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Abstract

Lempel–Ziv (LZ77) compression is the most commonly used lossless compression algorithm. The basic
idea is to greedily break the input string into blocks (called “phrases”), every time forming as a phrase the
longest prefix of the unprocessed part that has an earlier occurrence. In 2010, Kreft and Navarro introduced a
variant of LZ77 called LZ-End, that additionally requires the previous occurrence of each phrase to end at the
boundary of an already existing phrase. Due to its excellent practical performance as a compression algorithm
and a compressed index, they conjectured that it achieves a compression that can be provably upper-bounded
in terms of the LZ77 size. Despite the recent progress in understanding such relation for other compression
algorithms (e.g., the run-length encoded Burrows–Wheeler transform), no such result is known for LZ-End.

We prove that for any string of length n, the number ze of phrases in the LZ-End parsing satisfies
ze = O(z log2 n), where z is the number of phrases in the LZ77 parsing. This puts LZ-End among the strongest
dictionary compressors and solves a decade-old open problem of Kreft and Navarro. Using our techniques
we also derive bounds for other variants of LZ-End and with respect to other compression measures. Our
second contribution is a data structure that implements random access queries to the text in O(ze) space and
O(polylog n) time. This is the first linear-size structure on LZ-End that efficiently implements such queries.
All previous data structures either incur a logarithmic penalty in the space or have slow queries. We also show
how to extend these techniques to support longest-common-extension (LCE) queries.

1 Introduction
Lempel–Ziv (LZ77) [70] is the most commonly used lossless compression algorithm: In the Large Text Compression
Benchmark [51], out of the 205 tested compressors, most (27.8%) are based on LZ77. It underlies the popular gzip,
7-zip, and png formats, as well as modern compression formats Brotli [1], LZ4 [18], and zstd [19], adopted by
nearly all modern web browsers. Its impact was recognized with the Medal of Honor (the highest IEEE award) [61].

The basic idea of LZ77 is to greedily (left-to-right) break the input sequence T [1 . . n] into blocks (called
“phrases”), every time forming as a phrase the longest prefix of the unprocessed part T [i . . n] of the sequence
that has an earlier occurrence. Each such phrase is encoded as a pair of integers (i′, `) consisting of a starting
position i′ < i of some earlier occurrence of T [i . . i+ `), and the phrase length `> 0. If there is no prefix of T [i . . n]
occurring earlier in T , the next phrase is T [i], and we encode it as a pair (T [i], 0). This simple encoding is able
to remove the redundancy caused not only by skewed symbol frequencies (its size, denoted by z, was shown to
approach the kth order empirical entropy of T [44]), but also caused by repeated substrings: the greedy approach
of LZ77 was proved to produce the optimal (i.e., of the smallest possible size) partition of the input sequence
into phrases each having an earlier occurrence [49, Theorem 1]. The latter property is useful, as this type of
redundancy is very common in modern applications. Examples of highly repetitive datasets include databases of
same-species genomes [47], source code repositories (e.g., Github) [55], web crawls [22], and versioned documents
(such as Wikipedia) [66]. The sizes of these datasets pose a computational challenge, e.g., the recently (2018)
finished 100000 Human Genome Project [31] produced DNA sequences that in raw form take about 75TB when
assembled. These datasets are, however, highly compressible: Github averages 20 versions per project [55], and
two human genomes are known to be about 99.9% the same [63], making LZ77 the perfect tool to reduce their size.

Storage alone of these massive datasets is not enough, however. Many applications require the ability to quickly
access or search the underlying (uncompressed) sequence [47]. Unfortunately, all off-the-shelf compressors produce
a non-searchable output. This need to process highly repetitive datasets has been the driving force behind the
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development of the so-called compressed indexes: data structures capable of supporting queries (such as random
access or pattern matching) on the uncompressed data, but using only space proportional to the size of compressed
input. Due to its ideal properties, indexes based on LZ77 [2, 5, 7, 14, 21, 25, 36, 46, 58] and the closely related
context-free grammars [8, 15, 16, 26, 32, 52, 68, 69] were the first to be developed. We refer to the recent surveys
of Navarro for a comprehensive overview of these indexes [55] and the associated repetitiveness measures [54].

An important modification to the basic LZ77 compression scheme that has enabled the creation of one of the
first LZ-based indexes [45] was to choose as the next phrase the longest prefix of the unprocessed part T [i . . n] that
has an earlier occurrence ending at the end of the already existing phrase. The resulting “right-aligned” version of
LZ77, proposed by Kreft and Navarro [45], is called LZ-End. Despite the excellent compression ratio (in practice
only about 25% larger than LZ77 [39, 46]), its ease of use, and efficient construction algorithms [39, 40], little is
known about the theoretical limits on its size. In their original paper [46], Kreft and Navarro show that similarly
to LZ77, LZ-End parsing approaches the kth order entropy of the text. This bound, however, does not prove that
LZ-End is suitable to store highly repetitive sequences, since entropy measures are insensitive to repetition of
large blocks of data [54]. In their paper, Kreft and Navarro also showed a family of strings over large alphabet for
which the ratio ze/z is arbitrarily close to 2 (recently, such construction was also given for a binary alphabet [33]),
and conjectured that the size ze of the LZ-End parsing always satisfies ze ≤ 2z. In more than 10 years [45] no
progress has been made on this problem and no relation to z is known, which is in contrast to nearly all other
known dictionary compression algorithms [13, 27, 38, 41, 43, 64], whose sizes have been shown to either compress
close to LZ77 (up to polylog n factors), or polynomially (i.e., by a nε factor) worse in the worst case. We thus
formulate our first question as follows.

Problem 1.1. Can the size of LZ-End parsing be bounded in terms of LZ77 parsing?

In addition to considering the size of the LZ-End parsing, we also study its functionality. In [53, Page 25],
Navarro poses the following question: “Other equally fascinating questions can be asked about accessing and
indexing strings: What is the smallest reachable measure under which we can access and/or index the strings
efficiently? Right now, O(grl) is the best known limit for efficient access; it is unknown if one can access T [i]
efficiently within O(zno) or O(r) space.” Here, O(grl) refers to grammar compression that additionally permits
special run-length productions [57]. We pose our second problem as a response to Navarro’s question as follows.

Problem 1.2. Can we implement efficient random-access to the text using O(ze) space?

Our Contribution We positively answer both questions asked in Problem 1.1 and Problem 1.2. More precisely:

1. We prove that for any string of length n, it holds ze = O(z log2 n)1, providing the first upper bound on the
size of LZ-End parsing in terms of LZ77 parsing, and consequently establishing that LZ-End is a strong
dictionary compression algorithm able to achieve size comparable to grammar compression [13], run-length
encoded BWT [28], macro schemes [67], and collage systems [42]. This answers Problem 1.1, and thus
provides the first non-trivial answer to the decade-old open problem of Kreft and Navarro [39]. After
presenting the bound in its simplest form, we refine it as follows.

• We show that with more careful analysis, we can improve and generalize it to other repetitiveness
measures. In particular, we show ze = O(δ log2 n

δ ), where δ ≤ z is the substring complexity, a
repetitiveness measure recently introduced by Kociumaka et al. [43]. As a corollary of this bound, we
obtain the first bound O(log2 n

δ ) relating the size of the LZ-End parsing for the string and its reverse.
• We then show how to generalize our upper bound to the case of LZ-End parsing with the restriction t on

the maximal phrase length. A fast algorithm to compute this variant of the LZ-End parsing was given
in [39]. Its working space is proportional to the size of the output parsing plus the threshold t. Thus, we
aim to use t as small as possible. The experimental results of [39] demonstrated that already with small
values of t, the size of the resulting parsing was very close to LZ77, but this fact was entirely empirical.
We show the first theoretical justification of this result: Letting ze(t) denote the size of the LZ-End
parsing with the threshold value t, we prove that for any t > 0, it holds ze(t) = O(δ log2m+ n

t log t),
where m = min

(
n
δ , t
)
. Note that this bound is nearly optimal, since any parsing with threshold t has

1A similar bound r = O(z log2 n) has recently been achieved for run-length encoded BWT [38]. These two results, however, are
obtained using different techniques.
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at least dnt e phrases. On the other hand, ze(t) = Ω(z) = Ω(δ) holds by [49, Theorem 1] and [43]. By
the above result, it suffices to use a threshold t as small as t = n logn

z in the algorithm from [39], to
guarantee that the restriction on the phrase length does not asymptotically affect the number of phrases
in the resulting parsing. Since the largest value of nz in the experiments in [39] was less than 5000 and
the datasets satisfied log n ≤ 37, this shows that the claim “For experiments, we fixed t = 8× 220, as it
is small enough to not affect the RAM usage significantly, and big enough to have essentially no effect
on the parsing size.” [39] is now justified theoretically.

2. Our second main contribution focuses on Problem 1.2. We show that there exists a data structure of size
O(ze) that supports random access queries to T in O(polylog n) worst-case time, providing a non-trivial
answer to the question of Navarro [53, Page 25] about linear-space (i.e., without logarithmic factors) random
access queries on LZ-type compression. Similar (linear-space) result is known for grammar compression [8, 29].
No linear-space structure is known for LZ77 compression. The currently best structures for LZ77 (some
of which generalize to LZ-End) incur a logarithmic penalty in the space and work either directly on LZ77
parsing [4, 5, 41] or using the earlier result [8, 29] on grammars whose size can be bounded in terms of
LZ77 parsing [13, 34, 35, 64]. After presenting the structure for random access, we show how to generalize
it to support Longest Common Extension (LCE) queries in O(polylog n) time and O(ze) space. The LCE
query LCE(i, j), given two positions in a text T , returns the length of the longest common prefix of the
suffixes T [i . . n] and T [j . . n] starting at positions i and j. These queries were introduced by Landau and
Vishkin [48] in the context of approximate pattern matching. Since then, they have become one of the most
commonly used tools in text processing [50]. The compressed structures for LCE queries achieve similar
trade-offs as for random-access (e.g., [6, 30, 32, 57]).

Technical Overview The main idea in the basic variant ze = O(z log2 n) of our upper bound (Theorem 3.1) is
as follows. For any j ∈ [1 . . ze], let ej denote the last position of the jth phrase, and let `j = ej − ej−1 be its length
(we assume e0 = 0). We first observe that it suffices to only count phrases T (ej−1 . . ej ] satisfying either j = ze,
or j ∈ [2 . . ze) and `j ≥ d `j−1

2 e, since any consecutive blog nc+ 2 phrases must contain at least one such phrase.
With each such phrase, we associate ` = ej − ej−1 substrings of length 2k of T (for some 2k = Θ(`)), centered
in the interval (ej−1 . . ej ]. The value k is selected so that those substrings contain the preceding phrase. With
such an assignment: (1) for every phrase, all associated substrings are distinct, and (2) each of the substrings is
never assigned to more than two phrases. The proof of the first claim follows from the fact that 2k is large enough
so that all associated substrings cover the preceding phrase. This implies that if two of them were equal, the
(j−1)th and jth phrase would both be contained in a highly periodic substring, which in turn would yield a longer
candidate for jth phrase (see Fig. 2). The intuition for second claim is that when a substring X is assigned for the
first time to some phrase T (ei−1 . . ei], with the exception of the next phrase T (ei . . ei+1], X cannot be assigned
to any other phrase to the right. The reason for this is that X now has an occurrence in T containing a phrase
boundary in its right half. If X were again assigned to T (ej−1 . . ej ] for some j > i+ 1, this would yield a longer
candidate (equal to the prefix of the initially assigned occurrence of X) for the preceding phrase T (ej−2 . . ej−1]
since the newly assigned occurrence of X is centered in the interval (ej−1 . . ej ] and completely covers the phrase
T (ej−2 . . ej−1]. The last step of the proof is to apply an upper bound z2k on the number of distinct substrings of
length 2k. Since by the above argument each phrase is assigned a fraction of Θ(1/z) of all substrings of some
length, considering all log n possible lengths, there cannot be more than O(z log n) phrases in the assignment.
Combining with the initial sparsification, we obtain the claimed upper bound ze = O(z log2 n).

