2, . . . , X

′
k, and s, e be

the functions that take a window and gives its starting/ending index in the corresponding X ′i. We solve the
following dynamic program:

c(x1, x2, . . . xk) = (∪i>1c(x1, x2, . . . , xi − σm+1, . . . , xk) ~ {(0, 0, . . . , σm+1, . . . , 0)})∪
(∪W1,W2,...Wk∈W1×W2×···×Wk:∀i,e(Wi)=xi [c(s(W1)− 1, s(W2)− 1, . . . , s(Wk)− 1)

~ ∪d′∈D:d′≤2dk-CED-Alg(W1,W2, . . . ,Wk, d
′,m+ 1)])

For every k-tuple such that x1 is a multiple of τm+1, x2, . . . , xk are all multiples of σm+1, and such that
|xi − x1| ≤ 3d+ εmDτm

|X1| . The base case for the dynamic program is c(0, 0, . . . , 0) = {(0, 0, . . . , 0)}.
After computing each entry c(x1, x2, . . . xk), we remove all elements of c(x1, x2, . . . xk) not in {0, 1, . . . 3d+

b εmDτm|X1| c}
k. After getting a set of edit tuples from a call to k-CED-Alg, we round each coordinate of each

vector up to the nearest multiple of σm(d) before taking the convolution.
Our final output is c(|X ′1|, |X ′2|, . . . , |X ′k|), and then return this set of vectors.

Our base case will be when m = `, and we have that |X ′1| = N1/ log logN and all |X ′i| are at most 2N1/ log logN/ε2` .
To handle the base case, we will enumerate all substrings of length at most 2N1/ log logN/ε2` of each of X1, . . . , Xk,
and compute their edit tuples using, e.g., the exact algorithm of [NR05]. Our top-level recursive call is to
k-CED-Alg(X1, . . . , Xk, D, 0).

To keep the algorithm’s description consistent across levels, in addition to assuming X1’s length is a multiple
of τ1, we will assume that X2, . . . , Xk are multiples of σ1(D); we can enforce this assumption by padding each of
X2, . . . , Xk with at most σ1(D) copies of a new dummy character. This cannot decrease the center distance and
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the total increase in center distance due to this padding is at most σ1(D), which contributes an additive o(ε0D) to
our approximation factor, only at the top level of recursion. By construction, at lower levels of the recursion each
X ′i will have length that is a multiple of σm(d) for i > 1, so by this assumption we no longer need to worry about
rounding the indices of the value in DP table we output at any level.

5.1 Approximation Guarantee We first prove the approximation guarantee of k-CED-Alg, as it will be
necessary for our runtime analysis to specify what choice of ε0 to ε` is needed for the desired approximation
guarantee.

Lemma 5.2. Let the sequence ε0, . . . , ε` satisfy ε0 ≤ 1 and εm+1 = 1
16k εm for all m. Then at level m of

the recursion, each invocation of k-CED-Alg(X ′1, X
′
2, . . . , X

′
k, d, m) returns a set of edit tuples that is a

(εmd+ εmDτm
|X1| )-approximation of tup2d(X

′
1, . . . , X

′
k).

Proof. We proceed by induction. Clearly the guarantee holds for the base case m = `, since we solve the base
cases using exact algorithms.

Inductively, assuming at level m + 1, any edit tuple generated returned by k-CED-Alg is element-wise
greater than some edit tuple of the corresponding windows, by an argument similar to the first part of the proof
of Lemma 5.1 the same property holds at level m. So we just need to show that each edit tuple returned by
k-CED-Alg is not too large an overestimate of some edit tuple of its input strings.

Take any edit tuple v for any window-respecting alignment f . Assume the approximation guarantee holds
for calls made at level m + 1. We show that for the corresponding path through the DP table for c, there
is a vector close to v in the edit tuples generated by this path. v can be decomposed as

∑
j∈[J] vj + r(f)

where vj is an edit tuple of f(W1,j). Let dj be the smallest value in D such that dj ≥ ||vj ||∞. By our

inductive hypothesis, for each j we get a (εm+1dj + εm+1Dτm+1

|X1
)-approximation of the edit tuples of tupdj (f(W1,j))

from the call to k-CED-Alg(f(W1,j), dj ,m + 1), which includes a vector v′j that is element-wise at most

vj + (εm+1dj + εm+1Dτm+1

|X1
) · 1 ≤ vj + (2εm+1 ||vj ||∞ + εm+1Dτm+1

|X1
) if ε is sufficiently small. In addition, the sum of

the vectors contributed by the first case in the recurrence relation for c is r(f). So there is an edit tuple computed
by our algorithm for this path that is element-wise less than:∑

j

[vj + (2εm+1 ||vj ||∞ +
εm+1Dτm+1

|X1|
) · 1] + r(f) ≤ v +

(
4εm+1kd+

εm+1Dτm
|X1|

)
· 1.

After accounting for the approximation error of window-respecting alignments due to Lemma 5.1 and the

rounding step, the additive error is increased to at most
(

16εm+1kd+ 8 εm+1Dτm
|X1|

)
· 1 ≤ (εmd + εmDτm

|X1| ) · 1 as

desired.
Finally, note that since we only remove vectors with values larger than 3d + εmDτm

|X1| and assume ε0 (and

thus all εm) is at most 1, we do not remove any vector that would be in a (εmd + εmDτm
|X1| )-approximation of

tup2d(X
′
1, . . . , X

′
k).

If we set ε0 = ε−o(1), then after accounting for the o(ε0D) error introduced by padding X2 to Xk, the smallest
`∞-norm of any vector in the output of k-CED-Alg(X1, . . . , Xk, D, 0) gives a (1 + ε)-multiplicative approximation
of the center distance as desired.

5.2 Runtime Analysis We now bound the runtime of k-CED-Alg, completing the proof of Theorem 5.1.

Lemma 5.3. For the choice of ε0, . . . , ε` given in Lemma 5.2, we can compute the output of k-CED-
Alg(X1, . . . , Xk, D, 0) in time O(nk/2 ·Nk/2+o(k)/εO(k)).

Proof. Throughout the analysis, we will use the fact that for all m, 1/εm ≤ logO(log k)N/ε.
We first bound the time spent on base cases. Since each X ′j at the bottom level of recursion has size at

most 2N1/ log logN/ε2` = O(No(1)/ε2) by construction, we can compute each base case’s edit tuples and round

them in No(k) time. There are O(log d) choices of d and O(log1+ε`
(2τ`/ε

2
`)) = O(logO(1)(N)/ε2) possible sizes for

each choice of d, so there are O(logO(k)(N)/ε2k) different tuples of possible window sizes to consider at this level.
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The proof of Lemma 4.3 implies that for any string X generated by an SLP of size n, the number of distinct
substrings of length τ is O(nτ) (in particular, in that proof when δ = 1 we are simply taking every substring into
S). Combining these facts, we conclude there are O(nkNo(k)/εO(k)) distinct base cases, and thus by amortizing
the work for base cases, the total time spent on base cases is O(nkNo(k)/εO(k)).

Besides base-cases, the only work our algorithm does is rounding and convolutions. We can perform the
recursion in an amortized fashion. That is, we never make multiple calls to k-CED-Alg on the same k-tuple of
strings with the same choice of d. Similarly, for each d and each level m+ 1 call to k-CED-Alg, we only round
that call’s output’s coordinates to the nearest multiple of σm(d) once. The time spent rounding a set of vectors is
proportional to its size, and the final set of vectors that we round was produced by a convolution that took time
at least the size of the set of vectors. For this convolution, with amortization we only need to round its output at
most logN times, once per value of d in D. Thus, the time spent on rounding is bounded by the time spent on
convolutions times O(logN).

We now just need to bound the time spent on convolutions. Fix a level m of the recursion and a choice of d in
the input. We will bound the total work across all calls at level m and with d as input; there are O(logN) levels
and O(log logN) levels, so our final bound on time spent on convolutions will be within logarithmic factors of the
bound for one choice of m and d.

The time spent on convolutions in any call is bounded by a constant factor times the time spent on
convolutions in the second case in the recurrence relation, i.e., convolutions involving recursive calls. We
perform these convolutions on tuples in {0, 1, . . . , 3d} whose coordinates are multiples of σm(d), i.e., have
size at most O((d/σm(d))k) = O((τm/εm+1τm+1)k) = O(No(k)/εk). Using FFT, we can thus perform these
convolutions in O(No(k)/εk) time (e.g., we could divide all entries by σm(d), take the convolution, and
then multiply by σm(d)). In each call to k-CED-Alg, by the same argument as in Section 4, there are
O((τm/τm−1) · (d/σm(d))k−1) = O((τm/εm+1τm+1)k) = O(No(k)/εO(k)) entries to compute, and for each entry we
need to do O((log2N/ε)k) convolutions. So the time spent on convolutions per call to k-CED-Alg is No(k)/εO(k)

as well.
We now just need to bound the number of calls made to k-CED-Alg, and our final runtime will be

within an No(k)/εO(k) factor of this. We will show for each choice of m and d, the number of calls made is
O(nk/2 ·Nk/2+o(k)/εO(k)), which gives the desired runtime bound. We bound the number of calls at each level
in two ways. The first way is again using the fact that for any string X generated by an SLP of size n, the
number of distinct substrings of length τ is O(nτ), and that at each level there are O(logO(k)(N)/ε2k) tuples of
possible lengths for the strings in the input, each at most τm/ε

2
m. Putting these facts together, there are at most

O(nkτkmN
o(k)/εO(k)) distinct calls to k-CED-Alg at level m with parameter d.

The second way is exactly what we did in Section 4 to bound the number of coordinates in the DP table:
For every k-tuple of windows we call k-CED-Alg on at level m with parameter d, the window X ′1 ends at an
index in X1 that is a multiple of τm, and the other windows end at indices in X2, . . . , Xk that are multiples of
σm(d). Furthermore, these entries are distance at most O(D) from the diagonal. So the total number of possible
tuples of ending indices for these windows is O((N/τm) · (D/σm(d))k−1) = O(Nk/τkmε

O(k)). For each tuple of
ending indices, there are No(k)/εO(k) possible tuples of windows that end at those indices. So we get a bound of
O(Nk+o(k)/τkmε

O(k)) different calls for each choice of m and d. The desired bound of O(nk/2 ·Nk/2+o(k)/εO(k))
calls follows by taking the geometric mean of the first and second bound, which is at least the smaller of the two.

6 Lower Bounds

We will start with a summary and overview of the techniques.

6.1 Lower Bound Overview We will start with the definitions of our hypotheses, then we will describe the
results of the lower bound sections.

Hypotheses We use two hypotheses from fine-grained complexity to generate our lower bounds. We use the
strong exponential time hypothesis (SETH) and the k-OV hypothesis. Note that SETH implies k-OV [Wil07].

Definition 6.1. The k-CNF Satisfiability (k-SAT) problem takes as input a formula φ with m clauses and n
variables. The formula is in conjunctive normal form (CNF) which requires that the formula be the and of m
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clauses. Each clause is the or of at most k variables. Return true if φ has a satisfying assignment and false
otherwise.

Definition 6.2. (The strong exponential time hypothesis (SETH) [IP01]) For all constants ε > 0
there is some constant k such that k-SAT requires ω(2n(1−ε)) time.

We can re-frame this as k-SAT requiring 2n(1−o(1)) time, as long as k is an arbitrarily large constant. Next we
define the k-OV problem.

Definition 6.3. (k-OV [Wil07]) Take as input a list, L, of n zero one vectors of dimension d = no(1). Return
true if there are k vectors vi ∈ L for i ∈ [1, k] such that for all j v1[j] · v2[j] · · · vk[j] = 0.

The k-OV hypothesis states that for constant k, k-OV requires nk−o(1) time. The k-OV hypothesis is implied
by SETH.

We use the k-OV hypothesis to generate our lower bounds. As the k-OV hypothesis is implied by SETH,
SETH also implies our lower bounds.

k-LCS lower bound Assuming the well-studied Strong Exponential Time Hypothesis (SETH), in Section 6.2
we show a lower bound for the k-LCS problem in the compressed setting. Intuitively, SETH states that CNF-
satisfiability requires 2n−o(n) time [IP01]. Even more specifically, we use the k-Orthogonal Vectors problem
(k-OV) [Vas18]. At a high level, k-OV takes as input a list L with n zero-one vectors of dimension d. We must
return YES if there exist k vectors that, when multiplied element-wise, form the all zeros vector. The k-OV
conjecture, which is implied by SETH, states that k-OV cannot be solved in O(nk−Ω(1)) time.

Reminder of Theorem 1.1. If the k′-OV hypothesis is true for all constants k′, then for any constant ε ∈ (0, 1]

grammar-compressed k-LCS requires
(
Mk−1m

)1−o(1)
time when the alphabet size is |Σ| = Θ(k) and m = M ε±o(1).

Here, M denotes the total length of the k input strings and m is their total compressed size.

Our lower bound relies on two primary tools. First, we use a very compressible representation of a-OV instances.
Specifically, given a list L of n zero-one vectors of dimension d, consider a new list List(L)a of na zero-one vectors
of dimension d, with every vector in List(L)a representing the element wise multiplication of a vectors from L.
Formally, List(L)a is indexed by a-tuples of indices from [1 . . n], and each vector ~v = List(L)a[j1][j2] · · · [ja] is
defined, for every coordinate i ∈ [1 . . d], with:

List(L)a[j1][j2] · · · [ja][i] = ~v[i] = L[j1][i] · L[j2][i] · · ·L[ja][i]

Notably, List(L)a contains an all zeros vector if and only if L is a YES-instance of the a-OV problem.
In the 2-LCS lower bound of [ABBK17], an (a+ 2b)-OV instance L is first transformed into A = List(L)a,

B = List(L)b, and C = List(L)b. Then, the following strings are defined for every ~vb ∈ B and ~vc ∈ C:

x ~vb = ~va1 [1]~vb[1] ~va2 [1]~vb[1] · · · ~vana [1]~vb[1]︸ ︷︷ ︸
first bit

· · · ~va1 [d]~vb[d] ~va2 [d]~vb[d] · · · ~vana [d]~vb[d]︸ ︷︷ ︸
dth bit

,

y ~vc = ~vc[1] 000000︸ ︷︷ ︸
na−1

~vc[2] · · · 000000︸ ︷︷ ︸
na−1

~vc[d].

The string x ~vb that interleaves ~vb with bits of na vectors ~vai ∈ A, referred to as “interleaved” representation, is
highly compressible, to an SLP of size O(nd). Moreover, if there exists a vector ~vai ∈ A such that ( ~vai , ~vb, ~vc) is
orthogonal, Abboud et al. [ABBK17] show (using the structural alignment gadget of [BK15]) how to perfectly align
( ~vai [l], ~vb[l], ~vc[l]) for all l ∈ [1 . . d]. Finally, the gadgets x ~vb for all ~vb ∈ B are concatenated with extra padding
to generate XB, and the gadgets y ~vc for all ~vc ∈ C are concatenated with extra padding to generate YC . This
leads to the (Mm)1−o(1) lower bound since the uncompressed and compressed lengths of XB and YC are (roughly)
O(na+b) and O(nb), respectively, and we are solving an (a+ 2b)-OV instance.

