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Abstract

Snowdrift, which results from deposition of wind transported snow, has been primar-
ily estimated empirically rather than using physically-based modelling since the snow
redistribution process is extremely complex. This study demonstrates a practical pre-
dictive model for snow redistribution based on the Linear Particle Distribution equa-
tion, which consists of snow surface diffusion, snow surface advection, and snow
surface erosion components. Here, we focus on numerical model development and
implementation for two-dimensional natural terrains at meter-scale resolutions with
and without perforated snow fences, which has been difficult to model in a two-
dimensional field. First, a selected numerical scheme was implemented in the Snow
Movement Over Open Terrain for Hydrology model platform and tested by the exact
solutions under a few well-defined boundary conditions. Then, to simulate snowdrifts
around the snow detention structures in the middle of the computational domain, an
equivalent solid snow fence concept was introduced and tested. The model was
applied to several terrains in the Laramie Range, Wyoming, and at two sites on the
North Slope of Alaska, where wind-induced snow redistribution plays a major role.
Data from Airborne Light Detection and Ranging, Ground Penetrating Radar, and
Unmanned Aerial Vehicle photogrammetry were used to calibrate and validate the
model. The numerical snow redistribution model effectively reproduces the observed
snowdrift distributions when snow densification and snowmelt effects were minimal.
The model applications illustrated that the diffusion effect generally dominated snow
redistribution with limited contributions of advection and erosion effects for abrupt
terrain transition and perforated object, respectively.
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as an insulator (e.g., Bisht et al., 2018) for the underlying permafrost.
However, the prediction of snow patterns around objects such as veg-

Wind redistribution of snow including snowdrifting around an object
or abrupt terrain transition is important for the ecosystem in wind-
swept, open areas in temperate and high-latitudes and altitudes. For
example, the near surface ground temperature in Arctic polygonal tun-

dra landscapes is sensitive to the redistributed snow depth that serves

etation and buildings is not straightforward. Snowdrift is affected by
numerous factors including, but not limited to, wind field, local turbu-
lence, surface roughness, atmospheric boundary layer thickness, parti-
cle Reynolds number, snow particle size distribution, particle shape,

density of snow particles in the air, and snow surface cohesion
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(e.g., Mott et al.,, 2018). Therefore, many coarse-scale land surface
process models have ignored the effect of wind-snow redistribution
because of limited understanding of the multiple factors that influence
it. For estimation of snowdrifts around snow fences and for roof top
snow load, for example, the empirical drift patterns developed from
numerous field-observed and experimental profiles are typically used
(e.g., O'Rourke, 2010; Tabler, 2003). However, further characteriza-
tion of snow redistribution seems to be possible because there is a
similarity among snowdrift patterns depending on the object type,
local wind field, and antecedent weather conditions
(e.g., Tabler, 1975).

One method to characterize snow distribution uses self-similarity
theory, where snow thickness is represented as a fractal across a
range of linear scales using various snow distribution data
(Bloschl, 1999; Cline et al., 1998; Dadic et al., 2010; Deems
et al., 2006; Griinewald et al., 2010; Kuchment & Gelfan, 2001; Mott
et al.,, 2011; Trujillo et al., 2007, 2009). Recently, Moon et al. (2019)
analysed correlation structure in snow depth distribution on sea ice
using Multifractal Detrended Fluctuation Analysis (MF-DFA). They
found an effective correlation structure within a 60 m grid while the
structure became unclear on a larger scale. He et al. (2019) reached
the same conclusion independently from LiDAR-derived snow depth
over wind swept areas of the Rocky Mountains. The sharp decay in
spatial correlation of snow depth implies that the pure statistical
model insufficiently represents the sub-grid variability of snow at
greater than 60 m grid resolution. However, it may be noteworthy
that the combination of statistical characteristics with physically-
based modelling was possible, for example, using the Fokker-Planck-
Kolmogorov equation (FPE) that describes the evolving probability
density function (PDF) of snow depth (He & Ohara, 2019).

