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Abstract

Real-world data often comes in compressed form. Analyzing compressed data directly (without first
decompressing it) can save space and time by orders of magnitude. In this work, we focus on fundamental
sequence comparison problems and try to quantify the gain in time complexity when the underlying data is
highly compressible. We consider grammar compression, which unifies many practically relevant compression
schemes such as the Lempel Ziv family, dictionary methods, and others. For two strings of total length NV
and total compressed size n, it is known that the edit dlstance and a longest common subsequence (LCS) can
be computed exactly in time O(nN), as opposed to O(N?) for the uncompressed setting. Many real-world
applications need to align multiple sequences simultaneously, and the fastest known exact algorithms for median
edit distance and LCS of k strings run in O(N*) time, whereas the one for center edit distance has a time
complexity of O(N?¥). This naturally raises the questlon if compression can help to reduce the running time
significantly for k > 3, perhaps to O(N NF/2pk %) or, more optimistically, to O(Nn*~1).!

Unfortunately, we show new lower bounds that rule out any improvement beyond Q(N k=1 n) time for any of
these problems assuming the Strong Exponential Time Hypothesis (SETH), where again N and n represent the
total length and the total compressed size, respectively. This answers an open question of Abboud, Backurs,
Bringmann, and Kiinnemann (FOCS’17).

In presence of such negative results, we ask if allowing approximation can help, and we show that
approximation and ComFressmn together can be surprisingly effective for both multiple and two strings.

We develop an O(N /2 k/2 -time FPTAS for the median edit distance of k sequences, leadlng to a saving
of nearly half the d1men51ons for highly-compressible sequences. In comparison, no O(N*= 1)) time PTAS is
known for the median edit distance problem in the uncompressed setting. We obtain an improvement from
O(N?*) to O(N*/ 2ok nk/2) for the center edit distance problem. For two strings, we get an O(‘N2 /343 time
FPTAS for both edit distance and LCS; note that this running time is o(N) whenever n < N/*. In contrast
for uncompressed strings, there is not even a subquadratic algorithm for LCS that has less than polynomlal
gap in the approximation factor. Building on the insight from our approximation algorithms, we also obtain
several new and improved results for many fundamental distance measures including the edit, Hamming, and
shift distances.

1 Introduction

With the information explosion, almost all real-world data comes in a compressed form. While compression
is primarily intended to save storage space and transmission bandwidth, processing compressed data directly
often provides an opportunity to reduce computation time and energy by several orders of magnitude. In this
work, we focus on sequential data such as natural-language texts, biological sequences (nucleic acid sequences,
including DNA, and amino acid sequences, including proteins), and computer codes. Sequential data often contains
highly repetitive pattern. Modern technology (e.g., high-throughput sequencing) has led to an astonishingly rapid
accumulation of such data, so much so that without proper data compression and algorithms over compressed
data, it is not possible to utilize the wealth of information in them [ , , , ].
Grammar compression represents strings as straight-line programs (SLPs), and provides a mathematically

elegant way to unify algorithm design principles for processing compressed data | ]. It is equivalent to many
well-known compression schemes up to logarithmic factors and moderate constants | , , | such as
the celebrated LZ7T7 | ] and RLBWT | ] schemes, and at least as strong as byte-pair encoding | 1,
Re-Pair | ], Sequitur | ], further members of the Lempel-Ziv family [ ) ], and many more
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popular schemes (the list keeps growing). Therefore, following the lead of a large body of previous work
(including | , , ]), we work with grammar-compressed data.

In this work, we ask whether fundamental sequence similarity measures can be computed faster for compressed
data. This research is motivated in part by the success of computing edit distance and longest common subsequence
(LCS) of two strings | ) ] much faster than the “decompress-and-solve” approach: If we let
N denote the total length and n denote the total compressed size of the input strings, then the edit distance
and the LCS length can be computed exactly in time O(nN) in contrast to O(N?) time for the uncompressed
setting. Therefore, for highly compressible sequences where, say, n = polylog N, the running time reduces to O(N).
Abboud, Backurs, Bringmann, and Kiinnemann | ] asked whether it is possible to improve upon O(nN),
noting that: “For example, an O(n?N°!) bound could lead to major real-world improvements.” In general, any
sublinear dependency on N would be preferable; unfortunately, | ] shows that G(N n) is essentially optimal
under the Strong Exponential Time Hypothesis (SETH).

There are many real-world applications which deal with multiple sequences. A survey by Nature | ]
reports multiple sequence alignment as one of the most used modeling methods in biology, with | | among
the top-10 papers cited of all time (citation count 63105). Some of the basic measures for multiple sequence
similarity include the LCS length and the cost of the median and center strings under edit distance. Abboud,
Backurs, and V.-Williams | ] showed that exact computation of k-LCS requires Q(N¥~°(1) time (under
SETH), and a similar result has been recently shown for both median and center k-edit distance [ l. A
simple extension of the basic dynamic programming for two strings solves the median k-edit distance problems in
O(N*) time whereas the best bound known for the center k-edit distance is O(N?¥) [ |. The two-string lower
bound in the compressed setting leaves open the possibility of reducing the running times of the k-LCS and the
median k-edit distance problems for compressed strings: It might be feasible to achieve runtimes of O(N k/2pk/ 2)
or even O(Nn*~1), and a substantial reduction of the exponent at N could lead to significant savings. This
raises the following questions:

1. Does compression allow for significantly reducing the running time for multi-sequence similarity problems?
2. For the case of two highly compressible strings, what relaxations of the LCS and the edit distance problems
could allow circumuventing the lower bounds and achieving sublinear dependency on N ¢

Lower Bounds: Compression does not help with exact bounds much! Unfortunately, we show that
computing the k-LCS, median k-edit distance, and center k-edit distance all require Q((N*~1n)!=°(M)) time under
SETH. Therefore, the potential gain from compression becomes insignificant as k grows. Intuitively, SETH states
that CNF-satisfiability requires 2" ~°(") time | ]. Even more specifically, we use the k-Orthogonal Vectors
problem (k-OV) | ]. At a high level, k-OV takes as input a list L with n zero-one vectors of dimension d. We
must return YES if there exist k vectors that, when multiplied element-wise, form the all zeros vector. The k-OV
conjecture, which is implied by SETH, states that k-OV cannot be solved in O(nk_Q(l)) time.

THEOREM 1.1. If the k'-OV hypothesis is true for all constants k', then for any constant € € (0,1] grammar-
compressed k-LCS requires (Nkfln)lfo(l) time when the alphabet size is |X| = O(k) and n = N*°() . Here, N
denotes the total length of the k input strings and n is their total compressed size.

We prove similar lower bounds for median and center k-edit distance (Theorem 6.2 and Theorem 6.8).
Sections 6.2, 6.6, and 6.9 contain our lower bound results.

Abboud, Backurs, Bringmann, and Kiinnemann | ] left an open question whether their Q((Nn)'—°(1)
lower bound for LCS also holds for computing the edit distance of two strings. We answer this question
affirmatively and extend the argument to the k-string setting. Moreover, we note that for a seemingly simpler
problem of computing the shift distance | , , , |, we show that compression does
not help to reduce even a single dimension (Section 8).

Algorithms: Effectiveness of Approximation & Compression. In presence of such negative results, relaxing
the median and center k-edit distance to circumvent the Q((N*~'n)'=°(1) lower bound becomes even more
important.
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Can we use compression and approrimation together to achieve much better approximation guarantees and,
simultaneously, circumuvent the exact computation lower bounds?

To the best of our knowledge, even for two strings, there is no previous work on approximating the edit distance
of grammar-compressed strings. On the other hand, even after a long line of research in developing fast algorithms
for approximate edit distance for the uncompressed setting (see e.g. | , , , , ,

, , , , ]), the best approximation ratio achievable in truly subquadratic time is
currently 3 + € | ], and the fastest constant-factor approximation algorithm runs in O(n!*¢) time | ]
with an approximation factor that has doubly-exponential dependence on % The situation is even worse for LCS
approximation, where we do not know how to design a subquadratic algorithm with sub-polynomial approximation

gap | , ]. We are also unaware of any previous research on approximating LCS of two compressed
strings.

In the case of multiple strings, there is a classic O(NN?)-time (2 — 2/k)-approximation for median edit distance
and an O(N?)-time 2-approximation for center edit distance | ]. Combined with the results of | 1,

this yields an O(N!'T¢)-time constant-factor approximation for both versions. Nevertheless, a PTAS, that is, a
(1 + €)-approximation algorithm for every constant € > 0, would be much more desirable for practical applications.

Surprisingly, we show that already when an (1+ ¢)-approximation is allowed for an arbitrary constant ¢ > 0, the
median k-edit distance computation time reduces to O(N*/2n*/2) compared to the Q((N*~1n)'=°(1)) lower bound
for exact algorithms. In other words, we can save k/2 dimensions by allowing approximation and compression. For
€ = o(1), the running time of our algorithm increases by an e~©*) factor, so we even obtain an FPTAS whereas
no prior work in the uncompressed setting gives a (1 4 €)-approximation in O(N*~(1) time. The reduction
in time for center k-edit distance is even more dramatic (and technically more complex) from exact O(N?F) to
O(N¥/2+0(k)nk/2) for a (1 4 ¢) approximation.

For edit distance between two strings, we develop a more efficient FPTAS whose running time is
O(N?/3p*/3¢=1/3), which is sublinear in N as long as n < N/, A slightly more sophisticated O(N?/3n*/3¢=1/3)-
time algorithm also provides a (1 + ¢)-approximation of the LCS length. In contrast, a comparable result for the
uncompressed setting is an O(N1%)-time algorithm of [ ], which returns a common subsequence of length
Q(N/AY), providing an O(A?)-factor approximation. Even when the alphabet size is 2, so far, there does not exist
any (1 + €) approximation in subquadratic time | ].

Improved Exact Algorithms in Compressed Setting. Interestingly, the insights behind our approximation
algorithms also lead to new ezact algorithms. In particular, we show that the edit distance can be computed in
time a(n ND), where D is an upper bound on the edit distance. This improves upon the state-of-the-art bound
of O(min(nN,n + D?)) | ) , ] whenever D > N1/3p2/3,

For this problem, the first improvements compared to the uncompressed settings were given in | , ]
Then, Tiskin | ] obtained an O(nN log N )-time algorithm and subsequent works | , ] reduced the
O(log N) factor. However, when the distance D is small, the edit distance can be computed in O(N+D?) time [ ]
in the uncompressed setting. The O(NN) term in the running time of the Landau—Vishkin algorithm | ] is
solely needed to construct a data structure efficiently answering the Longest Common Extension (LCE) queries.
However, already the results of Mehlhorn, Sundar, and Uhrig | ] yield O(1)-time LCE queries after O(n)-time
preprocessing of the grammars representing X and Y. This gives rise to an O(n + D?)-time algorithm computing
the edit distance. With a more modern implementation of LCE queries in compressed strings by I [[17], the factor
hidden within the O(-) notation can be reduced to O(log N).

While the O(n + D?)-time algorithm is very fast if D is small, its efficiency quickly degrades with increasing D
and the O (nIN)-time algorithm becomes more suitable already for D > VnN. With a time complexity of G(n\/ ND),
our algorithm improves upon the previous algorithms whenever vn2N < 6g(X,Y) < N. Nevertheless, the current
lower bounds allow for a hypothetical holy-grail algorithm achieving the running time of O(min (nD,n + D?))
which we leave as an interesting open question.

We also get improved results for the Hamming distance, which is a more basic measure trivially computable
in O(N) time. Here, we present an O(nv/N)-time algorithm which improves upon the O(n'*' N%-593) hound
of | ]. Additionally, we note that natural generalizations to multiple strings (including the median Hamming
distance) can be computed in O(nN'~1/*) time.
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2 Preliminaries

For two integers i < j, we write [i .. j] to denote the set {i,...,j} and [i..J) to denote {i,...,5 —1}. The notions
(¢..7] and (i..7) are defined analogously.

A string is a sequence of characters from a fixed alphabet ¥. We write ¥* to denote the set of all strings over
¥, and we define X7 = ¥* \ {7}, where v denotes the empty string. The length of a string X is denoted by | X|
and, for a position ¢ € [1..]X]] in X, the character of X at position 4 is denoted by X[i]. For an integer N > 0,
the set of length-N strings over ¥ is denoted by ZV.

For two positions ¢ < j in X, we write X[i.. j] to denote the fragment of X starting at positions ¢ and ending
at position j; this fragment is an occurrence of X[i]--- X[j] as a substring of X. The fragments X[i..5), X(i..Jj],
and X(i..7) are defined similarly.

A morphism is a function f: 37 — 33 such that f(X) = Ol)jl (Xi]), where OO denotes the concatenation
operator. Note that every function mapping ¥; to X% can be uniquely extended to a morphism.

2.1 Straight-Line Programs A straight-line program is a tuple G = (S, X, rhs, S), where S is a finite sequence
of symbols, ¥ C S is a set of terminal symbols, rhs: (S\ X) — S* is the production (or right-hand side) function,
and S € S is the start symbol, and the symbols in S are ordered so that B precedes A if B occurs in rhs(A). We
also write A — By - - By, instead of rhs(A) = By - - - By.
The set S\ X of non-terminals is denoted by N. The size of G is |G| := [S| 4 > 4. Irhs(A)]: the number of
symbols plus the total length of productions. The expansion function exp : S — X1 is defined recursively:
eXp(A):{Ak ?fAEE,k
Tqexp(B;) it A— OF1B;.

We say that G is a grammar-compressed representation of exp(S). The exp function naturally extends to a
morphism exp : 8* — X* with exp(O2; 4;) = O%; exp(4;).

For a symbol A € S, we denote |A| = |exp(A)|. In this work, we assume a word RAM machine with machine
words of Q(log|S]) bits. In this setting, one can compute |A| for all A € S in O(|G|) time. Consequently, we
assume that |A| is stored along with A in the straight-line programs given to our algorithms.

A straight-line program G is in Chomsky normal form if |rhs(A)| = 2 for all A € N. Given an arbitrary
straight-line program G, an equivalent straight-line program G’ in Chomsky normal form can be constructed in
O(|G|) time; moreover, |G| = O(|G’|). Thus, without loss of generality, we assume that all straight-line programs
given to our algorithms are already in the Chomsky normal form.

3 FPTAS for Compressed Edit Distance of Two Strings

The edit distance 0g(X,Y) of two strings X, Y € ¥* is defined as the minimum number of character insertions,
deletions, and substitutions needed to transform X into Y.
In this section, we prove the following result.

THEOREM 3.1. Given a straight-line program Gx of size n generating a string X of length N > 0, a straight-line
program Gy of size m generating a string Y of length M > 0, and a parameter € € (0,1], an integer between
6p(X,Y) and (1+ €)0p(X,Y) can be computed in O ((nm(N + M))*/3e¢1/3) time.

Let $ ¢ ¥ and let -* : ¥* — (2 U {$})* be a morphism defined with a® = a$ for a € X. Then,
0p(X,Y) = %6D(X$, Y | ]. Moreover, if X is represented by a straight line program G, then X® can be
represented using a straight-line program of size 2|G| + 1. This reduction allows computing dp instead of dg.

DEFINITION 3.1. (ALIGNMENT GRAPH) For two strings X and Y, the alignment graph Gxy is a weighted
undirected graph with vertex set {vy, :x € [0..]|X]|],y € [0..|Y]]} and edges:

® Uy y_1 <> Uy of length 1, for x € [0..|X|] andy € [1..]Y]];

® VUy_1y > Uy, of length 1, forz € [1..|X|] andy € [0..]Y]];

® VUp_1y1 4> Uy, of length 0, for x € [1..|X|] andy € [1..]Y]] such that X[z] = Y[y].
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OBSERVATION 3.1. Let d be the metric induced by Gxy. All z,2' € [0..]X]|] and y,y' € [0..|Y]], satisfy

p(X(x..2',Y(y..v]) ife<a’ andy <y,
AUz, Vo ) = Op(X (2. 2], Y(y ..y]) if2’ <z andy <y,
e — 2’| + |y — ¢'] otherwise.

For two ranges [z..2'] C[0..|X|] and [y..y'] C [0..|Y]], the subgraph of Gx y induced by {vz 5 : Z € [x..2'],
y € [y..y']} is denoted G[)?YI] -] and called a block in Gx,y. For a block B, we distinguish the input
vertices in? = (Vo oy Var—1,y» + - - » Ugys Uz y41, - - - » Uy ) and the output vertices out? = (Vs Val syt 1y« - o> Uty
Vg/—1.4s-- -, Vg ); Doth sequences consist of |B| := (z/ — x) + (v — y) + 1 vertices. The DISTg table is a
|B| x | B| matrix with entries DISTg]i, j] = d(in?, out?) for 4, j € [1..|B|]. The DISTg table satisfies the Monge
property | |: DISTg[i,j]+ DISTg[i,j'] < DISTgli,j'| + DISTg]i, j'] holds for all 4,4, 4,5’ € [1..|B]|] such
that ¢ <4’ and j < j'. For two strings X,Y € ¥*, we also define DISTx y to be DISTg for B = G[)(;"}'LX”’[O' Y

By Observation 3.1, if B = Gl 3" " ¥ then DISTp = DISTx (4. 2y (y. 4)-
Box decomp051t10n For two btrlngb X,Y € ¥*, the box decomposition B of the graph G x y is defined based
on decompositions X = Xy 0---0X,, and Y =Y, 0---0Y,,, into non-empty fragments, called phrases.
Let us define sets {b,..., pX} and {vY, ..,b;/y} of phmse boundaries in X and Y, respectively, so that
the phrases are X; = X(bX ,..b%] fori € [1..px] and V; = Y(b}:l . b}/] for j € [1..py]. A vertex v, is a
boundary vertex if x is a phrase boundary in X or y is a phrase boundary in Y, and a grid vertex if both z
is a phrase boundary in X and y is a phrase boundary in Y. The box decomposition B is an indexed family
[bx B0 b))
(B ,])16[1 px],i€[1. .py] of boxes sz = G 7

3.1 Portal-Respecting Walks Hermelin et al. | ] applied a box decomposition obtained via an analogue
of Corollary 3.1 to determine §p(X,Y") using a dynamic-programming procedure computing op(X[1..z],Y[1..y])
for all boundary vertices v, ,. We reduce the number of DP states by considering only a selection P of boundary
vertices, called portals. This allows improving the running time from O(¥) to O(|P|), but reduces the search
space from the family of all walks vg o ~ v, 4 to walks that cross box boundaries only at portals. Below, we
formally define such portal-respecting walks and provide a construction suitable for approximating dp(X,Y).

DEFINITION 3.2. Let B be a box decomposition of Gxy and let P be a set portals (selected boundary vertices).
We say that a walk W is a portal-respecting (4, j)-walk if W is a concatenation of walks W' and W' such that:

o W starts at an input portal of B; j and is entirely contained within B; j, and
o W' is the empty walk at vo,0, a portal-respecting (i — 1, j)-walk, or a portal-respecting (i,7 — 1)-walk.

Let us fix a box decomposition B of Gx y, and a set of portals P. For a box B; ; € B, let P; ; =PnN outBii
denote the output portals of B” Moreover, for a vertex vy, € B;;, we denote dy, = d(voo,Vz,y) =
Oop(X[1..2],Y[1..y]) and let D”J be the minimum length of a portal-preserving (4, j)-walk ending at vy y.

LEMMA 3.1. Given a set of portals P for a box decomposition B of Gx vy, the the length of the shortest portal-
respecting (px, py )-walk ending at v|x||y| can be computed in O(|P|) time provided O(1)-time random access to
the DIST matrices of all the boxes of B.

Proof. For each box B; ; € B, our algorithm computes DW for all vertices v, , € P; ;. For this, the boxes B; ;
containing any output portal are processed in the order of non decreasing values 7 + j.

If (i,7) = (1,1), then Definition 3.2 and Observation 3.1 yield D)} = d(vg,0,vs,), and this value can be
retrieved from the DISTp, , matrix in O(1) time. Thus, we henceforth assume (i, ) # (1,1).

Consider a portal-respecting (i, j)-walk W to a vertex v, , € outPii. By Definition 3.2, W is a concatenation
of two walks W’ and W” such that W” starts at a vertex v, ,» € P Nin®" and is entirely contained within B, j,
whereas W' is a portal-respecting (i, j — 1)-walk to v, or a portal respecting (i — 1, j)-walk to v, . Observe
that, for a fixed portal v, , € P Nin®4 | the lengths of W’ and W” can be optimized independently. Consequently,
by Observation 3.1,

. B . B s
Vg oy €PG_1;NinT 67 Vg oy €PG 51 Nin™6J

% ] _ i—1,j i,j—1
D% = max ( max {Dz',g/' + d(var Uw)y)} , max {Dw’,ﬂ/ + d(vgr s Vey) ¢ | -
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A matrix (indexed by vy, € P; ; and all vertices P;_q ; N in®i7) containing the values Di_l’j + d(vg Vg y)
can be obtained from a submatrix of the DISTp, ; matrix by adding DZ l’J to all entries in the column of
Vg 4. These modifications preserve the Monge property, so the resultlng matrix is a Monge matrix with
O(1)-time random access. Consequently, the SMAWK algorithm [ ] allows computing row-minima, i.e.,

. ) .
the values Max, , . ep, , ;ninfis {Dl, P d(vgr gy Vs y } A symmetric procedure allows computing the values

Max, .  cp,  AinPii {Dw 'y d(vy y/,ULy)} which lets us derive the costs DW for all the vertices vy, € P; ;.

The SMAWK algorithm takes nearly linear time with respect to the sum of matrix dimensions, so the overall time
complexity is O(|P N B; 41).
Each vertex belongs to at most four boxes, so the overall running time is O(|P|). ad

LEMMA 3.2. Let B be a box decomposition of the graph Gxy for X,Y € ¥t and let « > 0 be a real number.
Suppose that P consists of all the grid vertices and all the boundary vertices vy ofB satisfying |z —y| = [(1+a)"]
for some integer r. Then, every verter vy, € B; ; satisfies DW < (14 2a)™d,,

Proof. We proceed by induction on 7 4+ j. The base case is trivially satisfied due to D}C’,le =dg, for vy € Bi;.
We henceforth fix v, , € B; ; with (4, j) # (1,1). By Observation 3.1, there is a shortest path from vy to vy,
contained within G x(1. 4],y[1..y)- Let var s be the first vertex of B; ; on this path. Observe that vy, € in® and
dey = dyr oy + d(Vgr 4, Uz ). By symmetry, we may assume without loss of generality that vy ,» € outBi-1i.

Let us choose vy v € Pi_1 ; NoutBi-14 as close as possible to v,/ /. Since grid vertices are portals, such vy
exists. Moreover, by the choice of the remaining portals, d(vy: 4, vy y) < alz’ — | < ady . Let us construct a
portal-respecting (i, j)-walk to v, by concatenating a shortest portal-respecting (i — 1, j)-walk to v, .~ and a
shortest path from v, to v, (by Observation 3.1, we may assume that this path is contained in B; ;). This proves
Dyl < Db 4 d(vgr yr, ve ). The inductive assumption further yields DL 7 < (1 + 20)"™~3d, v, and thus
Dm < (1+2O‘)Z+J sy +d(Ver V) < (LH20) 73 (dyry +d(03r 75 V0 40) F AVt 15 Ve ) F gy = dar gy <
(1 + 2a)“’3 3(da oy + s ) + s gy + di gy — dor oy < (14 20) 724, . a

3.2 A Grammar-Based Box Decomposition Hermelin et al. | ] presented an algorithm that, given
two grammar-compressed strings X,Y € ¥T and an integer parameter 7, constructs a box decomposition B of
Gx,y with px = O([1]X]]) and py = O([%|Y[]), along with an oracle providing random access to the DIST}p, |
matrices of all the boxes B; ;. However, their construction costs Q(|X| + |Y'|) time, which is prohibitive in most
of our applications. In this section, we achieve the same goal avoiding the linear dependency on the lengths of
X and Y. The bottleneck of | ] is constructing appropriate decompositions of X and Y into phrases.
In the following lemma, we implement an analogous step more efficiently by building a grammar-compressed
representation of the sequence of phrases, with each phrase represented by a symbol in an auxiliary grammar.

LEMMA 3.3. Given a straight-line program G generating a string X and an integer T > 1, in O(|G|) time one
can construct straight-line programs Gt and G of size O(|G|) such that:

e the terminal symbols of GT are the symbols A of GT satisfying |A| < T,

o G” generates a string P such that expg+ (P) = X and |P| < [2]X]].