We may extend the above construction to the compressed k-LCS setting by transforming an (a + kb)-OV
instance L into lists A = List(L)a, B = List(L)b, and Ch = List(L)b for h ∈ [1 . . k − 1]. We then create XB

and YCh for h ∈ [1 . . k − 1]. Since the strings YCh are zero-padded, we can easily adapt the same structural
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alignment gadget of 2-LCS from [BK15] to ensure a perfect alignment. However, this only leads to a lower bound
of (mk−1M)1−o(1) since the uncompressed and compressed lengths of the strings remain (roughly) O(na+b) and
O(nb), respectively, and we are solving an (a+ kb)-OV instance: Mmk−1 = O(na+kb). To get a much stronger
lower bound of (mMk−1)1−o(1), we need to solve a much higher OV instance. In particular, we will solve an
(a(k − 1) + kb)-OV instance by taking Ah = List(L)a, Bh = List(L)b for h ∈ [1 . . k − 1], and C = List(L)b. We
then create strings XBh from Ah and Bh for each h ∈ [1 . . k− 1], and YC . That is, we now have (k− 1) interleaved
strings and only one zero-padded string. This makes generalizing the structural alignment gadget substantially
more intricate since we may have to deal with k − 1 different offsets. In fact, without any zero-padded string, we
are not able to show any perfect alignment gadget. Because we are now solving an (a(k − 1) + kb)-OV instance,
we get our desired lower bound by noting Mk−1m = O(na(k−1)+kb).

Easy k-Median Edit Distance lower bounds via LCS reduction As a first lower bound for edit distance,
we can reduce from LCS to both median k-edit distance and center k-edit distance. Suppose, we are given a k-LCS
instance with strings S1, . . . , Sk all of length M and let γ denote the empty string. It can be shown that

δE(S1, . . . , Sk, γ, . . . , γ︸ ︷︷ ︸
(k−1)

) = Mk − LCS(S1, . . . , Sk).

This increases k since we add (k − 1) empty strings, but it does not increase the size of the problem, or the
compression size. Using the above relation, we can prove the following theorem.

Reminder of Theorem 6.6. Given an instance of k-median edit distance on strings of lengths M1 ≤ M2 ≤
· · · ≤ Mk where these strings can all be compressed into a SLP of size m = |

∑
iMi|δ±o(1) for any constant

δ ∈ (0, 1]. Then, an algorithm for k-median edit distance that runs in ((M2 + 1) · · · (Mk + 1) ·m)
1−ε

time for
constant ε > 0 violates SETH.

We can get a similar lower bound for center k-edit distance from k-LCS by adding a single empty string.

Theorem 6.1. Given an instance of k-center edit distance on strings of lengths M1 ≤M2 ≤ · · · ≤Mk where these
strings can all be compressed into a SLP of size m = |

∑
iMi|δ±o(1) for any constant δ ∈ (0, 1], then, an algorithm

for k-center edit distance that runs in time ((M2 + 1) · · · (Mk + 1) ·m)
1−ε

time for constant ε > 0 violates SETH.

These reductions are convenient for propagating results from k-LCS to k-Edit Distance generically. However,
because they add empty strings, they don’t prove hardness for some of the most commonly studied cases such as
where all strings are of the same length and for median k-edit distance with even k. To get lower bounds for all k
and when all strings are of the same length, we use a reduction directly from SETH, instead of going through
k-LCS.

Stronger k-Median Edit Distance Lower Bounds directly from SETH We get a lower bound for median
k-edit distance and center k-edit distance over compressed strings from SETH. When k = 2 this resolves the
second open problem suggested by Abboud et al [ABBK17]. We also generalize the lower bound for all k ≥ 2.
There are many difficulties introduced by trying to get lower bounds for median k-edit distance when k ≥ 2. We
can use some of the ideas from the k-LCS reduction. Specifically, the notion of the compressed interleaved strings
remains. Notably, we need to allow any choice of ∆1, . . . ,∆k−1 offsets; however, if these offsets are more similar
we have many characters that match on all but one string. For k-LCS we still need to delete these characters, but,
in median k-edit distance we can simply insert a character in one string. This creates an artificial pressure to make
all the ∆i values the same. To overcome this, we can use some of the ideas from the recent paper that gives lower
bounds for the uncompressed case for k-edit distance [HBGT20]. There is still an issue, they build their alignment
gadget with the crucial use of empty ‘fake gadgets’. However, we need to guarantee that ∆i ∈ [0, na − 1], and
these fake gadgets allow for values of ∆i outside of this range. To overcome this we incentivize a match up of the
real gadgets, which then forces a restriction on valid ∆i values.

Specifically, we need to add a gadget, which we call a selector gadget. This gadget causes characters lined
up inside it to have a low edit distance if they all match, and otherwise have a higher edit distance that is
unchanged by exactly how well they match. The selector gadget looks like this: SCSGi(c) = %ixcy%(k−i)x. We
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have gadgets SCSG1(c1), . . . , SCSGk(ck) such that we can either try to match the characters ci, or try to line up
the % characters. If we line up the % characters, the edit distance is ky. If we line up the ci characters and they
all match (ci = cj ∀i, j ), the edit distance is xk2/4 if k is even and x(k2 − 1)/4 if k is odd. If the characters don’t
match the edit distance is at least xk2/4 + y if k is even and x(k2 − 1)/4 + y if k is odd. Consider the case of k
even, we can choose integer values of x and y such that xk2/4 < yk ≤ xk2/4 + y. By doing so, if all the characters
match, then the median k-edit distance is xk2/4, otherwise it is yk. In some sense this gadget is causing characters
to act like they do in k-LCS, where only a match across all strings gives us a benefit. Using these selector gadgets
and ideas from the edit distance and LCS lower bounds, we get a lower bounds for both median k-edit distance
and center k-edit distance from SETH.

Theorem 6.2. If the k′-OV hypothesis is true for all constants k′, then for all constant ε ∈ (0, 1] grammar-

compressed k-median edit distance requires
(
Mk−1m

)1−o(1)
time when the alphabet size is |Σ| = Θ(k) and

m = M ε±o(1). Here, M and m denote the total uncompressed and compressed length of the k input strings
respectively.

The lower bound for median k-edit distance immediately implies a lower bound for center k-edit distance
following [HBGT20].

Reminder of Theorem 6.8 . We are given k strings of length M with a SLP of size m. The center k-edit

distance problem on these strings requires
(
Mk−1m

)1−o(1)
time if SETH is true.

Given these lower bounds for the case of compressed k-LCS, median k-edit distance and center k-edit distance,
we want to consider not just compression but also approximation.

6.2 Lower Bound with LCS In this section we will argue that if we have k strings each of length M and
they have a SLP compression of size m then the problem requires Mk−1−o(1)m1−o(1) if SETH is true. In the next
section we use these hardness results for k-LCS to prove hardness for k′-Edit Distance.

The core of this section is building a generalized “perfect alignment” gadget. This is a gadget that causes
substrings to be aligned with no skips or merges. We use this generalized alignment gadget to generalize the work
of [ABBK17]. The main idea for this perfect alignment gadget is that between every string we want to align, we
add symbols $1$2 . . . $k. Additionally, at the end of each string Si in our gadget, we add many copies of these
characters, excepting $i. That is, we add $1 . . . $i−1$i+1 . . . $k. Via this construction, any valid perfect alignment
will match all available copies of $i for all i. Any alignment that isn’t perfect (for example it skips matching
some sub-string in the middle of Si) will miss out on one of these $i characters in Si, thus lowering the value of a
potential k-LCS.

Recall that LCS(S1, . . . , Sk) is a function that returns the k-LCS of the strings S1, . . . , Sk. Recall that
δD(S1, . . . , Sk) =

∑
i∈[1,k](Si − LCS(S1, . . . , Sk)). That is, the count of all unmatched characters.

6.3 Representations of Many Lists at Once The key idea is going to be different ways to represent many
lists of OV instances at once. This representation comes from [ABBK17].

Definition 6.4. Let L be the list of vectors to a k-OV instance. Let |L| = n.
The list representation of ` copies of L is made up of n` vectors ~v = List`(L)[j1][j2]...[j`].

List(L)`[j1][j2]...[j`][i] = ~v[i] = L[j1][i] · L[j2][i] · · ·L[j`][i]

As a convenience of notation we will allow indexing with a single index into List(L):

List(L)`

[∑̀
i=1

jin
i−1

]
= List(L)`[j1][j2]...[j`]

When writing down this list of vectors into a string there are two ways to do it. The serial way of writing out
each vector in order, or the interleaving way. The serial way of writing vectors is in many ways easier to use for
gadgets. However, the interleaved version is easier to compress. We will describe both and use both in our gadgets.
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Definition 6.5. Let L be the list of vectors to a k-OV instance. Let |L| = n.
We define the serial version as:

StringB`(L) =©j1∈[1,n]...,j`∈[1,n]

(
©d
i=1L[j1][i] · L[j2][i] · · ·L[j`][i]

)
.

Note that this is equivalent to

StringB`(L) =©j∈[1,n`]©i∈[1,d] List(L)[j][i].

We define the interleaving version as:

StringI`(L) =©d
i=1

(
©j1∈[1,n]...,j`∈[1,n]L[j1][i] · L[j2][i] · · ·L[j`][i]

)
.

Note that this is equivalent to

StringI`(L) =©i∈[1,d]©j∈[1,n`] List(L)[j][i].

So the difference between these versions is really just what order we represent the vectors. But crucially if
there is a particular vector in List(L) that is of interest, this will appear in different places. In StringB`(L) a
vector ~v = List(L)[i] appears as bits [i · d, (i + 1) · d − 1]. Where as in StringI`(L) the vector ~v = List(L)[i]
appears as bits i, i+ nk, . . . , i+ (d− 1)nk.

We give one final version that merges a single vector with the interleaved representation.

Definition 6.6. We will expand the previous definition of an interleaved string to allow a merge with a single
other vector. Recall that

StringI`(L) =©i∈[1,d]©j∈[1,n`] List(L)[j][i].

Recall that for a vector u = List(L)[j] it is represented in bits j, j + nk, . . . , j + (d− 1)nk in StringI`(L).
We will define

VecSI`(L, v) =©i∈[1,d]©j∈[1,n`] List(L)[j][i]v[i].

Note that now if we take bits j, j+n`, . . . , j+(d−1)n` we give a vector w such that w[i] = u[i]v[i] where u = List[j].

6.4 Intuition for our Reduction We will describe at a high level the reduction of [ABBK17] and the idea for
generalizing it. In this section we will informally explain how to use the serial and interleaved representations of
the vectors to build a reduction from SETH to compressed k-LCS. We hope to build understanding for what the
different levels of alignment gadgets are doing through small examples and intuition.

6.4.1 Why We Care About Lining up the Strings Lets say we have a representation StringI`(L) and we
have a single vector, v of length d. We create a new vector v̂ where v̂[i · n`] = v[i] and otherwise v̂ is zero. v̂ will
have length n`(d− 1) + 1.

Now we will note the following: the locations of the bits in v̂ have exactly the offsets that single vectors do in
StringI`(L)! So, if we consider sub-string StringI`(L)[i, i+n`(d− 1)] then v forms an orthogonal `+ 1 tuple with
the vectors represented by List(L)`[i] if v̂ is orthogonal to StringI`(L)[i, i+ n`(d− 1)]. This is why we care about
offsets. The next few subsections will simply be building the gadgets necessary to get this “perfect alignemnt” and
the gadgets needed to represent k-OV coordinates in the edit distance setting.

6.4.2 The Case of LCS With Two Strings How did all of this work in [ABBK17]? Start with k-OV. Now
consider a k1 and k2 that have this property: k = k1 + 2k2. They then create three sets: A represents k1 vectors
at once, B represents k2 vectors at once and C represents k2 vectors at once. We will give a text explanation and
then give a small example.

For C they create its string SC by taking List(L)k2 and making Y [i] = List′k2(L)[i]. That is they pad the
vector with nk1 − 1 zeros after each entry in the original vector.

The StringIk1(L) representation of A and the zeros are all very compressible with straight line programs.
For B they create its string SB by basically merging each vector b ∈ Listk2(L) with A which is structured like
StringIk1(L).
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So, while the length of each string is nk2+k1 the compressions are of size nk+1. We need a gadget that forces
our representation to align the two strings with no gaps in the LCS. If we do so, we can then check if an OV exists.

Now let us work through a small example. Let k1 = 2 and k2 = 1.

v1 = < 0, 1, 1, 1 >(6.2)

v2 = < 1, 1, 0, 1 >(6.3)

v3 = < 1, 0, 1, 1 >(6.4)

v4 = < 0, 1, 1, 0 >(6.5)

L ={v1, v2, v3, v4}(6.6)

For both B and C we form lists that are concatenations of vectors.

B = C = v1, v2, v3, v4

For A we first we want to generate all the vectors vi,j [p] = vi[p] · vj [p].

v1,2 = < 0, 1, 0, 1 > v1,3 = < 0, 0, 1, 1 > v1,4 = < 0, 1, 0, 0 >(6.7)

v2,3 = < 1, 0, 0, 1 > v2,4 = < 0, 1, 0, 0 >(6.8)

v3,4 = < 0, 0, 1, 0 >(6.9)

Then we form A by taking the first bit of each of these vectors then the second bits, etc. For this example, we put
a semicolon in between the first bits and second bits. We do this here for making it easier to read.

A = 0, 0, 0, 1, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0

Note that if we take the bits p, p+ 6, p+ 12, p+ 18 these correspond to a single vector vi,j . We want the ability to
merge A and a single vector vi. For this, if there is vi[p] = 0 then we replace all those bits with zeros, otherwise
we leave the bits of A as is.

(A&v1) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0(6.10)

(A&v2) =0, 0, 0, 1, 0, 0; 1, 0, 1, 0, 1, 0; 0, 0, 0, 0, 0, 0; 1, 1, 0, 1, 0, 0(6.11)

(A&v3) =0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0(6.12)

(A&v4) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0(6.13)

We also want to generate the padded vectors for SC . These padded vectors have ‘real’ vector values at locations
0, 6, 12, 18. We want this because it means that if we line up one of these padded vectors, (0&vi), against a vector
mixed with A, (A&vj), the ‘real’ values correspond to a vector in A.

(0&v1) =0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1(6.14)

(0&v2) =1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1(6.15)

(0&v3) =1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1(6.16)

(0&v4) =0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0(6.17)

Specifically, if we line up (0&vi) and (A&vj) with an offset of ∆ every lined up set of entries has a zero if there are
k1 + 2k2 vectors that are orthogonal. Lets consider this example:

(A&v1) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0(6.18)

(0&v2) = 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1(6.19)

This alignment = 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0(6.20)

By picking this alignment, ∆ = 5, we are picking the sixth vector that went into A which is v3,4. So, this alignment
is checking the orthogonality of v1, v2, v3, v4. Lets look at a set of non-orthogonal vectors to compare. The vectors
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v1, v2, v1, v4 are not orthogonal. The vector v1,4 corresponds to ∆ = 2.

(A&v1) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0(6.21)

(0&v2) = 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1(6.22)

This alignment = 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(6.23)

This is why we want ‘perfect alignments’. We want to build up representations of these strings and allow for
any choice of ∆, but no skipping characters or merging gadgets. Previous work generates a perfect alignment
gadget such that the output gadgeted strings T(A&vi) and T(0&vj) have a low LCS if there is a ∆ such that (A&vi)
and (0&vj) have an all zeros alignment with offset ∆ (like (A&v1) and (0&v2) with ∆ = 5 in our example). We
will now show what the perfect alignment gadget looks like. We can not use zeros and ones directly to solve OV
(see Lemma 6.1). We want gadgets such that 0, 0 and 0, 1 have a low LCS and higher LCS for 1, 1. We add the
characters $ and 5. The 5 characters make sure we don’t skip any symbols from T(0&vi). The $ characters make
sure we don’t skip any symbols from T(A&vj).