Our second contribution, a data structure implementing random access to T in O(ze) space and O(polylog n)
time can be thought of as a sparse version of the so-called concentric exponential parse (CEP) data structure [41,
Theorem 5.3]. No such sparsification techniques were known before. The basic idea of CEP is as follows. Consider
any LZ-like parsing of T . First, we store the leftmost and the rightmost symbol of each phrase. We then partition
the remaining symbols of each phrase into at most 2 log n blocks of exponentially increasing length from each end
(i.e., we have blocks of size 1 on each end of the phrase, followed (towards the middle) by blocks of size two, four,
and so on). If for each such block we store the pointer to its leftmost occurrence in T , we can compute T [i] for any
i ∈ [1 . . n] in O(log n) time by always mapping i to the corresponding position in the leftmost occurrence of the
block that contains it. Since the leftmost occurrence of a substring is guaranteed to overlap a phrase boundary, in
every step we halve the distance to the nearest phrase boundary. Consequently, after O(log n) steps, we reach a
position at the beginning or at the end of a phrase. We modify this basic structure as follows:
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1. First, rather than storing the leftmost occurrence of each block T [i . . j], we store the pointer to the occurrence
of T [i . . j] in T computed by repeatedly mapping the substring according to sources of phrases in the LZ-End
parsing, until we reach an occurrence overlapping a phrase boundary. The resulting mapping does not
increase the “R-distance”, i.e., the distance to the nearest phrase boundary on the right (Lemma 4.1).

2. Second, rather than storing Θ(log `) pointers for each length-` phrase, we sample one of the blocks in its
partition, and only store the pointer to its earlier occurrence (as defined above) for that block.

3. Finally, we store the pointer to the block containing the leftmost b 23`c symbols of each phrase.

The mapping with the above structure always first tries to map according to the sampled block. If i is not in the
sampled block, we try to use the pointer for the leftmost b 23`c positions of the phrase. If position i is not among
the leftmost b 23`c positions, we map according to the phrase source. Our main result is that with such mapping
(requiring only 3 pointers for each phrase), whenever the sequence of mapped position crosses at least blog nc+ 2
sampled blocks, we are guaranteed that the R-distance is reduced by at least a factor of two-thirds (Lemma 4.4).
We finally show that if we sample the blocks uniformly at random, with high probability for every position
we will encounter at least one sampled block every Θ(log2 n) steps (Proposition 4.1). This ensures that taking
Θ(log3 n) steps reduces R(i) by at least 2

3 . Therefore, after O(log4 n) steps (each taking O(log log n) time due to a
predecessor query), we reach a phrase boundary. Thus, the final query time is O(log4 n · log logn) = O(polylog n)
(Corollary 4.2). In particular, this establishes the existence of a O(ze)-space data structure with worst-case
O(polylog n)-time queries (Theorem 4.1).

We point out that all previous applications of CEP (such as [27, 28, 37, 41]) simply store all Ω(log n) pointers2
for each phrase, and are deterministic. Our structure is the first to introduce the randomization, and show that
further sparsification, combined with one extra “unbalanced” pointer for each phrase still lets us bound the number
of steps during the query.

Related Work After the initial development of compressed indexes based on LZ77/LZ-End and grammar
compression, more compression methods were adapted to allow efficient operations directly on compressed data.
One of the most notable examples is the adaptation of the run-length compressed Burrows–Wheeler transform
(BWT) [12]. The r-index, proposed by Gagie et al. [28] supports powerful suffix array and suffix tree queries, and
has recently been proven to only take O(z polylog n) space [38]. Many improvements and enhancements of the
r-index followed [3, 9, 10, 11, 17, 24, 59, 60]. A slightly different approach to BWT-based indexing taken by Sinha
and Weinstein [65] is based on locally-decodable Move-to-Front (MTF) and also results in efficient queries.

Another family of indexes related to LZ77 is based on string attractors [41], combinatorial objects that
generalize and whose bounds are strongly related to nearly all known dictionary compressors (except, until now,
LZ-End). Due to this connection, the resulting indexes are called “universal”. In [41], it was shown how to support
random access on attractors. This was recently generalized to pattern matching [14, 56] and other queries [62].

The most recent addition to the set of repetitiveness measures and compressed indexes, are indexes whose
space can be bounded in terms of δ, the substring complexity, a new measure recently introduced by Kociumaka et
al. [43], defined as δ := maxnm=1

1
m |Sm|, where Sm denotes the set of length-m substrings of T . As shown in [43],

the value of δ lower-bounds nearly all other repetitiveness measures, and is insensitive to reversing the string (since
the cardinality of Sm does not change after reversing). This makes it a useful compressibility measure.

2 Preliminaries
Let Σ be a nonempty set called the alphabet. For any finite string S ∈ Σ∗, we denote its length as |S|. We write
S[i . . j], where 1 ≤ i, j ≤ |S|, to denote a substring of S. If i > j, we assume S[i . . j] to be the empty string ε. An
integer p ∈ [1 . . |S|] is called a period of string S if S[i] = S[i+ p] holds for every i ∈ [1 . . |S| − p]. We write [i . . j)
and (i . . j] to denote [i . . j − 1] and [i+ 1 . . j].

Throughout the paper, we consider a string T [1 . . n] ∈ Σ+ such that T [n] = $ ∈ Σ, where $ is a special sentinel
symbol that occurs only once in T . By lcp(S1, S2) we denote the length of the longest common prefix of strings S1

and S2. For j1, j2 ∈ [1 . . n], we let LCE(j1, j2) = lcp(T [j1 . . n], T [j2 . . n]).
An LZ77-like factorization of T is a factorization T = F1 · · ·Ff into non-empty phrases such that every phrase

Fj with |Fj | > 1 has an earlier occurrence in T , i.e., letting i = 1+ |F1 · · ·Fj−1| and ` = |Fj |, there exists p ∈ [1 . . i)
satisfying LCE(p, i) ≥ `. The phrase Fj = T [i . . i+ `) is encoded as a pair (p, `). If there are multiple choices for

2Storing ω(logn) pointers per phrase allows obtaining time-space tradeoffs.
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p, we choose one arbitrarily. The occurrence T [p . . p+ `) is called the source of Fj . If ` = 1, Fj = T [i] is encoded
as a pair (T [i], 0).

The LZ77 factorization [70] (or LZ77 parsing) of a string T is an LZ77-like factorization constructed by
greedily parsing T from left to right into the longest possible phrases. More precisely, the jth phrase Fj is the
longest substring starting at position i = 1 + |F1 · · ·Fj−1| that has an earlier occurrence in T . If there is no such
substring, then Fj = T [i]. We denote the number of phrases in the LZ77 parsing by z. For example, the text
T = bbabaababababaababa$ has LZ77 factorization b · b · a · ba · aba · bababa · ababa · $ with z = 8 phrases, and
is encoded as a sequence of pairs (b, 0), (1, 1), (a, 0), (2, 2), (3, 3), (7, 6), (10, 5), ($, 0). LZ77 parsing is known to be
the LZ77-like parsing with the smallest possible number of phrases [49, Theorem 1].

The LZ-End factorization [46] of a string T is an LZ77-like factorization constructed by greedily parsing T
from left to right into previous phrases, where at each step we choose the longest previous factor that has an earlier
occurrence ending at the end of some already existing phrase. Formally, to compute the jth phrase starting at
position i = 1 + |F1 · · ·Fj−1|, we determine the largest ` ∈ [0 . . n− i+ 1] such the substring T [i . . i+ `) is a suffix of
the concatenation F1 · · ·Fj′ of the first j′ phrases for some j′ < j. If ` > 0, then the next phrase is Fj = T [i . . i+`),
and we denote src(j) = j′ (if there is more than one candidate for j′, we choose one arbitrarily). Otherwise (i.e., if
` = 0), the next phrase is Fj = T [i].3 The number of phrases in the LZ-End parsing is denoted by ze. For example,
the text T = bbabaababababaababa$ has LZ-End factorization b · b · a · ba · aba · baba · baaba · ba · $ with ze = 9
phrases. By [49, Theorem 1], it holds z ≤ ze.

Let q be a prime number and let r ∈ [1 . . q) be chosen uniformly at random. The Karp–Rabin fingerprint of a
substring T (i . . i+ `], where i ∈ [0 . . n] and ` ∈ [0 . . n− i], is defined as

Φ(i, i+ `) :=
∑̀
k=1

T [i+ k] · r`−k mod q.

If T (i . . i+ `] = T (j . . j + `], then clearly Φ(i, i+ `) = Φ(j, j + `). On the other hand, if T (i . . i+ `] 6= T (j . . j + `],
then with probability at least 1− `/q [20], it holds Φ(i, i+ `) 6= Φ(j, j + `). In our algorithms, we are comparing
only substrings of T of equal length. The number of different comparisons is thus less than n3. Consequently,
if for any positive constant c, we set q to be a prime number larger than nc+4 (but small enough to still fit in
O(1) words), then by the union bound, the fingerprint function has no false positives (i.e., for all i, j ∈ [0 . . n] and
` ∈ [1 . . n−max(i, j)], the equality T (i . . i+ `] = T (j . . j + `] holds if and only if Φ(i, i+ `) = Φ(j, j + `)) with
probability at least 1− n−c.

In our algorithm, we will utilize that for any i, j, k such that i ≤ j ≤ k, if we are given any two of the three
Karp–Rabin fingerprints Φ(i, j),Φ(j, k),Φ(i, k), then we can quickly compute the third using one of the formulas:

Φ(i, k) = Φ(i, j) · rk−j + Φ(j, k) mod q,(2.1)
Φ(i, j) = (Φ(i, k)− Φ(j, k)) · r−(k−j) mod q,(2.2)
Φ(j, k) = Φ(i, k)− Φ(i, j) · rk−j mod q,(2.3)

each of which can be evaluated in O(log n) time using exponentiation by squaring. The value of r−1 mod q is
precomputed once at the beginning with the extended Euclidean algorithm.

3 Upper Bounds
In this section, we present our first main result, i.e., a bound on the size of LZ-End compression in terms of LZ77.