Proof. If 7 > | X|, then we simply set G = G and set G” to be a grammar with no non-terminals whose starting
symbol is the starting symbol of G; this construction clearly satisfies the required conditions.

We henceforth assume that 7 < |X|. The grammar G is constructed by adding new non-terminals to G. As
for G we include as terminals all symbols A of Gt with |A| < 7, and we add further symbols as non-terminals.
For every symbol A of G with |A| > 7, we introduce three new non-terminals:

e L(A) and R(A) to G™, satisfying |L(A)| < 7 and |R(A)| < 7,

e M(A)to GP.

The productions for L(A), R(A), and M (A) are determined based on the production A — BrBp:
1. If |Br| < 7 and |Br| < 7, then L(A) — By, R(A) — Bpr, and M(A) — .
2. If |By| > 7 and |Bg| > 7, then L(A) — L(Br), R(A) — R(Bg), and M(A) — M(Br)R(Br)L(Br)M(BRg).
3. If |Br| > 7 and |Bg| < 7, then L(A) — L(By) and:
(a) R(A) — R(Br)Bg and M(A) — M(By) if |R(B)| + |Br| < 7,
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(b) R(A) — Br and M(A) —» M(BL)R(BL) otherwise.
4. If |Br| < 7 and |Bg| > 7, then R(A) — R(Bg) and:
(b) L(A) — By, and M(A) — L(Br)M(Bg) otherwise.
Additionally, for the starting symbol S of G, we add a starting symbol S* — L(S)M(S)R(S) to GT.
A simple inductive argument shows that every symbol A of G with |A| > 7 satisfies
expg(A4) = expg+ (L(A) o expgr(M(A)) o R(A)).

In particular, P = expgr (ST) satisfies expg+ (P) = expg(S) = X.

It remains to prove that |P| < 2|X|. For this, we inductively show that every symbol A of G with |A| > 7
satisfies |L(A)|+ |R(A)|+ 7(|M(A)|+2) < 3|A|. To prove this claim, we analyze the cases based on the production
A— By Bg.

1. If |Br| < 7 and |Bg| < 7, then
|[L(A)| + |R(A)| + T(IM(A)| +2) = |A| + 27 < 3]A].

2. If |Br| > 7 and |Bg| > 7, then

|L(A)| + |R(A)| + 7(|M(A)| +2) = |L(BL)| + |R(Br)| + T(|M(BL)| + 2 4+ |M(Bg)| + 2) <

|L(BL)| + |R(B)| + 7(|M(BpL)| +2) + |L(Br)| + |R(Bgr)| + 7(|M(BRr)| + 2) < 3|By| + 3|Br| = 3|A|.
3. If |B| > 7, |Bg| < 7, then

e If |R(BL)| + |Br| < 7, then

[IL(A)| + [R(A)[ + 7(IM(A)| +2) = [L(Br)| + [R(BL)| + |Br| + 7(|IM(Br)| + 2) <
3|BL| + |Br| < 3|A|.

e Otherwise,

|L(A)| + [R(A)| + 7(IM(A)| +2) = [L(BL)| + [Br| + T(|M(BL)| + 3) <
|L(Br)| + |Br| + 7(|M(BL)| +2) + |R(BL)| + |Br| < 3|Br| + 2|Br| < 3|A4|.

4. The case involving |Br| < 7 and |Bg| > 7 is symmetric to the previous one.
In particular, this claim holds for A = S, so |S¥| = [M(S)]+2 < (3|S| — |L(S)| — |R(S)|) < 2|9] = 2|X]|. 0

As for constructing the DIST matrices, we use the original implementation from | ]-

LEMNMA 3.4. (] , SECTION 5]) Given straight-line programs Gx mkd Gy and an integer T > 1,
in O(|Gx||Gy|T) time one can construct a data structure that provides O(1)-time random access to the
DISToxp(ax),exp(Ay) Mmatrices for all symbols Ax of Gx and Ay of Gy satisfying |Ax| < 7 and [Ay| < 7.

Combining Lemmas 3.3 and 3.4, we complete our construction.

COROLLARY 3.1. Given a straight-line program Gx of size n generating a string X of length N > 0, a straight-line
program Gy of size m generating a string Y of length M > 0, and an integer 7 € [1..N + M|, one can in
O(w +nmt) time construct a box decomposition B = (B; j)ic. px].jel. .py] of Gxy with px = O(f%}) and

Py = O([%D, along with an oracle providing O(1)-time random access to the DISTg, ; matrices.

Proof. First, we use Lemma 3.3 to obtain grammars GJ{( and G%. The string Px represented by G¥ satisfies
X = eXpg (Px), so it can be interpreted as a decomposition of X into px := |Px| phrases, with the ith phrase

X; being an occurrence of exXpgt (Pxi]). The decomposition of Y is obtained in the same way based on grammars
Gy and G¥ constructed for Y.
The box decomposition B is based on these decompositions of X and Y. Note that each box B, ; satisfies

DISTg, , = DIST,

xPgt (Px[il).expgy (Py [1])-

Due to |Px[i]| < 7 and |Py[j]| < 7, Lemma 3.4 applied to G¥ and G{> provides O(1)-time oracle access to all
these matrices. Storing Px and Py, we can point to DISTp, ; in O(1) time given i, j. 0
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3.3 Algorithm

PRrROPOSITION 3.1. Given a straight-line program Gx of size n generating a string X of length N > 0, a straight-
line program Gy of size m generating a string Y of length M > 0, and a parameter € € (0,1], a (14-€)-approzimation
of 5p(X,Y) can be computed in O ((nm(N + M))?/3¢=1/3) time.

Proof. The algorithm uses Corollary 3.1 and Lemma 3.1 with the set of portals P defined as in Lemma 3.2, where
a=Q(5—5-=) = Ugzr) is chosen so that (1+2a)PX+P¥~2 =1 4 ¢. Lemma 3.2 guarantees that the resulting

px+py —2
value is a (1 4 €)-approximation of §p(X,Y). The number of portals is O (244 + X log,, M + Y log,  ,N) =
6( (N:TJ;/[)Q), so the overall running time is C(an + (N:T#) Optimizing 7 € [1..N + M], we get

O(nm + €' + (nm(N + M))?/3¢=1/3) time. If the first term dominates, then nm > (nm(N + M))?/3e=1/3 >
(N + M)%e~1. However, O(NM) = O((N + M)?e~!) time is enough to compute dp(X,Y) exactly without
compression. If the second term dominates, then e~! > (nm(N + M))>/3¢"1/3 > nm(N + M). However,
O(y/nm(N + M)) = O(nm(N + M)) time is enough to compute §p(X,Y) exactly using Proposition 3.2 with
D=N+M.

Theorem 3.1 follows through the reduction from dg to dp.

3.4 Exact Output-Sensitive Algorithm In this section we prove Theorem 3.2:

THEOREM 3.2. Given a straight-line program Gx of size n generating a string X of length N > 0 and a straight-
line program Gy of size m generating a string Y of length M > 0, the edit distance 0g(X,Y) can be computed in

0] <\/(1 +0p(X,Y))nm(N + M)) time.

The algorithm behind Theorem 3.2 reduces the problem to a decision version (asking whether 0g(X,Y) < D for a
threshold D) and then uses the same scheme with all boundary vertices (z,y) satisfying |x — y| < D selected as
portals.

LEMMA 3.5. Let B be a box decomposition of the graph Gx y for X,Y € T and let D > 0 be an integer. Suppose
that P consists of all the boundary vertices v, of B satisfying |x —y| < D. Then, every vertex vy, € B; j with
dey < D satisfies Dy, = dy .

Proof. We proceed by induction on i + j. The base case is trivially satisfied due to Dk; = dgy for vy, € By 1.
We henceforth fix v, , € B;; with (i,5) # (1,1) and d, < D. By Observation 3.1, there is a shortest path
from vg o to v, contained within Gx1. 4],y[1..4)- Let ver o be the first vertex on this path that belongs to B; ;.
Observe that vy, € inP and dpy = do  + d(Vyr 4, Vg ). Consequently, |2 — /| < dpy < dyy < D, so
Vg € Pi_q ; UP; j_1. By symmetry, we may assume without loss of generality that v,/ ,» € P;_1 ;.

Let us construct a portal-respecting (i, j)-walk to v, , by concatenating a shortest portal-respecting (i — 1, j)-
walk to v, . and a shortest path from v,/ to v, (by Observation 3.1 applied to G x (4. .2,y (4. .y, We may assume

that this path is contained in B; ;). This proves D;Jy < D;Z;}j + d(Vyy yr, V) = DY < D;Z;Zj Fdyy — dy oy

T,y —

The inductive assumption yields D, 7 = dys v, and thus D, < d,, holds as claimed. 0

PROPOSITION 3.2. Given a straight-line program Gx of size n generating a string X of length N > 0, a straight-
line program Gy of size m generating a string Y of length M > 0, and an integer D € [1..N + M|, one can in

0 ( nmD(N + M)) time compute 0p(X,Y) or certify that 0p(X,Y) > D.

Proof. The algorithm uses Corollary 3.1 and Lemma 3.1 with the set of portals P defined as in Lemma 3.5.
The latter lemma guarantees that the resulting value is 0p(X,Y’) provided that §p(X,Y) < D. Otherwise, the
resulting value exceeds D, certifying that dp(X,Y) > D.

The number of portals is O(D - &) 5o the overall running time is O(nmr + D - &) Optimizing
€ [1..N+ M], we get O(nm + D + /nmD(N + M)) time. Since D < N + M, the second term is dominated
by the third one. If the first term dominates, then nm > D(N + M), and thus \/nmD(N + M) > D(N + M).

However, O(N + M + D?) = O(D(N + M)) time suffices solve the problem for uncompressed strings [ ]. 0

Theorem 3.2 follows through exponential search and the reduction from g to ép.
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3.5 LCS Approximation In this section we prove Theorem 3.3:

THEOREM 3.3. Given a straight-line program G x of size n generating a string X of length N > 0, a straight-line
program Gy of size m generaling a string Y of length M > 0, and a parameter € € (0,1], a (1 + €)-approzimation
of LCS(X,Y) can be computed in O ((nm(N + M))?/3e=1/3) time.

The algorithm behind Theorem 3.3 is essentially the same as that of Theorem 3.1, and this is why the running
times coincide. The main difference is that the output portals of the box B; ; are chosen adaptively while the
dynamic-programming algorithm processes B; ;.

As for LCS approximation, our choice of portals is adaptive. For a box B, ; € B, let P; ; = P N outBiJ.
Observe that the value D;Jy for vy, € B; j depends only on Py j with i’ + j' < i+ j. Hence, except for the grid
vertices (all included in P), we may select the portals P; ; based on the values D;Jy for v, , € outBii.

For vy, € By j, let by y = $(|X|+|Y| —dyy) = LCS(X[L..2],Y[1..y]) and Ly3, = L(|X| + Y| — D).

LEMMA 3.6. Let B be a box decomposition of the graph Gxy for X,Y € ¥t and let « > 0 be a real number.
Suppose that P consists of all the grid vertices and, for each box B; ; € B, all vertices v, € outBii such that:

o v, 1, €outPii and |log;., Ly3, ] > [logy L;’il’yj, or

o v,y 1 €out?s and [log,,, Ly | > [logy . Ly, 1]

Then, for each vertex v, € B;j, we have Lyl > (1+ a)*~"77L, .

Proof. We proceed by induction on i 4 j. The base case is trivially satisfied due to Ly = £, for v, , € By ;.
Thus, we henceforth fix a vertex v, , € B; ; with (¢,7) # (1,1). By Observation 3.1, there is a shortest path from
0,0 t0 vz, contained within G'x 1. 4),y[1..y)- Let vy be the first vertex on this path that belong to B; ;. Observe
that vy 4 € in%4i and lyy =Ly o +LCS(X(2'..2],Y (v ..y]). By symmetry, we may assume without loss of
generality that vy . € outPi-1.4,

Consider the largest value y” € [1..y] such that v, ,» € P;_ ;. Since grid vertices are portals, such vy,
exits. Moreover, by the choice of the remaining portals, Li?;’/j < (1+ a)LfJ’;’g. Let us construct a portal-
respecting (4, j) walk to v, , by concatenating a shortest portal-respecting (i — 1, j)-walk to v,/ 4~ and a shortest
path from v, v to vy, (by Observation 3.1, we may assume that this path is contained B; ;). This proves that
Dy, < Dol 4 d(var gy, vay) < Dol 4y =y +d (Vs g, Ve ), e, Lid) > L0V + LOS(X (2 2], Y (y' - y]) >
(1+ a)*lLif’zl/’,j + 0y — £y 4. The inductive assumption further yields L;Té’,j > (14 a)> 94y s, and thus
L3, > (L4 a)* ™y gy 4 Ly gy — Lyr gy > (14 @)* 774, holds as claimed. O

LEMMA 3.7. Given O(1)-time random access to the DISTp, ; matriz, the values D;Z;}j for all vertices vy 4 €
P;_1; (ifi > 1), and the values D=1 for all vertices Ve € Pij_1 (if j > 1), the values D%7, for any q query

I/7y/
vertices v, € outPii can be computed in O(q+ |P Nin®7|) time.

Proof. 1f (i,j) = (1,1), then Definition 3.2 and Observation 3.1 yield D'} = d(vo,0, Ve,y), and this value can be
retrieved from the DISTp, , matrix in O(1) time. Thus, we henceforth assume (i, j) # (1,1).

Consider a portal-respecting (i, j)-walk W to a vertex vy, € outPii. By Definition 3.2, W is a concatenation
of two walks W’ and W” such that W starts at a vertex v,/ ,» € P Nin®" and is entirely contained within B; ;,
whereas W’ is a portal-respecting (i, j — 1)-walk to v, ,+ or a portal respecting (¢ — 1, j)-walk to v, . Observe
that, for a fixed portal vy ,» € P Nin®#7 | the lengths of W’ and W can be optimized independently. Consequently,
by Observation 3.1,

D;Jy = max ( max {D;,_,;’,j + d(vw/’y/,vw,y)}, max {D;»/J;;} + d(vgggy/,vw,y)}) .
UI/’y/ePi,l,jﬁin ©J UI/’y/EPi,j,lﬂin i

A matrix (indexed by the query vertices v, , € out?s and all vertices P,_1;N inB‘*j) containing the values

D;,jzl!’,j +d(vgr y, vz y) can be obtained from a submatrix of the DISTp, ; matrix by adding D;T’le’,j to all entries in

the column of v, .. These modifications preserve the Monge property, so the resulting matrix is a Monge matrix

with O(1)-time random access. Consequently, the SMAWK algorithm | ] allows computing row-minima,
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{Di:zll’,j + d(var g5 Vay) ). A symmetric procedure allows computing the

i.e., the values MaxX, , . eP;_y ;ninii

{Di’j_1 +d(vgr g7, Uz y) b, which lets us derive the costs D47 for all the query vertices

values max, oy

2!yl ePi,j,lﬂinB'i»j
Ug,y € outPii. The SMAWK algorithm takes nearly linear time with respect to the sum of matrix dimensions, so
the overall time complexity is O(q + |P N inZi|). 0

LEMMA 3.8. Given a box decomposition B of Gxy, a parameter € € (0,1], and 5(1)—time mnciom access to the
DIST matrices of all the bozes of B, a (1 + €)-approzvimation of LCS(X,Y) can be computed in O(e~Y(px + py)?)
time.

Proof. Let us choose a = Q(;—5——3) so that (1 + a)PX*?¥~2 =1 +e. We process boxes B; ; € B in the order
of non-decreasing values i + j, constructing the output portals P; ; according to Lemma 3.6 and computing the
values L, for all v, , € P; ;. By Lemma 3.6, the value Lf)}gl’ﬁ)‘;l is guaranteed to be a (1 + €)-approximation of
LCS(X,Y).

The ordering of boxes lets us compute the values L3, for any g vertices v € outPis in O(q + [P Nin®ii))
time. By symmetry, we may focus without loss of generality on the right boundary of B; j, i.e., vertices v,
with 2 = b and y € [b)_, ..b}]. Note that the corresponding values L% are non-decreasing: D) < Dy’ | +1
Y bY

implies L}/ > Li;?:v;fl' First, we apply Lemma 3.7 to derive L%/, for the two extreme values y € {b}_,,b)

Next, for each value r € [[log, . Lii}ilJ . logiia L;jb]yj], we binary search for the smallest y € [b)_,..bY]
such that log; ., L;Jy > r, and include v, in P;;. The binary searches are executed in parallel, with
Lemma 3.7 applied to determine L;Jy for all the current pivots. This way, the algorithm is implemented in

O(1 +logy L fbjy —logy o L L TP0 inPi

%,
Y
x y,bj_1

) time. Due to L;’iy > L;’i}l , the first term sums up to
051 051

O(logy, 4 |Y]) = O(e *(px +py)) across j € [1..py], and to O(e " (px +py)?) across B; ; € B. This also bounds

the number of portals created, so the second term, which sums up to |P| across all boxes, is also O(e ' (px + py)?).
a0

Proof. [Proof of Theorem 3.3] The algorithm uses Corollary 3.1 and Lemma 3.8. Due to px +py = & "T’M
running time is O (nmt + %) Optimizing 7, we get the running time of O(nm+ e~ + (nm(N + M))?/3¢71/3).

If the first term dominates, then nm > (nm(N + M))%/3¢ /3 > (N 4+ M)%e~'. However, O(NM) =
O((N + M)%e~ 1) time is enough to compute LCS(X,Y) exactly without compression. If the second term
dominates, then ¢! > (nm(N + M))?/3¢71/3 > nm(N + M). However, O(v/nm(N + M)) = O(nm(N + M))
time is enough to compute LCS(X,Y") exactly using Proposition 3.2 with D = N + M. 0

, the overall

4 FPTAS For Compressed Median k-Edit Distance
The median k-edit distance is defined as below.

DEFINITION 4.1. The (median) edit distance 0g(X1,...,Xg) of k strings X1, ..., X is the minimum total number
of edits (insertions, deletions, and substitutions) needed to make all strings X; equal some string X*. That is,
0p(X1,. .., Xp) = ming- S2F | 6p(X;, X*).

For the (median) edit distance between k strings, we show that allowing (1 + €)-approximation gives an
algorithm circumventing the bound in Theorem 6.2:

THEOREM 4.1. Given k = O(1) straight-line programs Gx, of total size n generating strings X; of total length
N >0 and a parameter € € (0,1], an integer between dg(X1,...,Xx) and (1+ €)dp(X1,...,Xk) can be computed
in O (e‘o(k)nk/QNk/2) time.

To prove the above theorem, we use a different set of techniques than in the two-string case. Most approaches
for speeding up the textbook DP algorithm for two (compressible) strings, including the aforementioned results in
this paper, rely on the ability to perform computations involving DIST matrices efficiently. These computations
crucially depend on the fact that DIST matrices satisfy the Monge property. However, for the natural high-
dimensional generalization of DIST matrices, we do not know of any analog of the Monge property they satisfy
that allows us to perform similar computations even for three-string similarity problems. Indeed, most natural
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generalizations of the Monge property seem to not hold even in the three-string setting (see Section 9 for more
details). Thus, it appears unlikely that, for example, an algorithm that partitions the DP table into boxes and
computes the DP values on the boundary of each box using computations involving DIST matrices would be
substantially more efficient than the textbook edit-distance algorithm, even in the three-string setting.

This motivates us to instead use the window-respecting alignment scheme that has appeared in approximation
algorithms for edit distance (e.g., | ) -

4.1 Window-Respecting Alignments We will assume that §g (X, ..., X}) lies between D and 2D for some
known D at the loss of a log N factor in the runtime. We partition X into [|X1|/7] disjoint windows Wi 1 to
Wi, n/- each of length 7 (without loss of generality; we could always e.g. pad each string with an equal amount of a
new dummy character to ensure |X1| is a multiple of 7, without asymptotically affecting their size or compression
size). That is, W7 ; = X4[(j — )7 + 1, j7].

We define for X, ..., X}, possibly overlapping windows indexed by (i) A, a guess for the (signed) difference
between the length of W and the corresponding window in X; and (ii) the starting position p of the window.
More formally, the windows are indexed by W; A ,. Throughout the section, let o := max{|eD7/|X:|],1} and
R4(z) denote x rounded down to the nearest multiple of o. Then W; A, = X;[po + 1.. Ry(po + 7 + A)] (or is the
empty string “starting” at position po + 1 if Rg(min{po + 7+ A,|X;|}) < po+1). If Ry(poc + 7+ A) > | Xq|,
Wi ap is not included in our set of windows. We will define this window for:

e AIA I {0,1,-1,[(1+€)|,—[(T+e)], [(14€)2],...[(1+e)losr+e 27/62”} U{—7} for which 7+ A >0,
o All p from 0 to || X;|/o].
It suffices to consider windows of size at most 27 /€2 by the following lemma:

LEMMA 4.1. Given X1,Xs,..., X and a parameter 7, for J = |Xi|/7, let X* be the string such that
0p(X1,Xo,... Xy,) = >, 06(Xs, X*). There exists a partition of each Xy into substrings {X1;}jer, disjoint
substrings of the other Xi, {Xi ;}jc[s), and a partition of X* into substrings {X};c(s such that:
o |Xi;| =7 forallj.
e Forany j and j < j', X;; appears before X; ;i in X;.
® max; j; |XL7J| < 27’/62.
[ ]
> 05Xy, X7) + Xl = D0 1Kyl < (14 36)88(Xi, X7,
JelJ] JE€J]

Which implies:

> 0p(X1g X X)) (X = D Xigl) < (1+36)dp(Xy, X, .. Xp).
J€lJ] i>1 jel]

That is, the cost of the alignment that aligns X1 ; with each X; j, and then deletes all characters in X5 to
X that are unaligned with some X1 ; is at most (14 3€)0g(X1, X, ... X}).

Effectively, Lemma 4.1 says that there is a near-optimal alignment that aligns the windows of X7 to substrings
of the other strings that are not more than 1/¢? times larger.

*

Proof. We partition X; into substrings of length 7, {Xy j},ec1. X
such that 0p (X1, X*) =37 15 0p(X1,5, X]).

First, we will “realign” X; and X* to ensure no X ; is much larger than X ;. Call a contiguous subsequence
of [J], [7..4'1:=={4,j+1,...5'}, “skewed” if 3°_ . [ Ximl < 52 nep o | X7, Let us take a “maximal” set
S of disjoint skewed contiguous subsequences, i.e. a set S such that (i) all the subsequences in S are disjoint (ii)
for every contiguous subsequence s in S, there is no skewed contiguous subsequence s’ such that s C s’ and (iii)
there is no skewed contiguous subsequence that is not in S but also is completely disjoint from every element of S.

For each skewed contiguous subsequence [j..j'] in S, note that j' + 1 does not appear in any element of S
(otherwise, [j..7'] and this element can be combined to form a longer skewed contiguous subsequence, violating
(ii)), and [j..7" + 1] is not skewed (again, [j..j' + 1] being skewed would violate (ii) since [j..5'] C [j..J" + 1]).
Take S and replace each [j..5'] with [j..5" + 1] to get S’. For each [j..j 4+ 1] € S/, we have:

can be partitioned into substrings {X e
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(4.1) SO Kl Y XKud=2 Y Mal<e Y Kk

me(j. .5'+1] melj. .j'+1] melj. .j'] melj. .j'+1]

The right hand side of (4.1) implies:

05(Omelj..++1X1m> Omels. jr+11Xm) = (1= )] Omelj. 41 Xrl-
It also implies that for any partition of Oye[;. Aj/+1}X7*n into substrings { X}, }me[s. j/+1), We have:

Z 0B (X1,m, X)) < (14 6)] Omey. jr+1) X7l
melj. §/+1]

And so if € is sufficiently small:

, 1+e€ -
Yo eXm X< Y e(Xim X)) S (1430 Y0 6p(Xam X7)

meEU.cgre meU,cgr€ meU,cgre

In particular, because of the left hand side of (4.1), we can choose the partition of O,,¢[;. _j/H])N(:;l that splits
it into substrings { X} }me[s. .;/+1], each of length at most 27 /e.