T(A&v1) ≈$05$05$05$05$05$05$15$05$15$05$15$05$05$15$05$05$05$15$15$15$05$15$05$0$(6.24)

T(0&v2) ≈$ $ $ $ $ $15$05$05$05$05$05$15$05$05$05$05$05$05$05$05$05$05$05$1$6(6.25)

The extra dollar signs at the ends of the strings allow all the dollar signs in T(A&v1) can be matched regardless of
the offset ∆. The 5 symbols make skipping zero or one characters also skip at least one 5 character. This set of
characters (at a high level) form the perfect alignment gadget of [ABBK17].

To form the string SB we want to basically concatenate T(A&v1), T(A&v2), T(A&v3), T(A&v4). To form the string
SC we will basically concatenate T(0&v1), T(0&v2), T(0&v3), T(0&v4). These strings are not really concatenated, but
instead have an alignment gadget wrapped around them. This alignment gadget guarantees a low LCS if a pair of
strings T(A&vi) and T(0&vj) have a low LCS, and otherwise has a high LCS. In total, this means the strings SB
and SC have low LCS if there exist i, j,∆ (A&vi) and (0&vj) have an all zeros alignment with offset ∆. Such a
zero alignment existing implies a (k1 + 2k2)-OV exists (a 4-OV in our example).

6.4.3 How to Generalize This (Intuition) What we want generically for k-LCS is to have k sets of lists
that act like B and C, and ` sets of lists that act like A. If we make an efficient reduction with these parameters,
then we get a lower bound of (M `mk−`)1−o(1).

To get the easy generalization we set ` = 1, and we have one “A type” set of lists. Lets call the “B” and “C”
type lists B1, . . . , Bk. We create strings S1, . . . , Sk and merge B1 and A into S1 using the method from [ABBK17].
For Si where i > 1 we instead use the padding with zeros method. Now we have a situation where we want a
gadget that forces the zero padded strings to line up exactly and they are both on some offset of i from the strings
in S1. This as it turns out is easy. The strings are of the same length and just copying the construction used for C
in [ABBK17] will get us what we want here. Specifically, the string S1 will be roughly2 a concatenation of T(A&vi)

strings. The Si strings for i > 1 are instead roughly2 the concatenation of T(0&vi) strings. If we are given a set of
k strings T(A&v1), T(0&v2), . . . , T(0&vk) we want to allow any offset ∆, but that same ∆ should be shared across
all the T(0&vi) strings. As a result, we can just use the same T(0&vi) strings from the two string case for all the
strings i > 1. The T(0&vi) strings are the same in every location except for the d representations of the bits in the
vector vi. The structure of the 5 characters forces all of the T(0&vi) strings to line up together to match all the 5
characters. The $ characters force any high LCS to not skip any of the zeros or ones in the T(A&vi) representation
of (A&vi). On a high level this reduction is easy because we still have only one offset ∆ that we need to deal with.

What needs to happen if ` > 1? The primary hurdle is coming up with a setup where two long strings of the
B type from the original construction can be forced to have their optimal setup line them up exactly with no
skips when they have two different offsets from the zero padded strings. To get a sense of the difficulty consider
how many $ characters should be at the start and end of those strings to allow all $ characters to be matched
regardless of offsets. As we grow the number on one string we have to grow the number on the other. So we need
different symbols $1, . . . , $k for each string.

2Once again, it isn’t really a concatenation. Instead these strings are wrapped in an alignment gadget. However, these alignment
gadgets are basically concatenations of the strings but with characters in-between the strings.
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For convenience let 0 and 1 be stand-ins for the strings we use in LCS reductions from OV (there are longer
strings that have the property we want where the LCS of 110, 101, 011, 100, 010, . . . , 000 are all equal). Now, if we
want to compare k strings where X ∈ {0, 1}m and Y1, . . . , Yk−1 ∈ {0, 1}n where n < m and we want the Y s to
line up exactly and we want them to compare to some substring of X then we can add a special character $. Let
Z = $c where c will be a constant in terms of k that is larger than the full length of string representations of 0
and 1.

SX =ZX[0]ZX[1]Z . . . ZX[m]Z(6.26)

SYi =Zm−nYi[0]ZYi[1]Z . . . ZYi[m]Zm−n(6.27)

Now, if there is a sub-string of X that is orthogonal to Y1, . . . , Yk−1 then the optimal LCS will match all the
Zs in X and match each character Yi[j] with some character in X. If we spread out our matches of Yi and don’t
match to a sub-string of X but instead to a subsequence, we will miss out on some Z characters. So, if there isn’t
a match that corresponds to an OV we will lose out. And this works with many strings at once.

This gadget is forcing not just any alignment of the underlying strings in X1, . . . , Xk−1, Y , but a perfect
alignment. We will use this structure to build a perfect alignment gadget.

6.5 Reduction We will prove lemmas building up the gadgets for this construction. We will describe the details
of our gadgets and reductions here. The intuition described above of both why we care about perfect alignment
and how to achieve it is used in the next subsection on our alignment gadget.

6.5.1 Alignment Gadget Now we will prove that the alignment gadget works as desired. First let us define
what an alignment and perfect alignment are.

Definition 6.7. We will generalize the Structured Alignment Cost definition of previous work [ABBK17]. We
are given as input k lists of strings X1, . . . , Xk−1, Y . Where |Xi| = n, |Y | = m, and m < n.

An alignment, Λ is a list of t k-tuples:

((i1,1, i1,2, . . . , i1,k), . . . , (it,1, it,2, . . . , it,k))

where ij,p < ij′,p if j < j′. We call an alignment perfect if ij,p + 1 = ij+1,p and t = m.

Now we will create some gadgets to maintain alignment. We will define them here and then below prove the
various properties we care about.

Definition 6.8. (Perfect Alignment Gadget) We are given as input k lists of strings X1, . . . , Xk−1, Y .
Where |Xi| = n, |Y | = m, and m < n.

We will add k new symbols $1, . . . , $k. We will define A = $2`
1 ◦ . . . ◦ $2`

k where ◦ is the concatenation operator.
Let A−i = $2`

1 ◦ . . . ◦ $2`
i−1 ◦ $2`

i+1 ◦ . . . ◦ $2`
k . Note that this is just A with all the $i symbols removed. We also add a

character % which we use to pad out our strings to give them more value. Let B = %2` (note that the % character
is serving the purpose of the 5 character in our earlier example). We define f = n −m. Then the generalized
structured alignment gadget would produce strings:

AGi(Xi) = Af−i ◦A ◦Xi[1] ◦B ◦A ◦Xi[2] ◦B ◦ . . . ◦A ◦Xi[n] ◦B ◦Af−i(6.28)

AGy(Y ) = Af−k ◦A ◦ Y [1] ◦B ◦A ◦ Y [2] ◦B ◦ . . . ◦A ◦ Ym ◦B ◦Af−k(6.29)

We also want gadgets to be a selector around the alignment gadget. We add a new character @. We will leave
D unset for now. We define our SAG gadgets:

SAGi(Xi) = @D−1AGi(Xi)

SAGy(Y ) = AGy(Y )@D−1.

We will now prove that these work as perfect alignment gadgets. This setup requires that we are trying to
detect if there is a perfect alignment in which all strings match as much as they can.
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Theorem 6.3. We are given as input k lists of strings X1, . . . , Xk−1, Y . Where |Xi| = n, |Y | = m, and m < n.
Furthermore all strings S ∈ Xi and S′ ∈ Y have length |S| = |S′| = `.

Additionally, given any set of k strings Si ∈ Xi and Sy ∈ Y the LCS distance is either z or z + 1 for some
constant z.

Let Λ be a perfect alignment which is a list of m k-tuples: (i1,1, i1,2, . . . , i1,k). Where ij,h + 1 = ij+1,h.
Then, if there is a perfect alignment Λ in which there are exactly m k-tuples such that

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D,

if all perfect alignments have less than m k-tuples with a LCS of z + 1 then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

These strings use an additional alphabet of size O(k). The total length of strings is O(`n). The value of is
D = 2`(2m+ (k − 1)n) + (z + 1)m.

Proof. In the SAG gadgets note that if we match any @ character we have a maximum LCS of D − 1, and we
can always achieve this. If we match any characters from AGi, then we can match no @ symbols. Thus, what
remains to be proven is that if there is a perfect alignment Λ in which there are m k-tuples such that if we have m
matches where

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) = D,

otherwise

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) ≤ D − 1.

Recall D = 2`(2m+ (k − 1)n) + (z + 1)m. Now we have three cases to argue.
Case 1 [There are m “good” k-tuples, lower bound]: Consider aligning the strings in the perfect

alignment Λ which has m k-tuples of strings which have a LCS of z + 1. Now, we can match m copies of B. What
about $i symbols? There are 2`n copies of the $i symbol in AGi(Xi), they only appear in the copies of A (they
don’t appear in A−i). If we are matching up with a perfect alignment we can match all 2`n of these symbols.
They either line up with copies of A in other strings, or copies of A−j . Finally, there are 2`m copies of $y in
AGy(Y ). In a perfect alignment these symbols will all get matched to symbols that appear in copies of A in other
strings. So, in total

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), AGy(Y )) ≥ 2`m+ 2`(m+ (k − 1)n) + (z + 1)m ≥ D.

Case 2 [There are m “good” k-tuples, upper bound]: Across all % and $i symbols the maximum
number of matches is 2`(m+m+ n(k − 1)). What if we don’t match the strings in a perfect alignment manner?
There are two ways to do this. One is to skip matching some strings in Y (e.g. merging Y [j] and Y [j + 1] and
matching that to some single string somewhere else, or simply skipping over a string in Y ). If this happens we
miss out on the characters in at least one B. The advantage gleaned for every skipped string in Y is at most
|Y [j]| = `, but skipping out on B is worse, we lose 2` matches. The next case is skipping strings in Xi. That
is, matching Y [j] with Xi[j

′] but matching Y [j] with Xi[j
′ + 1 + ∆] for some ∆ ≥ 1. This looses at least 2` $i

characters. Any k-tuple of strings has, by assumption in the lemma, a k-LCS of at most z + 1. So, this causes the
k-LCS less than D. Finally, any time we match multiple strings in Xi with a single string in Y , Y [j], can increase
the match in Y [j] by at most `. However, we loose at least 2` symbols $i in Xi. This means the k-LCS of AGi
strings is at most D − `.
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Case 3 [There are less than m “good” k-tuples]: Now, if there are less than m matches with a k-LCS of
z + 1 then what is the maximum k-LCS? Similarly to case 2, if we skip as string in Y or merge Y [j] and Y [j + 1]
we loose at least one B. Because the B copies are in-between every pair of adjacent Y strings. If we matching
some symbol in each Y [j], then the maximum value if we match one string from each Xi to each string in Y is
D − 2` because we must skip some 2` characters $i, so the maximum match would be at most D − 2`. Finally, we
could merge multiple strings from Xi and match with a single string from Y , in this setting we could potentially
get D− 2`+ `. While we can potentially match all ` characters in Y , we must miss out on at least 2` $i characters.

So, we have proven the result that if we have m matches where

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) = D,

otherwise

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), AGy(Y )) ≤ D − 1.

Then, because of the @ symbols if there is a perfect alignment Λ in which there are exactly m k-tuples such
that

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D,

if all perfect alignments have less than m k-tuples then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

Proving our desired result.

Now, we will also want to use this gadget for regular alignment. In this case we will care about distinguishing
between a single k-tuple with high value versus no strings having high value.

Theorem 6.4. We are given as input k lists of strings X1, . . . , Xk−1, Y . Where |Xi| = n, |Y | = m, and m < n.
Furthermore all strings S ∈ Xi and S′ ∈ Y have length |S| = |S′| = `.

Additionally, given any set of k strings Si ∈ Xi and Sy ∈ Y the LCS distance is either z or z + 1 for some
constant z.

Finally define X̂i as a list that is simply two copies of Xi. That is X̂i[j] = X̂i[n+ j] = Xi[j].
In the first case there is exactly one k-tuple where

LCS(X1[i1,1], . . . , Xk−1[i1,k−1], Xy[i1,k]) = z + 1,

and there exists a perfect alignment that can align this k-tuple. That is n− i1,j ≥ m− i1,k and i1,j ≤ i1,k. In this
first case we want:

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D.

In the second case there are zero k-tuples that have an LCS of z + 1 then we want:

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

These strings use an additional alphabet of size O(k). The total length of strings is O(`n). The value of is
D = 2`(2m+ (k − 1)n) + zm+ 1.

Additionally, let c be the size of an SLP that gives a single variable for all (k − 1)n + m strings Xi[j]
and Y [j]. Then there is a SLP representation of all the strings AG1(X1), . . . , AGk−1(Xk−1), AGy(Y ) of size
O(c+ lg(`)k + lg(n) + kn+m).
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Proof. As in the above theorem: in the SAG gadgets note that if we match any @ character we have a maximum
LCS of D − 1, and we can always achieve this. If we match any characters from AGi, then we can match no @
symbols. Thus, what remains to be proven is that if there is an alignment with exactly one k-tuple such that

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) = D,

if there are no k-tuples with an LCS of z + 1 then:

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) ≤ D − 1.

Case 1 [There is 1 “good” k-tuple, lower bound]: Consider aligning the strings where the k-tuples of
strings which have a LCS of z + 1 line up. Now, we can match m copies of B. What about $i symbols? There are
2`n copies of the $i symbol in AGi(Xi), they only appear in the copies of A (they don’t appear in A−i). If we are
matching up with a perfect alignment we can match all 2`n of these symbols. They either line up with copies of A
in other strings, or copies of A−j . Finally, there are 2`m copies of $y in AGy(Y ). In a perfect alignment these
symbols will all get matched to symbols that appear in copies of A in other strings. So, in total

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), AGy(Y )) ≥ 2`m+ 2`(m+ (k − 1)n) + zm+ 1 = D.

Case 2 [There is 1 “good” k-tuple, upper bound]: If there is a singular “good” k-tuple we can not
re-arrange the strings to get a larger alignment. If we skip or merge any strings in Y we loose 2` symbols from B
at least, giving a maximum LCS of D − 2`. If we skip or merge strings in Xi then we loose at least 2` symbols
from $i characters. We gain at most ` matches, giving a maximum LCS if we merge or skip of D − `. Thus, the
largest LCS possible is D.

Case 3 [There are zero “good” k-tuples, upper bound]: In this case, if we follow a perfect alignment
we achieve an LCS of 2`m+ 2`(m+ (k− 1)n) + zm = D− 1. If we skip a string in Y we miss out on 2` characters.
If we match a single string in Y to multiple strings in Xi we loose at least 2` characters and match an additional
` characters at most for a total LCS of at most D − `. Finally, if we skip over strings in Xi, we miss out on 2`
characters $i, for no benefit. All k-tuples have a value of z regardless, so the maximum LCS is D − 2`.

From all these cases we can say that if there is exactly one “good” k-tuple, and it is reachable in a perfect
alignment then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D.

If there are no “good” k-tuples

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

For the compression, D < `n. So we add an additional lg(n) + lg(`). So if c is the size of an SLP that gives a
single variable for all (k − 1)n+m strings Xi[j] and Y [j]. Then there is a SLP representation of all the strings
AG1(X1), . . . , AGk−1(Xk−1), AGy(Y ) of size O(c+ lg(`)k + lg(n) + kn+m). Unchanged.

6.5.2 Zero and One Strings First we will use the gadgets for representing zeros and ones from [ABV15].

Lemma 6.1. (Zero and One Strings [ABV15]) There are strings CGi(0), CGi(1) such that:

k − LCS(CG1(b1), . . . , CGk(bk)) =

{
C if b1 · · · bk = 0

C + 1 if ∀b1 · · · bk = 1

for some positive integer C that is a function of k. Note this corresponds to our desired relationship from k-OV. If
we have one “zero string” then we get a small k-LCS, if there are all “one strings” then we get a larger k-LCS.
These strings use an alphabet of size O(1). If k is a constant the length of these strings is O(1).
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6.5.3 Interleave Gadget Now we will build the gadget that checks if our interleave representations represent
a yes instance of orthogonal vectors. For this next Lemma recall Definition 6.6, where we define VecSI`(L, vi).