The section is organized as follows. We start by presenting our bound in the simplest form ze = O(z log2 n)
(Section 3.1). We then show how to slightly improve the logarithmic factors and to generalize the bound to other
repetitiveness measures (Section 3.2) (this results is the first bound relating the size of the LZ-End parsing of the
string and its reverse). Finally, we show how to generalize the bound to variants of LZ-End parsing that impose a
threshold on the phrase length (Section 3.3).

3This definition differs slightly from the original definition of Kreft and Navarro [46], who did not distinguish between the case
` > 0 and ` = 0, and always defined the next phrase as Fj = T [i . . i+ `] (note that T [i+ `] is always defined, since by T [n] = $, we
always have ` ∈ [0 . . n− i]). We show that our upper bound holds for both variants.
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ejei

S

S

2k

mj
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T

X

X

δ δ

Figure 1: Illustration of the proof of Theorem 3.1: Every substring is associated with at most two phrases.
If this is not true then, letting X = T (mi − 2k−1 . .mi + 2k−1] = T (mj − 2k−1 . .mj + 2k−1] be the leftmost
and the rightmost (respectively) occurrence of X that is associated with at least three phrases, we obtain
that i < j − 1, and hence when the algorithm is adding the phrase T (ej−2 . . ej−1] to the LZ-End parsing,
the substring S = T (ej−2 . .mj + δ] has an earlier occurrence ending at the end of an already existing phrase
T (ei−1 . . ei]. Since mj + δ > ej−1, this contradicts T (ej−2 . . ej−1] being in the parsing.

3.1 Basic Upper Bound

Theorem 3.1. Every string of length n satisfies ze = O(z log2 n).

Proof. Let T∞ be an infinite string defined so that T∞[i] = T [1 + (i − 1) mod n] for i ∈ Z; in particular,
T∞[1 . . n] = T [1 . . n]. For any m ≥ 1, let Sm = {S ∈ Σm : S is a substring of T∞}. Observe that it holds
|Sm| ≤ mz, since every substring of length m of T∞ has an occurrence overlapping or starting at some phrase
boundary of the LZ77 parsing in T (this includes the substrings overlapping two copies of T , since T [n] = $).

For any j ∈ [1 . . ze], let ej and `j denote (respectively) the last position and the length of the jth phrase in
the LZ-End parsing of T . Letting e0 = 0, we have `j = ej − ej−1. We call the jth phrase T (ej−1 . . ej ] special if
j = ze, or j ∈ [2 . . ze) and `j ≥ d `j−1

2 e. Let z
′
e denote the number of special phrases. Observe that if T (ej−1 . . ej ]

is not special for every j ∈ [i . . i+ k], then `i+k ≤ n
2k
. Thus, any subsequence of blog nc+ 2 consecutive phrases

contains a special phrase, and hence ze ≤ z′e · (blog nc+ 2) = O(z′e log n).
The basic idea of the proof is as follows. With each special phrase of length ` we associate ` distinct substrings

of length 2k, where 2k < 12`. We then show that every substring X ∈ S2k , where k ∈ [0 . . dlog ne+ 4], is associated
with at most two phrases. Thus, by |S2k | ≤ z2k, there are no more than 24z special phrases associated with strings
in S2k . Accounting all k ∈ [0 . . blog nc+ 4], this implies z′e = O(z log n), and hence ze = O(z log2 n).

The assignment of substrings is done as follows. Let j ∈ [1 . . ze] be such that T (ej−1 . . ej ] is a special phrase.
Let k ∈ [0 . . blog nc+4] be the smallest integer such that 2k ≥ 6`. With phrase T (ej−1 . . ej ] we associate substrings
Xi := T∞(i− 2k−1 . . i+ 2k−1] where i ∈ [ej−1 . . ej). We need to prove two things. First, that every substring is
associated with at most two phrases, and second, that for every phrase, all associated ` substrings are distinct.

To show the first claim, suppose that for some k ∈ [0 . . blog nc+ 4], there exists X ∈ S2k associated with at
least three special phrases. Let T (ei−1 . . ei] be the leftmost, and T (ej−1 . . ej ] the rightmost such phrase in T . Note
that since T [n] = $ occurs in T only once, X cannot contain $, and hence we have j > 1 and `j ≥ d `j−1

2 e. Let
mi ∈ [ei−1 . . ei) and mj ∈ [ej−1 . . ej) be such that X = T (mi − 2k−1 . .mi + 2k−1] = T (mj − 2k−1 . .mj + 2k−1]
(note that since X does not contain $, the two occurrences of X are inside T , and hence we do not need to
write T∞). Denote δ = ei − mi. The situation is depicted in Fig. 1. Observe that 0 < δ ≤ 2k−1 (since
δ ≤ ei − ei−1 ≤ |X|/6). Thus, T (mi − 2k−1 . .mi + δ] is an occurrence of string X[1 . . 2k−1 + δ] ending at the end
of phrase T (ei−1 . . ei]. Since we assume at least three phrases are associated with X, we have i < j − 1, and hence
the phrase T (ej−2 . . ej−1] is to the right of T (ei−1 . . ei]. Recall, that we have ej−1 − ej−2 ≤ 2(ej − ej−1).
Thus, by mj − 2k−1 ≤ mj − 3(ej − ej−1) ≤ ej − 3(ej − ej−1) ≤ ej−2 and ej−1 ≤ mj , the occurrence
T (mj − 2k−1 . .mj + δ] = X[1 . . 2k−1 + δ] contains the phrase T (ej−2 . . ej−1]. That, however, implies that
when the algorithm is adding the phrase T (ej−2 . . ej−1] to the LZ-End parsing, the substring S = T (ej−2 . .mj + δ]
has an earlier occurrence (as a suffix of X[1 . . 2k−1 + δ] = T (mi − 2k−1 . .mi + δ]) ending at the end of an already

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited2852

D
ow

nl
oa

de
d 

01
/2

6/
22

 to
 7

0.
95

.8
1.

18
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



ejej−1

2k

Xi

Xi′

i′i

Y SS

T

Figure 2: Illustration of the proof of Theorem 3.1: All ` = ej − ej−1 = 5 substrings associated with the
phrase T (ej−1 . . ej ] are distinct, because if there exist i, i′ ∈ [ej−1 . . ej) such that i < i′ and Xi = Xi′ , then
Y = T (i− 2k−1 . . i′+ 2k−1] is periodic with period p = i′− i < `. This yields a substring S of length |S| > `
that starts at position ej−1 + 1 and has an earlier occurrence ending at a phrase boundary, contradicting
T (ej−1 . . ej ] being in the parsing.

existing phrase T (ei−1 . . ei]. Since mj + δ > ej−1, this substring is longer than T (ej−2 . . ej−1], a contradiction.
To show the second claim, i.e., that for each special phrase T (ej−1 . . ej ], all associated ` strings are distinct,

suppose that there exist i, i′ ∈ [ej−1 . . ej) such that i < i′ and Xi = Xi′ ; see Fig. 2. Note that by the uniqueness of
T [n] = $, we again have j > 1 and `j ≥ d `j−1

2 e. Denote Y = T (i− 2k−1 . . i′ + 2k−1] (since under the assumption
that Xi = Xi′ , the string Y does not contain $, we again do not need to write T∞). Since Xi is a prefix of Y , Xi′

is a suffix of Y , and it holds Xi = Xi′ , it follows that Y has period p, where p = i′ − i < `. By definition of a
period, any substring of Y of length 2xp, where x ∈ Z≥0, is a square (i.e., a string of the form SS, where S ∈ Σ∗).
Consider thus the string Y ′ := T (ej−1 − xp . . ej−1 + xp], where x = b(ej−1 − (i− 2k−1))/pc. Observe that:

• By definition of x, the position preceding Y ′ in T satisfies ej−1 − xp ≥ (i − 2k−1). On the other hand,
ej−1 + xp ≤ ej−1 + 2k−1 − (i− ej−1) ≤ i′ + 2k−1. Thus, Y ′ is a substring of Y .

• By p < ` and 2k−1 ≥ 3`, we have xp > ((ej−1 − (i− 2k−1))/p− 1)p = 2k−1 − p− (i− ej−1) ≥ `.
By the above, the string Y ′ is a square, i.e., Y ′ = SS and hence T (ej−1 − xp . . ej−1] = T (ej−1 . . ej−1 + xp].
Moreover, it holds xp > `. This, however, contradicts the fact that T (ej−1 . . ej ] was selected as a phrase in the
LZ-End parsing of T , since T (ej−1 . . ej−1 +xp] is a longer substring with a previous occurrence T (ej−1−xp . . ej−1]
ending at a phrase boundary. Thus, we have shown that all ` strings associated with T (ej−1 . . ej ] are distinct. �

The above bound holds also for the original definition of the LZ-End parsing [46], and we prove this in the
Appendix (Theorem A.1). In the rest of the paper, we adopt the above definition.

3.2 Tighter Upper Bound In this section, we show that with a more careful analysis, we can slightly improve
the logarithmic factors in our upper bound. We also show how to generalize our bound to the measure δ [43],
which lets us derive the first bound relating the size of the LZ-End parsing for the string T and its reverse.

Lemma 3.1. For any string of length n, it holds ze = O(z′e log n
z′e

), where z′e is the number of special phrases.

Proof. Let (si)i∈[1. .z′e] be an increasing sequence containing all j ∈ [1 . . ze] such that T (ej−1 . . ej ] is a special
phrase (where again ei is the last position of the ith phrase). Let i ∈ [1 . . z′e], and denote x = si and x′ = si−1.
By definition, all but the last phrase overlapping T (ex′ . . ex] are not special. Thus, looking at the lengths of
those non-special phrases right-to-left, each at least doubles the length of the previous one, and hence T (ex′ . . ex]
overlaps at most 1 + dlog(ex − ex′)e phrases. Consequently, letting s0 = 0 and mi = esi − esi−1 for i ∈ [1 . . z′e], we
obtain

ze ≤ z′e +

z′e∑
i=1

dlogmie ≤ 2z′e +

z′e∑
i=1

logmi ≤ 2z′e + z′e log n
z′e
,

where the last inequality follows from the log sum inequality4 by observing that
∑z′e
i=1mi = n. �

4For any k ≥ 1 and any subset {a1, . . . , ak, b1, . . . , bk} ⊆ R+, it holds
∑k

i=1 ai log
bi
ai
≤ a log b

a
, where a =

∑k
i=1 ai and b =

∑k
i=1 bi.
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Lemma 3.2. For every string of length n, the number of special phrases satisfies z′e = O(z log n
z ).

Proof. We perform the assignment of substrings to phrases as in the proof of Theorem 3.1, but only for special
phrases of length ` ≤ n

z . The number of other special phrases is clearly bounded by z. Observe that for every
special phrase of length ` ≤ n

z , the length of the associated substring in the proof of Theorem 3.1, satisfies
2k ≤ 12` ≤ 12nz . Thus, to count the number of such phrases, rather than accounting all k ∈ [0 . . blog nc+ 4], it
suffices to account only k ∈ [0 . .