Now if we set X, = X;l for any m not in a subsequence in S’, we trivially have:

Z 5E(X1,m7X:n) S Z 5E(X1,maX:n)
m@U.cgre mgUccgre
And also X, < 27/e for all such m (otherwise, m should appear in some subsequence in S’ by condition (iii)).
So we've found a partition of X* into substrings {X; } ey such that | X7| < 11X, | for all j, and:

D 0p(X1;, X)) < (1436) Y (X1, X))

JE] J€lJ]
Now, we will use this partition to determme {Xi j}is1,5e1s- For each 4, X; can be partitioned into substrings
X ; such that 0p(X;, X*) = > ., 0p(X; ;, X7). If [ X} )] < 27/€?, we set X, ; = X[ .. If any X/, has length

larger than 27/€* > | X*|/e, then dp(X] ;, X7) > (1 - e)|X{7j . On the other hand:

N 1+e
6E(7vX])+‘X ]‘ < (1+€)|X ]| <

— 0n(Xi; X}) < (1+36)dp(X] 5, X)

for the empty string 7. So we can now choose X; ; to be any empty substring of X{ﬁj. These choices of X ; give
the properties of the lemma, completing the proof. 0

Let W be the set of all windows we partition X; into, and W; be the set of windows we define for X;. Let
s(W) denote the index of the first character in W, and e(WW) denote the index of the last character. For k strings,
we define a window-respecting alignment as follows:

DEFINITION 4.2. A window respecting alignment is a function f: W1 — Wy X Wa X - -+ X Wy, with the following
properties:

o For alW e Wy, f(W); =W.

o Forany j <j and any i, e(f(Wh;)i) < s(f(Wi;)s).

Let ri(f) denote the number of characters in X; that are not contained in f(W); for any W € Wy. The cost
of a window-respecting alignment is defined as follows:

Z or(f WLj))“FZTi(f)
JE[J] %

Let F be the set of all window-respecting alignments. The following lemma shows that window-respecting
alignments approximate normal alignments:
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LEMMA 4.2.

Proof. The first inequality follows because for any f, there is an alignment that for all j exactly aligns Wy ;
with the windows in f(W; ;) at cost at most 0g(f(W;;)), and uses >, 7;(f) deletions to handle the remaining
characters in each string.

Next, we show that there exists f € F such that dg(f) < (1+€k)dp(X1, Xa,... Xi). Let us take the substrings
X ; given by Lemma 4.1. Note that W, ; = X, ;.

If | X, ;] <ebpg(Wh;,Xo,... Xk j)+3(0c—1), let W; ; be the empty window “starting” at index e(W; ;_1) +1,
or if j = 1, at index 1. Then we have |X; ;| — |W; ;| < edp(Wh ;, X2 ;... Xk ;) +3(c —1).

Otherwise, let W; ; be the longest window W; a ,, that is a substring of X; ;. Note that |X; ;| and |W; ;| differ
by at most (W1 j, X2 ;... Xk ;) and [W; ;| < 27/€? for all 4, . If € is a sufficiently small constant, this implies
there is a choice of W; ; such that |X; ;| — |W; ;| < edp(W1 ;, X ;... Xy ;) +3(c —1). We can identify W, ; as
follows: Take X; ; and delete at most o — 1 characters from the beginning until it starts at po + 1 for some integer p
to get Xq’/’j. We have |Xi,j|_ ‘Xi,j‘ S 0'—1, and so |Xi,j| and |W17j| differ by at most 5E(W1,j7 Xgﬁj NN Xk,j)+(o—1)
characters. Choose A such that %4_6(5E(W17j,X27j X))+ (0—-1) A< p(Whj,Xe, ... Xk j) + (0 —1).
Wi A p is a prefix of X; ; containing all but at most the last e(6g(Wy ;, X, ... Xi ;) + (0 — 1)) + (0 — 1) characters
of X; ;. In turn, if € is sufficiently small we have | X; ;| — |W; ;| < edg(W1 j, Xaj ... Xp;) +3(c —1).

In turn, by triangle inequality and since o — 1 < ekD7/| X, ]:

5E(W17j, Wg,j ‘o Wk,j) S (]. + ek)&E(Wl,j,ngj e Xk,j) + 36kDT/|X1‘

We now choose f(W1 ;) = (W1, Wa ;... Wy ;). We also have that the number of characters f does not align
within XQ’J', X3,j NN XkJ is at most €k($E(W1,j, X27j ‘e Xk,j) + 3EkDT/|X1|
Putting it all together and using Lemma 4.1 we get:

Su(f) =" du(f(Wi,))+ Zﬂ(f)

JE]
X 3ekDT

<(1+ €k) Z5E(W1,j7X2,j o Xy )+ Xl

j T Xy

X 3ekDT
+ek Y Sp(Wiy, Xay .. Xij) + |7_71| x| + (X = D 1Xi)
i ! i Jel]

<(1 4+ 2¢k) Z‘sE(Xl,ijZ,jv oo X ) + 6€kdp (X1, Xay ..., Xi) + Z(|Xi| _ Z X))

i i jel)

S(l + 136]{1)5E(X1,X27 . Xk)
|

4.2 An Efficient Algorithm for Window-Respecting Alignments Our algorithm, denoted k-ED-ALG, is
as follows:

1. Let D= {1,2,4,...,2k7/€*}. For X; and each d in D, identify a set W1,d of “representative” strings such
that (i) [Wi.4| = O(n7/ed) and (ii) for every window W ;, there is some string shifty (W ;) € Wi 4 in
such that 0g(W; A p, shifty(W; ap)) < ed.

2. For each other string X;,each value of d in D, and each value of A, identify a set of “representative” length
T+ A strings W, 4 a such that (i) W, g.a] = O(n(r + A)/ed), and (ii) for every window W; a ,, there is
some string shiftqy(W; ap) € Wi,d,A such that 05(W; A p, shifty(W; ap)) < ed.

3. Let Wi}d = UAWi}d’A. For each d € D and every k-tuple of strings W17d7W2’d...Wk’d in V~V1,d X
Wz’d X - X Wk,d, compute the median distance of this k-tuple if it is less than d. Store this as
5~E(Wl,d,Wg’d ... VNV;C’d) + ekd. If the true median distance of these windows is greater than d, store

5;7(V~Vl7d, Wg,d S Wk,d) = oo instead.
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4. Our algorithm solves the following dynamic program:

min;z1 ¢(x1,T2,..., & — 0,..., &) + 0
C(Il, LEQ, o f.vk) — min m%nWh...WkEWl><~~XWk:Vie(Wi):Ii,Wli"':Wk [C(S(Wl) - 17 M S(Wk) - 1)]
mlnwl,...Wk~€W1X---XWk:Vie(Wi):xi [C<S(Wl) - 1? ceey S(Wk) - 1)
+ mingep 5E(Shiftd(W1), RN Shiftd(Wk))]
For every k-tuple such that x; is a multiple of 7, x4, . . ., 2} are all multiples of o, and such that |x;—xz1| < 4D
for all .

The base case is ¢(0,0,...,0) = 0, and our final output is ¢(| X1 |, Ry (N2), ... Ry(Ng)), where R, (z) denotes
x rounded up to the nearest multiple of o.

At a high-level, in steps 1 and 2 of k-ED-ALG we exploit the compression of the input strings to identify a
small set of “representative” strings for each X;, such that for each window in X; there is a representative string
within small edit distance of that window. In step 3, we then compute the median distance between k-tuples of
representative strings (instead of between all k-tuples of windows). Since all windows are within a small distance
of some representative string, this also gives for all k-tuples of windows a reasonable approximation of their
median distance. Step 4 of k-ED-ALG uses these approximations to solve a natural DP for finding an optimal
window-respecting alignment. This DP is the same as the standard DP for edit distance, but instead of matching
characters we are only allowed to match windows, at cost equal to (the approximation of) their median distance.

We first bound the runtime of k-ED-ALG. The following lemmas show that Steps 1 and 2 of k-ED-ALG can
be performed efficiently (as well as their correctness):

LEMMA 4.3. Given a straight-line program G of size n that generates a string X of size n, a length parameter T,
and a parameter dmax < T, there exists an algorithm that in time O(|X|) finds (an implicit representation of ) a set
S of O(nT/0max) substrings of length at most T such that for every length T substring of X, x, there is a string
shift(z) in S such that dg(x, shift(x)) < dmax- We can also construct a data structure that identifies shift(x)
given the starting location of x in X using O(|X|) preprocessing time and O(1) query time.

Proof. If d.x > 7, we can trivially choose S that only contains the empty substring, and the data structure just
returns the empty substring for any query. So assume dpax < 7.

Given that G has size n, the optimal LZ77 factorization of X has size at most n | ]. We will first show
the existence of S for any X that has an LZ77 factorization of size at most n. For brevity, we will not go into the
details of LZ77 factorization here. The key property we need is that a string X that has a LZ77 factorization of
size n can be written as X; o X5 o X3, where X7 is a string with LZ77 factorization of size n — 1, X5 is a substring
of X1, and X3 is a single character. Moreover, the factorization gives the location of X5 in Xj.

Inductively, suppose we have constructed S, a set of at most 3(n — 1)7/dmax substrings that has the desired
properties for X;. For all “good” indices ¢ < |X5| — 7, the length 7 substring starting at the ith character in X5 is
fully contained in X5, and thus is a substring in X;. This leaves at most 7 + 1 “bad” indices where the length
7 substring starting at these indices may not have a nearby string in S: those starting at indices |X;| — 7+ 1
to | X1]| of X;, and the substring starting at index |Xg| — 7 4+ 2 of X5. Consider the length 7 substring starting
at every (dmax/2)-th position in indices |X;| = 7 + 1 to |X;| of X1, as well as the length 7 substring starting at
index |X3| — 74 2 of X5. This set of strings has size at most 27/0max + 1 < 37 /dmax, and every length 7 substring
starting at a bad index is within edit distance dyax Of some string in this set. So adding these strings to S gives
that S now has size at most 3n7/0max and has the desired properties.

For an efficient implementation of this procedure, we can compute the optimal LZ77 factorization in O(]X])
time | ]. Given the LZ77 factorization, we decompose X into X7 o X5 0 X3 as before, and recursively compute
an array A for indices in [1..]|X;| — 7+ 1] and set B with the following property: the length 7 substrings starting
at indices ¢ and A[i] are within edit distance dmax, and A has at most 3(n — 1)7/0max distinet values, which are
exactly the values in B.

Since the LZ77 factorization gives us the position of X5 in X7, we can fill in A for the “good” indices in X5 in
time linear in the number of good indices. We can also fill in the values of A for the bad indices, in time linear in
the number of bad indices, and add these values to B. Overall, the algorithm takes linear time to compute A, B.
A now serves as the desired efficient data structure, and B as our implicit representation of S. 0
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There are O(log N) values of d and O(log N/e) values of A, so we can do Steps 1 and 2 in time O(N/¢) time.
We also show that Step 3 can be performed efficiently:

LEMMA 4.4. Given strings X1, Xo, ... Xy, there exists a data structure that can be computed in O(D, | X;|) time
that can answer queries of the following form in O(d®) time: Given indices s1,8a,...,5, and ej,ea, ..., e,
if 6p(Xi[s1..e1], Xa[sa..ea],... Xi[sk..er]) < d, output 0g(X1[s1..e1], Xa[s2..€a],... Xg[sk ..ex]), otherwise
output oo.

Proof. Given X1, Xs,... Xk, let Slideg, d,...4,(j) = max{q: X1[j..q] = Xo[j+d2..q+do] = X3[j+ds..q+d3] =
oo = Xglj + di..q + di]}. We can rewrite Slideg,d,,..q,(j) as mineqo3  pymax{q : Xi[j..j +q] =
Xilj+d;..q+d;]}. Section 2.3 of | ] shows that we can compute max{q: X1[j..7+¢q| = Xi[j +di; ¢+ di]}
for any 4, j,d; in O(1) time after O(|X1| + |X;|) preprocessing time. So we can compute Slideg, 4,,..q4,(¢) in O(1)
time after O(}_, | X;|) preprocessing time (recall that £ = O(1)).

Let L"(da, ds, . . . dy) be the largest value of j such that §g(X1[1..j], Xo[l..j+da], X3[1..j+ds],..., Xk[l..j+
di]) < h. We have the following recurrence relation:

L' "Ydo+1,d3+1...,d +1)

max; L"~(dy,ds,...,d; —1,...,dy)

max,e o1y L' (dy — ez +e1,ds —ex +er,... dp —ep +e1)
for w = min;.e,—1 [{J # i : Xi[z;] # Xj[z;] Ve; =0}

Lh(dz, ds...,dy) = Slide | max

The first case considers deleting from X;, the second case considers deleting a character from any of
Xo, X3, ... X}, and the third case considers inserting characters into some subset of the strings (for which e; = 0),
and then matching the inserted characters with a character in the remaining strings (for which e; = 1), such that
we use at most w insertions or substitutions.

Each L"(-) only depends on O(1) other values, and so we can compute each value in O(1) time. In turn,
we can compute the values L"(dy,ds,...d;) for all 0 < h < d,0 < dy +d3 + -+ + di, < d in O(d*) time. Our
output for the edit distance is the smallest h such that L"(|Xs| — | X1, | X3| — | X1, ..., | Xk| — | X1]) > | X1], or 0o
if L9(| Xa| — |Xal, | Xa| = | X1, ., | Xl = | X1]) < [ X4,

The total number of strings in any W 4 is > aep O(n(t+A)/ed) = O(nt/€d). In turn, combined with Lemma 4.4,
the total time needed to compute dz for all k-tuples in Wi g X Wag X --- X W4 is O(nF7*/e3*). There are
O(log N) choices of d, so in total this step takes time O(n*7* /e3).

For Step 4, it takes O(1) time to process the first case in the recurrence relation. For the second and third
case, there are O(log N) values of d, O(log N/e) values of A, and for each i, z;, A there is 1 window W; a , such
that é(W;) = x;. Lemma 4.4 gives an O(1)-time method to determine if W7 = Wy = -+ = Wy, in the second case,
and we have precomputed all the necessary values in the third case. So, the time to compute each ¢(z1, 22, ... x))
is O((log? N/e)*).

The number of tuples xi,Z»,...x; such that E#I |z; — 1| < D is O(ND*~1). Of these, fraction
O(WW) satisfy that z; is a multiple of 7 and x5 ...z, are multiples of [eD7/N]. So the number of
entries we need to compute is O(N*/e*7%), and the total time to compute all these entries is O(N* /e2F7F),

Putting it all together, Steps 3 and 4 dominate the runtime with total runtime O(N*/e2k7F 4 nkrh /e3k).
Setting 7 = (N/ne)'/?, we get an overall runtime of O(N*/2nk/2e=5%/2),

We complete our analysis by showing that the final value computed by k-ED-ALG is close to 0 (X1, Xa, ... Xk).

LEMMA 4.5. k-ED-ALG outputs D such that
(5E(X1, X27 e Xk) S ﬁ S (1 + 19€k)5E(X1,X2, N Xk)
Proof. Consider any window-respecting alignment for which f(W1 ;) = (Wi, Waj,..., Wg ;). If

Op(Wi;,Waj,...,Wg ;) >0, let d; be the smallest value in D such that d; > 6g(W1 ;, Wa,,..., Wy ;) +€kd;. By
Lemma 4.3, for every j and if € is sufficiently small, by triangle inequality we have:

2881 Copyright © 2022
Copyright for this paper is retained by authors



Downloaded 01/26/22 to 70.95.81.187 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

6E(W1’j, Wajsoo o, Wy J> < [ (Shiftdj (Wl,j), shifty, (Wg)j), ..., shifty, (Wk,j))] + €]€dj
§(5 (le,WQ’j,.. ij)+26kdj
<

1+ 5ek)dg (W G Wa, .. aWkJ)'

The first inequality implies that any path through the DP table for ¢ has total cost at least that of some
window-respecting alignment, which by Lemma 4.2 gives the first inequality in the lemma statement. The second
inequality implies that for the best window-respecting alignment, there is a path through the DP table such
that the cost of the path through the DP table is no more than (1 4 5¢) times the cost of the window-respecting
alignment. Furthermore, this path only goes through points in the DP table such that |x; — 21| < 4D for all 4, i.e.
is considered by k-ED-ALG. Combined with Lemma 4.2 this gives the second inequality in the lemma statement
if € is sufficiently small. |

We can now compute a (1 + €)-approximation of the edit distance by rescaling € appropriately and running
k-ED-ALG for all D that are powers of 2, giving Theorem 4.1. One could also extract the alignment achieving
this edit distance by using standard techniques to retrieve a path through the DP table, and applying these same
techniques to the DP tables used in invocations of Lemma 4.4 as a subroutine; we omit the details here.

5 FPTAS For Center Distance

The center distance problem is defined as follows:

DEFINITION 5.1. The center (edit) distance 0cp(Xi,...,Xk) of k strings Xi,...,X; is defined as
dop(Xi,. .., Xg) = miny« max; dg(X;, X*). That is, it is the smallest value D such that by making at most D
edits to each X;, we can transform them all into the same string X*.

In this section we prove Theorem 5.1:

THEOREM 5.1. Given k = O(1) straight-line programs Gx, of total size n generating strings X; of total length
N > 0 and a parameter € € (0,1], an integer between dcp (X1, ..., Xi) and (1+€)dcp(X1, ..., Xi) can be computed
in O (e~ OWRpk/2Nk/2Ho(D)) time,

Prior to our work, the best known algorithm result for the center distance problem was the exact O(N2F)-time
algorithm of | ]. Our framework for the algorithm is similar to the framework from the previous section which
uses window-respecting alignments.

Our algorithm will actually solve a more general problem of computing an approximation of a set of values

which we call the edit tuples. We again assume d0cg(X1,. .., Xg) lies between D and 2D for some known (power of
2) D.
DEFINITION 5.2. Given strings X1, Xa, ..., Xk, an edit tuple of these strings is a vector v € Z’;O such that there

exists X* for which dp(X;, X*) < v; for alli. We denote the set of all edit tuples in {0,1,..., D}* of X1, Xo,... X,
by t’U,pD(Xl, )(27 N Xk)

We say that S is a A-approzimation of tupp(Xi,Xa,...Xy) if for each v € S, there is a vector
v € tupp (X, Xo,... Xy) such that v' < v, and for each v € tuppy (X1, Xo,...Xy), there is a vector v/ € S
such that v/ <v+ A - 1. Here a < b denotes a; < b; for all i and 1 denotes the all ones vector.

We will use again use the window-respecting alignment framework. However, our algorithm is now recursive,
and thus we need to be careful about choosing the windows to operate with in each level of recursion. Let
¢ = 0O(loglog N) be a parameter and 7o = N > 71 > -+ > 7y = N1/loglog N 16 5 sequence such that for all i < ¢,
Tm/Tm—1 = O(N 1/loglog N ) and is integer (that is, these ratios are not necessarily the same but are all within
a constant factor of N'/1°819e V) We will also eventually choose a sequence of error parameters for each level

€0,€1,---,60. Let D={1,2,4,..., N}, and for each d € D let o,(d) := max{ E’"“dﬂ”“ + Gnt1DTmtr 9} rounded

[X1]
down to the nearest power of 2. For each i > 0, for 7,,,, each d € D, the correspondlng €m, om(d), and Ry defined
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as the function rounding down to the nearest multiple of ¢,,(d), we define windows in each string just as in
Section 4. In particular, for X; we have windows W1 ,, , that are again just a partition of X; into substrings of
length 7,,,, and for Xo, ..., X we have windows W y,.a.ap = Xi[pom(d) + 1.. Rq(po,(d) + 7 + A)], where the
set of possible A is defined by €, and 7,,. We will refer to these as the windows at level m. Note that we are
using the same guess D to define windows at all levels of recursion, even though at lower levels of recursion the
center distance between the substrings we consider is likely to be much smaller even if our guess is accurate at the
first level.

We note some properties of our recursion that motivate this choice of windows: In the ith level of recursion, if
our subproblems’ input is X7, ..., X}, then we will have the guarantee that X{ is a window in X of length 7,
and X,..., X, are one of the windows in X»,..., X} corresponding to 7,,,. When we are solving a subproblem
involving a length 7, substring of X7, we will use the windows defined by 7 = 7,,,41. In addition, when we are
solving this subproblem, by our requirement that all o,,(d) be a power of 2, we have the following property: the

windows defined on the full strings X, ... X}, for 7,,41 that are contained within X7,..., X}, are equivalent to
the windows we would define within X7,..., X}, if we used the same choice of parameters 7,41, 0m+1. We will
refer to this set of windows as the windows at level m + 1 restricted to X7{,..., X}.

To give some intuition behind the choice of 7., (d), which is crucial for our analysis: The term with d is a
“local” term. It contributes to the approximation error locally, only adding error proportional to our center distance
estimate for the current tuple of windows, and also helps us keep the number of entries in the DP table within
one call small. The term with D is a “global” term. It contributes to the approximation error globally; across all
recursive calls, the final approximation error accumulated at the top level due to this term will be something like
eD. Tt also keeps the number of windows across all recursive calls small.

Now, for a fixed level m and the corresponding windows, we can define window respecting alignments of

X1, ..., X} identically to Definition 4.2. If we are considering a window-respecting alignment of substrings
X1,..., X, instead of the full strings, we simply restrict to the windows contained within these substrings, and
then define window-respecting alignments of X7, ..., X} as before using these sets of windows. We define the edit

tuples of a window-respecting alignment f, tup,(f), to be:

[®j€[c’]tupmaxi \f(leJ)1|(f(W17])) ® {T(f)}] N {0’ 17 R D}k
Where ® is the convolution of sets of vectors, i.e. ®;5; = {)_, vilv; € S;Vi}, and r(f) is the vector whose
ith entry is r;(f) = |Xil — 32 [f(W1,5)il, i.e., the number of characters in X; not in any window. Similarly
to Lemma 4.2, we can show window-respecting alignments approximate the best standard alignment.

LEMMA 5.1. Let d be any value in D. Let X1,..., X, be windows in X1,..., Xy at the same level m. Let F
be the set of window-respecting alignments of X1,..., X}, using the windows at level m + 1 parametrized by d,
restricted to X1,..., X}. Then we have that Ugcr tups,(f) is a (13€ym,41kd + 6€m41 D7y, /| X1|)-approzimation of
tupy, (X1, X5, ... X1).

Proof. First, we will show that for any f and v € tups,(f), v is also an edit tuple of X7, X5,...,X}. Let
J = Tin/Tim41. For v € tupy,(f(W1;)), it can be decomposed as 3¢5 v; + r(f), where v; is an edit tuple of
f(W1,;). By deleting the r;(f) characters in each X; that are not in any W; ;, we get the string O;W; ; for each 1,
and Zje[J] v; is clearly a valid edit tuple for these strings. So v is an edit tuple of X1, X3,..., X}.