Lemma 6.2. Let L be a list of n {0, 1} vectors each of dimension d = no(1). Let v1, . . . , vk be {0, 1} vectors each
of dimension d. Given the lists, We produce strings: IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk) such that

LCS(IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk)) = C

if there are (k − 1)` vectors in L such that are orthogonal with v1, . . . , vk. If there do not exist (k − 1)` vectors in
L that are orthogonal with v1, . . . , vk then

LCS(IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk)) = C − 1.

These strings have length at most O(n`d) and an alphabet of size O(k).
Additionally we can compress x strings IV Gi(L, `, v1), . . . , IV Gi(L, `, vx) or EIV G(v1), . . . , EIV G(vx) with

a total compression size of O(xd+ nd+ ` lg(n)).

Proof. Consider the k − 1 lists VecSI`(L, vi) for i ∈ [1, k − 1]. Additionally, let

V ecE(vk)[j] =

{
vk[h] if j = h · n`

0 else.

Where the total length is |V ecE(vk)| = n` · (d− 1) + 1.
Now create the lists

Xi[j] = CGi(VecSI`(L, vi)[j])

Y [j] = CGk(V ecE(vk)[j]).

Finally create the strings
IV Gi(L, `, v1) = SAGi(Xi)

EIV G(vk) = SAGy(Y ).

Now, note that by construction the k-LCS of coordinate gadgets CGi(·) is either some value z or z + 1.
Now, note that V ecE(vk) has zeros in every location except h · n` for h ∈ [1, d]. If we perfectly align V ecE(vk)

with the (k−1) vectors VecSI`(L, vi), then these locations correspond with a vector in each! That is, as mentioned
in Definition 6.6, the bits in locations j, j + n`, . . . , j + (d− 1)n` correspond to a vector w where w[h] = u[h]vi[h]
and u = List[h]. If there are (k − 1)` vectors in L that are orthogonal with v1, . . . , vk, then there should be a
perfect alignment of these vectors such that in every alignment location there is at least one zero. That is, an
alignment where every aligned k-tuple has a LCS of z + 1 as opposed to z.

Let c = |CGi(·)|. Let z + 1 be the value of δLCS(CG1(b1), . . . , CGk(bk)) if b1 · · · bk = 0.
So δLCS(CG1(b1), . . . , CGk(bk)) = z if b1 · · · bk = 0.

So, by Theorem 6.3, if there are (k − 1)` vectors in L that are orthogonal with v1, . . . , vk then

LCS(IV G1(L, `, v1), . . . , EIV G(vk)) = C = 2c(2((d− 1)n` + 1) + (k − 1)dn`) + (z + 1)((d− 1)n` + 1).

Otherwise,
LCS(IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk)) = C − 1.

Now we are going to argue that we can compress x strings IV Gi(L, `, v1), . . . , IV Gi(L, `, vx) or

EIV G(v1), . . . , EIV G(vx) with a total compression size of O(xd+ nd). First, note that Af−i can be represented
with an SLP of size O(lg(`) + lg(n)). Now the rest of our string is a series of entries that look like A · CGi(b) ·B.
We can create a SLP for both S0 = A · CGi(0) ·B and S1 = A · CGi(1) ·B with size O(lg(`)). We give the names
of S0, S1 to simplify the notation.

Next, if we are compressing x different EIV G(vi) gadgets, first we want to compress Sn
`−1

0 which appears
repeatedly. We can do this with size O(` lg(n)). Finally, we need to add the bits that correspond with each vector.
We can do this with size dx. This gives a total size of O(` lg(n) + dx).
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Finally, consider the case of compressing x different IV G(L, `, vj) gadgets. This part of the proof, where
interleaves are very compressible, borrows very heavily from [ABBK17]. For this we note first that VecSI`(L, vj)
has d sections of size n` that correspond to the d dimensions of the vectors. Any section that corresponds to a h
where vj [h] = 0 has n` copies of S0. This can be represented with size O(` lg(n)). When vj [h] = 1 the section
instead corresponds to ©j∈[1,n`]List[j][h]. By using Definition 6.4 we can re-write this as

SubList[L, k] =©j1∈[1,n]©j2∈[1,n]©j3∈[1,n] . . .©jk∈[1,n] L[j1][i] · L[j2][i] · · ·L[jk][i].

Now note that SubList[L, 1] is simply a string of n bits and thus has a compression of size n. Now note that
SubList[L, g] is simply a string formed by appending either SubList[L, g − 1] or ng−1 zeros. We can represent
ng−1 zeros with O(g lg(n)) variables. So, if SubList[L, g] has an SLP f(g) then SubList[L, g + 1] has an SLP
f(g + 1) = n+ f(g) + g lg(n). We have that f(1) = n, so f(k) = kn+ k2 lg(n) = O(n). Thus, the total size of
compressing x different IV G(L, `, vj) gadgets is O(` lg(n) + dx+ dn).

6.5.4 Putting it all Together Now that we have an interleave gadget, we want to put many of these gadgets
one after each other. However, we want to line up these gadgets. So, we put our interleave gadgets into the perfect
alignment gadget.

Lemma 6.3. Let a, b, and k be positive constant integers. Let L be a list of n vectors of length d = no(1).
There are k strings GOVi(a, b, k, L) such that:

LCS(GOV1(a, b, k, L), . . . , GOVk(a, b, k, L)) =

{
D if there is a (bk + a(k − 1))-OV in L

D − 1 else

The length of each of these strings is O(na+b+o(1)) with an alphabet of size O(k).

Proof. Unique (bk + a(k − 1))-OV is equivalent to the normal detection problem of (bk + a(k − 1))-OV, via a
randomized reduction [folklore][Vas18]. So, we can consider the case where a single (bk+ a(k− 1))-tuple of vectors
are orthogonal.

Let Lb = List(L)b as defined in Definition 6.4. Now we will use these to define lists of vectors. For all
i ∈ [1, k − 1] let

Xi[j] = IV Gi(L, a, Lb[j]),

Y [j] = EIV G(Lb[j]).

So all Xi and Y have length nb. The strings inside the gadgets is na+o(1). All k-tuples of these strings have LCS
values of either C or C − 1. We basically want to wrap an alignment gadget around these strings. However, we
want to allow any k-tuple to be compared so we will double all the Xi lists:

X̂i[j] = X̂i[j + nb] = Xi[j].

Now, for any k tuple j1, . . . , jk where ji ∈ [0, nb − 1] there is some offset ∆i ∈ [0, nb − 1] for all X̂i such that
jk = j1 + ∆i mod nb. So, we can align the X̂i strings with Y and get any k-tuple lined up. So, we can now build
our gadgets. For all i ∈ [1, k − 1]:

GOVi(a, b, k, L) = SAGi(X̂i)(6.30)

GOVk(a, b, k, L) = SAGy(Y )(6.31)

Now, if there is a single (bk + a(k − 1))-OV in our unique OV instance then there is a single k−tuple
X1[j1], . . . , Y [jk] of strings that have a LCS of C. Otherwise, they will all have a LCS of C − 1. By Theorem 6.4
we have that in the first case where an (bk + a(k − 1))-OV exists

LCS(GOV1(a, b, k, L), . . . , GOVk(a, b, k, L)) = D

otherwise
LCS(GOV1(a, b, k, L), . . . , GOVk(a, b, k, L)) = D − 1.
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Note that having only two possible LCS values hinges crucially on using a unique (bk + a(k − 1))-OV instance.
The total size of the alphabet is O(k) for the interleaves and another O(k) for the SAG gadgets, with a total

alphabet size of O(k).
The total length of the IV G gadgets is na+o(1). We have nb copies of these gadgets. Giving a total length of

na+b+o(1).

We will now bound the size of the compressed length of these gadgets.

Lemma 6.4. Let k be a constant integer and let d = no(1). Given the k strings GOVi(a, b, k, L) defined in
Lemma 6.3 the size of the compression is O(nb+o(1) + n1+o(1)).

Proof. We will start by describing the compression size of CGi(0), CGi(1). These strings have length O(1), thus
the total size of the compression is at most O(1). There are 2k of these strings and k is a constant. So we can
have 2k variables, one for each string and still the total size of the compression will be O(1).

Next, we need to analyze the size of the compression of the knb interleave gadgets IV Gi(L, `, vi). These
include the zero and one bit representations, and then are wrapped in a perfect alignment gadget. By Lemma 6.2
we have that the total size of the compression of these strings is O(kd(n+nb)). Because we have nb distinct copies
of vi we are generating the IV G strings with, so the x of the lemma is na in our case. Note that kd = no(1). So
the total size of these compressions is O(n1+o(1) + nb+o(1))

Next, we need to analyze the size of the compression of the entire string. We use the compression of the
interleave gadgets and the coordinate gadgets. In addition to this we are wrapping our interleave gadgets in an
alignment gadget (from Lemma 6.4). This adds an additional O(lg(n) + nb) variables to the SLP.

This gives an SLP of total size of O(nb+o(1) + n1+o(1)).

Now we will now combine the previous lemmas to give the hardness of k-LCS with compression.

Reminder of Theorem 1.1. If the k′-OV hypothesis is true for all constants k′, then for any constant ε ∈ (0, 1]

grammar-compressed k-LCS requires
(
Mk−1m

)1−o(1)
time when the alphabet size is |Σ| = Θ(k) and m = M ε±o(1).

Here, M denotes the total length of the k input strings and m is their total compressed size.

Proof. Use the gadgets from Lemma 6.3. Call the strings S1, . . . , Sk Consider positive integers a and b.
These have an alphabet of size O(k) and length M = O(na+b+o(1)) by Lemma 6.3. These have a compression

of total size m = O(nb+o(1) + n1+o(1)) by Lemma 6.4.
The size of the alphabet of the reduction is O(k), so if the alphabet is allowed to be size Θ(k), then this lower

bound applies.
So Mk−1m = O(n(k−1)a+kb+o(1)). If (bk + a(k − 1))-OV requires nbk+a(k−1)−o(1) time, then this corresponds

to a lower bound of
(
Mk−1m

)1−o(1)
for SLP compressed k−LCS.

Consider a contradiction to our theorem statement. There would be an algorithm running in (Mk−1m)1−γ

time to solve grammar compressed k-LCS when m = M ε±o(1) and ε ∈ (0, 1]. In the easiest case we can pick an a, b
such that b/(a+ b) = ε, in this case we are done. For irrational ε we need to approximate and then pad the strings.
Choose an a and b such that ε ≤ b/(a+ b) < ε(1 + γ/2). Such a, b exist that are in O( 1

εγ ). We add a new character

3. Let S′i = Si3
x, where we will set x ∈ [M,M2] later. Note that LCS(S′1, . . . , S

′
k) = LCS(S1, . . . , Sk) + x. Note

that the compression of these strings is m′ = m + lg(x) = Θ(m) where as the length is M ′ = M + x = Θ(x).
Choose x = m1/ε±o(1) = M b/(a+b)·1/ε. So now m′ = M ′1/ε±o(1). Note that 1 ≤ b/(a+ b) · 1/ε ≤ (1 + γ/2). Now
consider running the claimed fast algorithm on our new S′1, . . . , S

′
k instance. The running time is

(M ′(k−1)m′)1−γ = O((M (1+γ/2)(k−1)m)1−γ−o(1)).

This running time can be simplified to O(M (k−1)m)(1+γ/2)(1−γ−o(1)). Note that (1 + γ/2)(1 − γ − o(1)) is less
than 1− o(1). This algorithm violates the lower bound for the original S1, . . . , Sk instance. This is a contradiction.

So any algorithm running in (Mk−1m)1−γ time to solve grammar compressed k-LCS when m = M ε±o(1) and
ε ∈ (0, 1] violates k′-OV for some k′ that depends on ε, γ. This implies our theorem statement.
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6.6 Easy Edit Distance Lower Bounds from LCS In this section we will prove that k-median edit distance
is hard from k′-LCS. We take a k′-LCS instance and add various numbers of empty strings. This pushes the
k-median edit distance problem towards deletions. So, we increase the number of strings, but we don’t increase
the total uncompressed or compressed length of the input.

Nicolas and Rivals show NP-hardness for k-edit distance through k′-LCS for large k and k′ [NR05]. We take
inspiration from their reduction to build our own, removing some of their restrictions, and making it fine-grained
efficient. We then use the hardness results we have for k′-LCS to get lower bounds for k-edit distance. We will be
focusing on a version of edit distance where the strings are allowed to be of very different sizes. We will give an
explicit definition now.

Definition 6.9. Given k strings S1, . . . , Sk of lengths M1,M2, . . . ,Mk the k-edit distance (or k-median edit
distance) of those strings is the minimum sum across all strings of edits needed to make all strings equal some new
string S′. The allowed edits are deleting a character, adding a character and replacing a character (Levenshtein
distance).

More formally: Recall that δE(Si, S
′) denotes the edit distance of Si and S′. Recall that the k-median distance

is:

δE(S1, S2, . . . , Sk) = min
S′∈All Strings

 ∑
i=[1,k]

δE(Si, S
′)

 .

We can use inspiration from [NR05] to get lower bounds for the center version of this problem as well. Let us
remind the definition of k-center edit distance problem.

Definition 6.10. Given k strings S1, . . . , Sk of lengths M1,M2, . . . ,Mk. We define the k-center edit distance of
those strings is the minimum of the maximum of the distances of those strings to a string S′. The allowed edits
are deleting a character, adding a character and replacing a character (Levenshtein distance).

More formally: Let δE(Si, S
′) be the edit distance of Si and S′. Now the k-center distance is:

δCE(S1, S2, . . . , Sk) = min
S′∈All Strings

(
max
i=[1,k]

δE(Si, S
′)

)
.

6.7 Median Edit Distance

Theorem 6.5. We are given a k-LCS instance with strings S1, . . . , Sk all of length M . Let the k-LCS of these
strings be denoted by LCS(S1, . . . , Sk). The (2k − 1)-median edit distance on S1 through Sk and k − 1 copies of
the empty string γ is related to the k-LCS of S1 through Sk:

δE(S1, . . . , Sk, γ, . . . , γ) = Mk − LCS(S1, . . . , Sk).

Proof. First, let us prove that δE(S1, . . . , Sk, γ, . . . , γ) ≤ Mk − LCS(S1, . . . , Sk). Let T be the target string of
LCS(S1, . . . , Sk) = |T |. Then, the sum of edit distances to T is k(n− |T |) + (k − 1)|T | = kn− |T |.

Second, let us prove that δE(S1, . . . , Sk, γ, . . . , γ) ≥Mk− LCS(S1, . . . , Sk). Let T ′ be a target string. Now let
dj , ij , bj be the number of deletions, insertions and substitutions to go from Sj to T ′. Let ej = dj + ij + bj be the
edit distance of Sj to T ′. Now note that ej ≥M − |T |+ 2ij + bj . Additionally, note that the distance from γ to
T ′ is |T ′|. So the total distance is

kM − k|T ′|+
k∑
j=1

2ij + bj + (k − 1)|T ′| = kM − |T ′|+
k∑
j=1

2ij + bj .