⌊
log n

z

⌋
+ 4]. Consequently, we obtain the upper bound O(z log n

z ) on the number
of special phrases of length ` ≤ n

z . Adding at most z special phrases of length ` > n
z yields the claim. �

Corollary 3.1. Every string of length n satisfies ze = O(z log2 n
z ).

Proof. By Lemma 3.2, we have z′e = O(z log n
z ). Combining this with the upper bound ze = O(z′e log n

z′e
) shown in

Lemma 3.1, and noting that as a function of z′e, the expression z′e log n
z′e

is increasing as long as z′e ≤ n
e , we obtain

ze = O(z log n
z log n

z log(n/z) ) = O(z log2 n
z ). If z′e >

n
e , then ze = Θ(z′e) = O(z log n

z ). �

The above technique implies an upper bound on ze in terms of another measure of repetitiveness: the substring
complexity [43]. It is defined as δ := maxnm=1

1
m |Sm|. The measure δ satisfies δ ≤ z [43] and hence the following

bound is always at least as good as ze = O(z log2 n
z ).

Theorem 3.2. Every string of length n satisfies ze = O(δ log2 n
δ ).

Proof. We start by observing that δ can be equivalently defined as δ = sup∞m=1
1
m |Sm|. This is because for any

m ≥ 1 we always have |Sm| ≤ n. Thus, for m ≥ n, it holds 1
m |Sm| ≤ 1 ≤ |S1|. By this equivalent definition,

for any m ≥ 1, we have 1
m |Sm| ≤ δ, or equivalently, |Sm| ≤ δm. Plugging this bound on |Sm| into the proof

of Lemma 3.2, we obtain that since every substring X ∈ S2k , where k ∈ [0 . . dlog n
δ e + 4], is associated with

at most two phrases, by |S2k | ≤ δ2k, there is no more than 24δ special phrases associated with strings in S2k .
Accounting all k ∈ [0 . .

⌊
log n

δ

⌋
+ 4], this implies z′e = O(δ log n

δ ), and hence (via the same argument as in the
proof of Corollary 3.1) ze = O(δ log2 n

δ ). �

Corollary 3.2. If ze and ze denote the size of the LZ-End parsing of a length-n text and its reverse, respectively,
then ze/ze = O(log2 n

δ ).

Proof. Note that the value of δ is the same for the string and its reverse. Thus, by Theorem 3.2, we obtain
ze = O(δ log2 n

δ ). Combining this with the inequalities δ ≤ z [43] and z ≤ ze [49, Theorem 1], we obtain
ze = O(ze log2 n

δ ). �

3.3 Upper Bound with Limit on Phrase Length In this section, we show how to generalize the upper
bound of Theorem 3.2 to cover the case of LZ-End parsing with the threshold on the maximal phrase length.5

Let z(t) and ze(t) denote the size of the LZ77 and the LZ-End variants with threshold t, respectively. The
only modification in the definition of this variant is that the length of each phrase cannot exceed some predefined
threshold t. Otherwise, the parsing is computed in the same way (i.e., greedily left to right). As a warmup, let us
see how introducing the threshold affects the size of LZ77 parsing. The proof of the following fact is provided in
the appendix.

Fact 3.1. For any text of length n and any threshold t ≥ 1, it holds z(t) ≤ z + n
t .

By the above, to achieve an increase in the space by no more than a constant factor, it suffices to impose
the threshold t equal to the average phrase length. This bound is asymptotically tight, since any parsing with
threshold t has at least dnt e phrases. On the other hand, by [49, Theorem 1], it cannot have less than z phrases.

Next, we show that a similar result holds for the LZ-End parsing. The strategy of the proof for this result is
different than for the LZ77 parsing since, unlike LZ77, LZ-End is not the optimal parsing among the parsings
satisfying the LZ-End property.

5Note that this modification is not the same as the one imposed, e.g., in gzip, which restricts the starting position i′ of the earlier
occurrence of each factor T [i . . i+ `) in the parsing to start no further than w (the window size) positions earlier, i.e., that i− i′ ≤ w.
Clearly, assuming the non-self-referential variant of LZ77, this also limits the lengths of all phrases by w, but is a much stronger
assumption.
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Theorem 3.3. For any text of length n and any t ≥ 1, it holds ze(t) = O(δ log2m+ n
t log t), where m = min

(
n
δ , t
)
.

Proof. Let T∞, (ei)
ze(t)
i=0 , and (`i)

ze(t)
i=1 be defined analogously as in the proof of Theorem 3.1. We call a phrase

T (ej−1 . . ej ] long if `j > 1
12 t. Otherwise, a phrase is called short. A short phrase T (ej−1 . . ej ] is called special if

j = ze(t), or j ∈ [2 . . ze(t)) and `j ≥ d `j−1

2 e. Otherwise, a short phrase is called regular. By z′e(t) and z′′e (t) we
denote the number of special and the number of long phrases, respectively. The number of long phrases clearly
satisfies z′′e (t) ≤

⌈
12n
t

⌉
= O(nt ).

We first assume t ≤ n
δ . Observe, that if T (ej−1 . . ej ] is a regular phrase for every j ∈ [i . . i+k], then `i+k ≤ t

2k
.

Thus, any subsequence of blog tc+ 2 consecutive phrases contains either a special or a long phrase, and hence

ze(t) ≤ (z′e(t) + z′′e (t)) · (blog tc+ 2) = O(z′e(t) log t+ z′′e (t) log t).

To bound z′e(t), consider the assignment of substrings to phrases as in the proof of Theorem 3.1. To show that
this assignment works also for the parsing with the limit on the phrase length, we observe that:

• Every substring is associated with at most two phrases. Let k,X, i, j,mi,mj , and δ be as in the proof of
this claim in Theorem 3.1. Assuming that the claim is not true, we observed that this implies that the
substring T (ej−2 . .mj + δ] has an earlier occurrence ending at the end of the already existing phrase, which
by (mj + δ)− ej−2 > ej−1 − ej−2 contradicts the phrase T (ej−2 . . ej−1] being in the LZ-End parsing. We
now additionally observe that since T (ej−2 . .mj + δ] is a substring of X and T (ej−1 . . ej ] is a special phrase,
we have mj + δ − ej−2 ≤ |X| ≤ 12(ej − ej−1) ≤ t, and consequently, T (ej−2 . .mj + δ] is a valid candidate
for the phrase, even assuming we have a threshold t of the phrase length.

• For every special phrase T (ej−1 . . ej ], all associated ` = ej − ej−1 substrings are pairwise distinct. Let i, x,
and p be defined as in the proof of this claim in Theorem 3.1. Assuming the claim is not true, we observed
that then T (ej−1 . . ej−1 + xp] has an earlier occurrence ending and the end of an already existing phrase,
and xp > ` holds, contradicting T (ej−1 . . ej ] being in the LZ-End parsing. We now additionally observe that
since xp ≤ 2k−1 ≤ |Xi| ≤ 12(ej − ej−1) ≤ t, the substring T (ej−1 . . ej−1 + xp] is again a valid candidate for
the phrase, even assuming we have a threshold t of the phrase length.

By these two facts, and |S2k | ≤ δ2k, there are no more than 24δ special phrases associated with strings in S2k .
Accounting all k ∈ [0 . . blog tc+ 4], this implies z′e(t) = O(δ log t).

Plugging this and the bound z′′e (t) = O(nt ) into the above upper bound on ze(t), we obtain the claim
ze(t) = O(δ log2 t+ n

t log t).
Let us now assume t > n

δ . Let (si)i∈[0. .z′e(t)+z′′e (t)] be an increasing sequence such that s0 = 0 and the remaining
elements of the sequence contain all j ∈ [1 . . ze(t)] such that T (ej−1 . . ej ] is either a special or a long phrase.
Let i ∈ [1 . . z′e(t) + z′′e (t)], and denote x = si and x′ = si−1. By definition, all but the last phrase overlapping
T (ex′ . . ex] are regular. Thus, looking at the lengths of those regular phrases right-to-left, each at least doubles
the length of the previous one, and hence T (ex′ . . ex] overlaps at most 1 + dlog(ex − ex′)e phrases. Consequently,
letting mi = esi − esi−1

for i ∈ [1 . . z′e(t) + z′′e (t)], we obtain

ze(t) ≤ z′e(t) + z′′e (t) +

z′e(t)+z
′′
e (t)∑

i=1

dlogmie ≤ 2(z′e(t) + z′′e (t)) +

z′e(t)+z
′′
e (t)∑

i=1

logmi

≤ 2(z′e(t) + z′′e (t)) + (z′e(t) + z′′e (t)) log n
z′e(t)+z

′′
e (t) = O(z′e(t) log n

z′e(t)
+ z′′e (t) log n

z′′e (t) )

using the log sum inequality (utilizing that
∑z′e(t)+z

′′
e (t)

i=1 mi = n).
To bound z′e(t), we consider the assignment of substrings to phrases as in the proof of Theorem 3.1, except we

perform the assignment only for special phrases of length ` ≤ n
12δ . The number of other special phrases is clearly

bounded by 12δ. To show that this assignment works also for the parsing with the limit on the phrase length, we
recall from the above analysis of the case t ≤ n

δ , that it suffices to show that the phrases for which we perform the
assignment are of length ` ≤ 1

12 t. This follows from ` ≤ n
12δ and n

δ < t. Thus, there are no more than 24δ special
phrases associated with strings in S2k . Accounting all k ∈ [0 . . blog n

12δ c+ 4], this implies z′e(t) = O(δ log n
δ ).

Plugging this and the bound z′′e (t) = O(nt ) into the above upper bound on ze(t), we obtain the claim
ze(t) = O(δ log n

δ log n
δ log(n/δ) + n

t log t) = O(δ log2 n
δ + n

t log t). �
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4 Random Access in Linear Space
In this section, we present our structure that implements random access in O(polylog n) time and O(ze) space.

The section is organized as follows. First (Section 4.1) we present the basic definitions. Next (Section 4.2), we
prove the main combinatorial results used in our structure. In Section 4.3 we present our data structure. Finally
(Section 4.4), we describe the query algorithm, prove its correctness, and analyze the running time.

4.1 Preliminaries Let x ∈ [1 . . n], and let j ∈ [1 . . ze] be such that x ∈ (ej−1 . . ej ]. We define the left phrase
offset of x as L(x) = x − ej−1. We let L(n + 1) = 1. Analogously, we define the right phrase offset of x as
R(x) = ej − x. We denote D(x) = min(L(x), R(x) + 1).

Let b, e ∈ [0 . . n] be such that b < e and let ` = e− b. If there exists j ∈ [1 . . ze] such that ej ∈ (b . . e], then we
define pri(b, e) = b and depth(b, e) = 0. Otherwise, let j ∈ [1 . . ze] be such that ej−1 ≤ b < e < ej (such j exists by
the definition of the parsing). Then, we inductively define pri(b, e) = pri(b′, e′) and depth(b, e) = 1 + depth(b′, e′),
where j′ = src(j) (it is defined since ej − ej−1 ≥ 2), b′ is such that ej′ − b′ = ej − b, and e′ = b′ + `. Note that
pri(b, e) and depth(b, e) are well defined since j′ < j. In both cases, the fragment T (pri(b, e) . .pri(b, e) + `] is called
the primary occurrence of T (b . . e]. Informally, the primary occurrence is the occurrence of T (b . . e] that ends at a
phrase boundary or overlaps two phrases, found by repeatedly mapping the fragment T (b . . e] to its copy induced
by the source of the LZ-End phrase, and the depth of T (b . . e] is the number of steps needed to reach the primary
occurrence.