It now suffices to show that for any edit tuple v of X1,... X/ in {0,1,...,2d}*, there exists f and v’ in
tup,,(f) such that v < v+ (9€m41kd + 66111 D7, /| X1]) - 1. Fix any such v. We partition X/ into substrings of
length 7,11, {X1,j},e(s. Let X* be the string such that ég(X;, X*) < v[d] for all i. Using the same procedure
as in Lemma 4.1, we can find a partition of X* into substrings {X;} such that each X7 has length at most
2Tm+1/€m+1 and:

Z 0p (X1, X7) < (1 + 3emy1)v[1] < v[1] 4 6epmyad.
jelJ]

Given this partition, again using the same procedure as in Lemma 4.1, we can find disjoint substrings of X,
X, j, for all i > 1 such that each X; ; has length at most 27/€2, ., and

Z (SE(XZ'J',X;) + |Xz‘ — Z ‘Xi,j‘ S (1 +36m+1)’l}[i] S ’U[Z] +6€m+1d.
jelJ] jelJ]
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Now, let W7 ; = X3 ; for all j. Similarly to Lemma 4.2, for each i, if | X; ;| < 2€,,41 max; 6 (X )J,X*) +
6€m+1DTm+1/|X1], let W, ; be the empty window “starting” at index e(W; ;j_1) + 1 (or index 1 if j = 1).
Otherwise, let W; ; be the longest window W; ,,41.A p that is a substring of X; ;. Note that |X; ;| and |W, ;| differ
by at most 2 max; 05 (Xy 9 X7 ). If €41 is a sufficiently small constant, similarly to the proof of Lemma 4.2,
this implies there is a choice of W; ; such that |X; ;| — [Wi;| < €pq1maxy 6p(Xi j, X7) + 3(om(d) — 1) <

€1 maxy O (Xyr j, X7) + 6[msldrmss | cnsiDines] Note that 3, max; 0p(X; j, X7) < k|[v]|, < 2kd. This

implies r;(f) — (1Xi| = 227 [Xi,51) is at most 5ep,41kd. We also have by triangle inequality that:

[eerldTerl 6m+1D7—m+1}

or(Wij, X7) <0r(Xij, X7) + emaxdp(Xy j, X7) +6
v Tm |X1|

Now consider the alignment that chooses (W1 ;) = (Wi ;, Waj,..., Wy ;). For each j, by the above inequalities,

one edit tuple for f(W1 ;) = (Wi, Wa,,..., Wy ;) arising from a window-respecting alignment is element-wise at
most:

(0p(X1j, X)),

€m+1dTm+l 6’r7’L-i-lD7—1ﬂ-|-1 ]
)

6E(X2’j,X;)+em+1miaX5E(XJ,X >+6[ - |X1|

ey

[5m+1d7-m+1 €m+1D7-m+1 ])

5p(Xp 1 X5) + 5p(X: 1 X*) +6
E( k,j» J)+6 +1miaX E( ,J ])+ T |X1|

So summing up these edit tuples, and adding r(f), we get a vector arising from a window-respecting
alignment that is at element-wise at most v + (€y41k ||v]| o + 11€mq1kd 4 6€p11 D7 /| X1]) - 1 < v+ (13€41kd +
66"L+1DTm/|X1|) - 1. O

We are now ready to state our algorithm. Our recursive algorithm for computing a sparse approximation of
tupp, (Xy, X2, ... Xk), denoted k-CED-ALG, is defined as follows:

k-CED-ALG(X{, X5,..., X}, d, m):

Let W; denote the windows at level m + 1 parametrized by d restricted to X7, X5,..., X}, and s,e be
the functions that take a window and gives its starting/ending index in the corresponding X/. We solve the
following dynamic program:

C(l‘l,xg, .. .l‘k) = (Ui>1C($1,IL‘2, ooy Ly T Omgly ey lfk) ® {(0,0, ey Omgly e e ey 0)}) U
(U, Wa,... Wi €W1 x Wa x oo x Wy Vie(Wi) =, [C(8(W1) — 1,8(Wa) — 1,...,8(Wg) — 1)
® Ud’ED:d’§2dk'CED‘ALG<Wla WQ; BREE) Wlm d/a m+ 1)])

For every k-tuple such that z; is a multiple of 7,41, ®2,..., 2, are all multiples of ,,11, and such that
|x; — x1] < 3d+ 6’]‘)?%"’". The base case for the dynamic program is ¢(0,0,...,0) = {(0,0,...,0)}.

After computing each entry ¢(xy, xa, ... zx), we remove all elements of ¢(z1, 22, ... x) not in {0,1,...3d+
| cmD7m |1k - After getting a set of edit tuples from a call to k-CED-Alg, we round each coordinate of each

X1l
vector up to the nearest multiple of 7., (d) before taking the convolution.
Our final output is ¢(| X1/, |X35],...,|X}%]), and then return this set of vectors.

Our base case will be when m = £, and we have that | X{| = N1/1°8198 N and all | X/| are at most 2N/ loglos N /2,
To handle the base case, we will enumerate all substrings of length at most 2N/ loglog N / e? of each of X1,..., Xy,
and compute their edit tuples using, e.g., the exact algorithm of | ]. Our top-level recursive call is to
k-CED-ALG(Xq,..., Xk, D,0).

To keep the algorithm’s description consistent across levels, in addition to assuming X;’s length is a multiple

of 7, we will assume that X5, ..., X} are multiples of o1(D); we can enforce this assumption by padding each of
Xs, ..., Xk with at most o1(D) copies of a new dummy character. This cannot decrease the center distance and
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the total increase in center distance due to this padding is at most o1 (D), which contributes an additive o(eoD) to
our approximation factor, only at the top level of recursion. By construction, at lower levels of the recursion each
X/ will have length that is a multiple of o,,(d) for ¢ > 1, so by this assumption we no longer need to worry about
rounding the indices of the value in DP table we output at any level.

5.1 Approximation Guarantee We first prove the approximation guarantee of k-CED-ALG, as it will be
necessary for our runtime analysis to specify what choice of ¢y to €; is needed for the desired approximation
guarantee.

LEMMA 5.2. Let the sequence €, ... € satisfy ¢¢ < 1 and €,41 = ﬁem for all m. Then at level m of

the recursion, each invocation of k-CED-ALG (X1, X5,..., X}, d, m) returns a set of edit tuples that is a
(emd + e"l")?flm )-approzimation of tup,,(X1,...,X}).

Proof. We proceed by induction. Clearly the guarantee holds for the base case m = ¢, since we solve the base
cases using exact algorithms.

Inductively, assuming at level m + 1, any edit tuple generated returned by k-CED-ALG is element-wise
greater than some edit tuple of the corresponding windows, by an argument similar to the first part of the proof
of Lemma 5.1 the same property holds at level m. So we just need to show that each edit tuple returned by
k-CED-ALG is not too large an overestimate of some edit tuple of its input strings.

Take any edit tuple v for any window-respecting alignment f. Assume the approximation guarantee holds
for calls made at level m + 1. We show that for the corresponding path through the DP table for ¢, there
is a vector close to v in the edit tuples generated by this path. v can be decomposed as Zje[J] vj + r(f)
where v; is an edit tuple of f(W; ;). Let d; be the smallest value in D such that d; > [|v;]|.,. By our

€m4+1DTmy1

inductive hypothesis, for each j we get a (€;,41d; + )-approximation of the edit tuples of tup a4 (f(W1,))

| X1
from the call to k-CED-ALG(f(W1,;),d;,m + 1), which includes a vector v that is element-wise at most
vj + (€my1d; + E’”“IX%) ‘1 < v+ ey [|vs]] o + ET”“‘X%) if € is sufficiently small. In addition, the sum of

the vectors contributed by the first case in the recurrence relation for ¢ is r(f). So there is an edit tuple computed
by our algorithm for this path that is element-wise less than:

Em+1 DT
Dl + Ceman [0l oo + ) A+ () St (4em+1kd+

€m+1DTm) 1
4 | X1 |
J

After accounting for the approximation error of window-respecting alignments due to Lemma 5.1 and the

rounding step, the additive error is increased to at most (166m+1kd + 8%) -1 < (epd + %) -1 as

desired.
Finally, note that since we only remove vectors with values larger than 3d + % and assume ¢y (and

eEm DT

[X1]

thus all €,,) is at most 1, we do not remove any vector that would be in a (e,,d + )-approximation of

tup,, (X1, .., X5)- |

If we set €9 = e —o(1), then after accounting for the o(egD) error introduced by padding X5 to X, the smallest
{so-norm of any vector in the output of k-CED-ALG(X71,..., Xk, D,0) gives a (1 + ¢)-multiplicative approximation
of the center distance as desired.

5.2 Runtime Analysis We now bound the runtime of k-CED-ALG, completing the proof of Theorem 5.1.

LEMMA 5.3. For the choice of €g,...,€ given in Lemma 5.2, we can compute the output of k-CED-
ALG(X1,..., Xk, D,0) in time O(nF/? . N¥/2+0(k) jcOK)),

Proof. Throughout the analysis, we will use the fact that for all m, 1/¢,, < logo(log KN /€.
We first bound the time spent on base cases. Since each X ]' at the bottom level of recursion has size at

most 2N/ 108loe N /e2 — O(N°() /e?) by construction, we can compute each base case’s edit tuples and round
them in N°(*) time. There are O(logd) choices of d and O(log, ., (27¢/€})) = 0(1og® Y (N)/€2) possible sizes for
each choice of d, so there are O(logo(k)(N )/€2F) different tuples of possible window sizes to consider at this level.

2885 Copyright © 2022
Copyright for this paper is retained by authors



Downloaded 01/26/22 to 70.95.81.187 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

The proof of Lemma 4.3 implies that for any string X generated by an SLP of size n, the number of distinct
substrings of length 7 is O(n7) (in particular, in that proof when 6 = 1 we are simply taking every substring into
S). Combining these facts, we conclude there are O(nF N°*) /¢O(F)) distinct base cases, and thus by amortizing
the work for base cases, the total time spent on base cases is O(nFN°(F) /cO(k)),

Besides base-cases, the only work our algorithm does is rounding and convolutions. We can perform the
recursion in an amortized fashion. That is, we never make multiple calls to k-CED-ALG on the same k-tuple of
strings with the same choice of d. Similarly, for each d and each level m + 1 call to k-CED-ALG, we only round
that call’s output’s coordinates to the nearest multiple of 0., (d) once. The time spent rounding a set of vectors is
proportional to its size, and the final set of vectors that we round was produced by a convolution that took time
at least the size of the set of vectors. For this convolution, with amortization we only need to round its output at
most log N times, once per value of d in D. Thus, the time spent on rounding is bounded by the time spent on
convolutions times O(log NV).

We now just need to bound the time spent on convolutions. Fix a level m of the recursion and a choice of d in
the input. We will bound the total work across all calls at level m and with d as input; there are O(log N) levels
and O(loglog N) levels, so our final bound on time spent on convolutions will be within logarithmic factors of the
bound for one choice of m and d.

The time spent on convolutions in any call is bounded by a constant factor times the time spent on
convolutions in the second case in the recurrence relation, i.e., convolutions involving recursive calls. We
perform these convolutions on tuples in {0,1,...,3d} whose coordinates are multiples of o,,(d), i.e., have
size at most O((d/am(d))k) = O((Tim/€ms1Tms1)*) = O(N°KF) Je#). Using FFT, we can thus perform these
convolutions in O(N°*) /e¥) time (e.g., we could divide all entries by o,,(d), take the convolution, and
then multiply by o,,(d)). In each call to k-CED-ALG, by the same argument as in Section 4, there are
O((Tm/Tm-1) - (d/am( NFY) = O((Tin/€ma1Tms1)F) = O(No(k)/eo(k)) entries to compute, and for each entry We
need to do O((log? N/e)¥) convolutions. So the time spent on convolutions per call to k-CED-ALG is N°®*) /O
as well.

We now just need to bound the number of calls made to k-CED-ALG, and our final runtime will be
within an N°*) /e9() factor of this. We will show for each choice of m and d, the number of calls made is
O(n¥/? . Nk/2+0(k) ¢OR))  wwhich gives the desired runtime bound. We bound the number of calls at each level
in two ways. The first way is again using the fact that for any string X generated by an SLP of size n, the
number of distinct substrings of length 7 is O(n7), and that at each level there are O(log®™ (N)/e2¥) tuples of
possible lengths for the strings in the input, each at most 7, /€2,. Putting these facts together, there are at most
O(nFrk Nok) /O(R)) distinct calls to k-CED-ALG at level m with parameter d.

The second way is exactly what we did in Section 4 to bound the number of coordinates in the DP table:
For every k-tuple of windows we call k-CED-ALG on at level m with parameter d, the window X] ends at an
index in X; that is a multiple of 7,,,, and the other windows end at indices in Xo, ..., X} that are multiples of
0m(d). Furthermore, these entries are distance at most O(D) from the diagonal. So the total number of possible
tuples of ending indices for these windows is O((N/7,,) - (D /o (d))*=1) = O(N* /75 9® ). For each tuple of
ending indices, there are N°(*) / €9() possible tuples of windows that end at those indices. So we get a bound of
O(N*F+o(k) 17k OR)) different calls for each choice of m and d. The desired bound of O(nF/? . N¥/2+o(k) /cOk))
calls follows by taking the geometric mean of the first and second bound, which is at least the smaller of the two.
d

6 Lower Bounds

We will start with a summary and overview of the techniques.

6.1 Lower Bound Overview We will start with the definitions of our hypotheses, then we will describe the
results of the lower bound sections.

Hypotheses We use two hypotheses from fine-grained complexity to generate our lower bounds. We use the
strong exponential time hypothesis (SETH) and the k-OV hypothesis. Note that SETH implies k-OV | ]

DEFINITION 6.1. The k-CNF Satisfiability (k-SAT) problem takes as input a formula ¢ with m clauses and n
variables. The formula is in conjunctive normal form (CNF) which requires that the formula be the and of m
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clauses. Fach clause is the or of at most k variables. Return true if ¢ has a satisfying assignment and false
otherwise.

DEFINITION 6.2. (THE STRONG EXPONENTIAL TIME HYPOTHESIS (SETH) | 1) For all constants ¢ > 0
there is some constant k such that k-SAT requires w(2"1=9)) time.

We can re-frame this as k-SAT requiring 2"(1=°(1) time, as long as k is an arbitrarily large constant. Next we
define the k-OV problem.

DEFINITION 6.3. (k-OV | 1) Take as input a list, L, of n zero one vectors of dimension d = n°"). Return
true if there are k vectors v; € L for i € [1,k] such that for all j v1[j] - ve[j] - vi[j] = 0.

The k-OV hypothesis states that for constant k, k-OV requires n*—°1) time. The k-OV hypothesis is implied
by SETH.

We use the k-OV hypothesis to generate our lower bounds. As the k-OV hypothesis is implied by SETH,
SETH also implies our lower bounds.

k-LCS lower bound Assuming the well-studied Strong Exponential Time Hypothesis (SETH), in Section 6.2
we show a lower bound for the k-LCS problem in the compressed setting. Intuitively, SETH states that CNF-
satisfiability requires 2"~°(™) time [ ]. Even more specifically, we use the k-Orthogonal Vectors problem
(k-OV) [ ]. At a high level, k-OV takes as input a list L with n zero-one vectors of dimension d. We must
return YES if there exist k vectors that, when multiplied element-wise, form the all zeros vector. The k-OV
conjecture, which is implied by SETH, states that k-OV cannot be solved in O(n’“*ﬂ(l)) time.

REMINDER OF THEOREM 1.1. If the k'-OV hypothesis is true for all constants k', then for any constant € € (0, 1]

grammar-compressed k-LCS requires (Mkflm)lfo(l) time when the alphabet size is |%| = O(k) and m = M),
Here, M denotes the total length of the k input strings and m is their total compressed size.

Our lower bound relies on two primary tools. First, we use a very compressible representation of a-OV instances.
Specifically, given a list L of n zero-one vectors of dimension d, consider a new list List(L), of n® zero-one vectors
of dimension d, with every vector in List(L), representing the element wise multiplication of a vectors from L.
Formally, List(L), is indexed by a-tuples of indices from [1..n], and each vector ¢ = List(L)4[j1][j2] - - - [Ja] is
defined, for every coordinate i € [1..d], with:

List(L)a[j1lls2] - - [alli] = 91d] = L{n][i] - Llja]ld] - - - Ll7a] 2]

Notably, List(L), contains an all zeros vector if and only if L is a YES-instance of the a-OV problem.
In the 2-LCS lower bound of | ], an (a + 2b)-OV instance L is first transformed into A = List(L),,
B = List(L)y, and C = List(L),. Then, the following strings are defined for every v € B and v, € C:

g, = v, [H0p[1)va, [H0p[1] - - - varo [10B[1] - - va, [d] 03 d)va, [d)o[d] - - - va,,. [d) 0 d],

first bit dth bit
Yo, = U¢[1] 000000 0;[2] - - - 000000 ve[d].
ne—1 n*—1

The string z,; that interleaves v;, with bits of n® vectors v,, € A, referred to as “interleaved” representation, is
highly compressible, to an SLP of size O(nd). Moreover, if there exists a vector v,, € A such that (vg,, 0p, Uz) is
orthogonal, Abboud et al. | | show (using the structural alignment gadget of | ]) how to perfectly align
(Va, [1], 0p[l], ve[l]) for all I € [1..d]. Finally, the gadgets x,; for all v € B are concatenated with extra padding
to generate Xp, and the gadgets y,» for all v, € C are concatenated with extra padding to generate Y. This
leads to the (Mm)'~°(") lower bound since the uncompressed and compressed lengths of X5 and Y¢ are (roughly)
O(n**?) and O(n®), respectively, and we are solving an (a 4 2b)-OV instance.

We may extend the above construction to the compressed k-LCS setting by transforming an (a + kb)-OV
instance L into lists A = List(L),, B = List(L);, and C), = List(L), for h € [1..k — 1]. We then create Xp
and Y, for h € [1..k — 1]. Since the strings Y, are zero-padded, we can easily adapt the same structural

2887 Copyright © 2022
Copyright for this paper is retained by authors



Downloaded 01/26/22 to 70.95.81.187 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

alignment gadget of 2-LCS from | ] to ensure a perfect alignment. However, this only leads to a lower bound
of (m*~1M)'=°() since the uncompressed and compressed lengths of the strings remain (roughly) O(n%*?) and
O(n?), respectively, and we are solving an (a + kb)-OV instance: Mm*F~1 = O(n®*+**). To get a much stronger
lower bound of (mM kfl)l’o(l), we need to solve a much higher OV instance. In particular, we will solve an
(a(k — 1) 4+ kb)-OV instance by taking Aj, = List(L),, Bj, = List(L); for h € [1..k — 1], and C = List(L),. We
then create strings Xp, from A, and By, for each h € [1..k —1], and Y. That is, we now have (k — 1) interleaved
strings and only one zero-padded string. This makes generalizing the structural alignment gadget substantially
more intricate since we may have to deal with k — 1 different offsets. In fact, without any zero-padded string, we
are not able to show any perfect alignment gadget. Because we are now solving an (a(k — 1) + kb)-OV instance,
we get our desired lower bound by noting M*~1m = O(ne(k=1+kb),

Easy k-Median Edit Distance lower bounds via LCS reduction As a first lower bound for edit distance,
we can reduce from LCS to both median k-edit distance and center k-edit distance. Suppose, we are given a k-LCS
instance with strings S1,..., Sk all of length M and let v denote the empty string. It can be shown that

6E(Sl,...,5k,7,...,7) = MI{Z—LCS(Sh,Sk)
(k=1)

This increases k since we add (k — 1) empty strings, but it does not increase the size of the problem, or the
compression size. Using the above relation, we can prove the following theorem.

REMINDER OF THEOREM 6.6. Given an instance of k-median edit distance on strings of lengths My < M, <

- < M, where these strings can all be compressed into a SLP of size m = |}, Mi|5i"(1) for any constant
§ € (0,1]. Then, an algorithm for k-median edit distance that runs in (M +1)--- (Mg +1)-m)' ™ time for
constant € > 0 violates SETH.

We can get a similar lower bound for center k-edit distance from k-LCS by adding a single empty string.

THEOREM 6.1. Given an instance of k-center edit distance on strings of lengths My < My < --- < M), where these
strings can all be compressed into a SLP of size m = | Y, M;|%%°() for any constant & € (0,1], then, an algorithm

for k-center edit distance that runs in time (My 4+ 1) --- (M, 4+ 1) -m)' ™ time for constant € > 0 violates SETH.

These reductions are convenient for propagating results from k-LCS to k-Edit Distance generically. However,
because they add empty strings, they don’t prove hardness for some of the most commonly studied cases such as
where all strings are of the same length and for median k-edit distance with even k. To get lower bounds for all k&
and when all strings are of the same length, we use a reduction directly from SETH, instead of going through

k-LCS.

Stronger k-Median Edit Distance Lower Bounds directly from SETH We get a lower bound for median
k-edit distance and center k-edit distance over compressed strings from SETH. When k = 2 this resolves the
second open problem suggested by Abboud et al | ]. We also generalize the lower bound for all k > 2.
There are many difficulties introduced by trying to get lower bounds for median k-edit distance when k£ > 2. We
can use some of the ideas from the k-LCS reduction. Specifically, the notion of the compressed interleaved strings
remains. Notably, we need to allow any choice of Ay, ..., Ax_1 offsets; however, if these offsets are more similar
we have many characters that match on all but one string. For k-LCS we still need to delete these characters, but,
in median k-edit distance we can simply insert a character in one string. This creates an artificial pressure to make
all the A; values the same. To overcome this, we can use some of the ideas from the recent paper that gives lower
bounds for the uncompressed case for k-edit distance | ]. There is still an issue, they build their alignment
gadget with the crucial use of empty ‘fake gadgets’. However, we need to guarantee that A; € [0,n® — 1], and
these fake gadgets allow for values of A; outside of this range. To overcome this we incentivize a match up of the
real gadgets, which then forces a restriction on valid A; values.

Specifically, we need to add a gadget, which we call a selector gadget. This gadget causes characters lined
up inside it to have a low edit distance if they all match, and otherwise have a higher edit distance that is
unchanged by exactly how well they match. The selector gadget looks like this: SCSG;(c) = %**c¥%* D=, We
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have gadgets SCSG1(c1),...,SCSGy(c) such that we can either try to match the characters ¢;, or try to line up
the % characters. If we line up the % characters, the edit distance is ky. If we line up the ¢; characters and they
all match (c; = ¢; Vi, j ), the edit distance is 2k%/4 if k is even and x(k* — 1) /4 if k is odd. If the characters don’t
match the edit distance is at least xk?/4 + y if k is even and z(k® — 1)/4 + y if k is odd. Consider the case of k
even, we can choose integer values of x and y such that xk?/4 < yk < 2k?/4 + y. By doing so, if all the characters
match, then the median k-edit distance is #k? /4, otherwise it is yk. In some sense this gadget is causing characters
to act like they do in k-LCS, where only a match across all strings gives us a benefit. Using these selector gadgets
and ideas from the edit distance and LCS lower bounds, we get a lower bounds for both median k-edit distance
and center k-edit distance from SETH.

THEOREM 6.2. If the k'-OV hypothesis is true for all constants k', then for all constant € € (0,1] grammar-
1=oM) time when the alphabet size is |X| = O(k) and
m = MEM)_ Here, M and m denote the total uncompressed and compressed length of the k input strings
respectively.

compressed k-median edit distance requires (Mk’lm)

The lower bound for median k-edit distance immediately implies a lower bound for center k-edit distance
following [ ].

REMINDER OF THEOREM 6.8 . We are given k strings of length M with a SLP of size m. The center k-edit
distance problem on these strings requires (Mk’lm)lio(l) time if SETH is true.

Given these lower bounds for the case of compressed k-LCS, median k-edit distance and center k-edit distance,
we want to consider not just compression but also approximation.

6.2 Lower Bound with LCS In this section we will argue that if we have k strings each of length M and
they have a SLP compression of size m then the problem requires M*~1=°M =) if SETH is true. In the next
section we use these hardness results for k-LCS to prove hardness for k’-Edit Distance.

The core of this section is building a generalized “perfect alignment” gadget. This is a gadget that causes
substrings to be aligned with no skips or merges. We use this generalized alignment gadget to generalize the work
of | ]. The main idea for this perfect alignment gadget is that between every string we want to align, we
add symbols $19%5...$,. Additionally, at the end of each string S; in our gadget, we add many copies of these
characters, excepting $;. That is, we add $1...8;,_18;11 ... 8%. Via this construction, any valid perfect alignment
will match all available copies of §; for all . Any alignment that isn’t perfect (for example it skips matching
some sub-string in the middle of \S;) will miss out on one of these $; characters in S;, thus lowering the value of a
potential k-LCS.

Recall that LCS(Sy,...,Sk) is a function that returns the k-LCS of the strings Si,...,S%. Recall that
6p(S1,- -+, 8%) = Diepp (S —LCS(S1, ..., Sk)). That is, the count of all unmatched characters.

6.3 Representations of Many Lists at Once The key idea is going to be different ways to represent many
lists of OV instances at once. This representation comes from | ].

DEFINITION 6.4. Let L be the list of vectors to a k-OV instance. Let |L| = n.
The list representation of £ copies of L is made up of n* vectors ' = Listy(L)[j1][ja]---[je]-

List(L)e[51][j2] - [jel[i] = 0ld] = Ll ][] - L{z2][#] - - - L{jc][d]

As a convenience of notation we will allow indexing with a single index into List(L):

List(L),

¢
iji_ll = List(L)¢[j1][72].--[7e]

When writing down this list of vectors into a string there are two ways to do it. The serial way of writing out
each vector in order, or the interleaving way. The serial way of writing vectors is in many ways easier to use for
gadgets. However, the interleaved version is easier to compress. We will describe both and use both in our gadgets.
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DEFINITION 6.5. Let L be the list of vectors to a k-OV instance. Let |L| = n.
We define the serial version as:

Stringg,(L) = Oy, e1,n]....jeen) (Ofr L[] - Llj2][d] - - LIje][d]) -

Note that this is equivalent to

Stringg,(L) = Ojeq1,n¢) Oiep,aq List(L)[4][4].

We define the interleaving version as:

Stringi, (L) = Oy (Ojienm....jeeitn L[] - L[]l - LLjel[d]) -

Note that this is equivalent to

Stringy,(L) = Oiepn,a) Ojefr,ne List(L)[5][i].