So, δE(S1, . . . , Sk, γ, . . . , γ) can only be less if |T ′| > |T |. Note, that
∑k
j=1 2ij + bj ≥ |T ′| − |T |. The target T is

the longest string to be achieved with only deletions. Any change from this T (notably added characters) must
involve at least one substitution or an insertion. So we can say that the total distance is

kM − |T ′|+
k∑
j=1

2ij + bj ≥ kM − |T ′|+ |T ′| − |T | = kM − |T |.
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So, δE(S1, . . . , Sk, γ, . . . , γ) ≥Mk − LCS(S1, . . . , Sk).
Thus, δE(S1, . . . , Sk, γ, . . . , γ) = Mk − LCS(S1, . . . , Sk).

Now that we have a tight relationship between the edit distance and LCS, we can use this to get a lower
bound from SETH through LCS.

Theorem 6.6. Given an instance of k-median edit distance on strings of lengths M1 ≤ M2 ≤ · · · ≤ Mk where
these strings can all be compressed into a SLP of size m. Then, an algorithm for k-median edit distance that runs
in ((M2 + 1) · · · (M2k−1 + 1) ·m)

1−ε
time for constant ε > 0 violates SETH.

Proof. We will use Theorem 1.1 and Theorem 6.5.
Say we are given an instance of k-LCS with strings S1, . . . , Sk of length M and a SLP compression of all

strings of size m. Then, by Theorem 6.5 we can solve this with an instance of (2k − 1)-median edit distance on k
strings S1, . . . , Sk, γ, . . . , γ. We can compress these k strings with a compression of size m′ = m+O(k) (we need
only compress the empty string in addition).

k-LCS requires (Mk−1m)1−o(1) if SETH is true. Note that for our chosen strings Mk−1 = M2 · · ·Mk. Now note
that our compression is of size m′ = O(m). The reduction takes constant time (simply append the empty string

and make a call to k-median edit distance). So k-median edit distance requires ((M2 + 1) · · · (M2k−1 + 1) ·m)
1−o(1)

time if SETH is true. We can re-state this as an algorithm running time ((M2 + 1) · · · (M2k−1 + 1) ·m)
1−ε

time
for constant ε > 0 violates SETH.

Next we will use similar ideas to show hardness for center edit distance.

6.8 Center Edit Distance Nicolas and Rivals present a very simple reduction from a specific version of
(k − 1)-LCS to k-Center Edit Distance. This reduction simply adds the empty string as the last string. The same
concept works here. We can distinguish between the case where a (k − 1)-LCS is greater than or equal to some
constant c. Because, if all the strings in the k-LCS are of length M adding a single empty string distinguishes
between the (k − 1)-LCS less than M/2 or greater than or equal to it. Why? Because, if the k-LCS at least M/2
then every string is M/2 deletions away from the target string and the new empty string is as well! Otherwise, if
the LCS is less than M/2, we are more than M/2 edits away provably. By adding characters to our (k − 1)−LCS
strings we can artificially increase the match (adding a large number of matching characters to each string),
or artificially decrease it (add a large number of not-matching characters). By doing this we can go from our
(k − 1)-LCS being c to our (k − 1)-LCS being M ′/2, for our new length of strings.

Lemma 6.5. Assume a k-LCS instance over k strings of length exactly M . If deciding whether the k-LCS distance
is equal to M/2 over an alphabet of size |Σ| can be done in T (M) time, then we can decide whether the k-LCS
distance is equal to C over an alphabet of size |Σ|+ k + 1 for any constant C in time O(T (M) + kM).

Proof. Let S1, . . . , Sk be an instance of k-LCS where we want to decide if the distance is exactly C. Let the k-LCS
be LCS(S1, . . . , Sk).

For integers a and b let
S′i = @aSi#

b
i .

That is, we append a @ symbols at the start and b #i symbols at the end of each string. The #i strings can not
be matched. The @ symbols can be trivially matched. So we have that |S′i| = M ′ = M + a+ b and

LCS(S′1, . . . , S
′
k) = LCS(S1, . . . , Sk) + a = C + a.

We simply want to choose values of a and b such that 2(C + a) = n+ a+ b. This simplifies to a = M + b− 2C. If
2C > M then b = 2C −M and a = 0. If 2C < M then b = 0 and a = M − 2C.

The length of these strings is M ′ = 2C or M ′ = 2M − 2C, both are less than 2M . So, in O(kM) time we
can produce new strings of length M ′ where determining if the k-LCS is exactly M ′/2 determines if the original
instance had distance exactly C.

Now we will show that k-center edit distance solves (k − 1)-LCS.
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Theorem 6.7. We are given a k-LCS instance with strings S1, . . . , Sk all of length M where k-LCS of these
strings is denoted by LCS(S1, . . . , Sk). The (k+ 1)-center edit distance of S1, . . . , Sk and emptystring γ and k-LCS
are related as follows.

δCE(S1, . . . , Sk, γ)

{
= M/2 if LCS(S1, . . . , Sk) ≥M/2,

> M/2 if LCS(S1, . . . , Sk) < M/2.

Proof. Consider first, what’s the length of a target string for δCE(S1, . . . , Sk, γ) = M/2. Call this target central
string T . If |T | > M/2 then the distance from γ to T is greater than M/2. If |T | < M/2 then the strings Si must
have more than M/2 deletions, giving a distance greater than M/2. So, to hit M/2 the target string must have
length M/2 exactly.

Next note that for the empty string to reach length M/2 it must simply have M/2 insertions. For any of the
Si strings to go down to M/2 they must simply have M/2 deletions.

Note that LCS(S1, . . . , Sk) is defined as M minus the number of deletions needed in each string to reach the
minimal target. Thus, with this addition of an empty string

δCE(S1, . . . , Sk, γ)

{
= M/2 if LCS(S1, . . . , Sk) ≥M/2

> M/2 if LCS(S1, . . . , Sk) < M/2
.

Now we will apply the above Lemma 6.5 and Theorem 6.7 to get a k-center edit distance lower bound from
SETH.

Reminder of Theorem 6.1. Given an instance of k-center edit distance on strings of lengths M1 ≤M2 ≤ · · · ≤
Mk where these strings can all be compressed into a SLP of size m, then, an algorithm for k-center edit distance
that runs in time ((M2 + 1) · · · (Mk + 1) ·m)

1−ε
time for constant ε > 0 violates SETH.

Proof. We will use Theorem 1.1, Lemma 6.5 and Theorem 6.7.
Say we are given an instance of k-LCS with strings S1, . . . , Sk of length M and an SLP compression of all

strings of size m. Determining if the k−LCS is some integer C requires (Mk−1m)1−o(1) time if SETH is true by
Theorem 1.1.

Then Lemma 6.5 simply appends at most M symbols @ or #i to each string making a new problem S′1, . . . , S
′
k

of length M ′. Note that the size of the compression is now m′ = m+O(k lg(M)). Now determining if the k−LCS

is M ′/2 requires
(
(M ′)k−1m′

)1−o(1)
if SETH is true.

Now we will apply Theorem 6.7. We can produce an instance of (k + 1)-center edit distance that has strings
S′1, . . . , S

′
k, γ that distinguishes between the k-LCS of S′1, . . . , S

′
k being M ′/2 or not. Now note that Mi = |S′i| and

Mk+1 = 0. So (M2 + 1) · · · (Mk+1 + 1) = Θ((M ′)k−1). The compression of this empty string means that the new
compression has size m′′ = m′ +O(1) = m+O(k lg(M)).

We can run this a second time where we add two characters to each string: S′i = Si%i%i. These characters
are unmatchable. Also, if the LCS used to be at least M ′/2 + 1 it will still be at least half the length of the
strings. So, we can distinguish the exact value. Similarly, the compression of these strings is of size at most
m′′ +O(k) = m′′ +O(1).

So, we get that an algorithm for (k+1)-median edit distance that runs in time ((M2 + 1) · · · (Mk+1 + 1) ·m)
1−ε

time for constant ε > 0 violates SETH.

6.9 Edit Distance Lower Bounds from SETH In this section we show a better lower bound for k-edit-
distance by reducing from SETH directly. A recent paper has given Mk−o(1) lower bounds for Edit Distance from
SETH where M is the length of the strings [HBGT20]. In this section we show a Mk−1−o(1)m lower bound for
compressed k-edit-distance where m is the size of the SLP describing the strings. Our reduction uses the ideas
from the SETH lower bound for k-edit-distance to achieve this. We will use the same ideas and list structures
that we used in the k-LCS lower bound. We use many of the same notions of gadgets, however, to distinguish
between them, we add ED to the end of the name of the gadgets (for Edit Distance). Note that the structure of
this proof mirror almost exactly the k-LCS lower bound. However, due to the different distance measures we need
to generate different gadgets.
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The main takeaway of this section is that in order to build an interleave gadget for edit distance we need to
generate a selector gadget that has one value if all values match, and another if not all values match.

The primary difficulty in generalizing this lower bound comes from the variable costs of partial matches. That
is, if we have the edit distance of δE(a, a, a, a, b) = 1, where as δE(a, a, b, b, c) = 3. By contrast, the LCS of both is
LCS(a, a, a, a, b) = LCS(a, a, b, b, c) = 0. So, the overall structure needs to account for this in some way. We want
to re-create a perfect alignment gadget, but for Edit-Distance. This will give us two results. First we generalize the
2-LCS lower bound into a 2-edit distance lower bound, answering an explicit open problem given by [ABBK17].

We will use the pre-existing coordinate gadgets and alignment gadgets from [HBGT20]. So, we have two
primary tasks. We need to generate and prove the correctness of perfect alignment gadgets. Additionally, we need
to analyze the size of the compression of both our gadgets and the [HBGT20] gadgets.

6.10 Selection Gadgets We want an additional gadget. A selector gadget. These allow us to say either strings
A1, . . . , Ak are compared or strings B1, . . . , Bk are compared but not both. We will use a version that works for
single characters.

Lemma 6.6. There exist single character selection gadgets SCSGi(·) such that the length is polynomial in k and
they add a single character to the alphabet. The k-edit distance of k SCSGi(ci) strings is either some constant Q
if all characters match or Q+ v (where v is a positive integer) if one character does not match.

Proof. First let us define the gadget in terms of two free variables we will set later, a and b:

SCSGi(c) = #ibca#(k−1−i)b

Now note that if we match the characters c together we must fail to match many # characters. Specifically
these induce an edit distance of: {

bk2/4 if k is even

b(k2 − 1)/4 if k is odd

Now note that if we instead match the # characters then we have an edit distance of ak, as we have to delete
the characters input to the gadget.

Also note that if we match the characters c and one or more symbols are off the edit distance will be at least:{
bk2/4 + a if k is even

b(k2 − 1)/4 + a if k is odd

So if we can choose an a and b such that:{
bk2/4 < ak ≤ bk2/4 + a if k is even

b(k2 − 1)/4 < ak ≤ b(k2 − 1)/4 + a if k is odd

then, if all characters match we get an edit distance of bk2/4, otherwise, we get an edit distance of ak.

Next we will note the existence of coordinate gadgets from previous work. Then we will combine the coordinate
gadgets with our selector gadgets to make interleave gadgets.

6.11 Coordinate Gadgets We will use the coordinate gadgets from the [HBGT20] in our reduction.

Lemma 6.7. (Coordinate Gadget Lemma From [HBGT20]) Let b1, . . . , bk be in {0, 1}. Let C− = 2(k−1)2

and let C+ = C− + k − 1 = (2k − 1)(k − 1). Then,

δE(CGED1(b1), . . . , CGEDk(bk)) =

{
C− if b1 · · · bk = 0

C+ otherwise

We will use these inside our interleave vector gadgets.
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6.12 Interleave Vector Gadget We are given a (a(k − 1) + bk)-OV with a list of n vectors each of length d.
We want to take every vector vj = List(L)b[j] for j ∈ [0, nb] and combine them with the interleave representation
of a lists. Recall that in Definition 6.6 we define VecSIa(L, vj) as the explicit distribution of the interleave
representation of a lists mixed with a single vector. So, we want to have k − 1 strings that hold representations
of VecSIa(L, vj) for all j ∈ [0, nb]. Finally, we need one string that is full of representations of vectors vj for all
j ∈ [0, nb], padded with many zeros. If we do this and we can force a perfect alignment of these gadgets. We will
use an altered version of the sliding pyramids from previous work [HBGT20] (see Figure 1).

Lemma 6.8. Treat k, ` as constants. We are given as input a list L of n vectors each of length d. Where d = no(1).
Let v1, . . . , vk be {0, 1} vectors each of dimension d. Then there are gadgets IED′i(L, vi) and EED′(vk) such that:

δE(IED′1(L, `, v1), . . . , IED′k−1(L, `, vk−1), EED′(vk)) = C

if there are (k − 1)` vectors in L such that are orthogonal with v1, . . . , vk. If there do not exist (k − 1)` vectors in
L that are orthogonal with v1, . . . , vk then

δE(IED′1(L, `, v1), . . . , IED′k−1(L, `, vk−1), EED′(vk)) ≥ C + 1.

Additionally we can compress x strings IED′i(L, `, v1), . . . , IED′i(L, `, vx)
or EED′(v1), . . . , EED′(vx) with a total compression size of O(xd+ nd+ lg(n)).

Proof. As in the k-LCS Lemma 6.2 consider the k − 1 lists VecSI`(L, vi) for i ∈ [1, k − 1]. Additionally, let

V ecE(vk)[j] =

{
vk[h] if j = h · n`

0 else.

We will build our gadgets IED’ and EED’ from these lists. Every entry in these lists is either a zero or a one. We
want to force a prefect alignment and check orthogonality of the perfect alignment. That is, we want to hit one
value if there exists a ∆1, . . . ,∆k−1 such that

n`(d−1)+1∑
j=0

V ecE(vk)[j] ·VecSI`(L, v1)[j + ∆1] · · ·VecSI`(L, vk−1)[j + ∆k−1] = 0.

To do this we will use the very convenient coordinate gadgets, but alter them with a selector. We want the
selector gadget to force an alignment of the true correct values. We add a new character 2, this character is just
there to be matched in these gadgets. We add another new character 3, which encourages lining up coordinate
gadgets. We will set x = 100|CGEDi(bi)|. We want to have enough copies of the SCSG gadgets that lining
up real gadgets with each-other is optimal. We set y = 100x|SCSGi(2)|, we want enough copies of 3 to force
coordinate alignments to be optimal. Finally, our updated coordinate gadgets are below

CGED′i(bi) = 3y ◦ (SCSGi(2))x ◦ CGEDi(bi).

Next we need to generate “fake” coordinate gadgets to fill out space, so that any offset will be valid. We add
the characters %i for i ∈ [1, k]. The character %i will only appear in the ith string. This will guarantee these
characters are unmatched. A fake gadget will have a selector gadget wrapped around one of these unmatchable
characters and a coordinate gadget of a zero:

Fi = 3y ◦ (SCSGi(%i))
x ◦ CGEDi(0).

Let f = |VecSI`(L, vi)| − |V ecE(vk)| = n` − 1. Now, we will define the three parts of the strings. The section
of real gadgets, the section of fake gadgets, and the section of unmatchable characters. We add k new characters
#i, with the intention of making them unmatchable. Let z = |CGED′i(bi)| = |Fi|. See Figure 1 for a visual
depiction.

REALi =©j∈[1,dn`] (CGED′i(VecSI`(L, vi)[j])) when i ∈ [1, k − 1]

REALk =©j∈[1,n`(d−1)+1] (CGED′k(V ecE(vk)[j]))

FAKEi = F
f(k+1−i)
i

UNMAi = #
(k+i+1)zf
i .

Copyright © 2022
Copyright for this paper is retained by authors2904

D
ow

nl
oa

de
d 

01
/2

6/
22

 to
 7

0.
95

.8
1.