4.2 Combinatorial Results

Lemma 4.1. Let x ∈ [1 . . n] be a position in T , and let b, e ∈ [0 . . n] be any integers such that b < x ≤ e. Then,
the position x′ = pri(b, e) + (x− b) satisfies T [x] = T [x′] and R(x′) ≤ R(x).

Proof. Induction on depth(b, e). If depth(b, e) = 0, then x′ = x, and thus we have T [x′] = T [x] and R(x′) = R(x).
Let us assume depth(b, e) > 0. This implies that there exists j ∈ [1 . . ze] such that ej−1 ≤ b < e < ej . Let

j′ = src(j) (it is defined since ej − ej−1 ≥ 2), b′ be such that ej′ − b′ = ej − b, and e′ = b′ + (e − b). Observe
then the position y = b′ + (x − b) satisfies ej′ − y = ej − x = R(x). Thus, R(y) ≤ R(x). Moreover, since
T (b . . e] = T (b′ . . e′] and y − b′ = x − b, we have T [y] = T [x]. By definition of the primary occurrence we then
have pri(b′, e′) = pri(b, e) and hence, from the inductive assumption applied to y and b′, e′, we obtain that for
x′ = pri(b, e) + (x − b) = pri(b′, e′) + (y − b′) it holds T [x′] = T [y] and R(x′) ≤ R(y). Combining this with
T [y] = T [x] and R(y) ≤ R(x), yields the claim. �

Consider a phrase T (ej−1 . . ej ] (where j ∈ [1 . . ze]) in the LZ-End parsing of T . Partition the interval
(ej−1 . . ej ] into blocks such that each block is a maximal contiguous subsequence of positions x with the same
value of blogD(x)c, and there is a block boundary in the middle of the phrase (if ej − ej−1 is even) or following the
middle symbol (if ej − ej−1 is odd). More formally, let Bj be a set of pairwise disjoint integer intervals {I1, . . . , Ik}
(i.e., each Ii is a set of the form (b . . e] = {b + 1, b + 2, . . . , e} for some b, e ∈ [0 . . n] satisfying b < e) such that⋃k
i=1 Ii = (ej−1 . . ej ], and for every i ∈ [1 . . k], denoting Ii = (b . . e], the following conditions are satisfied (recall

that `j = ej − ej−1):
• For every x ∈ (b . . e), it holds blogD(x)c = blogD(x+ 1)c,
• It holds ej−1 + d`j/2e 6∈ (b . . e),
• If b 6∈ {ej−1 + d`j/2e, ej−1}, then blogD(b)c 6= blogD(b+ 1)c,
• If e 6∈ {ej−1 + d`j/2e, ej}, then blogD(e)c 6= blogD(e+ 1)c.

The elements of the set Bj are called bookmarks of phrase T (ej−1 . . ej ]. The set of all bookmarks is denoted
B =

⋃ze
j=1 Bj . For any q ∈ [1 . . |Bj |], by Ij,q we denote the element I ∈ Bj with the qth smallest starting position

(it is well defined since all sets in Bj are disjoint).

Lemma 4.2. Let x ∈ [1 . . n] and let b, e ∈ [0 . . n] be such that x ∈ (b . . e] ∈ B. Then, the position
x′ = pri(b, e) + (x− b) satisfies L(x′) ≤ L(x)/2 or R(x′) ≤ R(x)/2.

Proof. Let j ∈ [1 . . ze] be such that (b . . e] ∈ Bj . Let us also denote s = blogD(x)c, h = d`j/2e, and h′ = b`j/2c.
Assume x > ej−1 + h. For any such x, it holds L(x) > R(x), and hence D(x) = R(x) + 1. By definition

of Bj , we then have s = blogD(x)c = blogD(e)c = logD(e) = log(R(e) + 1), and hence R(e) = 2s − 1. Since
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there is a bookmark ending at position ej−1 + h and x > ej−1 + h, we have b ≥ ej−1 + h. Therefore, for any
positions y, y′ ∈ (b . . e] such that y 6= y′, we have D(y) = R(y) + 1 = ej − y + 1 6= ej − y′ + 1 = R(y′) + 1 = D(y′).
Thus, e− b ≤ 2s, and consequently, e− x ≤ 2s − 1. We now observe that by definition of pri(b, e), there exists
j′ ∈ [1 . . ze] such that ej′ ∈ (pri(b, e) . .pri(b, e) + (e− b)]. Let j′′ ∈ [1 . . ze] be the largest such j′. If ej′′ ≥ x′, then
R(x′) ≤ ej′′−x′ ≤ pri(b, e)+(e−b)−x′ = e−x, and thus 2R(x′) ≤ 2(e−x) ≤ e−x+2s−1 = e−x+R(e) = R(x), or
equivalently, R(x′) ≤ R(x)/2. On the other hand, if ej′′ < x′, then it holds L(x′) = x′− ej′′ < x′−pri(b, e) = x− b.
This can be bounded as x − b ≤ e − b ≤ ej − ej−1 − h = b`j/2c ≤ h. Thus, 2L(x′) ≤ 2(x − b) ≤ (x − b) + h ≤
(x− (ej−1 + h)) + h = (x− (ej−1 + h)) + L(ej−1 + h) = L(x), or equivalently, L(x′) ≤ L(x)/2.

Consider now the other case, i.e., x ≤ ej−1 +h. Analogously as before, for any such x, it holds L(x) ≤ R(x)+1,
and hence D(x) = L(x). We also have s = blogD(x)c = blogD(b+ 1)c = logD(b+ 1) = logL(b+ 1), and hence
L(b + 1) = 2s. Similarly, since there is a bookmark ending at position ej−1 + h, and x ≤ ej−1 + h, we have
e ≤ ej−1 + h. Since the value of L(y) is different for every y ∈ (b . . e], it holds e − b ≤ 2s, and consequently,
x− b ≤ 2s − 1. By definition of pri(b, e), there exists j′ ∈ [1 . . ze] such that ej′ ∈ (pri(b, e) . .pri(b, e) + (e− b)]. Let
j′′ ∈ [1 . . ze] be the largest such j′. If ej′′ < x′, then it holds L(x′) = x′−ej′′ ≤ x′− (pri(b, e)+1) = x− (b+1), and
thus 2L(x′) ≤ 2(x− (b+ 1)) ≤ (x− (b+ 1)) + 2s = (x− (b+ 1)) +L(b+ 1) = L(x), or equivalently, L(x′) ≤ L(x)/2.
On the other hand, if ej′′ ≥ x′, then it holds R(x′) ≤ ej′′ − x′ ≤ pri(b, e) + (e − b) − x′ = e − x. This can be
bounded as e − x ≤ e − b − 1 ≤ h − 1 ≤ h′. Thus, 2R(x′) ≤ 2(e − x) ≤ (e − x) + h′ ≤ ((ej−1 + h) − x) + h′ =
((ej−1 + h)− x) +R(ej−1 + h) = R(x), or equivalently, R(x′) ≤ R(x)/2. �

Let (pj)
ze
j=1 be a sequence of integers such that for any j ∈ [1 . . ze], it holds pj ∈ [1 . . |Bj |]. Any such sequence

is called a selector sequence. Given a selector sequence (pj), we define the function map : [1 . . n] → [1 . . n] as
follows. Let x ∈ [1 . . n], and let j ∈ [1 . . ze] be such that x ∈ (ej−1 . . ej ]. If x = ej , then we define map(x) = x.
Otherwise, i.e., when x ∈ (ej−1 . . ej), let (b . . e] ∈ B be the bookmark selected for phrase T (ej−1 . . ej ], i.e., such
that it holds (b . . e] = Ij,pj . Let j′ = src(j) and note that ej − ej−1 ≥ 2. We define

map(x) =


pri(b, e) + (x− b) if x ∈ Ij,pj ,
pri(ej−1, ej−1 + b2`j/3c) + (x− ej−1) if x 6∈ Ij,pj and x ≤ ej−1 + b2`j/3c,
ej′ − (ej − x) if x 6∈ Ij,pj and x > ej−1 + b2`j/3c.

Lemma 4.3. For any x ∈ [1 . . n], it holds T [map(x)] = T [x] and R(map(x)) ≤ R(x).

Proof. Let j ∈ [1 . . ze] be such that x ∈ (ej−1 . . ej ]. If x = ej , then map(x) = x, and hence the claim holds trivially.
Otherwise, we consider three cases:

1. If x ∈ Ij,pj then, letting (b . . e] = Ij,pj , we have map(x) = pri(b, e) + (x− b). Thus, T [map(x)] = T [x] and
R(map(x)) ≤ R(x) follow by Lemma 4.1.

2. If x 6∈ Ij,pj and x ≤ ej−1 + b2`j/3c, then both claims analogously follow by Lemma 4.1.
3. Finally, if x 6∈ Ij,pj and x > ej−1 + b2`j/3c then, letting j′ = src(j), we observe that map(x) satisfies
ej′ − map(x) = ej − x. Thus, by definition of the parsing, T [map(x)] = T [x]. This also implies that
R(map(x)) ≤ ej − x = R(x). �

4.3 Data Structure Let (pj)
ze
j=1 be a selector sequence. Based on (pj), we define the data structure

implementing random access to text T as follows. The structure consists of five components:

1. First, we store an array E[0 . . ze] defined by E[i] = ei, i.e., E[i] contains the last position of each phrase. We
augment E with a predecessor data structure. We use a structure from the full version of [23, Proposition 7],
and hence the augmented E needs O(ze) space and answers queries in O(log log n) worst-case time.

2. Second, we store an array S[1 . . ze] defined by S[i] = src(i) (see Section 2).
3. Third, we store an array P [1 . . ze] defined by P [i] = pri(ei−1, ei−1 + b2`i/3c).
4. Fourth, we store an array B[1 . . ze] defined by B[i] = (b, e,pri(b, e)), where (b . . e] = Ii,pi .
5. Finally, we store an array C[1 . . ze] defined by C[i] = T [ei].

4.4 Query Algorithm Using the above data structure, given any x ∈ [1 . . n], we compute T [x] as follows. First,
observe that given any position x, we can compute map(x) in O(log log n) time. For this, using the predecessor on
E we first in O(log log n) time determine j = min{i ∈ [1 . . ze] : ei ≥ x}. Then, x ∈ (ej−1 . . ej ]. Note that we can
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obtain ej−1 = E[j − 1] and ej = E[j] in O(1) time. If x = ej , we immediately obtain map(x) = x. Otherwise,
letting B[j] = (b, e, p), we check if x ∈ (b . . e]. If so, we have x ∈ Ij,pj , and hence map(x) = p+(x−b). If x 6∈ (b . . e],
we check if x ≤ ej−1 +b2`j/3c. If so, we have map(x) = p′+(x−ej−1), where p′ = P [j] = pri(ej−1, ej−1 +b2`j/3c).
Finally, if x > ej−1 + b2`j/3c, we have map(x) = ej′ − (ej − x), where j′ = src(j). The value ej′ is obtained in
O(1) time as E[S[j]]. In total, we have thus spent O(log log n) time.