So the difference between these versions is really just what order we represent the vectors. But crucially if
there is a particular vector in List(L) that is of interest, this will appear in different places. In Stringg,(L) a
vector ¥ = List(L)[i] appears as bits [i - d, (i + 1) - d — 1]. Where as in Stringg,(L) the vector ¥ = List(L)]]
appears as bits 4,i +nF ..., i+ (d — 1)n*.

We give one final version that merges a single vector with the interleaved representation.

DEFINITION 6.6. We will expand the previous definition of an interleaved string to allow a merge with a single
other vector. Recall that

Stringy, (L) = Qiep,a) Ojefi,ne) List(L)[5][i].

Recall that for a vector u = List(L)[j] it is represented in bits j,j +n* ..., + (d — 1)n* in Stringy,(L).
We will define
VecSy(L,v) = Qiep,a) Ojepi,ne) List(L)[5][i]v]i].

Note that now if we take bits j, j+n", ..., j+(d—1)n* we give a vector w such that wli] = u[iJv[i] where u = List[j].

6.4 Intuition for our Reduction We will describe at a high level the reduction of | | and the idea for
generalizing it. In this section we will informally explain how to use the serial and interleaved representations of
the vectors to build a reduction from SETH to compressed k-LCS. We hope to build understanding for what the
different levels of alignment gadgets are doing through small examples and intuition.

6.4.1 Why We Care About Lining up the Strings Lets say we have a representation Stringy,(L) and we
have a single vector, v of length d. We create a new vector © where 9[i - n‘] = v[i] and otherwise © is zero. © will
have length nf(d — 1) + 1.

Now we will note the following: the locations of the bits in v have exactly the offsets that single vectors do in
Stringg,(L)! So, if we consider sub-string Stringy,(L)[i, i+ n‘(d — 1)] then v forms an orthogonal £+ 1 tuple with
the vectors represented by List(L),[i] if © is orthogonal to Stringy,(L)[i, + n‘(d — 1)]. This is why we care about
offsets. The next few subsections will simply be building the gadgets necessary to get this “perfect alignemnt” and
the gadgets needed to represent k-OV coordinates in the edit distance setting.

6.4.2 The Case of LCS With Two Strings How did all of this work in | ]? Start with k-OV. Now
consider a ki and ko that have this property: k = k; + 2ks. They then create three sets: A represents ki vectors
at once, B represents ko vectors at once and C represents ko vectors at once. We will give a text explanation and
then give a small example.

For C' they create its string Sc by taking List(L)j, and making Y[i] = List), (L)[i]. That is they pad the
vector with n*1 — 1 zeros after each entry in the original vector.

The Stringy,, (L) representation of A and the zeros are all very compressible with straight line programs.
For B they create its string Sg by basically merging each vector b € Listy, (L) with A which is structured like
Stringy,, (L).
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So, while the length of each string is n®2T*1 the compressions are of size n**1. We need a gadget that forces
our representation to align the two strings with no gaps in the LCS. If we do so, we can then check if an OV exists.
Now let us work through a small example. Let £y = 2 and ko = 1.

(6.2) vnn=<0,1,1,1>
(6.3) v =<1,1,0,1 >
(6.4) v3 =<1,0,1,1>
(6.5) vy =<0,1,1,0 >
(6.6) L ={vy,v9,v3,v4}

For both B and C' we form lists that are concatenations of vectors.
B =C =vy,v2,v3,14

For A we first we want to generate all the vectors v; ;[p] = vi[p] - v;[p].

(67) V1,2 = <0,1,0,1 > 1}173=<070,1,1 > 7)1’4:<071,0,0>
(6.8) ve3=<1,0,0,1> ve 4 =<0,1,0,0 >
(69) V3,4 = < 0,0,1,0 >

Then we form A by taking the first bit of each of these vectors then the second bits, etc. For this example, we put
a semicolon in between the first bits and second bits. We do this here for making it easier to read.

A=0,0,0,1,0,0;1,0,1,0,1,0;0,1,0,0,0,1;1,1,0,1,0,0

Note that if we take the bits p,p + 6, p + 12, p 4 18 these correspond to a single vector v; j. We want the ability to
merge A and a single vector v;. For this, if there is v;[p] = 0 then we replace all those bits with zeros, otherwise
we leave the bits of A as is.

(6.10) (A&v;) =0,0,0,0,0,0;1,0,1,0,1,0;0,1,0,0,0,1;1,1,0,1,0,0
(6.11) (A&wvsy) =0,0,0,1,0,0;1,0,1,0,1,0;0,0,0,0,0,0;1,1,0,1,0,0
(6.12) (A&ws) =0,0,0,1,0,0;0,0,0,0,0,0;0,1,0,0,0,1;1,1,0,1,0,0
(6.13) (A&w,) =0,0,0,0,0,0;1,0,1,0,1,0;0,1,0,0,0,1:0,0,0,0,0,0

We also want to generate the padded vectors for Sc. These padded vectors have ‘real’ vector values at locations
0,6,12,18. We want this because it means that if we line up one of these padded vectors, (0&wv;), against a vector
mixed with A, (A&w;), the ‘real’ values correspond to a vector in A.

(6.14) (0&w;) =0,0,0,0,0,0;1,0,0,0,0,0;1,0,0,0,0,0; 1
(6.15) (0&ws) =1,0,0,0,0,0;1,0,0,0,0,0;0,0,0,0,0,0; 1
(6.16) (0&w3) =1,0,0,0,0,0;0,0,0,0,0,0;1,0,0,0,0,0; 1
(6.17) (0&wy4) =0,0,0,0,0,0;1,0,0,0,0,0;1,0,0,0,0,0;0

Specifically, if we line up (0&v;) and (A&wv,) with an offset of A every lined up set of entries has a zero if there are
k1 + 2ko vectors that are orthogonal. Lets consider this example:

(6.18) (A&v;) =0,0,0,0,0,0;1,0,1,0,1,0;0,1,0,0,0,1;1,1,0,1,0,0
(6.19) (0&vs) = 1,0,0,0,0,0;1,0,0,0,0,0;0,0,0,0,0,0; 1
(6.20) This alignment = 0;0,0,0,0,0,0;0,0,0,0,0,0;0,0,0,0,0,0

By picking this alignment, A = 5, we are picking the sixth vector that went into A which is v3 4. So, this alignment
is checking the orthogonality of vy, vs, v3,v4. Lets look at a set of non-orthogonal vectors to compare. The vectors

2891 Copyright © 2022
Copyright for this paper is retained by authors



Downloaded 01/26/22 to 70.95.81.187 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

v1, V2,1, V4 are not orthogonal. The vector vy 4 corresponds to A = 2.

(6.21) (A&w;) =0,0,0,0,0,0;1,0,1,0,1,0;0,1,0,0,0,1;1,1,0,1,0,0
(6.22) (0&vs) = 1,0,0,0,0,0;1,0,0,0,0,0;0,0,0,0,0,0; 1
(6.23) This alignment =  0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

This is why we want ‘perfect alignments’. We want to build up representations of these strings and allow for
any choice of A, but no skipping characters or merging gadgets. Previous work generates a perfect alignment
gadget such that the output gadgeted strings T{ sgy,) and T{ogy;) have a low LCS if there is a A such that (A&w;)
and (0&wv;) have an all zeros alignment with offset A (like (A&wv1) and (0&wvq) with A =5 in our example). We
will now show what the perfect alignment gadget looks like. We can not use zeros and ones directly to solve OV
(see Lemma 6.1). We want gadgets such that 0,0 and 0,1 have a low LCS and higher LCS for 1,1. We add the
characters $ and 5. The 5 characters make sure we don’t skip any symbols from T{og.,). The $ characters make
sure we don’t skip any symbols from T{agy,)-

(6.24) T Agw;) ~$05505$05805305505515505$15$05815805505515505$05305515515515505$1580530$
(6.25) Towey ~% 8 8 § $ $15$05$05505$05$05515$05$05505$05$05505$05$05505$05$0551$°

The extra dollar signs at the ends of the strings allow all the dollar signs in T{4¢.,) can be matched regardless of
the offset A. The 5 symbols make skipping zero or one characters also skip at least one 5 character. This set of
characters (at a high level) form the perfect alignment gadget of | ].

To form the string Sp we want to basically concatenate T{agu,)s T(A&vs)> T(A&vs)s L(A&v,)- To form the string
Sc we will basically concatenate T(ogv,)s T(0&vs) T(0&vs)s L(0&v,s)- These strings are not really concatenated, but
instead have an alignment gadget wrapped around them. This alignment gadget guarantees a low LCS if a pair of
strings T( agv,;) and T{ogw,) have a low LCS, and otherwise has a high LCS. In total, this means the strings Sp
and Sc have low LCS if there exist 4, j, A (A&w;) and (0&wv;) have an all zeros alignment with offset A. Such a
zero alignment existing implies a (k1 + 2k3)-OV exists (a 4-OV in our example).

6.4.3 How to Generalize This (Intuition) What we want generically for k-LCS is to have k sets of lists
that act like B and C, and ¢ sets of lists that act like A. If we make an efficient reduction with these parameters,
then we get a lower bound of (M‘mF=¢)1=o(1),

To get the easy generalization we set £ = 1, and we have one “A type” set of lists. Lets call the “B” and “C”
type lists By, ..., Bi. We create strings Si, ..., S and merge By and A into S; using the method from [ ]
For S; where i > 1 we instead use the padding with zeros method. Now we have a situation where we want a
gadget that forces the zero padded strings to line up exactly and they are both on some offset of 7 from the strings
in S7. This as it turns out is easy. The strings are of the same length and just copying the construction used for C'
in | ] will get us what we want here. Specifically, the string S; will be roughly? a concatenation of 7| (A&wv;)
strings. The S; strings for i > 1 are instead roughly? the concatenation of Tlogw,) strings. If we are given a set of
k strings Tiagv,), T(0&vs)s - - -+ » L(0&v),) We want to allow any offset A, but that same A should be shared across
all the T{ogw,) strings. As a result, we can just use the same T{og.,) strings from the two string case for all the
strings 7 > 1. The T{gg.,) strings are the same in every location except for the d representations of the bits in the
vector v;. The structure of the 5 characters forces all of the T{gg.,) strings to line up together to match all the 5
characters. The $ characters force any high LCS to not skip any of the zeros or ones in the T 4,) representation
of (A&w;). On a high level this reduction is easy because we still have only one offset A that we need to deal with.

What needs to happen if £ > 1?7 The primary hurdle is coming up with a setup where two long strings of the
B type from the original construction can be forced to have their optimal setup line them up exactly with no
skips when they have two different offsets from the zero padded strings. To get a sense of the difficulty consider
how many $ characters should be at the start and end of those strings to allow all $§ characters to be matched
regardless of offsets. As we grow the number on one string we have to grow the number on the other. So we need
different symbols $1, ..., $; for each string.

20nce again, it isn’t really a concatenation. Instead these strings are wrapped in an alignment gadget. However, these alignment

gadgets are basically concatenations of the strings but with characters in-between the strings.
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For convenience let 0 and 1 be stand-ins for the strings we use in LCS reductions from OV (there are longer
strings that have the property we want where the LCS of 110,101,011, 100,010, . ..,000 are all equal). Now, if we
want to compare k strings where X € {0,1}™ and Y;,...,Y;_1 € {0,1}" where n < m and we want the Y's to
line up exactly and we want them to compare to some substring of X then we can add a special character $. Let
Z = $¢ where ¢ will be a constant in terms of k that is larger than the full length of string representations of 0
and 1.

(6.26) Sy =ZX[0]ZX[1]Z...ZX[m|Z
(6.27) Sy, =Z™"Y;[012Yi[1)Z ... ZYi[m]Z™ "

Now, if there is a sub-string of X that is orthogonal to Y7,...,Y;_1 then the optimal LCS will match all the
Zs in X and match each character Y;[j] with some character in X. If we spread out our matches of ¥; and don’t
match to a sub-string of X but instead to a subsequence, we will miss out on some Z characters. So, if there isn’t
a match that corresponds to an OV we will lose out. And this works with many strings at once.

This gadget is forcing not just any alignment of the underlying strings in Xi,...,Xx_1,Y, but a perfect
alignment. We will use this structure to build a perfect alignment gadget.

6.5 Reduction We will prove lemmas building up the gadgets for this construction. We will describe the details
of our gadgets and reductions here. The intuition described above of both why we care about perfect alignment
and how to achieve it is used in the next subsection on our alignment gadget.

6.5.1 Alignment Gadget Now we will prove that the alignment gadget works as desired. First let us define
what an alignment and perfect alignment are.

DEFINITION 6.7. We will generalize the Structured Alignment Cost definition of previous work [ ]. We
are given as input k lists of strings X1,..., Xp—1,Y. Where | X;| =n, |Y|=m, and m < n.
An alignment, A is a list of t k-tuples:

(1,05 01,2, s 01k )s ooy (B0, 00,2, -y iek))
where 15, < i, if j < j'. We call an alignment perfect if i;, +1 =141, and t =m.

Now we will create some gadgets to maintain alignment. We will define them here and then below prove the
various properties we care about.

DEFINITION 6.8. (PERFECT ALIGNMENT GADGET) We are given as input k lists of strings Xi,...,Xk-1,Y.
Where | X;| =n, |Y| =m, and m < n.
We will add k new symbols $1,...,$x. We will define A= $30...08$2" where o is the concatenation operator.

Let A_; =$3%0... 082 0% o...082. Note that this is just A with all the $; symbols removed. We also add a
character % which we use to pad out our strings to give them more value. Let B = %% (note that the % character
is serving the purpose of the 5 character in our earlier example). We define f = n —m. Then the generalized
structured alignment gadget would produce strings:

(6.28) AGi(Xi):A]iivoXi[l]oBvoXi[Q}oBo...voXi[n}oBoA]ii
(6.29) AGy(Y)zAikvoY[l]oBvoY[Q]oBo...voYmoBoAik

We also want gadgets to be a selector around the alignment gadget. We add a new character @. We will leave
D unset for now. We define our SAG gadgets:

SAG;(X;) = @P71AG;(X;)
SAG,(Y) = AG,(Y)aP~1,

We will now prove that these work as perfect alignment gadgets. This setup requires that we are trying to
detect if there is a perfect alignment in which all strings match as much as they can.
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THEOREM 6.3. We are given as input k lists of strings Xi,...,Xp_1,Y. Where | X;| =n, |Y| =m, and m < n.
Furthermore all strings S € X; and S’ € Y have length |S| = |S'| = £.

Additionally, given any set of k strings S; € X; and Sy € Y the LCS distance is either z or z + 1 for some
constant z.

Let A be a perfect alignment which is a list of m k-tuples: (411,%1,2,...,%1,%). Where i 5 +1 =141 1.

Then, if there is a perfect alignment A in which there are exactly m k-tuples such that

LOS(Xu[ijal, .-, Xp—1lijr—1], Xylijn]) = 2+ 1,

then
LCS(SAG(X1),SAG2(X2),...,SAGr_1(Xk-1),SAG,(Y)) =D,

if all perfect alignments have less than m k-tuples with a LCS of z 4+ 1 then
LCS(SAG:1(X1),SAG2(Xs),...,SAGk_1(Xk-1),SAG,(Y)) =D — 1.

These strings use an additional alphabet of size O(k). The total length of strings is O(¢n). The value of is
D=202m+ (k—1)n) + (z + 1)m.

Proof. In the SAG gadgets note that if we match any @ character we have a maximum LCS of D — 1, and we
can always achieve this. If we match any characters from AG;, then we can match no @ symbols. Thus, what
remains to be proven is that if there is a perfect alignment A in which there are m k-tuples such that if we have m
matches where

LCS(Xl [ijJ], P an—l[ij,k—lL Xy [ij,k]) =z + 1,

then
LCS(AG1(X1), AG2(Xa), ..., AGk—1(Xk-1),SAG,(Y)) = D,

otherwise
LCS(AG:(X1), AG2(X2), ..., AG_1(Xi-1),SAG,(Y)) < D —1.

Recall D = 2¢(2m + (k — 1)n) + (2 + 1)m. Now we have three cases to argue.

Case 1 [There are m “good” k-tuples, lower bound]: Consider aligning the strings in the perfect
alignment A which has m k-tuples of strings which have a LCS of z + 1. Now, we can match m copies of B. What
about $; symbols? There are 2¢n copies of the $; symbol in AG;(X;), they only appear in the copies of A (they
don’t appear in A_;). If we are matching up with a perfect alignment we can match all 2¢n of these symbols.
They either line up with copies of A in other strings, or copies of A_;. Finally, there are 2¢m copies of $, in
AG,(Y). In a perfect alignment these symbols will all get matched to symbols that appear in copies of A in other
strings. So, in total

LCS(AGH(X1), AGo(Xa), . .., AGy_1(Xi_1), AGy(Y)) > 20m + 20(m + (k — 1)n) + (z + 1)m > D.

Case 2 [There are m “good” k-tuples, upper bound]: Across all % and $; symbols the maximum
number of matches is 2¢(m + m + n(k — 1)). What if we don’t match the strings in a perfect alignment manner?
There are two ways to do this. One is to skip matching some strings in Y (e.g. merging Y[j] and Y[j + 1] and
matching that to some single string somewhere else, or simply skipping over a string in Y'). If this happens we
miss out on the characters in at least one B. The advantage gleaned for every skipped string in Y is at most
|Y[5]| = ¢, but skipping out on B is worse, we lose 2¢ matches. The next case is skipping strings in X;. That
is, matching Y'[j] with X;[j'] but matching Y'[j] with X;[j’ + 1 + A] for some A > 1. This looses at least 2¢ $;
characters. Any k-tuple of strings has, by assumption in the lemma, a k-LCS of at most z + 1. So, this causes the
k-LCS less than D. Finally, any time we match multiple strings in X; with a single string in Y, Y[j], can increase
the match in Y[j] by at most £. However, we loose at least 2¢ symbols $; in X;. This means the k-LCS of AG;
strings is at most D — £.
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Case 3 [There are less than m “good” k-tuples]: Now, if there are less than m matches with a k-LCS of
z 4+ 1 then what is the maximum A-LCS? Similarly to case 2, if we skip as string in ¥ or merge Y'[j] and Y[j + 1]
we loose at least one B. Because the B copies are in-between every pair of adjacent Y strings. If we matching
some symbol in each Y[j], then the maximum value if we match one string from each X; to each string in Y is
D — 2/ because we must skip some 2¢ characters $;, so the maximum match would be at most D — 2¢. Finally, we
could merge multiple strings from X; and match with a single string from Y, in this setting we could potentially
get D —2¢ + ¢. While we can potentially match all £ characters in Y, we must miss out on at least 2¢ $; characters.

So, we have proven the result that if we have m matches where

LCS(Xl [’ij’l], R 7Xk71[ij,k71]7 Xy [ij,k:D =z41,

then
LCS(AG1(X1), AG2(X2), ..., AGk—1(Xk—1),SAG,(Y)) = D,

otherwise
LCS(AG1(X1), AG2(X2), ..., AGK-1(Xk-1),AG,(Y)) <D — 1.

Then, because of the @ symbols if there is a perfect alignment A in which there are exactly m k-tuples such
that

LCS(Xl [ijyl], . 7Xk71[7;j,k71}7 Xy [Z’j,kD =z41,

then
LCS(SAG:(X1), SAG2(Xa2),...,SAGr_1(Xk-1),SAG,(Y)) =D,

if all perfect alignments have less than m k-tuples then
LCS(SAG:(X1),SAG2(X2),...,8AGk_1(Xk-1),SAG,(Y)) =D — 1.

Proving our desired result.
|

Now, we will also want to use this gadget for regular alignment. In this case we will care about distinguishing
between a single k-tuple with high value versus no strings having high value.

THEOREM 6.4. We are given as input k lists of strings X1,...,Xp_1,Y. Where | X;| =n, |Y| =m, and m < n.
Furthermore all strings S € X; and S’ € Y have length |S| = |S’| = ¢.

Additionally, given any set of k strings S; € X; and Sy € Y the LCS distance is either z or z + 1 for some
constant z.

Finally define X; as a list that is simply two copies of X;. That is X;[j] = X;[n + j] = X4[j].

In the first case there is exactly one k-tuple where

LCS(Xl [1’1,1]7 - ,kal[il’kfl],Xy[ilyk]) =z+ ].,

and there exists a perfect alignment that can align this k-tuple. That isn —i1; > m — i1 and i1; < 41,5. In this
first case we want:

LCS(SAG: (X1), SAGo(Xs), ..., SAG_1(Xk_1), SAG,(Y)) = D.

In the second case there are zero k-tuples that have an LCS of z + 1 then we want:
LCS(SAG:1(X1),SAG2(X2),...,8AGr_1(Xk-1),SAG,(Y)) =D — 1.

These strings use an additional alphabet of size O(k). The total length of strings is O(fn). The value of is
D=2(2m+ (k—1)n) + zm + 1.

Additionally, let ¢ be the size of an SLP that gives a single variable for all (k — 1)n + m strings X;[j]
and Y'[j]. Then there is a SLP representation of all the strings AG1(X1),...,AGr_1(Xk-1), AGy(Y') of size
O(c+1g(0)k +1g(n) + kn + m).
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Proof. As in the above theorem: in the SAG gadgets note that if we match any @ character we have a maximum
LCS of D — 1, and we can always achieve this. If we match any characters from AG;, then we can match no @
symbols. Thus, what remains to be proven is that if there is an alignment with exactly one k-tuple such that

LCS(X1 [ij’l], Ceey kal[ij,kfl}a Xy [ij’k}) =z+41,

then
LCS(AG1(X1), AGa(Xa), ..., AGk—1(Xk-1),SAG,(Y)) = D,

if there are no k-tuples with an LCS of z + 1 then:
LCS(AG:(X1), AG2(X2), ..., AG_1(Xk-1),SAG,(Y)) < D —1.

Case 1 [There is 1 “good” k-tuple, lower bound]: Consider aligning the strings where the k-tuples of
strings which have a LCS of z 4 1 line up. Now, we can match m copies of B. What about $; symbols? There are
2¢n copies of the $; symbol in AG;(X;), they only appear in the copies of A (they don’t appear in A_;). If we are
matching up with a perfect alignment we can match all 2/n of these symbols. They either line up with copies of A
in other strings, or copies of A_;. Finally, there are 2¢m copies of $, in AG,(Y"). In a perfect alignment these
symbols will all get matched to symbols that appear in copies of A in other strings. So, in total

Case 2 [There is 1 “good” k-tuple, upper bound]: If there is a singular “good” k-tuple we can not
re-arrange the strings to get a larger alignment. If we skip or merge any strings in Y we loose 2¢ symbols from B
at least, giving a maximum LCS of D — 2/. If we skip or merge strings in X; then we loose at least 2¢ symbols
from $; characters. We gain at most ¢ matches, giving a maximum LCS if we merge or skip of D — ¢. Thus, the
largest LCS possible is D.

Case 3 [There are zero “good” k-tuples, upper bound]: In this case, if we follow a perfect alignment
we achieve an LCS of 2fm + 2¢(m + (k — 1)n) + zm = D — 1. If we skip a string in Y we miss out on 2¢ characters.
If we match a single string in Y to multiple strings in X; we loose at least 2¢ characters and match an additional
¢ characters at most for a total LCS of at most D — ¢. Finally, if we skip over strings in X;, we miss out on 2/
characters $;, for no benefit. All k-tuples have a value of z regardless, so the maximum LCS is D — 2¢.

From all these cases we can say that if there is exactly one “good” k-tuple, and it is reachable in a perfect
alignment then

LCS(SAG:(X1),SAG2(X2),...,SAG,—1(Xk-1), SAG,(Y)) = D.
If there are no “good” k-tuples
LCS(SAG:1(X1),SAG2(X2),...,8AGk_1(Xk-1),SAG,(Y)) =D — 1.

For the compression, D < ¢n. So we add an additional 1g(n) + 1g(£). So if ¢ is the size of an SLP that gives a
single variable for all (k — 1)n + m strings X;[j] and Y[j]. Then there is a SLP representation of all the strings
AG1(X1),..., AGE_1(Xj—1), AG,(Y) of size O(c +1g(¥)k + 1g(n) + kn + m). Unchanged. |

6.5.2 Zero and One Strings First we will use the gadgets for representing zeros and ones from | .

LEMMA 6.1. (ZERO AND ONE STRINGS | 1) There are strings CG;(0), CG;(1) such that:

C ifb1---bp, =0
k — LOS(CGy(b1), ..., CG(by)) = i bu---be

C+1 ifvb---bpy=1
for some positive integer C that is a function of k. Note this corresponds to our desired relationship from k-OV. If
we have one “zero string” then we get a small k-LCS, if there are all “one strings” then we get a larger k-LCS.
These strings use an alphabet of size O(1). If k is a constant the length of these strings is O(1).
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6.5.3 Interleave Gadget Now we will build the gadget that checks if our interleave representations represent
a yes instance of orthogonal vectors. For this next Lemma recall Definition 6.6, where we define VecSy, (L, v;).