Wind tunnel and water flume experiments have been considered
effective to study snowdrifts around buildings based on the similarity
between snow and other stable particles, such as high-density silica
sand (Anno, 1984; Iversen, 1980; Kind, 1976, 1986; Kind &
Murray, 1982; Oikawa et al., 2007) despite differences in particle
material (Aksamit & Pomeroy, 2016). Anno (1984) analysed the snow-
drift profiles around a perforated snow fence using a wind tunnel and
clay particles. O'Rourke et al. (2004) used water channel experiments
to characterize snow patterns and snow mass transport rates on
gabled roofs, flat roofs, and stepped flat roofs. Zhang et al. (2010)
studied the particle volume concentration distribution around the per-
forated snow fence using a wind tunnel. Wang et al. (2014) used an
open circuit wind tunnel to examine the relationship of mass transport
rate and particle deposition patterns around three dimensional
stepped flat roofs. In such a well-defined flow domain, a Computa-
tional Fluid Dynamics (CFD) model is an effective tool to describe par-
ticle distribution. Uematsu et al. (1991) performed snowdrift
modelling around a solid snow fence using a CFD model. Tominaga
and Mochida (1999) presented a CFD technique, the Launder-Kato-
type k-e model, for the prediction of snowdrift thickness around a
nine-story apartment building under construction. Beyers et al. (2004)
performed a three-dimensional numerical simulation of snow drifting
surrounding a 2 m cubic obstacle. Zhou et al. (2014, 2016) and Yu

et al. (2019) employed the combined CFD and wind tunnel approach
to simulate snowdrift patterns on flat and stepped roofs under various
conditions. However, this CFD approach is computationally very
intensive and even inappropriate for snow redistribution process
modelling at watershed or basin scales for season-long simulations
with significant uncertainty in land surface and weather conditions.

Larger scale snow distribution may be simulated by integrated
microclimate, blowing snow, erosion and deposition of snow models
(e.g., Lehning et al., 2008; Liston & Sturm, 1998; Marsh et al., 2020;
Vionnet et al., 2014). However, watershed-scale snowdrift prediction
can also be achieved by the wind modification parameter Sx that char-
acterizes the degree of shelter or exposure of a point provided by the
upwind terrain (Winstral et al., 2002; Winstral & Marks, 2002). This
empirical parameterization was cost-effective when predicting snow
distribution at the watershed scale (Erickson et al., 2005; Molotch
et al, 2005; Schirmer et al, 2011; Winstral et al., 2013). Schon
et al. (2015, 2018) demonstrated that the estimates of the parameter
Sx resulted in the successful delineation of the starting zones of small-
and medium-sized avalanches in Col du Lac Blanc, France. It was still
difficult to predict the starting point of extreme avalanches with very
high return periods, especially with coarser than 10 m resolution
(Veitinger et al., 2015). Parameterization of the wind-driven snow
redistribution process based on topography and vegetation indices
has been widely implemented in numerical models, such as Prairie
Blowing Snow Model (PBSM) (Essery et al., 1999; Pomeroy
et al., 1993), SnowTran3D/SnowModel (Greene et al., 1999; Liston
et al, 2007, 2018; Liston & Sturm, 1998), SYTRON3 (Durand
et al., 2005), Apine3D (Lehning et al., 2006; Lehning et al., 2008;
Mott & Lehning, 2010), SnowDrift3D (Schneiderbauer &
Prokop, 2011), and Meso-NH/Crocus (Vionnet et al., 2014). Funda-
mentally, these models are combinations of micro-meteorological
wind modification and experimentally obtained snow transport formu-
lations. However, the snow transport formulations available are not
conclusive because of non-linearity in aerodynamic processes, vari-
ability in snow quality, and snow transport modes; therefore, consid-
erable knowledge gap between wind field and snow particle motion
still remains. As a result, the variation in snow transport estimates
from wind speed can easily vary by multiple orders of magnitude
depending on snow type and transport mode.