Given the input position x ∈ [1 . . n], the query algorithm repeatedly maps x to map(x) as long as the phrase
T (ej−1 . . ej ] containing the symbol T [x] satisfies x 6= ej (or equivalently, as long as R(x) > 0). When the algorithm
reaches the value x such that ej = x, we return the symbol C[j] = T [x] as the answer. The correctness of
this procedure follows from Lemma 4.3. To see that the algorithm always terminates, note that x 6= ej implies
map(x) ∈ [1 . . x) and for x = 1 we have ej = 1 = x. Thus, the procedure terminates after a finite number of steps.

To estimate the number of steps, we introduce the following definitions. LetM =
⋃ze
j=1 Ij,pj denote the set of

positions in T that are covered by bookmarks selected by the sequence (pj). Define map(0)(x) = x, and for any
s > 0, map(s)(x) = map(map(s−1)(x)).

Lemma 4.4. Let x ∈ M. If k ≥ 0 is such that |{s ∈ [0 . . k) : map(s)(x) ∈ M}| ≥ blog nc+ 2, then the position
y = map(k)(x) satisfies R(y) ≤ 2

3R(x).

Proof. Let (bi)
k
i=1 be a sequence defined by bi = |{s ∈ [0 . . i) : map(s)(x) ∈ M}|. To prove the lemma, we

will show a more general claim, namely, that for any i ∈ [1 . . k], it holds either R(map(i)(x)) ≤ 2
3R(x) or

L(map(i)(x)) ≤ R(x)/2bi−1. Since for any y ∈ [1 . . n], it holds L(y) ≥ 1, and we have bk ≥ blog nc+ 2, this implies
that it holds R(y) = R(map(k)(x)) ≤ 2

3R(x), since L(map(k)(x)) ≤ R(x)/2bk−1 ≤ n/2blognc+1 < 1 is impossible.
The main intuition is that if after the first application of map we have R(map(x)) > 2

3R(x), then map(x) must be
in the left two-thirds of a phrase. We then show that for as long as it holds R(map(s)(x)) > 2

3R(x), the position
map(s)(x) must be in the left two-thirds of the phrase and thus each step must necessarily reduce the value of L
for the current position by a factor of two (if we use a bookmark), or at least not increase it (if the second case in
the definition of map holds). Eventually, however, the case R(map(s)(x)) ≤ 2

3R(x) must occur since the value of L
cannot drop below 1. By Lemma 4.3, the value of R then stays below 2

3R(x) until we reach y = map(k)(x).
The proof is by induction on i ∈ [1 . . k]. To show the claim for i = 1, let u = x and u′ = map(u). We

have u ∈ M. Let thus j ∈ [1 . . ze] and b, e ∈ [0 . . n] be such that u ∈ (b . . e] = Ij,pj ∈ Bj . We then have
map(u) = pri(b, e) + (u − b). Denote s = blogD(u)c, h = d`j/2e, and h′ = b`j/2c. Similarly as in the proof of
Lemma 4.2, we consider two cases:

• Let us first assume u > ej−1 + h. We then have R(e) = 2s − 1 and e − b ≤ 2s. By definition of pri(b, e),
there exists j′ ∈ [1 . . ze] such that ej′ ∈ (pri(b, e) . .pri(b, e) + (e− b)]. Let j′′ ∈ [1 . . ze] be the largest such j′.
As observed in the proof of Lemma 4.2, if ej′′ ≥ u′, then R(u′) ≤ 1

2R(u) ≤ 2
3R(u) = 2

3R(x). On the other
hand, if ej′′ < u′, then L(u′) ≤ e− b− 1 ≤ 2s − 1 = R(e) ≤ R(u) = R(x). We have thus shown that either
R(map(x)) ≤ 2

3R(x) or L(map(x)) ≤ R(x).
• Consider now the other case, i.e., u ≤ ej−1 + h. Then, by definition of pri(b, e), there exists j′ ∈ [1 . . ze] such

that ej′ ∈ (pri(b, e) . .pri(b, e) + (e− b)]. Let j′′ ∈ [1 . . ze] be the largest such j′. If ej′′ < u′, then, as shown
in the proof of Lemma 4.2, it holds L(u′) ≤ u− b− 1 ≤ e− b− 1 ≤ h− 1 ≤ h′ = R(ej−1 + h) ≤ R(u) = R(x).
On the other hand, if ej′′ ≥ u′, then R(u′) ≤ 1

2R(u) ≤ 2
3R(u) = 2

3R(x). Thus, we again have either
R(map(x)) ≤ 2

3R(x) or L(map(x)) ≤ R(x).

To show the induction step, let i ∈ (1 . . k], and assume that the claim holds for all smaller i. Denote
u = map(i−1)(x) and u′ = map(i)(x) = map(u). Let us assume that it holds R(u′) > 2

3R(x). We will show that
this implies L(u′) ≤ R(x)/2bi−1, implying the claim. We first observe that since the value of R never increases
when applying map (Lemma 4.3), we must also have R(u) > 2

3R(x), and consequently, by the inductive assumption,
L(u) = L(map(i−1)(x)) ≤ R(x)/2bi−1−1. Let j ∈ [1 . . ze] be such that u ∈ (ej−1 . . ej ]. Consider two cases:

• Assume first that u ∈M. Let b, e ∈ [0 . . n] be such that u ∈ (b . . e] = Ij,pj ∈ Bj . By Lemma 4.2, the position
u′ = map(u) = pri(b, e) + (u− b) then satisfies either R(u′) ≤ R(u)/2 or L(u′) ≤ L(u)/2. In the first case, we
have R(u′) ≤ 1

2R(u) ≤ 1
2R(x), contradicting R(u′) > 2

3R(x). We must thus have L(u′) ≤ 1
2L(u). Since by

u ∈M we have bi = bi−1 + 1, we obtain L(map(i)(x)) ≤ 1
2L(map(i−1)(x)) ≤ 1

2R(x)/2bi−1−1 = R(x)/2bi−1.
• Assume now that u 6∈ M. First, we observe that it holds u ≤ ej−1 + b2`j/3c. To show this, note that
`j = L(u) +R(u), and hence this inequality is equivalent to L(u) ≤ 2R(u). To see that this holds for u, recall
that we by the inductive assumption, we have L(u) ≤ R(x). Combined with R(u) > 2

3R(x), we obtain L(u) ≤
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R(x) < 4
3R(x) < 2R(u). We thus obtained that u′ = map(u) = pri(ej−1, ej−1 + b2`j/3c) + (u− ej−1). Note

that by 1 ≤ L(u) ≤ 2R(u) we obtain R(u) > 0, and consequently, `j > 1. Denote p = pri(ej−1, ej−1+b2`j/3c).
By definition of p, there exists j′ ∈ [1 . . ze] such that ej′ ∈ (p . . p+ b2`j/3c]. Let j′′ ∈ [1 . . ze] be the largest
such j′. Observe that ej′′ ≥ u′ is impossible because, denoting δ = `j − b2`j/3c ≥ 1

3`j , this implies
R(u′) ≤ ej′′ − u′ ≤ p + b2`j/3c − u′ = ej−1 + b2`j/3c − u = ej − δ − u = R(u) − δ ≤ R(u) − 1

3`j ≤
R(u) − 1

3R(u) = 2
3R(u) ≤ 2

3R(x), contradicting our assumption R(u′) > 2
3R(x). Thus, it holds ej′′ < u′.

But then, L(u′) = u′ − ej′′ ≤ u′ − p = u− ej−1 = L(u). It remains to observe that u 6∈ M implies bi = bi−1.
Hence, by the inductive assumption, L(u′) ≤ L(u) ≤ R(x)/2bi−1−1 = R(x)/2bi−1. �

Corollary 4.1. Let x ∈ [1 . . n]. If k ≥ 0 is such that |{s ∈ [0 . . k) : map(s)(x) ∈M}| ≥ (log3/2 n+ 2)
2, then the

position y = map(k)(x) satisfies R(y) = 0.

Proof. Let t = blog3/2 nc+ 2. By Lemma 4.4, every time we use blog nc+ 2 ≤ t bookmarks, we are guaranteed to
reduce the value of R by a factor of 2

3 . Consequently, after blog3/2 nc+ 1 ≤ t such events the value of R must be
smaller than one. Thus, if we pass at least (log3/2 n+ 2)

2 ≥ t2 bookmarks overall, we have R(y) = 0. �

Proposition 4.1. Let (pj)
ze
j=1 be a selector sequence, such that each pj ∈ [1 . . |Bj |] is chosen independently and

uniformly at random. Let k = 4dlog ne2. Then, with probability at least 1 − 1
n , all positions x ∈ [1 . . n] satisfy

{map(s)(x) : s ∈ [0 . . k)} ∩M 6= ∅.

Proof. Let x ∈ [1 . . n]. If there exists s ∈ [0 . . k) such that L(map(s)(x)) + R(map(s)(x)) = 2, then the phrase
T (ej−1 . . ej ] containing the position map(s)(x) decomposes into a single bookmark, i.e., |Bj | = 1, and hence we
must have map(s)(x) ∈M.

Let us thus assume that for every s ∈ [0 . . k), we have L(map(s)(x)) +R(map(s)(x)) > 2. It is easy to see that
whenever j ∈ [1 . . ze] satisfies ej − ej−1 > 1, we have |Bj | ≤ 2dlog(ej − ej−1)e ≤ 2dlog ne. Since the bookmark for
each phrase is selected uniformly at random, letting T (ej−1 . . ej ] be the phrase containing position map(s)(x), we
have P(map(s)(x) ∈M) = 1

|Bj | ≥
1

2dlogne . Therefore, since phrases containing positions map(s)(x) for s ∈ [0 . . k)
are all different,

P
(
{map(s)(x) : s ∈ [0 . . k)} ∩M = ∅

)
≤
(

1− 1
2dlogne

)k
≤ exp

(
− k

2dlogne

)
≤ exp (−2 log n) = n−2/ ln(2) ≤ 1/n2.

By the union bound, the probability of the above event occurring for some x ∈ [1 . . n] is at most 1/n. Thus, with
probability at least 1− 1

n , all positions x ∈ [1 . . n] satisfy {map(s)(x) : s ∈ [0 . . k)} ∩M 6= ∅. �

Corollary 4.2. Let (pj)
ze
j=1 be a selector sequence, such that each pj ∈ [1 . . |Bj |] is chosen independently

and uniformly at random. Then, with probability at least 1 − 1
n , the query algorithm returns the answer in

O(log4 n · log log n) time for all x ∈ [1 . . n].