LEMMA 6.2. Let L be a list of n {0,1} vectors each of dimension d =n°1). Let vy, ..., vy be {0,1} vectors each
of dimension d. Given the lists, We produce strings: IV Gy (L, €,v1),...,IVGr_1(L,,vp_1), EIVG(v) such that

LCS(IVGy (L, 4, v1),...,IVGr_1(L,0,v,_1), EIVG(vy,)) = C

if there are (k — 1)¢ vectors in L such that are orthogonal with vy, ... ,vg. If there do not exist (k — 1) vectors in
L that are orthogonal with vy,...,v; then

LCS(IVGl(L,E, 'Ul), ey IVkal(lqE,’Uk,l), EIVG(Uk)) =C-1.

These strings have length at most O(nd) and an alphabet of size O(k).
Additionally we can compress x strings IVG;(L, €, v1),...,IVG;(L,{,v;) or EIVG(v1),...,EIVG(v;) with
a total compression size of O(xzd +nd + £1g(n)).

Proof. Consider the k — 1 lists VecSy,(L,v;) for i € [1,k — 1]. Additionally, let

. vplh]  if j=h-nt
Vees(uolj] = { 17
0 else.
Where the total length is |Vecg(vg)| = n’ - (d — 1) + 1.
Now create the lists
Xi[j] = CGi(VecSy, (L, vi)[j])

Y[jl = CGr(Vecn(uvr)[i])-

Finally create the strings
IVGZ'(L, f, Ul) = SAGI(Xl)

EIVG(vy) = SAG,(Y).

Now, note that by construction the k-LCS of coordinate gadgets CG;(+) is either some value z or z + 1.

Now, note that Vecg(vy) has zeros in every location except h - n’ for h € [1,d]. If we perfectly align Vecg(vy,)
with the (k—1) vectors VecSy,(L, v;), then these locations correspond with a vector in each! That is, as mentioned
in Definition 6.6, the bits in locations 7,7 + nf,...,j + (d — 1)n’ correspond to a vector w where w[h] = u[h]v;[h]
and u = List[h]. If there are (k — 1)¢ vectors in L that are orthogonal with vy, ..., vy, then there should be a
perfect alignment of these vectors such that in every alignment location there is at least one zero. That is, an
alignment where every aligned k-tuple has a LCS of z + 1 as opposed to z.

Let ¢ = |CG;(+)|. Let z + 1 be the value of 6,CS(CG1(b1),...,CGi(by)) if by --- by, = 0.
So (SLCS(CGl(bl), ceey CGk(bk)) =z if bl s bk =0.

So, by Theorem 6.3, if there are (k — 1)¢ vectors in L that are orthogonal with vy,...,v; then

LCS(IVGy (L, b, v1),..., EIVG(vg)) = C = 2¢(2((d — 1)n* + 1) + (k — 1)dn®) + (z 4+ 1)((d — 1)n® +1).

Otherwise,
LCS(IVG(L,4,v1),...,IVGr_1(L,L,v5—1), EIVG(vg)) = C — 1.

Now we are going to argue that we can compress z strings IV G, (L, ¢, v1),...,IVG;(L,¢,v,) or
EIVG(v1),..., EIVG(v,) with a total compression size of O(xd + nd). First, note that A”, can be represented
with an SLP of size O(lg(¢) + 1g(n)). Now the rest of our string is a series of entries that look like A - CG;(b) - B.
We can create a SLP for both Sy = A - CG;(0) - B and S; = A - CG,(1) - B with size O(1g(¢)). We give the names
of Sy, S1 to simplify the notation.

Next, if we are compressing z different EIV G(v;) gadgets, first we want to compress Sg[_l which appears
repeatedly. We can do this with size O(¢lg(n)). Finally, we need to add the bits that correspond with each vector.
We can do this with size dz. This gives a total size of O(¢1g(n) + dz).
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Finally, consider the case of compressing x different IVG(L, ¢, v;) gadgets. This part of the proof, where
interleaves are very compressible, borrows very heavily from | ]. For this we note first that VecSy,(L, v;)
has d sections of size n’ that correspond to the d dimensions of the vectors. Any section that corresponds to a h
where v;[h] = 0 has n’ copies of Sp. This can be represented with size O(¢1g(n)). When v;[h] = 1 the section
instead corresponds to O e, List[j][h]. By using Definition 6.4 we can re-write this as

SubList[L, k] = Oy, e1.n Ojaefing Ojscitn) - - - Ojretryn) LUl - Lij2][i] - - - Ljx][d]-

Now note that SubList[L, 1] is simply a string of n bits and thus has a compression of size n. Now note that
SubList[L, g] is simply a string formed by appending either SubList[L, g — 1] or n9~! zeros. We can represent
n9~1 zeros with O(glg(n)) variables. So, if SubList[L, g] has an SLP f(g) then SubList[L, g + 1] has an SLP
flg+1) =n+ f(g) + glg(n). We have that f(1) = n, so f(k) = kn + k%lg(n) = O(n). Thus, the total size of
compressing  different IV G(L, ¢, v;) gadgets is O(¢1g(n) + dz + dn). O

6.5.4 Putting it all Together Now that we have an interleave gadget, we want to put many of these gadgets
one after each other. However, we want to line up these gadgets. So, we put our interleave gadgets into the perfect
alignment gadget.

LEMMA 6.3. Let a,b, and k be positive constant integers. Let L be a list of n vectors of length d = n°().
There are k strings GOV;(a, b, k, L) such that:

LCS(GOVA(a,b,k,L),...,GOVi(a,b,k, L)) = {g ) ZJ; there is a (bk + a(k —1))-OV in L
— eLse

The length of each of these strings is O(n®t*+°(MW)) with an alphabet of size O(k).

Proof. Unique (bk + a(k — 1))-OV is equivalent to the normal detection problem of (bk + a(k — 1))-OV, via a
randomized reduction [folklore][ ]. So, we can consider the case where a single (bk + a(k — 1))-tuple of vectors
are orthogonal.
Let L, = List(L); as defined in Definition 6.4. Now we will use these to define lists of vectors. For all
i€l k—1] let
Xilj) = IVGi(L, a, Lyj]),

Y[jl = EIVG(Ly[j]).
So all X; and Y have length n®. The strings inside the gadgets is n®t°(1). All k-tuples of these strings have LCS

values of either C' or C' — 1. We basically want to wrap an alignment gadget around these strings. However, we
want to allow any k-tuple to be compared so we will double all the X; lists:

X5 = X5 + 0] = X315).

Now, for any k tuple ji, ..., jx where j; € [0,n® — 1] there is some offset A; € [0,n® — 1] for all X; such that
jrk = j1+A; mod nb. So, we can align the X; strings with Y and get any k-tuple lined up. So, we can now build
our gadgets. For all ¢ € [1,k — 1]:

(6.30) GOV;(a,b,k, L) = SAG;(X;)
(6.31) GOV (a,b,k,L) = SAG,(Y)
Now, if there is a single (bk 4+ a(k — 1))-OV in our unique OV instance then there is a single k—tuple

Xi1[j1], ..., Y [jx] of strings that have a LCS of C. Otherwise, they will all have a LCS of C — 1. By Theorem 6.4
we have that in the first case where an (bk + a(k — 1))-OV exists

LCS(GOVi(a,b,k, L), ...,GOVi(a, b, k, L)) = D

otherwise
LCS(GOVy(a,b,k,L),...,GOVy(a,b,k,L)) = D — 1.

2898 Copyright © 2022
Copyright for this paper is retained by authors



Downloaded 01/26/22 to 70.95.81.187 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Note that having only two possible LCS values hinges crucially on using a unique (bk + a(k — 1))-OV instance.
The total size of the alphabet is O(k) for the interleaves and another O(k) for the SAG gadgets, with a total
alphabet size of O(k).

The total length of the IV G gadgets is n®+°(). We have n® copies of these gadgets. Giving a total length of
na+b+o(1). O

We will now bound the size of the compressed length of these gadgets.

LEMMA 6.4. Let k be a constant integer and let d = n°). Given the k strings GOVi(a,b,k,L) defined in
Lemma 6.3 the size of the compression is O(nb+°() 4 plte(),

Proof. We will start by describing the compression size of CG;(0), CG;(1). These strings have length O(1), thus
the total size of the compression is at most O(1). There are 2k of these strings and k is a constant. So we can
have 2k variables, one for each string and still the total size of the compression will be O(1).

Next, we need to analyze the size of the compression of the kn® interleave gadgets IV G;(L, ¢, v;). These
include the zero and one bit representations, and then are wrapped in a perfect alignment gadget. By Lemma 6.2
we have that the total size of the compression of these strings is O(kd(n +n?)). Because we have n® distinct copies
of v; we are generating the IV G strings with, so the z of the lemma is n® in our case. Note that kd = n°"). So
the total size of these compressions is O(n!*+0() 4 pdte(l))

Next, we need to analyze the size of the compression of the entire string. We use the compression of the
interleave gadgets and the coordinate gadgets. In addition to this we are wrapping our interleave gadgets in an
alignment gadget (from Lemma 6.4). This adds an additional O(lg(n) + n®) variables to the SLP.

This gives an SLP of total size of O(n?to(l) 4 plte(D)), 0

Now we will now combine the previous lemmas to give the hardness of k-LCS with compression.

REMINDER OF THEOREM 1.1. If the k'-OV hypothesis is true for all constants k', then for any constant € € (0, 1]
grammar-compressed k-LCS requires (Mkflm)lfo(l) time when the alphabet size is |S| = O(k) and m = M),
Here, M denotes the total length of the k input strings and m is their total compressed size.

Proof. Use the gadgets from Lemma 6.3. Call the strings 51, ..., S, Consider positive integers a and b.

These have an alphabet of size O(k) and length M = O(n®+**+°(1)) by Lemma 6.3. These have a compression
of total size m = O(n®+°() 4 pl+o()) by Lemma 6.4.

The size of the alphabet of the reduction is O(k), so if the alphabet is allowed to be size O(k), then this lower
bound applies.

So MF=tm = O(nk=Datkb+o(1)) If (bk + a(k — 1))-OV requires nP¢Te(k=1)=0(1) time, then this corresponds
to a lower bound of (Mk’lm)lfo(l) for SLP compressed k—LCS.

Consider a contradiction to our theorem statement. There would be an algorithm running in (M*~tm)'=>
time to solve grammar compressed k-LCS when m = M¢*°(1) and € € (0, 1]. In the easiest case we can pick an a,b
such that b/(a 4+ b) = ¢, in this case we are done. For irrational ¢ we need to approximate and then pad the strings.
Choose an a and b such that e < b/(a+b) < (1 +/2). Such a, b exist that are in O(%) We add a new character
3. Let S/ = S,;3%, where we will set z € [M, M?] later. Note that LCS(S7,...,S,) = LCS(S1,...,Sk) + z. Note
that the compression of these strings is m’ = m + lg(z) = ©(m) where as the length is M’ = M + z = O(x).
Choose © = m!/te(l) = ppb/(atb)1/¢ Qo now m’ = M'Y/<*+°(1) Note that 1 < b/(a +b)-1/e < (1 +v/2). Now
consider running the claimed fast algorithm on our new Si,...,S) instance. The running time is

(M/(k—l)m/)l—'y _ O((M(1+’y/2)(k—1)m)1—'y—o(1)).

This running time can be simplified to O(M*~Dm)1+7/20=7=0()  Note that (1 +v/2)(1 — v — o(1)) is less
than 1 — o(1). This algorithm violates the lower bound for the original Si, ..., Sk instance. This is a contradiction.

So any algorithm running in (M*~!m)!=7 time to solve grammar compressed k-LCS when m = MeEe() and
e € (0, 1] violates k’-OV for some k' that depends on €,+. This implies our theorem statement. 0
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6.6 Easy Edit Distance Lower Bounds from LCS In this section we will prove that k-median edit distance
is hard from k’-LCS. We take a k’-LCS instance and add various numbers of empty strings. This pushes the
k-median edit distance problem towards deletions. So, we increase the number of strings, but we don’t increase
the total uncompressed or compressed length of the input.

Nicolas and Rivals show NP-hardness for k-edit distance through &’-LCS for large k and &’ | ]. We take
inspiration from their reduction to build our own, removing some of their restrictions, and making it fine-grained
efficient. We then use the hardness results we have for k’-LCS to get lower bounds for k-edit distance. We will be
focusing on a version of edit distance where the strings are allowed to be of very different sizes. We will give an
explicit definition now.

DEFINITION 6.9. Given k strings S1,...,Sk of lengths My, Ms, ..., My the k-edit distance (or k-median edit
distance) of those strings is the minimum sum across all strings of edits needed to make all strings equal some new
string S’. The allowed edits are deleting a character, adding a character and replacing a character (Levenshtein
distance).

More formally: Recall that 65 (S;,S") denotes the edit distance of S; and S’. Recall that the k-median distance

18:
] e = i Se(S:, S’
E(Slsta aSk) S’GArlrlllSr%rings Z E(SMS)
i=[1,k]
We can use inspiration from | ] to get lower bounds for the center version of this problem as well. Let us

remind the definition of k-center edit distance problem.

DEFINITION 6.10. Given k strings Si, ..., Sk of lengths My, My, ..., M. We define the k-center edit distance of
those strings is the minimum of the mazimum of the distances of those strings to a string S’. The allowed edits
are deleting a character, adding a character and replacing a character (Levenshtein distance).

More formally: Let 6g(S;,S’) be the edit distance of S; and S’. Now the k-center distance is:

_ : oo
6ce(S1,52,..., k) = L (ZI_H[?X]C] (8, S )) :

6.7 Median Edit Distance

THEOREM 6.5. We are given a k-LCS instance with strings Si, ..., Sk all of length M. Let the k-LCS of these
strings be denoted by LCS(S1,...,Sk). The (2k — 1)-median edit distance on Sy through S and k — 1 copies of
the empty string vy is related to the k-LCS of S1 through Sk:

6E(Sl,...,5k,7,...,7) :MI{Z—LCS<51,,Sk)

Proof. First, let us prove that 6g(S1,...,5,7,...,7) < Mk —LCS(S1,...,S;). Let T be the target string of
LCS(Sy,...,Sk) =|T|. Then, the sum of edit distances to T is k(n — |T|) + (k — 1)|T| = kn — |T|.

Second, let us prove that g (S1,..., Sk, ¥, ..-,7) > Mk —LCS(Sy,...,Sk). Let T’ be a target string. Now let
dj,ij,b; be the number of deletions, insertions and substitutions to go from S; to T". Let e; = d; + i; + b; be the
edit distance of S; to T'. Now note that e; > M — |T'| + 2i; + b;. Additionally, note that the distance from + to
T’ is |T"]. So the total distance is

k k

KM — k|T'| + 25+ by + (k= 1)|T'| = kM — |T'| + > 2i; + b;.
j=1 j=1

So, 0g(S1,...,5k,7,-..,7) can only be less if |[T'| > |T|. Note, that Z?Zl 2i; +b; > |T'| — |T|. The target T is
the longest string to be achieved with only deletions. Any change from this 7' (notably added characters) must
involve at least one substitution or an insertion. So we can say that the total distance is

k
kM —|T'|+ 2 +b; > kM — |T'| +|T'| = |T| = kM — |T|.

j=1
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SO7 (5E(Sl,...,5k,’)/,...,’y) > Mk—LCS(Sl,,Sk)
Thus, 0g(S1,. .., Sk, --.,7) = Mk —LCS(S1,...,S%). |

Now that we have a tight relationship between the edit distance and LCS, we can use this to get a lower
bound from SETH through LCS.

THEOREM 6.6. Given an instance of k-median edit distance on strings of lengths My < My < --- < My where
these strings can all be compressed into a SLP of size m. Then, an algorithm for k-median edit distance that runs
in (Mg +1) - (Map_1 + 1) -m)"~° time for constant e > 0 violates SETH.

Proof. We will use Theorem 1.1 and Theorem 6.5.

Say we are given an instance of k-LCS with strings Si,...,Sk of length M and a SLP compression of all
strings of size m. Then, by Theorem 6.5 we can solve this with an instance of (2k — 1)-median edit distance on k
strings S1,...,5%,7,...,7. We can compress these k strings with a compression of size m’ = m + O(k) (we need
only compress the empty string in addition).

k-LCS requires (Mk_lm)l_"(l) if SETH is true. Note that for our chosen strings M*~1 = My - - - M,. Now note
that our compression is of size m’ = O(m). The reduction takes constant time (simply append the empty string
and make a call to k-median edit distance). So k-median edit distance requires ((Ms + 1) - - - (Maj_1 + 1) - m)* =™
time if SETH is true. We can re-state this as an algorithm running time ((Ma +1) - -+ (Map_1 + 1) - m)' ¢ time
for constant € > 0 violates SETH. a0

Next we will use similar ideas to show hardness for center edit distance.

6.8 Center Edit Distance Nicolas and Rivals present a very simple reduction from a specific version of
(k — 1)-LCS to k-Center Edit Distance. This reduction simply adds the empty string as the last string. The same
concept works here. We can distinguish between the case where a (k — 1)-LCS is greater than or equal to some
constant c. Because, if all the strings in the k-LCS are of length M adding a single empty string distinguishes
between the (k — 1)-LCS less than M/2 or greater than or equal to it. Why? Because, if the k-LCS at least M /2
then every string is M /2 deletions away from the target string and the new empty string is as welll Otherwise, if
the LCS is less than M/2, we are more than M/2 edits away provably. By adding characters to our (kK — 1)—LCS
strings we can artificially increase the match (adding a large number of matching characters to each string),
or artificially decrease it (add a large number of not-matching characters). By doing this we can go from our
(k — 1)-LCS being ¢ to our (k — 1)-LCS being M'/2, for our new length of strings.

LEMMA 6.5. Assume a k-LCS instance over k strings of length exactly M. If deciding whether the k-LCS distance
is equal to M /2 over an alphabet of size |X| can be done in T (M) time, then we can decide whether the k-LCS
distance is equal to C over an alphabet of size |X| + k + 1 for any constant C in time O(T (M) + kM).

Proof. Let Sy, ...,Sk be an instance of k-LLCS where we want to decide if the distance is exactly C. Let the k-LCS
be LCS(Sl, ey Sk)
For integers a and b let
5! = @*S;#°.

That is, we append a @ symbols at the start and b #; symbols at the end of each string. The #; strings can not
be matched. The @ symbols can be trivially matched. So we have that |S]| = M’ = M 4+ a+ b and

LCS( 17’S]/<:>:LCS(5177S]€)+0/:C+0,

We simply want to choose values of a and b such that 2(C + a) = n+ a + b. This simplifies to a = M + b —2C. If
2C' > M then b=2C — M and a = 0. If 2C < M then b=0 and a = M — 2C.

The length of these strings is M’ = 2C or M’ = 2M — 2C, both are less than 2M. So, in O(kM) time we
can produce new strings of length M’ where determining if the k-LCS is exactly M’/2 determines if the original
instance had distance exactly C. O

Now we will show that k-center edit distance solves (k — 1)-LCS.
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THEOREM 6.7. We are given a k-LCS instance with strings Si,...,Sk all of length M where k-LCS of these
strings is denoted by LCS(Sy,...,Sk). The (k+ 1)-center edit distance of S1, ..., Sk and emptystring v and k-LCS
are related as follows.
Sn(Ssr s S {_ M/2 i LOS(S), .., Sy) 2 M/2,
> M/2 if LCS(Sy,...,Sk) < M/2.
Proof. Consider first, what’s the length of a target string for dcg(S1,...,Sk,v) = M/2. Call this target central
string T. If |T'| > M /2 then the distance from 7 to T is greater than M /2. If |T'| < M/2 then the strings S; must
have more than M/2 deletions, giving a distance greater than M /2. So, to hit M/2 the target string must have
length M /2 exactly.
Next note that for the empty string to reach length M /2 it must simply have M /2 insertions. For any of the
S; strings to go down to M /2 they must simply have M /2 deletions.
Note that LCS(Sy,. .., Sk) is defined as M minus the number of deletions needed in each string to reach the
minimal target. Thus, with this addition of an empty string

=M/2 ifLCS(Sy,...,S,) > M/2

Sen(St, ...\ Sk, .
o5 ”){>M/z if LCS(S,, ..., Sk) < M/2

d

Now we will apply the above Lemma 6.5 and Theorem 6.7 to get a k-center edit distance lower bound from
SETH.

REMINDER OF THEOREM 6.1. Given an instance of k-center edit distance on strings of lengths My < My < --- <
My, where these strings can all be compressed into a SLP of size m, then, an algorithm for k-center edit distance
that runs in time (Mg +1)--- (M 4+ 1) -m)' ™ time for constant € > 0 violates SETH.

Proof. We will use Theorem 1.1, Lemma 6.5 and Theorem 6.7.

Say we are given an instance of k-LCS with strings S1,..., Sk of length M and an SLP compression of all
strings of size m. Determining if the k—LCS is some integer C' requires (M*~'m)'=°(1) time if SETH is true by
Theorem 1.1.

Then Lemma 6.5 simply appends at most M symbols @ or #; to each string making a new problem S7, ..., S}
of length M’. Note that the size of the compression is now m’ = m + O(klg(M)). Now determining if the k—LCS
is M'/2 requires ((M’)kflm’)ko(l) if SETH is true.

Now we will apply Theorem 6.7. We can produce an instance of (k + 1)-center edit distance that has strings
S1,..., Sk, that distinguishes between the k-LCS of S7,. .., S}, being M’/2 or not. Now note that M; = |S}| and
My41=0. So (My+1)-+ (Mgy1 + 1) = O((M’)*~1). The compression of this empty string means that the new
compression has size m”" = m’ + O(1) = m 4+ O(k1g(M)).

We can run this a second time where we add two characters to each string: S} = S;%;%;. These characters
are unmatchable. Also, if the LCS used to be at least M'/2 + 1 it will still be at least half the length of the
strings. So, we can distinguish the exact value. Similarly, the compression of these strings is of size at most
m” + O0(k) =m” + O(1).

So, we get that an algorithm for (k+1)-median edit distance that runs in time (M 4+ 1) - (Mjqq + 1) - m)* ™
time for constant € > 0 violates SETH. 0

6.9 Edit Distance Lower Bounds from SETH In this section we show a better lower bound for k-edit-
distance by reducing from SETH directly. A recent paper has given M*~°(1) lower bounds for Edit Distance from
SETH where M is the length of the strings | ]. In this section we show a M*~1=°(Mm lower bound for
compressed k-edit-distance where m is the size of the SLP describing the strings. Our reduction uses the ideas
from the SETH lower bound for k-edit-distance to achieve this. We will use the same ideas and list structures
that we used in the k-LCS lower bound. We use many of the same notions of gadgets, however, to distinguish
between them, we add ED to the end of the name of the gadgets (for Edit Distance). Note that the structure of
this proof mirror almost exactly the k-LCS lower bound. However, due to the different distance measures we need
to generate different gadgets.
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The main takeaway of this section is that in order to build an interleave gadget for edit distance we need to
generate a selector gadget that has one value if all values match, and another if not all values match.

The primary difficulty in generalizing this lower bound comes from the variable costs of partial matches. That
is, if we have the edit distance of dg(a, a, a,a,b) = 1, where as dg(a, a,b,b,c) = 3. By contrast, the LCS of both is
LCS(a, a,a,a,b) = LCS(a,a,b,b,c) = 0. So, the overall structure needs to account for this in some way. We want
to re-create a perfect alignment gadget, but for Edit-Distance. This will give us two results. First we generalize the
2-LCS lower bound into a 2-edit distance lower bound, answering an explicit open problem given by | ]

We will use the pre-existing coordinate gadgets and alignment gadgets from [ ]. So, we have two
primary tasks. We need to generate and prove the correctness of perfect alignment gadgets. Additionally, we need
to analyze the size of the compression of both our gadgets and the | | gadgets.

6.10 Selection Gadgets We want an additional gadget. A selector gadget. These allow us to say either strings
Ay, ..., Ay are compared or strings By, ..., By are compared but not both. We will use a version that works for
single characters.