Macroscopic particle motion processes of snow particles can be
described in terms of snow surface diffusion, advection, fetch, and
eddies, which are functions of snow surface elevation. Some progress
in this area was recently reported through the incorporation of classi-
cal process observations (e.g. Bagnold, 1941) through decoupling from
the micro-meteorological wind field. For example, based on the snow
transport formulas (e.g., Pomeroy & Gray, 1990), the snow particle
dispersion coefficient was theoretically derived proportional to the
autocorrelation length of wind friction speed (Ohara, 2014). The
derived expression was incorporated in the FPE snow model to esti-
mate the probability diffusion coefficient of snow depth (He &
Ohara, 2019). Marsh et al. (2020) showed that the finite volume rep-
resentation of the advection-diffusion blowing snow model with

much simplified wind flow model can significantly reduce the
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computational requirement without sacrificing the snow distribution
prediction ability. Ohara (2017) introduced a linear erosion term to
the advection dispersion equation (the Linear Particle Distribution
(LPD) equation), which can reproduce snow depth profiles affected by
trees and perforated snow fences. He showed that the model based
on the LPD equation was effective for analysing the snowdrift pattern
around perforated snow fences and abrupt terrain features in wind-
swept open terrains.

This study expands the use of the LPD equation for spatial snow
distribution modelling with variously oriented snow fences over irreg-
ular terrain. In particular, it addresses two numerical issues: the artifi-
cial diffusion for advection instability, and the inner “boundary”
condition of the snow fence in the middle of the modelling domain.
To address the advection instability issue, the specialized numerical
algorithm and the flux limiter method (e.g., Hirsch, 2007) have been
implemented and tested using one-dimensional analytical exact solu-
tions of the LPD equation, which are free from numerical artefacts.
For the internal boundary condition issue, a combination of the
“equivalent solid fence” and the “local erosion coefficient” modifica-
tions are introduced in this study. Finally, spatial model applications
over representative real terrains are presented with corresponding
snow depth measurements through manual probing, airborne LiDAR,
ground penetrating radar (GPR), and UAV-based photogrammetry.
We envision that this modelling approach will be particularly useful
for diagnosing the snow particle motion processes from observable
snowdrift patterns and for snowdrift prediction for watershed and

regional scale applications at excellent computational efficiency.

2 | METHOD

2.1 | Linear particle distribution equation
The mass conservation equation along the wind direction x on a one-

dimensional horizontal surface can be written as:

dh 170
] @
where h is the relative snow surface height or simply snow depth in
the case of flat terrain [L], p, is the density of particle deposit M/L3),
Q is the depth-integrated horizontal particle mass flux per unit width
including snowfall and abrasion [M/T/L], f is the vertical mass flux
term describing snow precipitation, compaction, and abrasion [M/T/
L2), x is the horizontal distance or length along the flow line [L] and
t is time [T]. Ohara (2017) parameterized the local snow particle flux
difference (%—‘3) using dispersion, advection, linear erosion, and snow
mass exchange relating the snow surface elevation. The LPD equation
for dynamic one-dimensional particle distribution as:

oh 1 %h oh
Fa— alxt) 57 +bixt) = +cxthh+f(xt) 2)

where a is the mass dispersion coefficient [M/T/L], b is the mass
advection coefficient [M/T/L?], and ¢ is the mass erosion coefficient
[M/T/L3]. When snow redistribution over an irregular terrain surface
is discussed, the relative snow surface height h is snow surface eleva-
tion from the datum such as the local average surface elevation. In
practice, h is snow surface elevation from a datum in the dispersion
and advection terms while h may be simply snow depth in the erosion
term. The LPD equation is in the same form as the mathematical
model of slope development proposed by Hirano (1968) and consists
of dispersion, advection, erosion, and source terms. These particle

motion parameters can be expressed as,

a=—p,D (3)
b=p, 4)
C=ppe (5)

where D is the surface diffusion coefficient or particle dispersion coef-
ficient [L?/T], ¢ is wave migration velocity or celerity [L/T], and ¢ is
the erosion coefficient [1/T]. Among these parameters, the erosion
coefficient was newly introduced by Ohara (2017) where linearity is
assumed, which implies that the model parameters, diffusion, drift,
and erosion coefficients, must be independent of the state variable h,
the relative height of the surface. Also, snow density variation is not
considered in Ohara (2017). Therefore, ignoring local snowfall and
snowmelt during the drifting period (f = 0) to obtain an analytical solu-

tion, Equation (1) can be reduced to,

oh _*h  oh
ﬁzDﬁfgagfeh. (6)
A useful analytical solution of this simplified LPD equation exists

for one dimensional snowdrift profile.