Proof. Let k′ = 4dlog ne2, k′′ = d(log3/2 n+ 2)
2e, and k = k′k′′. By Proposition 4.1, with probability at least

1 − 1
n , for all positions x ∈ [1 . . n], it holds |{s ∈ [0 . . k) : map(s)(x) ∈ M}| ≥ k′′ ≥ (log3/2 n+ 2)

2. Thus, by
Corollary 4.1, the position y = map(k)(x) satisfies R(y) = 0. In other words, with probability at least 1 − 1

n ,
performing k = O(log4 n) applications of map suffices to reach the sampled text symbol. Each step takes
O(log log n) time, which yields the claimed complexity. �

The above holds with nonzero probability. Thus, by the probabilistic method we obtain the following result.

Theorem 4.1. For any text T of length n, there exists a data structure of size O(ze) that supports random access
queries to T in O(log4 n · log log n) worst-case time.

Note that our result is existential and does not address the efficient construction of the structure. It
is straightforward, however, to construct our structure with worst-case queries in expected O(poly(n)) time.
Alternatively, one can easily achieve worst-case O(poly(n)) construction and expected-time queries. We leave
improving the query time as an interesting future work, noting the inefficiency in the above construction (for the
existential proof, it suffices to obtain a constant non-zero probability).
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5 LCE Queries in Linear Space
In this section, we present a data structure that implements the longest common extension (LCE) queries on the
text T in O(polylog n) time. The structure uses O(ze) space.

Observe, that to support LCE queries on T , it suffices to support the computation of Φ(x, n) for any
x ∈ [0 . . n]. We can then support the queries for Karp–Rabin fingerprints of substrings T (x . . y] using Eq. (2.2) as
Φ(x, y) = (Φ(x, n)− Φ(y, n)) · ry−n mod q. If the queries for suffix fingerprints Φ(x, n) are supported in time tKR

then, accounting for the exponentiation of r, the queries for substring fingerprints Φ(x, y) take O(tKR + log n) time.
With queries for substring fingerprints of T , the value LCE(i, j) for any i, j ∈ [1 . . n] can then be determined using
binary search in O((tKR + log n) · log n) time. Note that this is easy to improve to O((tKR + log n) · log `), where
` = LCE(i, j): we first find the largest integer k ≥ 0 such that LCE(i, j) ≥ 2k, and then perform the binary search
only in the range [2k . . 2k+1). The computation of k and the proper search for ` takes O((tKR + log n) · log `) time.

5.1 Combinatorial Results Consider some x ∈ [0 . . n] and let j ∈ [1 . . ej ] be such that x ∈ (ej−1 . . ej ].
Observe that since we can precompute the values Φ(ej , n) for all j ∈ [1 . . ze], the computation of Φ(x, n) can further
be reduced to the computation of Φ(x, ej) using Eq. (2.1): Φ(x, n) = Φ(x, ej) · rn−ej + Φ(ej , n) mod q. Thus,
the main difficulty lies in computing fingerprints of phrase suffixes. We will show that, letting x′ = map(x), the
computation of the fingerprint Φ(x, ej) can be reduced either to the computation of Φ(x′, ej′) for some j′ ∈ [1 . . ze]
such that x′ ≤ ej′ , or to the computation of Φ(ej′ , x

′) for some j′ ∈ [1 . . ze] such that x′ ≥ ej′ . The computation
of fingerprints of phrase prefixes (i.e., Φ(ej , x)) is reduced analogously. Employing this strategy, by Corollary 4.2,
after a bounded number of steps, we reach a query with the position at the end of some phrase. This case can be
solved using precomputed fingerprints and hence terminates the query.

The following two lemmas show the generic reductions of the queries Φ(x, ej) and Φ(ej , x). The key property of
these reductions is that they require a single precomputed fingerprint (per phrase), depending only on {b, b′, e, e′},
but not on x.

Lemma 5.1. Let j ∈ [1 . . ze] and let b, e be such that ej−1 ≤ b < e ≤ ej. Denote b′ = pri(b, e), e′ = b′ + (e− b),
Φs = Φ(e+1−L(e′+1), ej), and j′ = max{i ∈ [1 . . ze] : ei ≤ e′}. Then, for any x ∈ (b . . e], letting x′ = e′−(e−x),
it holds

Φ(x, ej) =

{
Φs − Φ(ej′ , x

′) · rej−x mod q if x′ > ej′ ,
Φ(x′, ej′) · r(ej−e)+(e′−ej′ ) + Φs mod q otherwise.

Proof. By definition of the primary occurrence, there exists i ∈ [1 . . ze] such that ei ∈ (b′ . . e′]. Thus, it holds
ej′ ∈ (b′ . . e′], and consequently, L(e′ + 1)− 1 = e′ − ej′ . On the other hand, by definition, we have e′ − x′ = e− x.
Consider now two cases (see Fig. 3):

• If x′ > ej′ , then by T (b′ . . e′] = T (b . . e] we can write

T (e+ 1− L(e′ + 1) . . ej ] = T (e+ 1− L(e′ + 1) . . e] · T (e . . ej ]

= T (ej′ . . e
′] · T (e . . ej ]

= T (ej′ . . x
′] · T (x′ . . e′] · T (e . . ej ]

= T (ej′ . . x
′] · T (x . . e] · T (e . . ej ]

= T (ej′ . . x
′] · T (x . . ej ].

Therefore, by Eq. (2.1), Φ(e + 1 − L(e′ + 1), ej) = Φ(ej′ , x
′) · rej−x + Φ(x, ej) mod q. Equivalently, after

substituting Φs, we obtain, Φ(x, ej) = Φs − Φ(ej′ , x
′) · rej−x mod q.

• On the other hand, if x′ ≤ ej′ , then by T (b′ . . e′] = T (b . . e],

T (x . . ej ] = T (x . . e] · T (e . . ej ]

= T (x′ . . e′] · T (e . . ej ]

= T (x′ . . ej′ ] · T (ej′ . . e
′] · T (e . . ej ]

= T (x′ . . ej′ ] · T (e+ 1− L(e′ + 1) . . e] · T (e . . ej ]

= T (x′ . . ej′ ] · T (e+ 1− L(e′ + 1) . . ej ].

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited2860

D
ow

nl
oa

de
d 

01
/2

6/
22

 to
 7

0.
95

.8
1.

18
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



T

ej−1 ejb eb′ e′ej′ x′ x

e′ − ej′ e′ − ej′

T

ej−1 ejb eb′ e′ej′x′ x

e′ − ej′ e′ − ej′

Figure 3: Illustration of Lemma 5.1. If we precompute and store the Karp–Rabin fingerprint Φs =
Φ(ej− ((ej−e)+(e′−ej′)), ej) = Φ(e+1−L(e′+1), ej) (light gray), then for any x ∈ (b . . e], the fingerprint
Φ(x, ej) can be obtained as a combination of Φs and Φ(ej′ , x

′) as Φ(x, ej) = Φs − Φ(ej′ , x
′) · rej−x mod q

(if x′ > ej′ ; depicted in the top panel), or as a combination of Φs and Φ(x′, ej′) as Φ(x, ej) =

Φ(x′, ej′) · r(ej−e)+(e′−ej′ ) + Φs mod q (if x′ ≤ ej′ ; depicted in the bottom). Bold vertical lines mark
phrase boundaries.

Therefore, by Eq. (2.1), Φ(x, ej) = Φ(x′, ej′)·r(ej−e)+(e′−ej′ )+Φ(e+1−L(e′+1), ej) mod q. After substituting
Φs, we thus obtain Φ(x, ej) = Φ(x′, ej′) · r(ej−e)+(e′−ej′ ) + Φs mod q. �

Lemma 5.2. Let j ∈ [0 . . ze) and let b, e be such that ej ≤ b < e ≤ ej+1. Denote b′ = pri(b, e), Φp =
Φ(ej , b+ 1 +R(b′ + 1)), and j′ = min{i ∈ [1 . . ze] : ei > b′}. Then, for any x ∈ (b . . e], letting x′ = b′ + (x− b), it
holds

Φ(ej , x) =

{
(Φp − Φ(x′, ej′)) · rx

′−ej′ mod q if x′ ≤ ej′ ,
Φp · rx

′−ej′ + Φ(ej′ , x
′) mod q otherwise.

Proof. By definition, there exists i ∈ [1 . . ze] such that ei ∈ (b′ . . e′]. Thus, ej′ ∈ (b′ . . e′], and consequently,
b′ + 1 +R(b′ + 1) = ej′ . On the other hand, by definition, we have x′ − b′ = x− b. Consider now two cases:

• If x′ ≤ ej′ , then by T (b′ . . e′] = T (b . . e] we can write

T (ej . . b+ 1 +R(b′ + 1)] = T (ej . . b] · T (b . . b+ 1 +R(b′ + 1)]

= T (ej . . b] · T (b′ . . ej′ ]

= T (ej . . b] · T (b′ . . x′] · T (x′ . . ej′ ]

= T (ej . . b] · T (b . . x] · T (x′ . . ej′ ]

= T (ej . . x] · T (x′ . . ej′ ].

Therefore, by Eq. (2.1), Φ(ej , b+ 1 +R(b′ + 1)) = Φ(ej , x) · rej′−x
′
+ Φ(x′, ej′) mod q. Equivalently, after

substituting Φp, we obtain, Φ(ej , x) = (Φp − Φ(x′, ej′)) · rx
′−ej′ mod q.

• On the other hand, if x′ > ej′ , then by T (b′ . . e′] = T (b . . e],

T (ej . . x] = T (ej . . b] · T (b . . x]

= T (ej . . b] · T (b′ . . x′]

= T (ej . . b] · T (b′ . . ej′ ] · T (ej′ . . x
′]

= T (ej . . b] · T (b . . b+ 1 +R(b′ + 1)] · T (ej′ . . x
′]

= T (ej . . b+ 1 +R(b′ + 1)] · T (ej′ . . x
′].

Therefore, by Eq. (2.1), Φ(ej , x) = Φ(ej , b+ 1 +R(b′ + 1)) · rx
′−ej′ + Φ(ej′ , x

′) mod q. After substituting Φp,
we thus obtain Φ(ej , x) = Φp · rx

′−ej′ + Φ(ej′ , x
′) mod q. �

To use the above lemmas, we observe that whenever x ∈ (ej−1 . . ej ], there always exist positions b, e such that
ej−1 ≤ b < e ≤ ej and x′ = b′ + (b − x) = e′ − (e − x) = map(x) for b′ = pri(b, e) and e′ = b′ + (e − b). More
precisely:
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Function SuffixFP(j, x):
Input: integers j ∈ [0 . . ze] and x ∈ [0 . . ej ].
Output: the fingerprint Φ(x, ej).