18
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Now that we have defined these useful parts we can define the overall gadgets:

IED′i(L, `, vi) = UNMAi ◦ FAKEi ◦REALi ◦ FAKEi ◦ UNMAi

EED′(vk) = UNMAk ◦ FAKEk ◦REALk ◦ FAKEk ◦ UNMAk

Now let us consider what happens if there are (k − 1)` vectors that are orthogonal to v1, . . . , vk then we want
to compute the edit distance. Note that all characters in UNMAi will either be deleted or substituted which has
an edit distance of one per character. This gives a total edit distance cost of zfk(k+ 5)/2. Let pi = δE(F1, . . . , Fi).
Now, on any valid alignment we have 2f fake gadgets completely unmatched, 2f fake gadgets matched with one
other fake gadget, 2f fake gadgets matched with two other fake gadgets, etc. Until we get to (k − 1) fake gadgets
matched together at which point we have 3f of these. When the fake gadgets are matched with each other they
are also “matched” with the unmatchable characters. Those characters will simply substitute/delete to equal the
output string. We have enough unmatchable characters that their length is longer than the overhanging fake
characters. So we can be assured no insertions will need to happen. So the edit distance contribution of these is

fpk−1 +

k−1∑
i=1

2fpi.

Now, we have 2f fake gadgets which line up with a mix of fake and real gadgets. Each of these k tuples of lined
up gadgets have a contribution of x(Q+ v) from their SCSG gadgets, and the CGED gadgets contribute C−

edit distance (the 3 symbols match perfectly and thus have no contribution to the edit distance). So these give a
contribution of 2f(x(Q+ v) +C−). Finally, we have M = (d− 1)n` + 1 real gadgets which line up with other real
gadgets and these contribute xQ+ C− edit distance each. So our total edit distance is

C = zfk(k + 5)/2 + fpk−1 +

k−1∑
i=1

2fpi + 2f(x(Q+ v) + C−) +M(xQ+ C−).

What happens if we don’t have a set of (k − 1)` vectors which are orthogonal to v1, . . . , vk? If we similarly
line up gadgets in a valid way, as above, then we have at least one of the real k-tuples of CGED′ gadgets where
the internal CGED gadgets contribute C+, increasing the above cost by C+ −C−. What if we instead don’t do a
valid alignment? If we skip aligning a coordinate gadget we skip some 3y symbols, these then cost an additional y
in the edit distance. If we instead align some of the M real gadgets of string k to fake gadgets we miss out on
matches of the SCSG gadgets, costing xv in the edit distance. So if there is no set of (k − 1)` vectors which are
orthogonal to v1, . . . , vk then the edit distance is higher than C.

First, we can generate the SLP for FAKEi and UNMAi. The size of Fi and %i are both O(1) (assuming
k is a constant). So, we simply need to handle many repetitions. This requires an SLP of size lg(f(k + 1− i))
and one of size lg((i + 1)zf) for each i ∈ [1, k]. Luckily for us, in total this SLP will have size O(` lg(n)). We
additionally need to represent the various values for REALi. First note that CGED′i gadgets can be represented
with size O(1) SLPs (when k is constant). For REALk this is easy from this point on. There are long strings of
zero gadgets with only d instances of non zeros. The total representation is O(d+ ` lg(n)). So we just need REALi
for i ∈ [1, k − 1]. Now note that we can use the same structure we used in the k-LCS SLP for these interleave
gadgets. We can build the structures for different values of `.

For convenience let REAL`i be the real gadget for IED′i(L, `, vi). Now note that REAL1
i has an SLP of size

O(dn) trivially, it only has length O(dn) in the first place. Now consider separating out the parts that correspond
to each of the d dimensions of the vector. Next note that we can form these d parts of REALj+1

i by concatenating

n instances of the parts of either REALji or nj zero coordinate gadgets. So, given an SLP for REALji we can

create an SLP for REALj+1
i with an additional size of n+ j lg(n). This gives a total size of O(`2 lg(n) + `dn), as

` is a constant we have have that the size is O(dn).
So the total size of the SLP will be O(dn+ dx+ lg(n)).

Notice that we can get away without having the same type of $i interleaved symbols that we used in k-LCS.
This is due to the cost of edits varying even when only some subset of the k strings match on a symbol. We can
guarantee we don’t skip characters because it will cost us in edits, even if those characters could only be matched
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up to one other string. However, we aren’t quite done. We want to wrap this so that the value is either a match or
one higher than a match. We don’t want to have the final interleave gadgets give variable outputs depending on
how orthogonal vectors are. We want the same value no matter what.

Lemma 6.9. We are given as input a list L of n vectors each of length d, where d = no(1). Let ` be a constant.
Let v1, . . . , vk be {0, 1} vectors each of dimension d. Then there are gadgets IEDi(L, vi) and EED(vk) such that
for some constants D and w:

δE(IED1(L, `, v1), . . . , IEDk−1(L, `, vk−1), EED(vk)) = D

if there are (k − 1)` vectors in L such that are orthogonal with v1, . . . , vk. If there do not exist (k − 1)` vectors in
L that are orthogonal with v1, . . . , vk then

δE(IED1(L, `, v1), . . . , IEDk−1(L, `, vk−1), EED(vk)) = D + w.

Additionally we can compress x strings IEDi(L, `, v1), . . . , IEDi(L, `, vx)
or EED(v1), . . . , EED(vx) with a total compression size of O(xd+ nd+ x lg(n)).

The strings IED and EED have length n`+o(1).

Proof. Let u be an all zero vector of length d. Let v′i be the vector vi but with an added last index v′i[d+ 1] = 1
if i ∈ [1, k]. Let u′ be the all zeros vector except for an added last index u[d + 1] = 0. Let v∗k be the vector
vk but an added last index v∗k[d + 1] = 0. Now we add additional characters 5 and 4. We add copies where
p = 100|IED′i(L, `, v′i)| and q = 10p. Now we generate the following:

IEDi(L, `, vi) = 5q4pIED′i(L, `, v
′
i)4

p5q

EED(vk) = 5qEED′(v∗k)4pEED′(u′)5q.

Here we match up the 5 characters. Finally, we must match the 4q symbols. There will be q unmatched 4 symbols.
Finally, we will have |EED′(v∗k)| = |EED′(u′)| unmatched symbols no matter what. Now, how much comes
from matching the IED′ and EED′ gadgets? If there are (k − 1)` vectors are orthogonal to v1, . . . , vk then
the cost is C. If there aren’t then the cost of matching the symbols to EED′(u′) instead is C + C+ − C−. So,
D = C + q + |EED′(v∗k)|, and w = C+ − C−.

For the size of the SLP we are doubling the number of EED′ gadgets, and we are adding in the 5 and 4
symbols. So the total size should be O(2xd+ nd+ ` lg(n) + 7x(lg(p) + lg(q))). Given the size of p and q this gives:
O(xd+ nd+ x lg(n)).

For the length of the strings we have at most O(dn`) coordinate gadgets and the number of unmatached
symbols is O(dn`). Note that the size of coordinate gadgets is constant when k is constant and d = no(1). So the
total length of our generated strings IED and EED is O(n`+o(1)).

Now that we have generated interleave vector gadgets we will put multiple copies of them and align them. We
want to set this up using the same ‘sliding pyramid’ set up as we used for the interleave gadgets.

6.13 Aligning Interleave Vector Gadgets For aligning our gadgets we generalize the idea from [HBGT20]
for aligning gadgets. First, we create a fake list of vectors F that is n vectors of dimension d where every entry of
the vectors is 1. Then we create “fake” versions of the alignment and empty vector gadgets, build from F instead
of L. We concatenate the “real” IED′ and EED′ gadgets with many matchable symbols in between. We surround
these real gadgets with our “fake” gadgets. We also build a “pyramid” that allows the strings to have any valid
alignment of the real gadgets while having the same number of matches of the fake gadgets. Around these we
put an additional number of unmatchable characters (characters that are unique to each set). See Figure 1 for
a depiction. These fake gadgets allow for any choice of alignment of the real gadgets to have the same value of
matches outside of the k gadgets we are matching with the alignment.

We start by proving we can create strings such that k-edit distance can be used to detect (a(k− 1) + bk)-OV s.

Lemma 6.10. Let a, b, and k be positive constant integers. Let L be a list of n length d vectors, where d = no(1).
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Figure 1: A visual depiction of the structure of our alignment. This is using the ideas from [HBGT20]. The dark
blue section is a depiction are the real gadgets. The light-gray section are the “fake” gadgets. The white sections
are unmatchable characters (a distinct character in each string).

There are k strings EDOVi(a, b, k, L) such that:

δE(EDOV1(a, b, k, L), . . . , EDOVk(a, b, k, L))

{
≥ E if there is a (a(k − 1) + bk)-OV in L

≤ E − 1 else

The length of each of these strings is O(na+b+o(1)) with an alphabet of size O(k).

Proof. We are given as input a (a(k − 1) + bk)−OV instance. Say the list is L. It contains n zero one vectors of
length d.

We define some new symbols. We add a new symbol $, we will use this to encourage matching in lined up
sections. We will also add %i symbols for i ∈ [1, k]. A symbol %i appears only in string i, thus it can not be
matched, it must be deleted or substituted.

Let us now define the real sections of these strings (the blue section at the center of the strings in Figure 1).
First we will define this for i ∈ [1, k − 1]:

REALi =©j∈[1,nb]IED
′(L,List(L)b[j], a)

and for the last string
REALk =©j∈[1,nb]EED

′(List(L)b[j]).

Next let us define the fake gadget part of these strings. First a single fake gadget is generated by plugging in
L̂F , a list of n all ones vectors all of length d. And the vector ûF , a length d vector of all ones. For i ∈ [1, k − 1]

Fi = IED′(L̂F , ûF , a)

and then for i = k
Fk = EED′(ûF ).

We can now define our fake gadgets, the gray parts of Figure 1:

FAKEi = F in
b

i

Now we will define the unmatched symbol sections. We will add new symbols &i for i ∈ [1, k]. Note that &i

appears only in string i.

UNMAi = &
|Fi|nb(2k−i)
i

Now let us define our gadgets for i ∈ [1, k − 1]:

EDOVi(a, b, k, L) = UNMAi ◦ FAKEi ◦REALi ◦ FAKEi ◦ UNMAi.

Now note that if there is a (a(k − 1) + bk)-OV this corresponds to a k-tuple of IED′1, . . . , IED
′
k−1, EED

′

gadgets in this construction having an edit distance of C (smaller than C + w). Additionally, note that if there is
no (a(k − 1) + bk)-OV then all k-tuple of IED′1, . . . , IED

′
k−1, EED

′ gadgets have an edit distance of C + w.
Now, if there is a (a(k − 1) + bk)-OV then, we can align the gadgets and give an upper bound on total cost.

First, all unmatched characters will cost 1 so they have total cost of |Fi|nb(2k2 − k(k + 1)/2). Next, consider the
fake gadgets that overhang and interact with fewer than k other gadgets. Let pi = δE(Fk, . . . , Fi). There are 2n
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fake gadgets that are aligned with i total gadgets and otherwise aligned with the unmatchable characters. The
cost for these is

∑
i∈[1,k] 2npi. Finally, there are 3n gadgets which line up with a full k other gadgets. If m of

these represent underlying orthogonal vectors then all m tuples will have a cost of D, the rest will have a cost of
D + w by Lemma 6.9. This means if there is at least one match then the cost is at most:

E = |Fi|nb(2k2 − k(k + 1)/2) +
∑
i∈[1,k]

2npi + 3n(D + w)− w.

What if there are no (a(k − 1) + bk)-OVs? Well, any valid alignment (where we skip no characters and
have the same size of overhangs) will cost at least E + w. If we don’t align gadgets then at some point we are
skipping 5q symbols, this could potentially allow us to improve our edit distance by 2|IED′i|+ p, however we set
q = 50p+ 500|IED′i| in Lemma 6.9. These skipped symbols increase the cost due to the unmatchable characters.
When we foreshorten our string by skipping these 5q symbols we sill need to pay the cost in the unmatchable
characters as deletions (instead of substitutions) but we also need to pay for the deletion of the 5q characters. So,
if there is no valid alignment our cost is at least E + w, in fact it is exactly E + w.

The length of the generated strings is O(nb|IED′i|) = O(nbnad). Because d = no(1) we can simplify this to
O(nb+a+o(1)).

Next, we show that the strings we produced compress well.

Lemma 6.11. Let k, a, b be constant integers. Let d = no(1). Given the k strings EDOVi(a, b, k, L) defined in
Lemma 6.3 the size of the compression is O(nb+o(1) + n1+o(1)).

Proof. We want to represent O(nb) instances of EED′ and IED′ gadgets. By Lemma 6.9 we have there is an
SLP to represent these of size O(nbd+ nd+ nba lg(n)). This can be simplified to nb+o(1)n1+o(1).

We additionally want to represent the unmatchable characters. These have a total length of nb+a+o(1), so
there is an SLP to represent these of size (b+ a+ o(1)) lg(n) = no(1).

So the total size of the SLP is nb+o(1)n1+o(1).

6.14 Putting it all Together Now that we have proven the above lemmas, we can prove our desired result.

Reminder of Theorem 6.2. If the k′-OV hypothesis is true for all constants k′, then for all constant ε ∈ (0, 1]

grammar-compressed k-median edit distance requires
(
Mk−1m

)1−o(1)
time when the alphabet size is |Σ| = Θ(k)

and m = M ε±o(1). Here, M and m denote the total uncompressed and compressed length of the k input strings
respectively.

Proof. We will use Lemma 6.10 and Lemma 6.11. Given an instance of (bk + a(k− 1))-OV we can produce strings
EDOV1(a, b, k, L), . . . , EDOVk(a, b, k, L) such that they have length M = na+b+o(1) and m = nb+o(1) + n1+o(1) =
nb+o(1) when b ≥ 1.

Our alphabet is of size |Σ| = O(k), so this lower bound applies as long as the size of the alphabet is Θ(k).
Now note that Mk−1m = n(k−1)a+(k−1)b+b = n(k−1)a+kb. So, an algorithm that runs in (Mk−1m)1−ε time

ε > 0 implies an algorithm for (bk + a(k − 1))-OV that violates our assumption. Thus, k-edit distance requires(
Mk−1m

)1−o(1)
time given the assumption on (bk + a(k − 1))-OV.

Now we consider a contradiction to our theorem statement. There would be an algorithm running in
(Mk−1m)1−γ time to solve grammar compressed k-median edit distance when m = M ε±o(1) and ε ∈ (0, 1]. In
the easiest case we can pick an a, b such that b/(a+ b) = ε, in this case we are done. For irrational ε we need to
approximate and then pad the strings. Choose an a and b such that ε ≤ b/(a+ b) < ε(1 + γ/2). Such a, b exist
that are in O( 1

εγ ). We add a new character 3 to our alphabet. Let S′i = Si3
x, where we will set x ∈ [M,M2] later.

Note that δE(S1, . . . , Sk) = δE(S′1, . . . , S
′
k). Note that the compression of these strings is m′ = m+ lg(x) = Θ(m)

where as the length is M ′ = M + x = Θ(x). Choose x = m1/ε±o(1) = M b/(a+b)·1/ε. So now m′ = M ′1/ε±o(1). Note
that 1 ≤ b/(a + b) · 1/ε ≤ (1 + γ/2). Now consider running the claimed fast algorithm on our new S′1, . . . , S

′
k

instance. The running time is

(M ′(k−1)m′)1−γ = O((M (1+γ/2)(k−1)m)1−γ−o(1)).
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This running time can be simplified to O(M (k−1)m)(1+γ/2)(1−γ−o(1)). Note that (1 + γ/2)(1 − γ − o(1)) is less
than 1− o(1). This algorithm violates the lower bound for the original S1, . . . , Sk instance. This is a contradiction.