2.2 | Physical significance of the LPD equation

2.2.1 | Dispersion coefficient

The snow particle dispersion process is analogous to the well-
established concept of the mass dispersion process known as Fick's
1st law. When the wind-driven redistribution of snow is discussed,
snow surface diffusion, or snow particle dispersion may be induced
by the random fluctuation of snow particles. According to
Ohara (2014), for a horizontal two-dimensional field, the diffusion
coefficient of the blowing snow can be expressed as a time integra-
tion of the autocovariance function of the friction velocity of air. In
practice, because the mean wind speed component is accounted
for by snow particle advection, it is possible to reduce the correla-
tion structure of the wind speed time series to the delta correlation.

Thus, we have,
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hey 0 whereUs is mean snow particle speed, and U* is the mean friction
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v

where u; is snow particle speed; u* is the friction velocity of air or a
representative wind speed; T is the snow drifting time; r is dummy
variable for time for the integration; k* is the velocity-based snow
drag coefficient; p., is the density of blowing snow (mixture of
snow and air) within a control volume with thickness of h.,; and I;
is the correlation length of snow particle speed. Despite the process-
based formulation of the dispersion coefficient, there is considerable
variation in control volume specifications depending on the mode of
transport (e.g., suspension, saltation; see Table 1, Ohara, 2014;
Aksamit & Pomeroy, 2016). However, it is theoretically clear that
the dispersion coefficient is proportional to the variance of wind
speed during the period of time, T. Additionally, this snow surface
diffusion is known as “curvature effect” because it depends on the
snow surface curvature (%) as showing in Equation (2). In other exis-
ting models (e.g., SNOWTRANS3D, Liston et al., 2007), the wind speed
is empirically modified by the surface curvature to describe this
effect.

2.2.2 | Advection coefficient

The advection coefficient b(x,t) becomes equal to the mean snow
particle travel speed when particles can travel freely within the air as
suspended particles and saltation occurs over a relatively flat area.
However, the advection coefficient typically corresponds to the celer-
ity of the snow surface feature instead because the snow depth
h represents the spatial snow particle concentration. This downwind
migration of snowdrift may be caused by erosion of windward slope
erodes and deposits of leeward slope. On the other hand, snow dunes
might possibly shift upward in the direction of the wind when

saltating particles cannot easily climb over the hill. Therefore, the

velocity of air. Additionally, this effect is known as “slope effect” in
the empirical snow redistribution modelling (Liston et al., 2007).

2.2.3 | Erosion coefficient
The linear erosion term, the third term in the right hand side of
Equation (6), was introduced to describe the snow surface erosion as
proportional to the snow depth relative surface elevation. The posi-
tive erosion coefficient c(x,t) describes the initiation of blowing snow,
called fetch process. As the erosion coefficient becomes smaller, the
snow surface is hard to erode by wind. Hence, the erosion coefficient
indicates how soft the snow is which is an important addition to the
advection-dispersion model describing the snowdrift pattern around
abrupt terrain features such as cliff and solid fence. Interestingly,
although the erosion coefficient should intuitively remain positive, the
negative erosion coefficient seems to be effective in describing the
snowdrift observed around perforated objects such as trees and snow
fences. Therefore, Ohara (2017) called it the fetch-eddy effect using
the possible solution map of the LPD equations on the advection-
erosion coefficient plane. Though the particle distribution (bedform)
dynamics has often been considered a non-linear process
(e.g., Andreotti et al., 2012; Csahok et al., 2000), this liner erosion
term is flexible enough to describe practically the snowdrift shape.
The linearity of the governing LPD equation provides a significant
advantage in analysing snow distributions using this framework. It is
obvious that snowdrift shape h(x,t) depends on the relative magni-
tudes of three particle motion parameters (D, ¢,e) while the average
magnitude determines the evolution speed (e.g., snow storm dura-
tion). In other words, the time-space scale invariant relationships are
explicitly built-in. Moreover, even an analytical solution can be
obtained with constant model parameters under the following initial