1: if x = E[j] or x ≤ E[j − 1] then
2: j′ ← min{i ∈ [0 . . ze] : E[i] ≥ x}
3: f2 ← (Φ[j′]− Φ[j]) · rE[j]−n

4: if x 6= E[j′] then
5: f1 ← SuffixFP(j′, x)
6: else f1 ← 0

7: return f1 · rE[j]−E[j′] + f2 mod q
8: (b, e, b′)← B[j]; `j ← E[j]− E[j − 1]
9: if x ∈ (b . . e] then ICase 1
10: f2 ← ΦB

s [j]
11: e′ ← b′ + (e− b)
12: elsif x ≤ E[j − 1] + 2`j/3 then ICase 2
13: f2 ← ΦP

s [j]
14: e← E[j − 1]+2`j/3; e′ = P [j]+2`j/3
15: else ICase 3
16: f2 ← 0
17: e← E[j]; e′ ← E[S[j]]
18: j′ ← max{i ∈ [1 . . ze] : E[i] ≤ e′}
19: x′ ← e′ − (e− x) I x′ = map(x)
20: if x′ > E[j′] then
21: f1 ← PrefixFP(j′, x′)

22: return f2 − f1 · rE[j]−x mod q
23: else
24: f1 ← SuffixFP(j′, x′)

25: return f1·r(E[j]−e)+(e′−E[j′])+f2 mod q

Function PrefixFP(j, x):
Input: integers j ∈ [0 . . ze] and x ∈ [ej . . n].
Output: the fingerprint Φ(ej , x).

1: if x = E[j] or x ≥ E[j + 1] then
2: j′ ← max{i ∈ [0 . . ze] : E[i] ≤ x}
3: f1 ← (Φ[j]− Φ[j′]) · rE[j′]−n

4: if x 6= E[j′] then
5: f2 ← PrefixFP(j′, x)
6: else f2 ← 0

7: return f1 · rx−E[j′] + f2 mod q
8: (b, e, b′)← B[j+1]; `j+1 ← E[j + 1]−E[j]
9: if x ∈ (b . . e] then ICase 1
10: f1 ← ΦB

p [j + 1]
11: elsif x ≤ E[j] + 2`j+1/3 then ICase 2
12: f1 ← ΦP

p [j + 1]
13: b← E[j]; b′ ← P [j + 1]
14: else ICase 3
15: f1 ← ΦS

p [j + 1]
16: b← E[j]; b′ ← E[S[j + 1]]− `j+1

17: j′ ← min{i ∈ [1 . . ze] : E[i] > b′}
18: x′ ← b′ + (x− b) I x′ = map(x)
19: if x′ ≤ E[j′] then
20: f2 ← SuffixFP(j′, x′)

21: return (f1 − f2) · rx
′−E[j′] mod q

22: else
23: f2 ← PrefixFP(j′, x′)

24: return f1 · rx
′−E[j′] + f2 mod q

Figure 4: Pseudocode of the functions for querying the values Φ(x, ej) (left) and Φ(ej , x) (right).

Case 1: If x ∈ Ij,pj , then b, e are such that (b . . e] = Ij,pj ,
Case 2: If x 6∈ Ij,pj and x ≤ ej−1 + b2`j/3c, then b = ej−1 and e = ej−1 + b2`j/3c,
Case 3: If x 6∈ Ij,pj and x > ej−1 + b2`j/3c, then b = ej−1 and e = ej .

Thus, when querying Φ(x, ej) (resp. Φ(ej , x)) we can always apply Lemma 5.1 (resp. Lemma 5.2).

5.2 Data Structure With the above observation in mind, the data structure to compute Φ(x, n) for x ∈ [0 . . n]
is obtained by augmenting the structure from Section 4 as follows. We store the following six additional arrays
with precomputed fingerprints. For j ∈ [1 . . ze], the arrays are defined as follows:

• Φ[j] = Φ(ej , n),
• ΦBp [j] = Φ(ej−1, b+ 1 +R(b′ + 1)), where (b, ·, b′) = B[j] (defined as in Section 4),
• ΦBs [j] = Φ(e+ 1− L(e′ + 1), ej), where (b, e, b′) = B[j] and e′ = b′ + (e− b),
• ΦPp [j] = Φ(ej−1, ej−1 + 1 +R(b′ + 1)), where b′ = P [j] (defined as in Section 4),
• ΦPs [j] = Φ(e+ 1− L(e′ + 1), ej), where e = ej−1 + b2`j/3c and e′ = P [j] + b2`j/3c,
• ΦSp [j] = Φ(ej−1, ej−1 + 1 +R(b′ + 1)), where b′ = ej′ − `j and j′ = src(j).

We also define Φ[0] = Φ(e0, n) = Φ(0, n).

5.3 Query Algorithm The pseudocode of the query algorithm is given in Fig. 4. The two functions SuffixFP
and PrefixFP compute the fingerprint of an arbitrary suffix (resp. prefix) of T (0 . . ej ] (resp. T (ej . . n]). To compute
the fingerprint of a text suffix, i.e., Φ(x, n) for some x ∈ [0 . . n], the code is invoked, as Φ(x, n) := SuffixFP(ze, x).
Note that when invoking SuffixFP(j, x) (resp. PrefixFP(j, x)), we do not require x > ej−1 (resp. x ≤ ej+1) as
in Lemmas 5.1 and 5.2, but allow any x ∈ [0 . . ej ] (resp. x ∈ [ej . . n]). The condition x > ej−1 (resp. x ≤ ej+1)
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is ensured in Lines 1–7 (which also handle the case x = ej) by using the precomputed fingerprints at phrase
boundaries. Thus, when entering Line 8, we are guaranteed that x ∈ (ej−1 . . ej) (resp. x ∈ (ej . . ej+1)).

In Lines 8–17 (resp. 8–16), we then determine the positions b, e satisfying ej−1 ≤ b < e ≤ ej (resp.
ej ≤ b < e ≤ ej+1), and positions b′ = pri(b, e) and e′ = b′+(e−b) such that x′ = map(x) = b′+(x−b) = e′−(e−x)
(see the three cases above; unused values are not computed).

Lastly, in Lines 18–25 (resp. 17–24), we apply Lemma 5.1 (resp. Lemma 5.2) to position x.
The correctness of the algorithm follows from Lemmas 5.1 and 5.2. To bound the query time, we first observe

that when the condition in Line 1 evaluates true, then either x = ej and the query terminates, or x 6∈ (ej−1 . . ej ]
(resp. x 6∈ [ej . . ej+1)) and the function performs a recursive call in Line 5. Note that a recursive call from Line 5
will never happen consecutively twice, since the definition of j′ (Line 2) guarantees that x ∈ (ej′−1 . . ej′ ] (resp.
x ∈ [ej′ . . ej′+1)). Thus, the number of function calls is determined by the number of applications of the map
function to reach the last position of some phrase boundary. Thus, if we choose the selector sequence as in
Corollary 4.2, then with high probability the number of function calls is bounded by O(log4 n). Accounting for the
predecessor queries in Line 18 (resp. 17), and the exponentiation in Lines 22 and 25 (resp. 21 and 24), computing
Φ(x, n) for any x ∈ [0 . . n] takes tKR = O(log5 n) time.

Thus, using the probabilistic method we have proved the following result.

Theorem 5.1. For any text T of length n, there exists a data structure of size O(ze) that, for any x, y ∈ [1 . . n],
computes ` = LCE(x, y) in O(log5 n · log `) worst-case time.
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A Deferred Proofs
Theorem A.1. Let ẑe denote the size of the LZ-End parsing, as defined in [46]. Every string of length n satisfies
ẑe = O(z log2 n).

Proof. The proof follows closely the proof of Theorem 3.1. We observe, that the only two places where we used
the definition of the LZ-End parsing are:
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1. When proving that any substring X ∈ S2k is associated with at most two phrases, we used the fact that
assuming this is not true, there exists j ∈ [1 . . ze] such that when the algorithm is adding the phrase
T (ej−2 . . ej−1] to the parsing, there exists a substring S of length |S| > ej−1 − ej−2 occurring at position
ej−2 + 1, and that has an earlier occurrence in T ending at the end of an already existing phrase T (ei−1 . . ei]
for some i < j − 1. This contradicts the definition of LZ-End parsing from Section 2. We now observe that
this also contradicts the definition of LZ-End parsing from [46], since the algorithm in this case would create
the phrase at least of length |S|+ 1 > ej−1 − ej−2.

2. Similarly, when proving that all ` = ej − ej−1 substrings associated with the phrase T (ej−1 . . ej ] are distinct,
we observed that assuming the opposite, there exists a substring S of length |S| > ej − ej−1 occurring
at position ej−1 + 1, and that has an earlier occurrence ending at the end of (already existing) phrase
T (ej−2 . . ej−1]. This again contradicts not only the definition from Section 2, but also from [46], since then
the algorithm would also create a phrase of length at least |S|+ 1 > ej − ej−1. �

Fact 3.1. For any text of length n and any threshold t ≥ 1, it holds z(t) ≤ z + n
t .

Proof. We first prove that the parsing T = F1 · · ·Fz(t) computed by always selecting as Fi the longest prefix
of Fi · · ·Fz(t) having an earlier occurrence and whose length does not exceed t, produces the optimal (i.e.,
having the smallest possible number of phrases) parsing among LZ77-like parsings T = F ′1 · · ·F ′f satisfying
maxfi=1 |F ′i | ≤ t. Let T = G1 · · ·Gq be one of such smallest parsings. We will show that for every i ∈ [1 . . z(t)], it
holds |F1 · · ·Fi| ≥ |G1 · · ·Gi|. This proves that z(t) ≤ q, since otherwise we would have |F1 · · ·Fq| < n which by
n = |G1 · · ·Gq| would imply |F1 · · ·Fq| < |G1 · · ·Gq|, contradicting the above claim for i = q.

To show the claim, suppose that there exists i ∈ [1 . . z(t)] such that |F1 · · ·Fi| < |G1 · · ·Gi| and let i be
the smallest such index. Note that since we always have |F1| = |G1| = 1, it holds i ≥ 2. We observe that
since |F1 · · ·Fi−1| ≥ |G1 · · ·Gi−1|, the factor Gi starts in T not later than Fi. Let G′i be a suffix of Gi of length
|G1 · · ·Gi| − |F1 · · ·Fi−1|. Note that: (1) |G′i| ≤ |Gi| ≤ t, (2) G′i has an earlier occurrence in T (as a suffix of
an earlier occurrence of Gi), and (3) |G′i| = (|G1 · · ·Gi| − |F1 · · ·Fi|) + |Fi| > |Fi|. This contradicts that Fi was
selected as the longest prefix of Fi · · ·Fz(t) having an earlier occurrence and a length not exceeding t. This proves
the claim, and consequently, that z(t) ≤ q.

We are now ready to prove the main claim. Let H1 · · ·Hz be the LZ77 parsing of T . We use it to construct an
LZ77-like parsing H ′1 · · ·H ′z′ of T satisfying maxz

′

i=1 |H ′i| ≤ t and z′ = O(z+ n
t ) as follows. Each phrase Hi satisfying

|Hi| ≤ t occurs in the parsing H ′1 · · ·H ′z′ without change. However, if a phrase Hi satisfies |Hi| > t, we arbitrarily
break it down into d|Hi|/te phrases of length not exceeding t. If `1, . . . , `k denotes the sequence of lengths for all
phrases longer than t, then by

∑k
i=1 `i ≤ n and k ≤ z, we obtain z′ = z− k+

∑k
i=1d`i/te ≤ z+ 1

t

∑k
i=1 `i ≤ z+ n

t .
By combining this with the above optimality result, we obtain z(t) ≤ z′ ≤ z + n

t . �
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