So any algorithm running in (Mk−1m)1−γ time to solve grammar compressed k-median edit distance when
m = M ε±o(1) and ε ∈ (0, 1] violates k′-OV for some k′ that depends on ε, γ. This implies our theorem statement.

Finally we will apply this same lower bound to k-center edit distance using a reduction from [HBGT20].

6.15 k-Center Edit Distance In Section 3 of [HBGT20] they present a reduction from median k-edit distance
to k-center distance [HBGT20]. We will restate their reduction here.

Say we are given a k-median edit distance instance with k strings X1, . . . , Xk where |Xi| = N . Then,
as [HBGT20] suggest, construct the following strings:

Y1 = X1 $N X2 $N · · · $N Xk−1 $N Xk

Y2 = X2 $N X3 $N · · · $N Xk $N X1

...

Yk = Xk $N X1 $N · · · $N Xk−2 $N Xk−1

Claim of Section 3 in [HBGT20]: δCE(Y1, Y2, . . . , Yk) = δE(X1, X2, . . . , Xk).
As a quick intuition for this claim, we have to match the $N sections. First note that we can achieve this

bound by taking a string T which is one of the median edit distance minimizing strings of the Xi and creating a
center string for the Yi strings C = T $N T $N . . . $N T. Now note that the distance to this string from all Yi is
δE(X1, X2, . . . , Xk). Thus, δCE(Y1, Y2, . . . , Yk) ≤ δE(X1, X2, . . . , Xk). For the other side of the inequality note
that the center string C should have shape C = T1 $N T2 $N . . . $N Tk for some strings T1, . . . , Tk. Now note
that for all j ∑

i∈[1,k]

δE(Tj , Xi) ≥ δE(X1, X2, . . . , Xk).

Because, the k-median edit distance minimizes this sum over all possible strings, and Tj is simply an instantiation
of a string. Now note that ∑

j∈[1,k]

∑
i∈[1,k]

δE(Tj , Xi) ≥ kδE(X1, X2, . . . , Xk),

which implies ∑
j∈[1,k]

δE(Yj , C) ≥ kδE(X1, X2, . . . , Xk).

So, the max over all j of δE(Yj , C) ≥ δE(X1, X2, . . . , Xk). This is the definition of the center edit distance, so we
have shown both sides of the inequality.

Theorem 6.8. We are given k strings of length M with a SLP of size m. The k-center-edit-distance problem on

these strings requires
(
Mk−1m

)1−o(1)
time if SETH is true.

Proof. By Theorem 6.2, given k strings, X1, . . . , Xk, of length N which all compress to length n, k-edit distance

requires
(
Nk−1n

)1−o(1)
time if SETH is true.

We use the transformation of [HBGT20] and produce strings Y1, . . . , Yk. These strings have length M = kN
and an SLP of size m = kn+ k + lg(N). As a result Mk−1m = O

(
Nk−1(n+ lg(N))

)
. Thus, an algorithm that

runs in
(
Mk−1m

)1−ε
time for k-center edit distance for some constant ε > 0 implies a violation of SETH. Thus,

k-center edit distance requires
(
Mk−1m

)1−o(1)
time.
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7 Hamming Distance and Beyond

Given k equal-length strings X1, . . . , Xk with Xi ∈ ΣN
i , we define a string X =

⊗k
i=1Xi ∈ (×k

i=1
Σi)

N with
X[j] = (X1[j], . . . , Xk[j]) for j ∈ [1 . . N ]. In this section, we show that if each string Xi can be represented
using a straight-line program of size ni, then X can be represented using a straight-line program of size
O((

∏k
i=1 ni)

1/kN1−1/k). Next, we apply this construction for computing Hamming distance of two grammar-
compressed strings and propose several generalizations for k = O(1) grammar-compressed strings.

Proposition 7.1. Given k = O(1) straight-line programs Gi of sizes ni representing strings Xi of the same length

N > 0, a straight-line program G of size O((
∏k
i=1 ni)

1/kN1−1/k) representing X =
⊗k

i=1Xi can be constructed in

time O((
∏k
i=1 ni)

1/kN1−1/k).

Proof. We proceed based on a threshold τ ∈ [1 . . N ] to be fixed later. For each grammar Gi, we first use Lemma 3.3
to derive grammars G+

i and GP
i of size O(ni).

Next, we consider relevant tuples F = (F1, . . . , Fk) such that:

• each Fi is a fragment of exp(Ai) for a symbol Ai of G+
i satisfying |Ai| ≤ τ ,

• |F1| = · · · = |Fk|,
• there exists ip ∈ [1 . . k] such that Fip is a prefix of exp(Aip),
• there exists is ∈ [1 . . k] such that Fis is a suffix of exp(Ais).

The number of relevant tuples does not exceed τk−1 · k ·
∏k
i=1 ni, because each F is uniquely determined by the

choices of symbols Ai, the choice of ip, and the starting positions of Fi in exp(Ai) for i 6= ip. (The common length
|F1| = · · · = |Fk| is uniquely determined due to the constraint that at least one Fi is a suffix of exp(Ai).)

For each relevant tuple F, we add to G a symbol AF aiming at exp(AF) =
⊗k

i=1 Fi. The symbols AF are
ordered consistently with the lexicographic order of tuples (A1, . . . , Ak) based on the order of symbols Ai within
each grammar Gi.

If each Ai is a terminal of Gi, then Fi = exp(Ai) = Ai holds for each i, and we set AF = (A1, . . . , Ak) to be a
terminal of G. Otherwise, we set AF to be a non-terminal, and we need to specify rhs(AF). For this, let us fix an
arbitrary index j such that Aj is a non-terminal of Gj and Aj → A′jA

′′
j . We then consider three cases:

1. Fj is contained within the prefix exp(A′j) of exp(Aj). In this case, we set AF → AF′ , where F ′j is the
fragment of exp(A′j) corresponding to Fj and F ′i = Fi for i 6= j. Note that Fj cannot be a suffix of exp(Aj)
and, if Fj is a prefix of exp(Aj), then F ′j is a prefix of exp(A′j). Thus, F′ is a relevant tuple.

2. Fj is contained within the suffix exp(A′′j ) of exp(Aj). In this case, we set AF → AF′′ , where F ′′j is the
fragment of exp(A′′j ) corresponding to Fj and F ′′i = Fi for i 6= j. Note that Fj cannot be a prefix of exp(Aj)
and, if Fj is a suffix of exp(Aj), then F ′′j is a suffix of exp(A′′j ). Thus, F′′ is a relevant tuple.

3. Fj overlaps both the prefix exp(A′j) and the suffix exp(A′′j ) of exp(Aj). In this case, we set AF → AF′AF′′ ,
where F ′j is the suffix of exp(A′j) overlapping Fj , F

′′
j is the prefix of exp(A′′j ) overlapping Fj , and for every

j 6= i we have Fi = F ′iF
′′
i with |F ′i | = |F ′j | and |F ′′i | = |F ′′j |.

Note that F ′j is a suffix of exp(A′j) and F ′′j is a prefix of exp(A′′j ). Moreover, if Fj is a prefix of exp(Aj), then
F ′j is a prefix of exp(A′j), and if Fj is a suffix of exp(Aj), then F ′′j is a suffix of exp(A′′j ). Finally, for i 6= j, if
Fi is a prefix of exp(Ai), then F ′i is a prefix of exp(Ai), and if Fi is a suffix of exp(Ai), then F ′′i is a suffix of
exp(Ai). Thus, both F′ and F′′ are relevant tuples.

Next, for each i, we interpret the string Pi generated by GP
i as a decomposition of Xi into |Pi| = O(Nτ )

phrases. Each phrase is of the form exp(A) for a symbol A of G+
i satisfying |A| ≤ τ . Let Bi be the set of phrase

boundaries of this decomposition of Xi (i.e., Bi = {| exp(Pi[1 . . j])| : i ∈ [0 . . |Pi|]}), and let B =
⋃k
i=1Bi.

For each string Xi, let us construct another partition Xi = Xi,1 ◦ · · · ◦ Xi,r with phrase boundaries B (if
0 = b0 < · · · < br = N are the elements of B, then Xi,j = Xi(bj−1 . . bj ]). Since Bi ⊆ B, each phrase Xi,j can be
represented as a fragment of exp(Ai,j) for a symbol Ai,j of G+

i satisfying |Ai,j | ≤ τ . Moreover, for each j, there
exists ip ∈ [1 . . k] such that Xip,j is a prefix of exp(Aip,j) and is ∈ [1 . . k] such that Xis,j is a suffix of exp(Ais,j).
(This is because bj−1 ∈ Bip and bj ∈ Bis holds for some ip and is.) Hence, for each j ∈ [1 . . r], there exists a
relevant tuple Fj = (Xi,j)

k
i=1. Thus, it suffices to add to G a starting symbol S →©r

j=1AFj .

Due to the assumption that k = O(1), the total running time and the size |G| are both O(Nτ + τk−1
∏k
i=1 ni).

Optimizing for τ ∈ [1 . . N ], this becomes O(
∏k
i=1 ni + (

∏k
i=1 ni)

1/kN1−1/k). If the first term dominates, then∏k
i=1 ni > N . However, a trivial O(N)-size straight-line program representing X can be constructed in O(N) time
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by decompressing each string Xi. Thus, we can always construct a straight-line program representing X in time
O((
∏k
i=1 ni)

1/kN1−1/k).

Corollary 7.1. Given k = O(1) straight-line programs Gi of size ni representing strings Xi ∈ ΣN
i of

the same length N > 0 and a function δ :×k

i=1
Σi → R that can be evaluated in O(1) time, the value

δ(X1, . . . , Xk) :=
∑N
j=1 δ(X1[j], . . . , Xk[j]) can be computed in O((

∏k
i=1 ni)

1/kN1−1/k) time.

Proof. Let X =
⊗k

i=1Xi and let G be a straight-line program representing X constructed using Proposition 7.1.

For each symbol A of G, we compute a value δ(A) defined as
∑|A|
j=1 δ(exp(A)[j]). Note that if A = (A1, . . . , Ak)

is a non-terminal, then δ(A) = δ(A1, . . . , Ak) can be evaluated in O(1) time. Otherwise, if A → ©r
`=1B`, then

δ(A) =
∑r
`=1 δ(B`), so δ(A) can be computed in O(|rhs(A)|) time. Consequently, constructing G and computing

δ(A) for every symbol A of G costs O((
∏k
i=1 ni)

1/kN1−1/k) time in total. This allows retrieving δ(X1, . . . , Xk) as
the value δ(S) for the starting symbol S of G.

In particular, we can set δ = δH for k = 2 (defined for characters x, y with δH(x, y) = 0 if x = y and
δH(x, y) = 1 if x 6= y). Possible generalizations to an arbitrary number of strings include the following two
definitions of δ(x1, . . . , xk) for characters x1, . . . , xk:

• δ(x1, . . . , xk) = 0 if x1 = · · · = xk and δ(x1, . . . , xk) = 1 otherwise (the straightforward generalization).

• δ(x1, . . . , xk) = minki=1

∑k
j=1 δH(xi, xj) (the generalization corresponding to the median string problem).

In either case, Corollary 7.1 allows computing δ(X1, . . . , Xk) in O((
∏k
i=1 ni)

1/kN1−1/k) time.

8 Shift Distance: Lower Bound & Upper Bound

In this section we will explore a problem where we can get tight upper and lower bounds, but there is no efficiency
to be gained by having compressible strings in your input. The problem is k-Shift Distance. When k = 2 this
problem is (basically) equivalent to the Hamming distance substring problem mentioned in [ABBK17]. This
problem is a natural extension of pattern matching. This problem asks, given a set of k strings, how can we best
line them up to maximize the number of matched characters? So, the alignment that minimizes the Hamming
Distance between all the strings. This problem was studied in the average-case for k = 2 by [AIKH13]. They
called the problem “shift finding”. We give the natural generalization of this problem to k strings and present
upper bounds and lower bounds. We also present an approximation algorithm. We present these results in part
because they give an example of a k-string comparison problem where there is no efficiency to be gained from
having a compressible input.

The core of this section is showing tight upper and lower bounds for this problem of finding the ideal alignment
of strings that minimizes Hamming distance. We show that in cyclic shift there is no advantage to be gained from
compression. The upper and lower bounds are tight and unchanged even with compression. We are also able to
use FFT to get a fast algorithm for the problem of finding the best alignment with respect to Hamming distance.

We will now re-state the definition of k-Shift Distance, with more commentary.

Reminder of Definition k-Shift Distance (k-SD). We are given k strings as input: X1, . . . , Xk. These
strings have characters from the alphabet Σ. Each string has length N and compresses via SLP to a length of n.
For convenience of notation let Xj [i] when i /∈ [0, n− 1] refer to Xj [i

′] where i′ ∈ [0, n− 1] and i′ ≡ i mod n (so
we let indices “wrap around”).

We must return the best alignment of the k strings. The alignment where in the maximum number of locations
all strings have the same symbol. We will give a precise definition below. Let ∆̂ = max(∆1, . . . ,∆k−1). And let
[[·]] be an operator that turns True to a 1 and False to a 0.

k-SD(X1, . . . , Xk) = max
∆1,...,∆k−1∈[0,N−1]

(
N∑
i=1

[[
X1[i+ ∆1] = X2[i+ ∆2] = · · · = Xk−1[i+ ∆k−1] = Xk[i]

]])

So, we want the offsets such that the maximum number of characters are all shared between all k strings.

Copyright © 2022
Copyright for this paper is retained by authors2911

D
ow

nl
oa

de
d 

01
/2

6/
22

 to
 7

0.
95

.8
1.

18
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



We will also define the term of the offset score. Given strings X1, . . . , Xk and a particular set of deltas
∆1, . . . ,∆k−1 we will call the value:

N∑
i=1

[X1[i+ ∆1] = X2[i+ ∆2] = · · · = Xk−1[i+ ∆k−1] = Xk[i]]

the offset score of the strings X1, . . . , Xk and the deltas ∆1, . . . ,∆k−1.

8.1 The Algorithm We will use FFT to get a fast algorithm here. We start by showing how to do this when
k = 2.

Lemma 8.1. (From [ABBK17]) There is an O (|Σ|N lg (N |Σ|)) algorithm for 2-SD with an alphabet Σ
(k-SD when k = 2).

We can then generalize to k by making calls to 2-SD.

Theorem 8.1. There is an O(|Σ|Nk−1 lg(|Σ|N)) algorithm for k-Shift Distance.

Proof. Let our k input strings be: X1, . . . , Xk, each of length N .
We are going to reduce k-SD with alphabet Σ and strings of length N to 2-SD with alphabet Σ ∪ {@} and

strings of length N . First, we will try all Nk−2 possible offsets ∆2, . . . ,∆k−1. Now, for each of these we will
Create a new string Y which will be a “merge” of the strings X2, . . . , Xk. The string Y will have length N . The
ith bit of Y is:

Y [i] =

{
Xk[i] if [X2[i+ ∆2] = · · · = Xk−1[i+ ∆k−1] = Xk[i]]

@ else
.

If all the strings agree given our choice of offset we set it to the agreed character. Otherwise, we use the new
special character @ which does not appear in X1 (as @ is not in Σ). Note that we can produce Y in kN time, so
over all offsets we take Nk−1 time to produce the inputs X1, Y .

Now, we will make Nk−2 calls to 2-SD. Each call takes time (|Σ|+ 1)N lg(N(|Σ|+ 1)) time. Thus, we take
time O(|Σ|Nk−1 lg(N |Σ|)).