and boundary conditions:

advection coefficient can be either positive or negative depending on h(0,t) =ho; t20 %)
the dominating mechanism of particle transportation; it is likely pro-
portional to the mean wind speed with positive coefficient h(x.t) # 0o0; X — c0,t 20 (10)
(p octu*;¢ >0). According to Ohara (2014), the advection coefficient
can be written as h(x,0)=0; x20 (11)
a b c f RMSD (m) e e (e TABLE 1  Model parameters and
performance root mean square
Surface —0.009 0.0008 0 0 0.217 549 difference (RMSD) for the SMOOTH
rflex1 -0.012 0.0104 0.0002 —0.0007 0.057 57 model application shown in Figure 7
rflex2 —0.0055 0.0029 —0.00021 —0.0006 0.14 112
rflex3 —0.0015 0.0059 —0.0003 —0.0009 0.093 83
rfex4 —0.0005 0.0014 —0.00004 —0.0003 0.061 321
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where h,, is a delta function which is the height of the snow fence at

= 0. Note that h is the snow surface elevation that h(x,t)=
d(x,t)+z(x) where d(xt) is snow depth and z(x) is surface elevation.
The corresponding exact solution of the LPD equation (Equation 6)
obtained by Ohara (2017) can be written as,

where

erfc(x) =1 —erf(x).

This analytical solution of the one-dimensional LPE is convenient
for testing the numerical algorithm introduced as well as analysing the
snow surface diffusion, advection, and fetch/eddy effects in the
downwind areas of various snow fences.

2.3 | Numerical algorithm
An appropriate two-dimensional numerical algorithm is required to
simulate the spatial snowdrift patterns on highly irregular topography.
A numerical algorithm of the advection-dispersion type equation
unavoidably suffers from the convective instability for the high Péclet
number cases. Numerical diffusivity (e.g., through up-winding) is typi-
cally introduced to overcome convective instability, but that is unde-
sirable for snowdrift modelling because snowdrift was shown to be
controlled by the relative magnitude of three effects: diffusion, advec-
tion, and fetch/eddy, as in the solution types mapped by Ohara (2017).
To minimize numerical diffusivity, we adopted the flux limiter method
(e.g., Hirsch, 2007) in this study.

The volume-based LPD equation for a two-dimensional spatial
field can be written as,

Jh *h  oh *h  oh f
E—DXW7(I’X7X_5xh+DyTy2*(/JYafy—£yh+/Tp (13)

where the subscripts denote spatial direction (x or y) and f is the snow
mass change due to snow precipitation and snow surface sublimation

ht — Y+ Dy )(h,”H] 2h{ 4! 11) (J,*H

D Jy) — Atedh
( ij+1 2h”+hu 1) (THZ J'*J*‘) Atgyhfj

at
(Ay)?

LAty
Pp

+Dy

(14)

where superscript (n) denotes time step, subscript (i, j) denotes spatial
grid number, p is snow precipitation (m/s), p,, is the density of water
(1000 kg/m3), At is time increment,Ax and Ay are spatial resolutions,
and J* is snow particle flux due to advection. The snow particle flux of
the advection terms in Equation (11) between computational cells
may be evaluated by,

W

" @xhiay25 0520

i+1/2§ — LE
(thi+1/2,j;¢x <0

~1.S .
” UTTEVH Y
127 N
¢yh;,j+1/2?f/'y <0

(15)

where h is the modified surface elevation with the flux limiter o,
and W, E, S, and N refer to the west, east, south, and north sides at the
computational cell (i, j), respectively. The flux limiter can prevent spurious
oscillations in the high order spatial discretization scheme due to sharp
snow surface elevation discontinuities around a snow fence or a cliff.
Based on the Monotonic Upstream-Centered Scheme for Conservation
Laws (MUSCL) scheme (van Leer, 1979), the interface values between
computational cells can be expressed as a linear extrapolation of the
average values at the two upwind cells. They can be computed as