LEMMA 6.6. There exist single character selection gadgets SCSG;(-) such that the length is polynomial in k and
they add a single character to the alphabet. The k-edit distance of k SCSG;(c;) strings is either some constant Q
if all characters match or Q +v (where v is a positive integer) if one character does not match.

Proof. First let us define the gadget in terms of two free variables we will set later, a and b:
SCSGrL(C) _ #ibca#(kflfi)b

Now note that if we match the characters ¢ together we must fail to match many # characters. Specifically
these induce an edit distance of:
bk? /4 if k is even
b(k* —1)/4 if kis odd
Now note that if we instead match the # characters then we have an edit distance of ak, as we have to delete

the characters input to the gadget.
Also note that if we match the characters ¢ and one or more symbols are off the edit distance will be at least:

bk? /4 +a if k is even
b(k? —1)/4+a if kis odd
So if we can choose an a and b such that:

bk? /4 < ak < bk?/4 +a if k is even
bk —1)/4 < ak < b(k —1)/d+a  if k is odd

then, if all characters match we get an edit distance of bk?/4, otherwise, we get an edit distance of ak. |

Next we will note the existence of coordinate gadgets from previous work. Then we will combine the coordinate
gadgets with our selector gadgets to make interleave gadgets.

6.11 Coordinate Gadgets We will use the coordinate gadgets from the | ] in our reduction.
LEMMA 6.7. (COORDINATE GADGET LEMMA FROM | 1) Letby,... by bein {0,1}. Let C~ = 2(k—1)?
and let Ct =C~+k—1=(2k —1)(k—1). Then,

C~  ifby- by =0

6p(CGEDy(by),...,CGED(bk)) = {C+ otherwise

We will use these inside our interleave vector gadgets.
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6.12 Interleave Vector Gadget We are given a (a(k — 1) + bk)-OV with a list of n vectors each of length d.
We want to take every vector v; = List(L),[j] for j € [0,n°] and combine them with the interleave representation
of a lists. Recall that in Definition 6.6 we define VecSy,(L,v;) as the explicit distribution of the interleave
representation of a lists mixed with a single vector. So, we want to have k — 1 strings that hold representations
of VecSy, (L, v;) for all j € [0, n’]. Finally, we need one string that is full of representations of vectors v; for all
j € [0,n"], padded with many zeros. If we do this and we can force a perfect alignment of these gadgets. We will
use an altered version of the sliding pyramids from previous work [ ] (see Figure 1).

LEMMA 6.8. Treat k,{ as constants. We are given as input a list L of n vectors each of length d. Where d = n°().
Let vy,. .., v, be {0,1} vectors each of dimension d. Then there are gadgets IED;(L,v;) and EED'(vy) such that:

5E(IED/1(L7£, 7)1), ce ,IED;?I(L,& ’Uk,1), EEDI(Uk)) =C

if there are (k — 1)¢ vectors in L such that are orthogonal with vy, ... ,vg. If there do not exist (k — 1) vectors in
L that are orthogonal with vy, ..., vy then

5p(IED|(L,¢,v1),...,IED},_,(L,0,vs_1), EED'(v,)) > C + 1.

Additionally we can compress x strings IED(L,{,v1),...,IED/(L,¢,v,)
or EED'(v1),..., EED(v,) with a total compression size of O(xzd + nd + 1g(n)).

Proof. As in the k-LCS Lemma 6.2 consider the k — 1 lists VecSy,(L,v;) for i € [1,k — 1]. Additionally, let

vi[h] if j=h-nt
0 else.

Veeg(or)li] = {

We will build our gadgets IED’ and EED’ from these lists. Every entry in these lists is either a zero or a one. We
want to force a prefect alignment and check orthogonality of the perfect alignment. That is, we want to hit one
value if there exists a Aq,..., Ag_1 such that

nf(d—1)+1
> Veer(ur)lj] - VecSty(L,v1)[j + Ai] - - VecSy (L, vp—1)[j + Ap—1] = 0.
=0

To do this we will use the very convenient coordinate gadgets, but alter them with a selector. We want the
selector gadget to force an alignment of the true correct values. We add a new character 2, this character is just
there to be matched in these gadgets. We add another new character 3, which encourages lining up coordinate
gadgets. We will set & = 100|CGED;(b;)|. We want to have enough copies of the SCSG gadgets that lining
up real gadgets with each-other is optimal. We set y = 100z|SCSG;(2)|, we want enough copies of 3 to force
coordinate alignments to be optimal. Finally, our updated coordinate gadgets are below

CGEDI(b;) = 3¥ 0 (SCSG4(2))* o CGED;(b;).

Next we need to generate “fake” coordinate gadgets to fill out space, so that any offset will be valid. We add
the characters %; for i € [1,k]. The character %; will only appear in the i** string. This will guarantee these
characters are unmatched. A fake gadget will have a selector gadget wrapped around one of these unmatchable
characters and a coordinate gadget of a zero:

F; =30 (SCSG;(%:))* o CGED;(0).

Let f = |VecSy,(L,v;)| — |[Vecg(vi)| = n* — 1. Now, we will define the three parts of the strings. The section
of real gadgets, the section of fake gadgets, and the section of unmatchable characters. We add k new characters
#;, with the intention of making them unmatchable. Let z = |[CGED.(b;)| = |F;|. See Figure 1 for a visual
depiction.

REAL; = Qje,ant) (CGED;(VecSy, (L, v;)[j])) when i € [1,k — 1]
REALy = Ojennt(a—1)+1) (CGEDy (Vecg (v)[1]))
FAKE; = F/*179

UNMA, = #Ekﬂ'ﬂ)zf_
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Now that we have defined these useful parts we can define the overall gadgets:

IED!(L,¢,v;) =UNMA; o FAKE; o REAL; o FAKE; cUNMA;
EED'(v;,) =UNMA), 0o FAKE); o REAL, o FAKE, o UNM Ay,

Now let us consider what happens if there are (k — 1)¢ vectors that are orthogonal to vy, ..., v, then we want
to compute the edit distance. Note that all characters in UN M A; will either be deleted or substituted which has
an edit distance of one per character. This gives a total edit distance cost of z fk(k+5)/2. Let p; = dg(Fi,..., F;).
Now, on any valid alignment we have 2f fake gadgets completely unmatched, 2f fake gadgets matched with one
other fake gadget, 2f fake gadgets matched with two other fake gadgets, etc. Until we get to (k — 1) fake gadgets
matched together at which point we have 3f of these. When the fake gadgets are matched with each other they
are also “matched” with the unmatchable characters. Those characters will simply substitute/delete to equal the
output string. We have enough unmatchable characters that their length is longer than the overhanging fake
characters. So we can be assured no insertions will need to happen. So the edit distance contribution of these is

k—1
fpr—1+ Z 2fpi-
i=1

Now, we have 2f fake gadgets which line up with a mix of fake and real gadgets. Each of these k tuples of lined
up gadgets have a contribution of z(Q + v) from their SCSG gadgets, and the CGED gadgets contribute C~
edit distance (the 3 symbols match perfectly and thus have no contribution to the edit distance). So these give a
contribution of 2f(x(Q +v) + C~). Finally, we have M = (d — 1)n’ + 1 real gadgets which line up with other real
gadgets and these contribute Q) + C'~ edit distance each. So our total edit distance is

k—1
C=zfk(k+5)/2+ fpe_1+ Y 2fpi +2f(@(Q +v) + C7) + M(zQ + C™).

i=1

What happens if we don’t have a set of (k — 1)¢ vectors which are orthogonal to vy, ...,v;? If we similarly
line up gadgets in a valid way, as above, then we have at least one of the real k-tuples of CGED’ gadgets where
the internal CGED gadgets contribute CT, increasing the above cost by CT — C'~. What if we instead don’t do a
valid alignment? If we skip aligning a coordinate gadget we skip some 3¥ symbols, these then cost an additional y
in the edit distance. If we instead align some of the M real gadgets of string k to fake gadgets we miss out on
matches of the SCSG gadgets, costing zv in the edit distance. So if there is no set of (k — 1)¢ vectors which are
orthogonal to vy, ..., v then the edit distance is higher than C.

First, we can generate the SLP for FAKE; and UNMA;. The size of F; and %, are both O(1) (assuming
k is a constant). So, we simply need to handle many repetitions. This requires an SLP of size lg(f(k + 1 — 1))
and one of size lg((i + 1)z f) for each i € [1,k]. Luckily for us, in total this SLP will have size O(£lg(n)). We
additionally need to represent the various values for REAL;. First note that CGED) gadgets can be represented
with size O(1) SLPs (when k is constant). For REALj this is easy from this point on. There are long strings of
zero gadgets with only d instances of non zeros. The total representation is O(d+¢1g(n)). So we just need REAL;
for ¢ € [1,k — 1]. Now note that we can use the same structure we used in the k-LCS SLP for these interleave
gadgets. We can build the structures for different values of £.

For convenience let REAL! be the real gadget for IED!(L,¢,v;). Now note that REAL} has an SLP of size
O(dn) trivially, it only has length O(dn) in the first place. Now consider separating out the parts that correspond
to each of the d dimensions of the vector. Next note that we can form these d parts of REAL{ + by concatenating
n instances of the parts of either REAL{ or n? zero coordinate gadgets. So, given an SLP for REAL{ we can
create an SLP for REAL?™" with an additional size of n + jlg(n). This gives a total size of O(£21g(n) + £dn), as
£ is a constant we have have that the size is O(dn).

So the total size of the SLP will be O(dn + dz + lg(n)). O

Notice that we can get away without having the same type of $; interleaved symbols that we used in k-LCS.
This is due to the cost of edits varying even when only some subset of the k strings match on a symbol. We can
guarantee we don’t skip characters because it will cost us in edits, even if those characters could only be matched
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up to one other string. However, we aren’t quite done. We want to wrap this so that the value is either a match or
one higher than a match. We don’t want to have the final interleave gadgets give variable outputs depending on
how orthogonal vectors are. We want the same value no matter what.

LEMMA 6.9. We are given as input a list L of n vectors each of length d, where d = n°"). Let { be a constant.
Let vy, ... v be {0,1} vectors each of dimension d. Then there are gadgets IED;(L,v;) and EED(vy) such that
for some constants D and w:

Sp(IEDy(L,0,vy), ..., IED_1(L,0,vi_1), EED(vg)) = D

if there are (k — 1)¢ vectors in L such that are orthogonal with vy, ... ,vg. If there do not exist (k — 1) vectors in
L that are orthogonal with vy,...,v; then

5p(IEDy(L,0,vy),...,IED_1(L,0,ve_1), EED(v;)) = D + w.

Additionally we can compress x strings IED;(L,4,v1),...,IED;(L,{,v,)
or EED(v1),..., EED(vy) with a total compression size of O(xd + nd + z1g(n)).
The strings IED and EED have length n‘to()

Proof. Let u be an all zero vector of length d. Let v, be the vector v; but with an added last index v[d + 1] =1
if i € [1,k]. Let v/ be the all zeros vector except for an added last index u[d + 1] = 0. Let v} be the vector
v but an added last index vj[d + 1] = 0. Now we add additional characters 5 and 4. We add copies where
p = 100|/IED;(L,¢,v;)| and ¢ = 10p. Now we generate the following:

IED;(L,¢,v;) = 5%4PTED!(L, {, v}) 4”59
EED(v,) = 5EED' (v})4* EED' (u/)59.

Here we match up the 5 characters. Finally, we must match the 47 symbols. There will be ¢ unmatched 4 symbols.
Finally, we will have |EED'(v;)| = |[EED’(u')| unmatched symbols no matter what. Now, how much comes
from matching the TED’ and EED’ gadgets? If there are (k — 1)¢ vectors are orthogonal to vy,...,v; then
the cost is C. If there aren’t then the cost of matching the symbols to EED'(v’) instead is C + C+ — C~. So,
D=C+q+ |EED (v})|,and w=Ct - C".

For the size of the SLP we are doubling the number of EED’ gadgets, and we are adding in the 5 and 4
symbols. So the total size should be O(2xzd + nd + £1g(n) + Tz(lg(p) + 1g(q))). Given the size of p and ¢ this gives:
O(zd + nd + x1g(n)).

For the length of the strings we have at most O(dn’) coordinate gadgets and the number of unmatached
symbols is O(dn®). Note that the size of coordinate gadgets is constant when k is constant and d = n°M . So the
total length of our generated strings IED and EED is O(n‘T°M). d

Now that we have generated interleave vector gadgets we will put multiple copies of them and align them. We
want to set this up using the same ‘sliding pyramid’ set up as we used for the interleave gadgets.

6.13 Aligning Interleave Vector Gadgets For aligning our gadgets we generalize the idea from [ ]
for aligning gadgets. First, we create a fake list of vectors F' that is n vectors of dimension d where every entry of
the vectors is 1. Then we create “fake” versions of the alignment and empty vector gadgets, build from F' instead
of L. We concatenate the “real” IED’ and EED’ gadgets with many matchable symbols in between. We surround
these real gadgets with our “fake” gadgets. We also build a “pyramid” that allows the strings to have any valid
alignment of the real gadgets while having the same number of matches of the fake gadgets. Around these we
put an additional number of unmatchable characters (characters that are unique to each set). See Figure 1 for
a depiction. These fake gadgets allow for any choice of alignment of the real gadgets to have the same value of
matches outside of the k gadgets we are matching with the alignment.

We start by proving we can create strings such that k-edit distance can be used to detect (a(k — 1) + bk)-OV's.

LEMMA 6.10. Let a,b, and k be positive constant integers. Let L be a list of n length d vectors, where d = n°M).
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Figure 1: A visual depiction of the structure of our alignment. This is using the ideas from | . The dark
blue section is a depiction are the real gadgets. The light-gray section are the “fake” gadgets. The white sections
are unmatchable characters (a distinct character in each string).

There are k strings EDOV;(a,b,k, L) such that:

>F if there is a (a(k — 1) + bk)-OV in L

6E(EDOV1(a,b,k,L),...,EDOVk(a,b,k,L)){<E L
< F — else

The length of each of these strings is O(n®tt+°(W)) with an alphabet of size O(k).

Proof. We are given as input a (a(k — 1) + bk)—OV instance. Say the list is L. It contains n zero one vectors of
length d.

We define some new symbols. We add a new symbol $, we will use this to encourage matching in lined up
sections. We will also add %, symbols for i € [1,k]. A symbol %; appears only in string 4, thus it can not be
matched, it must be deleted or substituted.

Let us now define the real sections of these strings (the blue section at the center of the strings in Figure 1).
First we will define this for ¢ € [1,k — 1]:

REAL; = Qje[lynb]IED’(L,List(L)b[j], a)
and for the last string
REALy = O]‘e[Lnb]EED/(LiSt(L)b[j}).
~ Next let us define the fake gadget part of these strings. First a single fake gadget is generated by plugging in
Lp, alist of n all ones vectors all of length d. And the vector @ir, a length d vector of all ones. For i € [1,k — 1]
F, =IED'(Lp,up,a)
and then for i = k
Fy, = EED'(uF).
We can now define our fake gadgets, the gray parts of Figure 1:

FAKE; = F'""

Now we will define the unmatched symbol sections. We will add new symbols &; for i € [1,k]. Note that &;
appears only in string .

Now let us define our gadgets for i € [1,k — 1]:
EDOV;(a,b,k,L) =UNMA; o FAKE; o REAL; o FAKE; cUNMA,;.

Now note that if there is a (a(k — 1) + bk)-OV this corresponds to a k-tuple of IEDY,...,IED, |, EED’
gadgets in this construction having an edit distance of C' (smaller than C' + w). Additionally, note that if there is
no (a(k — 1) 4+ bk)-OV then all k-tuple of IED1,...,IED) _,, EED’ gadgets have an edit distance of C' + w.

Now, if there is a (a(k — 1) 4+ bk)-OV then, we can align the gadgets and give an upper bound on total cost.
First, all unmatched characters will cost 1 so they have total cost of |F;|n®(2k? — k(k + 1)/2). Next, consider the
fake gadgets that overhang and interact with fewer than k other gadgets. Let p; = dg(F,. .., F;). There are 2n
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fake gadgets that are aligned with ¢ total gadgets and otherwise aligned with the unmatchable characters. The
cost for these is Zie[l) k] 2np;. Finally, there are 3n gadgets which line up with a full k£ other gadgets. If m of
these represent underlying orthogonal vectors then all m tuples will have a cost of D, the rest will have a cost of
D + w by Lemma 6.9. This means if there is at least one match then the cost is at most:

E =|Fin®(2k* — k(k+1)/2) + > 2np; + 3n(D + w) — w.
1€[1,k]

What if there are no (a(k — 1) 4+ bk)-OVs? Well, any valid alignment (where we skip no characters and
have the same size of overhangs) will cost at least E 4+ w. If we don’t align gadgets then at some point we are
skipping 57 symbols, this could potentially allow us to improve our edit distance by 2|IED}| + p, however we set
g = 50p + 500|IED}| in Lemma 6.9. These skipped symbols increase the cost due to the unmatchable characters.
When we foreshorten our string by skipping these 57 symbols we sill need to pay the cost in the unmatchable
characters as deletions (instead of substitutions) but we also need to pay for the deletion of the 57 characters. So,
if there is no valid alignment our cost is at least E + w, in fact it is exactly E + w.

The length of the generated strings is O(n’|IED!|) = O(n®n®d). Because d = n°") we can simplify this to
O(nb—&-a-i-o(l))- n|

Next, we show that the strings we produced compress well.

LEMMA 6.11. Let k,a,b be constant integers. Let d = n°Y). Given the k strings EDOV;(a, b,k,L) defined in
Lemma 6.3 the size of the compression is O(nbto() 4 plte(l),

Proof. We want to represent O(n®) instances of EED’ and IED’ gadgets. By Lemma 6.9 we have there is an
SLP to represent these of size O(nd + nd + nalg(n)). This can be simplified to nb+eMpl+e),

We additionally want to represent the unmatchable characters. These have a total length of ntTeto(t) g0
there is an SLP to represent these of size (b + a + o(1))1g(n) = n°W).

So the total size of the SLP is nbto(Mplte(), d

6.14 Putting it all Together Now that we have proven the above lemmas, we can prove our desired result.

REMINDER OF THEOREM 6.2. If the k'-OV hypothesis is true for all constants k', then for all constant € € (0, 1]
grammar-compressed k-median edit distance requires (Mkflm)lio(l) time when the alphabet size is |X| = O(k)

and m = MM Here, M and m denote the total uncompressed and compressed length of the k input strings
respectively.

Proof. We will use Lemma 6.10 and Lemma 6.11. Given an instance of (bk + a(k — 1))-OV we can produce strings
EDOV;(a,b,k,L),..., EDOVj(a,b, k, L) such that they have length M = n®tt+°(1) and m = nbte() 4 plte) =
nbto) when b > 1.

Our alphabet is of size |X| = O(k), so this lower bound applies as long as the size of the alphabet is ©(k).

Now note that M*~1m = pk—Dat(k=1b+b — p(k=Datkb Qo an algorithm that runs in (M*~'m)'~¢ time
€ > 0 implies an algorithm for (bk + a(k — 1))-OV that violates our assumption. Thus, k-edit distance requires
(Mk_lm)l_o(l) time given the assumption on (bk + a(k — 1))-OV.

Now we consider a contradiction to our theorem statement. There would be an algorithm running in
(M*=1m)*=" time to solve grammar compressed k-median edit distance when m = M) and € € (0,1]. In
the easiest case we can pick an a,b such that b/(a + b) = ¢, in this case we are done. For irrational e we need to
approximate and then pad the strings. Choose an a and b such that € < b/(a + b) < (1 +7/2). Such a,b exist
that are in O(i) We add a new character 3 to our alphabet. Let S! = S;3%, where we will set € [M, M?] later.
Note that 6g(S1,...,5) = 0r(S],...,S};). Note that the compression of these strings is m’ =m + lg(z) = O(m)
where as the length is M’ = M 4 2 = O(x). Choose x = m!/+e(1) = ppb/(a+b)-1/¢ So now m/ = M’/ (), Note
that 1 <b/(a+b)-1/e < (1+v/2). Now consider running the claimed fast algorithm on our new Si,...,S}
instance. The running time is

(M/(k—l)m/)l—v _ O((M(1+V/2)(k_1)m)1_7_0(1)).
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This running time can be simplified to O(M* =1 m)1+7/20=7=0(1))  Note that (1 +v/2)(1 — v — o(1)) is less
than 1 — o(1). This algorithm violates the lower bound for the original Sy, ..., Sk instance. This is a contradiction.
So any algorithm running in (M*~'m)'~7 time to solve grammar compressed k-median edit distance when

m = M=) and e € (0,1] violates k’-OV for some k’ that depends on €,~. This implies our theorem statement.
d

Finally we will apply this same lower bound to k-center edit distance using a reduction from | ]

6.15 k-Center Edit Distance In Section 3 of | | they present a reduction from median k-edit distance
to k-center distance | ]. We will restate their reduction here.

Say we are given a k-median edit distance instance with k strings Xi,..., Xy where |X;| = N. Then,
as | | suggest, construct the following strings:

Vi =X 8N X, 8V 8N X, 8N X,
Yo=X 8V X538V o ¢V X, $V X,y

Vi = X, 8V X1 8N 8V X, $Y Xy

Claim of Section 3 in [ ]: 5CE(Y1,}/27 ce ,Yk) = (5E(X1,X2, AN 7Xk)~

As a quick intuition for this claim, we have to match the $V sections. First note that we can achieve this
bound by taking a string T" which is one of the median edit distance minimizing strings of the X; and creating a
center string for the Y; strings C =T $¥ T $V ... $V T. Now note that the distance to this string from all Y; is
0p(X1,Xa,..., Xk). Thus, ocp(Y1,Y2,...,Ys) < 6p(X1,Xa,..., Xg). For the other side of the inequality note
that the center string C should have shape C =T $V T, $V ... $V T}, for some strings T}, ..., ;. Now note
that for all j

Z 0e(T), Xi) 2 0p(X1, X, ..., Xi).
i€[1,k]

Because, the k-median edit distance minimizes this sum over all possible strings, and T} is simply an instantiation
of a string. Now note that

S0 6u(Ty, X)) = kdp(X1, X, ..., Xy),
JE[1,k] i€[1,k]

which implies

> 06(Y;,C) = kép(X1, X, ..., Xp).
JelL,k]

So, the max over all j of §g(Y;,C) > 0g(X1, Xo,...,Xk). This is the definition of the center edit distance, so we
have shown both sides of the inequality.

THEOREM 6.8. We are given k strings of length M with a SLP of size m. The k-center-edit-distance problem on

these strings requires (Mk’lm)lfo(l) time if SETH is true.

Proof. By Theorem 6.2, given k strings, X7, ..., Xk, of length NV which all compress to length n, k-edit distance
requires (Nkfln)lfo(l) time if SETH is true.

We use the transformation of [ | and produce strings Y7, ...,Ys. These strings have length M = kN
and an SLP of size m = kn + k + Ig(N). As a result M*~'m = O (N¥~!(n +1g(N))). Thus, an algorithm that

runs in (M k’lm)lfe time for k-center edit distance for some constant € > 0 implies a violation of SETH. Thus,

1—-0(1)

k-center edit distance requires (M k_lm) time. 0
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7 Hamming Distance and Beyond
Given k equal-length strings Xi,..., X, with X; € £V, we define a string X = ®f:1 X; e (szl ¥V with

1
X[j] = (X1[4], ..., Xglj]) for j € [1..N]. In this section, we show that if each string X; can be represented
using a straight-line program of size n;, then X can be represented using a straight-line program of size
O((Hf:1 n;)/FN1=1/k) Next, we apply this construction for computing Hamming distance of two grammar-

compressed strings and propose several generalizations for k = O(1) grammar-compressed strings.

PROPOSITION 7.1. Given k = O(1) straight-line programs G; of sizes n; representing strings X; of the same length
N > 0, a straight-line program G of size O((Hf:1 n;)YENT/EY representing X = ®f:1 X, can be constructed in
time O(([F_, ni)/* N1=1/k),

Proof. We proceed based on a threshold 7 € [1.. N| to be fixed later. For each grammar G;, we first use Lemma 3.3

to derive grammars G; and GF of size O(n;).
Next, we consider relevant tuples F = (Fy, ..., F}) such that:

e cach F; is a fragment of exp(4;) for a symbol A; of G satisfying |4;| < 7,
o |[Fi| = =|Fl,

e there exists i, € [1..k] such that F; is a prefix of exp(4;,),

[ ]

there exists is € [1..k] such that F;_ is a suffix of exp(4;,).