This gives a total time of O(|Σ|Nk−1 lg(N |Σ|)).

8.2 The Lower Bound We will now show that we can produce k strings of length N = na that compress
to length an such that an algorithm that runs faster than n(k−1)a−o(1) = Nk−1−o(1) violates SETH and the
(k − 1)a−OV hypothesis. This will give a tight lower bound. Additionally, it says that strings that compress from
length N to length N ε do not have faster algorithms than those that don’t compress.

To do this we will use the interleaving representation defined previously. Recall that we defined the interleaving
version as:

StringI`(L) =©d
i=1

(
©j1∈[1,n]...,j`∈[1,n]L[j1][i] · L[j2][i] · · · · · L[j`][i]

)
.

Recall that this is equivalent to

StringI`(L) =©i∈[1,d]©j∈[1,n`] List(L)[j][i].

Finally, recall that in StringI`(L) the vector ~v = List(L)[i] appears as bits i, i+ nk, . . . , i+ (d− 1)nk.

Theorem 8.2. Let a and k be constants. Let N be the input string length for k-SD.
If the (a(k − 1))−OV hypothesis holds then k-SD requires Nk−1−o(1) time even when the strings compress

down to length m = N1/a+o(1) with an alphabet of size O(1).

Proof. We take as input a (a(k − 1))-OV instance with (a(k − 1)) lists of n vectors each. Each vector has length d
and d = no(1). Recall that the (a(k − 1))-OV hypothesis states that (a(k − 1))-OV requires na(k−1)−o(1) time.

We will use four characters 0, 1,%,@, ∗1, . . . , ∗2k . The zero and ones will be used to signify the zeros and ones
of the OV instance. The @ and ∗i symbols will be used to force alignment in a way that is easy to prove. We
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note that one can almost certainly prove the same result with a smaller alphabet. However, allowing this larger
alphabet makes our proof much easier.

Given a (a(k − 1))-OV instance split the lists of vectors up into k − 1 groups each with a lists of vectors.
Call these groups of a lists L1, . . . , Lk−1. We are going to form strings X1, . . . , Xk−1 by slight alterations to
StringIa(L1), . . . ,StringIa(L1). The final string Xk will remain constant regardless of the input instance of OV.

Let X̂i = StringIa(Li) then i ∈ [1, k−1]. Let X̂k be a string of all zeros except in positions 0, na, . . . , (d−1)na.
Like the other strings we give a total length of dna for X̂k. Note that by choosing an offset for each string from
X̂k we are effectively choosing one vector from each list L1, . . . , Lk−1 to align with the ones in X̂k. We want to
design ways to right out the zeros and ones that simultaneously: (1) force alignment and (2) have the same value
if there is at least one zero and a lower match value if they are all ones. If we can do this, then the best alignment
will be picking the “most orthogonal” set of k − 1 vectors, which will let us find if any vectors are fully orthogonal.

We will now design h1,i and h0,i which will have the property that the offset score of hb1,1, hb2,2, . . . , hbk,k
with all deltas zero is 0 if all bi = 1 and is 1 otherwise. We will consider all strings in {0, 1}k. Let H be all 2k of
those strings in sorted order, with the all ones string last. Let H[j] be the jth string in H note that H[2k] is the
all ones string (we will one index this list). Now

hb,i[j] =


1 if H[j][i] = b and j 6= 2k

0 if i < k and the above does not apply

% else

.

So we get strings of length 2k. Note that hb,i for i ∈ [1, k − 1] uses only 0, 1 symbols, however, hb,k uses only 0,%
symbols. If we are aligning hb1,1, hb2,2, . . . , hbk,k we are simply counting locations where they are all 1. This only
occurs in the location that is associated with the string in H b1b2 · · · bk, if it is not the all ones string. So, the
offset score of hb1,1, hb2,2, . . . , hbk,k with all deltas zero is 0 if bi = 1 for all i and is 1 otherwise, as desired.

We will now design T1,i and T0,i that will force alignment. Let © represent concatenation:

Tb,i =©2k

j=0 ∗j hb,i[j].

Note that this wrapper is just adding special characters that force alignment of the bits in hb,i by making the only
way to match the ∗j characters also force an alignment of the hb,i[j] characters. Note that |Tb,i| = 2 · 2k = `. Note
that the offset score of Tb1,1, Tb2,2, . . . , Tbk,k with all deltas zero is 2k if bi = 1 for all i and is 1 + 2k.

Let S1,i be the representation of a 1 in string Xi. Let S0,i be the representation of a 0 in string Xi. We will set

S1,i = @`T1,i and S0,i = @`T0,i.

Note that this wrapper adds these @ characters which further enforce alignment. Note that the offset score of
Sb1,1, Sb2,2, . . . , Sbk,k with all deltas zero is 2k + ` if bi = 1 for all i and is 1 + 2k + ` otherwise.

Correctness Now, we want to claim that one of the best alignments of X1, . . . , Xk will have deltas that are
multiples of |Sb,i| = 2`. That is, the best alignment will align these representations of single bits. Consider if ∆i

mod 2` = f . If f 6= 0 mod 2` then the ∗j symbols can’t be aligned with those in Xk. Additionally, at most `− j
of the @ characters will be matched. Giving a maximum match of: `− j + 2k (even if every 0, 1, and % characters
were matched, which is of course unrealistic, we can’t match 0 characters as none appear in the Xk string). This is
worse than the worst alignments when ∆is are multiples of 2`.

So, the best alignment has all ∆i as multiples of 2`. Thus, the alignment of X1, . . . , Xk is an alignment of
|X̂i| Sb,i gadgets. Each gadget promises to return 2k + ` if bi = 1 for all i and is 1 + 2k + ` otherwise.

Now, note that given our construction of X̂1, . . . , X̂k, if we choose a set of deltas ∆i = 2`δi we are effectively
picking k − 1 vectors and comparing them because of how we structured X̂k. So, if there are an orthogonal k − 1
vectors which are orthogonal in our list representation (which corresponds to a(k − 1) vectors in the original OV
instance) then we get a score of: |X̂1|(1 + 2k + `). Otherwise, we get a score at least one less than that. This
shows our reduction will give the correct answer.

Time So with k strings of length na and a constant sized alphabet (|Σ| = O(2k)) we can solve (a(k+ 1))−OV.
Notably N = na+o(1). So an algorithm running in faster than Nk−1−o(1) time will violate the (a(k + 1))−OV
hypothesis. This fulfills the statement in the theorem.
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Compression Now we will argue that these strings are compress-able with SLP. We will mostly be using the
same structure as [ABBK17]. First we can build variables in our SLP for all of our base characters with O(2k)
variables. Next we can build @` with lg(`) = O(k) variables. Next we can build all Sb,i for all i and b with at
most O(k2k) variables. Next, we want to build our longer strings.

Now we will use the recursive structure of StringIa(L). Let

StringI`(L)[i] =©j1∈[1,n]...,j`∈[1,n]L[j1][i] · L[j2][i] · · · · · L[j`][i].

Note that
StringIa(L) =©d

i=1

(
StringIa(L)[i]

)
.

We are just pulling out the part related to the ith bit of every vector. Now note that

StringIa(L)[i] =©j∈[1,n]

{
StringIa−1(L)[i] if L[j][i] = 1

0(na−1) if L[j][i] = 0
.

Where 0(na−1) is na−1 zeros in a row.
Note that we can make SLP variables for all 0(ni) strings for i ∈ [1, a] with a lg(na) = a2 lg(n) variables. Next

note that given an SLP variable for StringIa−1(L)[i] we can add n variables and form StringIa(L)[i]. It takes n

variables to form StringI1(L)[i]. So, with an SLP with an+ a2 lg(n) variables we can represent StringIa(L)[i].
So, with an SLP with d(an+ a2 lg(n)) variables we can represent StringIa(L). To replace all zeros with S0,i and
all ones with S1,i requires an additional O(2k) variables.

So, we can compress all of our strings with O(d(n+ lg(n))) variables. Given our restrictions on d we can write
this as n1+o(1). So our compression has length m = n1+o(1). Our input to our k-SD instance is N = na+o(1). So
N1/a+o(1) = n1+ao(1) = n1+o(1). Fulfilling the statement of the theorem.

8.3 Approximation Algorithm Let the k-SD distance be k(N − k-SD(X1, . . . , Xk)). In other words, the
k-SD distance is the total number of unmatched characters.

Theorem 8.3. There is an O
(
|Σ|Nd(k−1)/`e lg(|Σ|N)

)
time algorithm to get an ` approximation of the k-Shift

Distance distance for any integer ` ≥ 2.

Proof. Partitions the k − 1 of the strings into ` groups G′1, . . . , G
′
` which each contain as close to (k − 1)/` strings

as possible, the maximum number of strings in each group is d(k−1)/elle. Now, take the final string, Sk and add it
to all the sets to make new sets G1, . . . , G`, now the maximum number of strings in each group is d(k− 1)/ell+ 1e.

On each of these partitions run the algorithm for k-Shift Distance. The time for this is
O
(
`|Σ|Nd(k−1)/`+1e−1 lg(|Σ|N)

)
and ` is a constant. Now, using the value of k-Shift Distance we can compute

the k-Shift Distance distance. Let the distances of the sets of strings in G1, . . . , G` be ∆1, . . . ,∆`. Now, note that
these call be framed as distances to the last string Xk. So, the distance of all these strings together is at most
∆1 + · · ·+ ∆` and is at least max(∆1, . . . ,∆`). Finally, note that

1 ≤ ∆1 + · · ·+ ∆`

max(∆1, . . . ,∆`)
≤ `.

As a result there is an approximation factor of ` and a running time O
(
|Σ|Nd(k−1)/`e lg(|Σ|N)

)
.

9 On High-Dimensional Generalizations of DIST Matrices

Many of the crucial properties of DIST matrices derived in, e.g., [Tis15] used for two-string algorithms rely
on the Monge property. For LCS, the Monge property is that given two strings X,Y and the alignment
graph GX,y then letting d(u, v) be the longest path from u to v, we have d(v0,i, v|X|,j) + d(v0,i−1, v|X|,j+1) ≤
d(v0,i−1, v|X|,j) + d(v0,i, v|X|,j+1). For example, in this paper we used the ability to take min-plus products of unit
Monge matrices efficiently, and our use of the SMAWK algorithm was enabled by the Monge property.

However, it appears no analogous property holds for even DIST “3-tensors”, the three-string generalization of
DIST matrices. Intuitively, this is because it is not possible to enforce that any path from v1 to v2 intersects any
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path from v3 to v4 for four distinct vertices v1, v2, v3, v4, unlike in the two-dimensional alignment graph. We will
use LCS as the metric for our examples here, but one can find similar examples for edit distance.

For example, let A[i1, i2, j1, j2] be the longest path length from v0,i1,i2 to vn1,j1,j2 in the three-dimensional
alignment graph of three strings. An analog of the Monge property in three dimensions might be:

A(i1, i2, j1, j2) +A(i1 − 1, i2, j1 + 1, j2) ≤ A(i1 − 1, i2, j1, j2) +A(i1, i2, j1 + 1, j2)

However, this does not seem true in general. Consider the following example, where there are two sets of
length 1 edges. The first (in blue) has ` such edges, and is contained entirely between “layer” i1 and j1 of the
DAG. The second (in red) has `+ 1 edges, however two of these edges are outside the part of the DAG between
(0, i1, i2) and (m, j1, j2).

1

`

`− 1

1

(m, j1 + 1, j2)

(m, j1, j2)

(0, i1 − 1, i2)

(0, i1, i2)

The two sets of length 1 edges are positioned such that one cannot use a “blue” and “red” edge in the
same path. Now, we have that A(i1 − 1, i2, j1 + 1, j2) = ` + 1 and all other terms in the above inequality are
`. So the above inequality would say 2` + 1 ≤ 2`, which is false. This can be generated by, e.g., the strings
X1 = aabbb,X2 = bbbaa,X3 = baabb; the LCS of the first two strings with X3[2 . . 4], X3[1 . . 4], X3[2 . . 5] is aa, but
the LCS of the first two strings with X3[1 . . 5] is bbb.

While one can find other generalizations and even weakened versions of the Monge property which this example
satisfies, for all the ones that we have considered there are three-string counterexamples that show they do not
hold in general.

For example, the unit Monge property also says that given a DIST matrix, if we subtract every row from the
next row and every column from the next column, we get a permutation matrix. In other words, each row and
column only differs in behavior from the previous row/column by 1 entry. However, for DIST 3-tensors, consider
the two-dimensional “slice” A for which A[i, j] gives the path length between e.g. (0, 0, i) and (|X1|, |X2|, j). By
looking at the DIST 3-tensors of even just three random strings of length roughly 100, we found that, e.g., for
some sampled strings, A had a row that could be expressed as a linear function, but the next row of A was a
piecewise linear function with six different pieces.

As another example, consider the following weaker “monotone” property: A is monotone if for any vector
b, letting m(i) = arg minj A[i, j] + b[i] and choosing the lowest value of j to break ties, m(i) is a monotonic
function of i. This admits a divide and conquer algorithm for computing minj A[i, j] + b[i] for all i in accesses to
A near-linear in the number of i (as opposed to the SMAWK algorithm using linear accesses), a primitive that is
useful in dynamic programming algorithms for two-string similarity. Informally, knowing arg minj A[i, j] lets us
rule out a constant fraction of the possibilities for arg minj A[i′, j] for i′ 6= i. The 3-dimensional generalization
of this primitive would be to compute arg mini1,i2 A[i1, i2, j1, j2] + B[i1, i2] given access to entries of the DIST
3-tensor A[i1, i2, j1, j2] = d(v0,i1,i2 , v|X1|,j1,j2), and a matrix B. Put more simply, the rows of this slice have far
less structural similarity to each other than the rows of a DIST matrix.

A weak generalization of the monotone property that would admit a similar divide and conquer algorithm
for this problem is: knowing i∗ = arg mini1,i2 A[i1, i2, j1, j2] + B[i1, i2] lets us eliminate possibilities for
arg mini1,i2 A[i1, i2, j

′
1, j
′
2] + B[i1, i2] for (j′1, j

′
2) that are in a given “direction” from i∗ if (j′1, j

′
2) is in a given

“direction” from (j1, j2). Here, by in a given direction, we mean e.g. j′1 ≤ j1 and j′2 ≤ j2, or any of the four
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possibilities given by reversing neither, one, or both of these inequalities. Unfortunately, even considering random
strings of length 10, we found counterexamples to each of the variants of this property given by choosing any pair
of directions to slot in to the definition.

10 Open Questions

We find many novel lower bounds and upper bounds in this paper. However, some of these are not tight. We give
some open problems below whose resolution we think would be particularly interesting.

• For solving k-edit distance or k-LCS on strings where k ≥ 3, we have a lower bound of Nk−1n where N is
the length of the strings and n is the size of the SLP. However, the best exact algorithms require O(Nk)
time. Can this gap be closed for any k ≥ 3? Can this gap be closed for all constant k?

• There are no tight lower bounds for approximating k-LCS and k-edit distance. Can we give a tight lower
bound?

• The lower bounds for k-center edit distance and the upper bounds do not match. Our lower bounds for
k-center edit distance are the same as those for k-median edit distance. However, k-center edit distance has
slower algorithms. For example in the uncompressed and exact case the k-center edit distance lower bounds
are Ω(Nk) [HBGT20] but the best algorithm requires Õ(N2k) time [NR05].

In general, the space of multiple string comparison seems under explored. We hope more work will happen
in the space of algorithms and lower bounds for multiple string comparison. Specifically if there are efficient
algorithms for the problem of comparing multiple strings with approximation for example, it will have significant
impacts for multiple sequence alignment in biology.
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