1
w
hy+1/2;*hu+2‘1’ ( ij — hi—1),

JE 1
hi+1/2j*hi+1J7§(p:+3 ( i+2j — '+1J ’

)
)
(hu - hu 1)*
)

) (16)
hu+1/2 - hhl + 2¢
- 1
h,!:,!+1/2 = hi,}+1 *E(I),-Ha( ij+2 — u+1 ’
and
‘Pit1/2 :(p(riti/z)' Py = ‘D<”f+1/z)~ (17)

The positive sign in the superscript means effective when the
wave velocity ¢ is positive while the negative superscript means
effective when the wave velocity ¢ is negative. The limiters are
required to eliminate numerical oscillations. The ratio between succes-

sive gradients, r, can be estimated by

[M/L2/T]. Note that the relative snow surface elevation can be + :hi+1J —h;; = hij —hit1;

i—3j o h oqs B R A —ho
decomposed as h(x,y,t) =d(x,y,t)+z(x,y) where d is snow depth and " :'J h'fhi,l 2 hrh+1,; hh:+2J (18)
z is ground surface elevation. Equation (11) can be discretized with a rf — it a3 — Wi

=2 hjj—hij_q 12 hijeq —hij2

mixed finite difference-volume method as,
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Through comparisons among the flux limiters, Van Leer's (Van
Leer, 1974), min-mod (Roe, 1986), superbee (Roe & Baines, 1982),
and MUSCL limiter (Van Leer, 1979), the MUSCL limiter provided the
best performance for bell-shaped solutions. The MUSCL limiter (Van
Leer, 1979), which can be expressed as,

@(r) =max[0,min(2r,(r+1)/2,2)], (19)

was selected for use in this study. This numerical algorithm was
implemented in the SMOOTH model platform (Ohara, 2014).

2.4 | Validation of the numerical algorithm in 1D
snow profiles

The numerical solutions were verified by the one-dimensional analytical
(exact) solution, presented in Equation (11), around a snow fence, to
check how well anticipated numerical diffusion is suppressed. Figure 1
shows the two demonstrative numerical simulation results and the
corresponding analytical (exact) solutions (Equation (11)) for both positive
(upper panel) and negative (lower panel) erosion coefficient cases. The
Dirichlet boundary condition (DBC) (at the upstream end with the snow
fence unit height h[0] = 1.0 m) was used for both model verification
cases. Note that the positive erosion coefficient represents the snowdrift
around a solid fence while the negative one corresponds to the perfo-
rated snow fence case (Ohara, 2017). The effect of perforated fence
must be eliminated when snow surface reaches the physical fence top.
The accuracy of the numerical algorithm was measured by the
root-mean-square deviation (RMSD) and the Nash-Sutcliffe model

1.4 )
12 —F xact solution
g .l | A Numerical solution
208 - a=-0.0045 (kg/s/m)
=06 - b= 0.005 (kg/s/m2)
E 04 - ¢=0.0001 (kg/s/m3)
s RMSD = 0.014 (m)
(2 _

NSE = 0.99962
O T T T T T
0 5 10 15 20 25 30 35 40 45
Horizontal distance (m)

14 - )
12 —Exact solution
g '1 | A Numerical solution
<08 - =-0.0045 (kg/s/m)
= 06 - b =0.005 (kg/s/m2)
g 0'4 | ¢=-0.0001 (kg/s/m3)
s RMSD = 0.024 (m)

0.2 1 NSE =0.99931

0 . . . . r CAKEA KbcAAdAAAAAAAAAA
0 5 10 15 20 25 30 35 40 45
Horizontal distance (m)

FIGURE 1 Verification of the numerical algorithm by the

analytical (exact) solution (Equation (11)) of the LPD equation for
typical solid (upper) and perforated (lower) snow fence cases

efficiency (NSE), displayed in Figure 1. The differences were very
small for both cases, although a slightly larger error was found in the
negative erosion coefficient case (lower). It can be concluded that the
numerical algorithm presented above effectively limits the anticipated
convective instability without introducing numerical diffusivity.