The number of relevant tuples does not exceed 7F=1 . k - Hle n;, because each F is uniquely determined by the
choices of symbols A;, the choice of i,, and the starting positions of F; in exp(4;) for 7 # i,. (The common length
|Fi| = -+ = |Fy| is uniquely determined due to the constraint that at least one F; is a suffix of exp(4;).)

For each relevant tuple F, we add to G a symbol A aiming at exp(Ag) = ®f:1 F;. The symbols Ag are
ordered consistently with the lexicographic order of tuples (A, ..., Ax) based on the order of symbols A; within
each grammar G;.

If each A; is a terminal of G;, then F; = exp(A;) = A; holds for each i, and we set Ap = (Ay,..., Ax) to be a
terminal of G. Otherwise, we set Ay to be a non-terminal, and we need to specify rhs(Ag). For this, let us fix an
arbitrary index j such that A; is a non-terminal of G; and A; — A;A}’ . We then consider three cases:

1. Fj is contained within the prefix exp(A4j) of exp(4;). In this case, we set Ap — Ap/, where F] is the
fragment of exp(A’;) corresponding to F; and F} = F; for i # j. Note that F; cannot be a suffix of exp(4;)
and, if Fj is a prefix of exp(4;), then F} is a prefix of exp(A}). Thus, F' is a relevant tuple.

2. Fj is contained within the suffix exp(AY) of exp(A;). In this case, we set Ap — Aps, where F is the
fragment of exp(A’) corresponding to Fj and Fj" = F; for i # j. Note that F; cannot be a prefix of exp(A;)
and, if F is a suffix of exp(A;), then F}’ is a suffix of exp(A’). Thus, F” is a relevant tuple.

3. Fj overlaps both the prefix exp(A}) and the suffix exp(A’) of exp(A;). In this case, we set Ap — Ap Apr,

where F} is the suffix of exp(A’) overlapping Fj, F}" is the prefix of exp(A/) overlapping F};, and for every
j # i we have F; = F/F}" with [F]| = |F]| and |F]'| = |F]|.
Note that F is a suffix of exp(A}) and F' is a prefix of exp(A’). Moreover, if F; is a prefix of exp(A;), then
F is a prefix of exp(A}), and if Fj is a suffix of exp(A;), then F}" is a suffix of exp(AY). Finally, for i # j, if
F; is a prefix of exp(A;), then F/ is a prefix of exp(A;), and if F; is a suffix of exp(A;), then F/’ is a suffix of
exp(A;). Thus, both F' and F” are relevant tuples.

Next, for each 4, we interpret the string P; generated by Gf as a decomposition of X; into |P;| = O(g)
phrases. Each phrase is of the form exp(A) for a symbol A of G satisfying |A| < 7. Let B; be the set of phrase
boundaries of this decomposition of X; (i.e., B; = {|exp(F;[1..4])|: i € [0..|F;]]}), and let B = Ule B;.

For each string X, let us construct another partition X; = X, o--- o X;, with phrase boundaries B (if
0=by <--- <b, =N are the elements of B, then X; ; = X;(b;j_1..b;]). Since B; C B, each phrase X ; can be
represented as a fragment of exp(A; ;) for a symbol A; ; of G satisfying |4; ;| < 7. Moreover, for each j, there
exists i, € [1..k] such that X; ; is a prefix of exp(4;, ;) and is € [1..k] such that X;_; is a suffix of exp(4;, ;).
(This is because b;_; € B;, and b; € B;, holds for some i, and i,.) Hence, for each j € [1..7], there exists a
relevant tuple F; = (X; ;)¥_;. Thus, it suffices to add to G a starting symbol S — Q=1 A,

Due to the assumption that k = O(1), the total running time and the size |G| are both O(Z + 7#~1 Hle n;).
Optimizing for 7 € [1.. N], this becomes O(Hf=1 n; + (Hf=1 n;) /R N1=1/k) If the first term dominates, then
Hle n; > N. However, a trivial O(N)-size straight-line program representing X can be constructed in O(N) time
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by decompressing each string X;. Thus, we can always construct a straight-line program representing X in time
0 k N1k pN1=1/k il
((ITi=1ma) ).

COROLLARY 7.1. Given k = O(1) straight-line programs G; of size n; representing strings X; € XN of
the same length N > 0 and a function § : szl 3; — R that can be evaluated in O(1) time, the value
0(Xy,..., Xy) = Zjvzl d(Xalgl, -, Xklj]) can be computed in O((Hf:1 ni)YENIZUERY time.

Proof. Let X = ®f=1 X, and let G be a straight-line program representing X constructed using Proposition 7.1.

For each symbol A of G, we compute a value §(A) defined as leill d(exp(A)[j]). Note that if A = (Ay,...,Ag)
is a non-terminal, then §(A) = 6(A41,..., Ax) can be evaluated in O(1) time. Otherwise, if A — O}_, By, then
§(A) =>",_1 6(By), so 6(A) can be computed in O(|rhs(A)|) time. Consequently, constructing G and computing
0(A) for every symbol A of G costs O((Hf:1 n;)/k N1=1/F) time in total. This allows retrieving 6(X71,..., X}) as
the value §(.5) for the starting symbol S of G. |

In particular, we can set 6 = dy for k = 2 (defined for characters z,y with dy(z,y) = 0 if z = y and
o (z,y) = 1if x # y). Possible generalizations to an arbitrary number of strings include the following two
definitions of §(x1,...,x) for characters xy,...,zg:

e §(x1,...,x;) =0if 2y =--- = a2 and §(x1,...,2,) = 1 otherwise (the straightforward generalization).

e §(x1,...,x;) = min’_, Z?Zl 0p (i, x;) (the generalization corresponding to the median string problem).

In either case, Corollary 7.1 allows computing §(X1, ..., Xy) in O((Hf:1 n;) /R N1=/R) time.

8 Shift Distance: Lower Bound & Upper Bound

In this section we will explore a problem where we can get tight upper and lower bounds, but there is no efficiency
to be gained by having compressible strings in your input. The problem is k-Shift Distance. When k& = 2 this
problem is (basically) equivalent to the Hamming distance substring problem mentioned in | ]. This
problem is a natural extension of pattern matching. This problem asks, given a set of k strings, how can we best
line them up to maximize the number of matched characters? So, the alignment that minimizes the Hamming
Distance between all the strings. This problem was studied in the average-case for k = 2 by | ]. They
called the problem “shift finding”. We give the natural generalization of this problem to k strings and present
upper bounds and lower bounds. We also present an approximation algorithm. We present these results in part
because they give an example of a k-string comparison problem where there is no efficiency to be gained from
having a compressible input.

The core of this section is showing tight upper and lower bounds for this problem of finding the ideal alignment
of strings that minimizes Hamming distance. We show that in cyclic shift there is no advantage to be gained from
compression. The upper and lower bounds are tight and unchanged even with compression. We are also able to
use FFT to get a fast algorithm for the problem of finding the best alignment with respect to Hamming distance.

We will now re-state the definition of k-Shift Distance, with more commentary.

REMINDER OF DEFINITION k-SHIFT DISTANCE (K-SD). We are given k strings as input: Xi,...,Xy,. These
strings have characters from the alphabet 3. Each string has length N and compresses via SLP to a length of n.
For convenience of notation let X;[i] when i ¢ [0,n — 1] refer to X,;[i'] where i’ € [0,n —1] and ¥’ =4 mod n (so
we let indices “wrap around”).

We must return the best alignment of the k strings. The alignment where in the mazimum number of locations
all strings have the same symbol. We will give a precise definition below. Let A = max(Aq,...,Ar_1). And let
[[']] be an operator that turns True to a 1 and False to a 0.

N
k-SD(X1,...,Xx) = Al,...,Airf)e([o,N—l] (; Hxl[i + A =Xoli+ Do) = =X i + Apa] = Xk[l]”)

So, we want the offsets such that the mazimum number of characters are all shared between all k strings.
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We will also define the term of the offset score. Given strings Xi,..., X, and a particular set of deltas
Aq, ..., Ag_1 we will call the value:

Z [Xl[l + Al] = XQ[i"’AQ} == Xk_l[i +Ak~_1} = Xk[Z”

=1

the offset score of the strings X1,..., Xy and the deltas Aq,..., Ap_1.

8.1 The Algorithm We will use FFT to get a fast algorithm here. We start by showing how to do this when
k=2.

LEMMA 8.1. (FROM | 1) There is an O (|X|Nlg(N|X|)) algorithm for 2-SD with an alphabet X
(k-SD when k = 2).

We can then generalize to k by making calls to 2-SD.
THEOREM 8.1. There is an O(|S|N*~11g(|2|N)) algorithm for k-Shift Distance.

Proof. Let our k input strings be: X71,..., X, each of length N.

We are going to reduce k-SD with alphabet 3 and strings of length N to 2-SD with alphabet ¥ U {@} and
strings of length N. First, we will try all N*=2 possible offsets As,...,Ar_;. Now, for each of these we will
Create a new string Y which will be a “merge” of the strings X, ..., Xj. The string Y will have length N. The
it" bit of YV is:

Vi = {ka if [Xoli+ Qo) == Xp_1[i + Ap_1] = Xy[d]] .
@ else

If all the strings agree given our choice of offset we set it to the agreed character. Otherwise, we use the new
special character @ which does not appear in X; (as @ is not in 3). Note that we can produce Y in kN time, so
over all offsets we take N*~! time to produce the inputs X, Y.

Now, we will make N¥~2 calls to 2-SD. Each call takes time (|Z| + 1)N1g(N (]3| + 1)) time. Thus, we take
time O(|X|NF~11g(N|X))).

This gives a total time of O(|S|NF~11g(N|%))). O

8.2 The Lower Bound We will now show that we can produce k strings of length N = n® that compress
to length an such that an algorithm that runs faster than n(k=1e—o(l) = Nk—1-0(1) yiolates SETH and the
(k — 1)a—OV hypothesis. This will give a tight lower bound. Additionally, it says that strings that compress from
length N to length N€ do not have faster algorithms than those that don’t compress.

To do this we will use the interleaving representation defined previously. Recall that we defined the interleaving
version as:

Stringy (L) = O%y (Osiepny....jeertn LIl - Li2)[i] - - - - Llje]ld]) -

Recall that this is equivalent to
Stringy, (L) = Qicp,q) Ojepi,ne) List(L)[5][i]-
Finally, recall that in Stringy,(L) the vector ¥ = List(L)[i] appears as bits i,i +n*,... i+ (d — 1)n*.

THEOREM 8.2. Let a and k be constants. Let N be the input string length for k-SD.
If the (a(k — 1))— OV hypothesis holds then k-SD requires N*=1=°(1) time even when the strings compress
down to length m = NV *+t°() with an alphabet of size O(1).

Proof. We take as input a (a(k — 1))-OV instance with (a(k — 1)) lists of n vectors each. Each vector has length d

and d = n°1). Recall that the (a(k — 1))-OV hypothesis states that (a(k — 1))-OV requires n®*=1=°() time.
We will use four characters 0,1, %, @, *1, ..., *9x. The zero and ones will be used to signify the zeros and ones

of the OV instance. The @ and *; symbols will be used to force alignment in a way that is easy to prove. We
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note that one can almost certainly prove the same result with a smaller alphabet. However, allowing this larger
alphabet makes our proof much easier.

Given a (a(k — 1))-OV instance split the lists of vectors up into k — 1 groups each with a lists of vectors.
Call these groups of a lists Lq,...,Lx_1. We are going to form strings Xi,..., Xr_1 by slight alterations to
Stringy,(L1),...,Stringr,(L1). The final string X} will remain constant regardless of the input instance of OV.

Let X; = Stringy, (L;) then i € [1,k—1]. Let X} be a string of all zeros except in positions 0,n%, ..., (d—1)n®.
Like the other strings we give a total length of dn® for X;,. Note that by choosing an offset for each string from
Xk we are effectively choosing one vector from each list Ly, ..., Lx_; to align with the ones in Xk. We want to
design ways to right out the zeros and ones that simultaneously: (1) force alignment and (2) have the same value
if there is at least one zero and a lower match value if they are all ones. If we can do this, then the best alignment
will be picking the “most orthogonal” set of k — 1 vectors, which will let us find if any vectors are fully orthogonal.

We will now design hi; and ho; which will have the property that the offset score of hy, 1, hp,,2, ..., he, i
with all deltas zero is 0 if all b; = 1 and is 1 otherwise. We will consider all strings in {0, 1}*. Let H be all 2* of
those strings in sorted order, with the all ones string last. Let H[j] be the j** string in H note that H|[2¥] is the
all ones string (we will one index this list). Now

1 if H[j][i] = b and j # 2*
hei[j] =40 ifi <k and the above does not apply .
% else

So we get strings of length 2*. Note that hy; for i € [1,k — 1] uses only 0,1 symbols, however, hy j uses only 0, %
symbols. If we are aligning hy, 1, he, 2, .- ., e, We are simply counting locations where they are all 1. This only
occurs in the location that is associated with the string in H b1bs - - - by, if it is not the all ones string. So, the
offset score of hy, 1,hp,.2,. .., e, , with all deltas zero is 0 if b; =1 for all ¢ and is 1 otherwise, as desired.

We will now design T4 ; and Tp; that will force alignment. Let () represent concatenation:

k .
Th,i = OF—g *; hwilj].

Note that this wrapper is just adding special characters that force alignment of the bits in h; ; by making the only
way to match the *; characters also force an alignment of the hy ;[j] characters. Note that [T}, ;| = 2 - 2¥ = ¢. Note
that the offset score of Ty, 1,Tp,,2, ..., Tp, , With all deltas zero is 2k if b, =1 for all ¢ and is 1 + 2%.

Let Si,; be the representation of a 1 in string X;. Let Sy ; be the representation of a 0 in string X;. We will set

Sl,i = @ZTM and S(],i = @éTo,zn

Note that this wrapper adds these @ characters which further enforce alignment. Note that the offset score of
Sbi1,5b5,2, - - - s b,k With all deltas zero is 2k 4 ¢if b, = 1 for all i and is 1 + 2* + ¢ otherwise.

Correctness Now, we want to claim that one of the best alignments of Xy, ..., X} will have deltas that are
multiples of |Sy ;| = 2¢. That is, the best alignment will align these representations of single bits. Consider if A;
mod 2¢ = f. If f # 0 mod 2/¢ then the *; symbols can’t be aligned with those in Xj. Additionally, at most £ — j
of the @ characters will be matched. Giving a maximum match of: £ — j + 2* (even if every 0, 1, and % characters
were matched, which is of course unrealistic, we can’t match 0 characters as none appear in the X}, string). This is
worse than the worst alignments when A;s are multiples of 2¢.

So, the best alignment has all A; as multiples of 2¢. Thus, the alignment of X3,..., X} is an alignment of
|X1| Sy.i gadgets. Each gadget promises to return 2% + £ if b; = 1 for all i and is 1 + 2¥ + ¢ otherwise.

Now, note that given our construction of X1, ..., X, if we choose a set of deltas A; = 205, we are effectively
picking k — 1 vectors and comparing them because of how we structured X4 So, if there are an orthogonal k — 1
vectors which are orthogonal in our list representation (which corresponds to a(k — 1) vectors in the original OV
instance) then we get a score of: |X1|(1 + 2F 4 £). Otherwise, we get a score at least one less than that. This
shows our reduction will give the correct answer.

Time So with & strings of length n® and a constant sized alphabet (|X| = O(2¥)) we can solve (a(k+1))—OV.
Notably N = not°(1), So an algorithm running in faster than N*~1=°() time will violate the (a(k + 1))—OV
hypothesis. This fulfills the statement in the theorem.
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Compression Now we will argue that these strings are compress-able with SLP. We will mostly be using the
same structure as | ]. First we can build variables in our SLP for all of our base characters with O(2%)
variables. Next we can build @* with lg(¢) = O(k) variables. Next we can build all S ; for all i and b with at
most O(k2¥) variables. Next, we want to build our longer strings.

Now we will use the recursive structure of Stringy,(L). Let

Stringy, (L) = Oy, ci1n)....jceq,m LUl - Llja][i] - - - - Llze][i]-

Note that )
Stringr, (L) = O™, (StringIa( L)m) .

We are just pulling out the part related to the i*” bit of every vector. Now note that

) i~ Stringy, (L) if L[j][i] =1
StI‘ll’lgIa(L) - O]E[l,n] {O(nul) if L[]][l] -0 .

Where 0" ") is n®~! zeros in a row. _

Note that we can make SLP variables for all 0"") strings for i € [1,a] with alg(n®) = a?1g(n) variables. Next
note that given an SLP variable for Stringy, (L)) we can add n variables and form Stringy, (L), It takes n
variables to form Stringy, (L), So, with an SLP with an + a?lg(n) variables we can represent Stringy, (L)
So, with an SLP with d(an + a?1g(n)) variables we can represent Strings,(L). To replace all zeros with Sp; and
all ones with S; ; requires an additional O(2*) variables.

So, we can compress all of our strings with O(d(n 4 1g(n))) variables. Given our restrictions on d we can write
this as n't°(1) . So our compression has length m = n!*°()_ Our input to our k-SD instance is N = n%t°()_ So
N1/ato(l) — pltao(l) — pl+e(l) Fylfilling the statement of the theorem. O

8.3 Approximation Algorithm Let the k-SD distance be k(N — k-SD(X1,...,Xk)). In other words, the
k-SD distance is the total number of unmatched characters.

THEOREM 8.3. There is an O (|E|NW€_1)/” lg(|E|N)) time algorithm to get an ¢ approximation of the k-Shift
Distance distance for any integer £ > 2.

Proof. Partitions the k — 1 of the strings into ¢ groups G, ..., G} which each contain as close to (k — 1)/¢ strings
as possible, the maximum number of strings in each group is [(k —1)/ell]. Now, take the final string, Sy and add it
to all the sets to make new sets Gy, ..., Gy, now the maximum number of strings in each group is [(k —1)/ell +1].
On each of these partitions run the algorithm for k-Shift Distance. The time for this is
O (¢ NTHR=D/E+11=11g(|$|N)) and £ is a constant. Now, using the value of k-Shift Distance we can compute
the k-Shift Distance distance. Let the distances of the sets of strings in G1,..., Gy be Aq,...,A;. Now, note that
these call be framed as distances to the last string X;. So, the distance of all these strings together is at most
A1+ -+ Ay and is at least max(Aq,...,Ay). Finally, note that

Ap+---+ Ay
< < /.
1< max(Aq, ..., Ay) st

As a result there is an approximation factor of ¢ and a running time O (|Z|NT*+=D/¢1g(|S|N)). ad

9 On High-Dimensional Generalizations of DIST Matrices

Many of the crucial properties of DIST matrices derived in, e.g., | ] used for two-string algorithms rely
on the Monge property. For LCS, the Monge property is that given two strings X,Y and the alignment
graph Gx , then letting d(u,v) be the longest path from u to v, we have d(vo:,v|x,;) + d(voi—1,Vx],j+1) <
d(vo,i—1,v|x|,;) +d(vo,i V) x]|,j+1). For example, in this paper we used the ability to take min-plus products of unit
Monge matrices efficiently, and our use of the SMAWK algorithm was enabled by the Monge property.

However, it appears no analogous property holds for even DIST “3-tensors”, the three-string generalization of

DIST matrices. Intuitively, this is because it is not possible to enforce that any path from v; to v intersects any
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path from vz to vy for four distinct vertices vy, v, v3, vy, unlike in the two-dimensional alignment graph. We will
use LCS as the metric for our examples here, but one can find similar examples for edit distance.

For example, let Afi1, 49, j1, j2] be the longest path length from vg ;, i, t0 vy, j, j, in the three-dimensional
alignment graph of three strings. An analog of the Monge property in three dimensions might be:

A(ir,i9, J1,J2) + A(in — 1,2, 1 + 1, j2) < A(iy — 1,49, j1, J2) + A(i1, 92, j1 + 1, j2)

However, this does not seem true in general. Consider the following example, where there are two sets of
length 1 edges. The first (in blue) has ¢ such edges, and is contained entirely between “layer” i1 and j; of the
DAG. The second (in red) has £ + 1 edges, however two of these edges are outside the part of the DAG between
(07 ’il, ig) and (m,jl,jg).

O’Ll 112

O 21712 J \1

\
|
L

4

(majlan)
(m7j1 + 17j2)

The two sets of length 1 edges are positioned such that one cannot use a “blue” and “red” edge in the
same path. Now, we have that A(i;y — 1,432,751 + 1,7j2) = £ + 1 and all other terms in the above inequality are
{. So the above inequality would say 2¢ + 1 < 2/, which is false. This can be generated by, e.g., the strings
X1 = aabbb, X5 = bbbaa, X3 = baabb; the LCS of the first two strings with X5[2..4], X3[1..4], X3[2..5] is aa, but
the LCS of the first two strings with X3[1..5] is bbb.

While one can find other generalizations and even weakened versions of the Monge property which this example
satisfies, for all the ones that we have considered there are three-string counterexamples that show they do not
hold in general.

For example, the unit Monge property also says that given a DIST matrix, if we subtract every row from the
next row and every column from the next column, we get a permutation matrix. In other words, each row and
column only differs in behavior from the previous row/column by 1 entry. However, for DIST 3-tensors, consider
the two-dimensional “slice” A for which A[i, j] gives the path length between e.g. (0,0,¢) and (|X1],|X2],j). By
looking at the DIST 3-tensors of even just three random strings of length roughly 100, we found that, e.g., for
some sampled strings, A had a row that could be expressed as a linear function, but the next row of A was a
piecewise linear function with six different pieces.

As another example, consider the following weaker “monotone” property: A is monotone if for any vector
b, letting m(i) = argmin; A, j] + b[i] and choosing the lowest value of j to break ties, m(i) is a monotonic
function of ¢. This admits a divide and conquer algorithm for computing min; A[i, j] 4+ b[i] for all ¢ in accesses to
A near-linear in the number of ¢ (as opposed to the SMAWK algorithm using linear accesses), a primitive that is
useful in dynamic programming algorithms for two-string similarity. Informally, knowing arg min; Ali, j] lets us
rule out a constant fraction of the possibilities for argmin; Ali', ] for ¢’ # i. The 3-dimensional generalization
of this primitive would be to compute argmin,, ;, Ali1,i2,j1,j2] + Bli1,i2] given access to entries of the DIST
3-tensor Aliy,i2,7j1,j2] = d(Uom,maUIXl\,Jl,n) and a matrix B. Put more simply, the rows of this slice have far
less structural similarity to each other than the rows of a DIST matrix.

A weak generalization of the monotone property that would admit a similar divide and conquer algorithm
for this problem is: knowing ix = argmin, , Ali1,i2,j1,J2] + Bli1,42] lets us eliminate possibilities for
argmin, ;. Ali1, iz, 1, j5] + Bli1,42] for (ji,j3) that are in a given “direction” from i* if (ji,7j5) is in a given
“direction” from (ji,j2). Here, by in a given direction, we mean e.g. j; < j; and j5 < jo, or any of the four
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possibilities given by reversing neither, one, or both of these inequalities. Unfortunately, even considering random
strings of length 10, we found counterexamples to each of the variants of this property given by choosing any pair
of directions to slot in to the definition.

10 Open Questions

We find many novel lower bounds and upper bounds in this paper. However, some of these are not tight. We give
some open problems below whose resolution we think would be particularly interesting.

e For solving k-edit distance or k-LCS on strings where k& > 3, we have a lower bound of N*~'n where N is
the length of the strings and n is the size of the SLP. However, the best exact algorithms require O(N¥)
time. Can this gap be closed for any k& > 37 Can this gap be closed for all constant k7

e There are no tight lower bounds for approximating k-LCS and k-edit distance. Can we give a tight lower
bound?

e The lower bounds for k-center edit distance and the upper bounds do not match. Our lower bounds for
k-center edit distance are the same as those for k-median edit distance. However, k-center edit distance has
slower algorithms. For example in the uncompressed and exact case the k-center edit distance lower bounds
are Q(N*) [ ] but the best algorithm requires O(N?¥) time | ].

In general, the space of multiple string comparison seems under explored. We hope more work will happen
in the space of algorithms and lower bounds for multiple string comparison. Specifically if there are efficient
algorithms for the problem of comparing multiple strings with approximation for example, it will have significant
impacts for multiple sequence alignment in biology.
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