3 | APPLICATIONS

Realistic snow particle motion parameters for the SMOOTH model are
discussed in this section using the state-of-art observed snow distribu-
tions in several representative terrains in Southeast Wyoming and
Northern Alaska, where wind dominates snow distribution. Ideally,
these physical model parameters should be estimated from wind and
snow drag characteristics. However, since the dynamic snow motion
information is hardly accessible in reality, the model is used as a tool in
this study to gain insight into the physical processes through the exten-
sive calibration to the observed snow distribution data assuming uni-
form and stationary model parameters for each application.

3.1 | One-dimensional simulation for snow fences

Since snow fences are an effective tool to alter snowdrift patterns for
easier road maintenance and local water resource enhancement,
snowdrift  distributions in the
(e.g. Hinkel & Hurd Jr, 2006; Stuefer & Kane, 2016; Sturm &
Stuefer, 2013; Tabler, 1986; Wangstrom, 1989). For example, Tabler

(e.g., Tabler, 2003), over decades, documented numerous snowdrift

have been studied literature

patterns around various snow fence types mainly in Wyoming and
synthesized all available snowdrift profiles along the prevailing wind
stream line. The snowdrift pattern around perforated snow fences is
an excellent first step toward understanding the effects of irregular
topography and vegetation on snow distribution. The LPD equation
successfully described the snowdrift patterns downstream from vari-
ous snow fences with the DBC at the upstream end (Ohara, 2017).
However, the DBC is inappropriate for snowdrift simulation with a
snow fence in the middle of the computational domain. The snowdrift
can be described by an equivalent elevation lift of the terrain, called
“equivalent solid fence” in this study. Snowdrift distribution associ-
ated with this equivalent solid fence may be modified by an eddy
effect brought about by the negative erosion coefficient for the perfo-
rated fence in the middle of the domain. This treatment of the inner
“boundary” condition is required for variously oriented snow fences
on irregular two-dimensional terrain. The equivalent height of the per-
forated snow fence may not be determined by physical properties but
by model calibration in this study. In this section, the new equivalent
solid snow fence, which results in the same snowdrift pattern as the
perforated snow fence, is discussed.

In addition to the three particle motion parameters, the snowdrift
around a snow fence can be described by two additional parameters: the
height of the equivalent solid fence and the length of the influenced area.

Figure 2 illustrates the proposed equivalent snow fence configuration
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with modification in the fetch-eddy effect (erosion coefficient). The dis-
persion and the advection coefficients may be assumed to be less sensi-
tive to the snow fence influence while the erosion coefficient may be
considerably modified by the snow fence. In fact, Ohara (2017) showed
that the negative linear erosion coefficient can result in the single peaked
snowdrift around a perforated snow fence due to turbulence created by
the fence. In this study, therefore, the negative erosion coefficient was
applied only downstream of the fence while it was set at zero for the rest
of the area to limit unnecessary snowdrift elsewhere. To determine the
area influenced by the fence, the advection coefficient b, which repre-
sents the wind direction, was used in the numerical model. Thus, the
snowdrift around the snow fence in the middle of the computational
domain was described by three parameters: the height of the equivalent
solid fence, the length of the influenced area, and the erosion coefficient
c in the influenced area.

Figure 3 illustrates the comparison between the SMOOTH model
output and the synthesized, field-observed snowdrift profiles
(Tabler, 2003) both upstream and downstream of solid and perforated
snow fences. Note that porosity (open area between fence slats), which
is expressed as a proportion of the total fence area, is a design parame-
ter of a snow fence. The snow-free initial condition (h = 0) is adopted
while the flat Neumann Boundary Condition (NBC) (dh/dx = 0) are
given for both ends of the computational domain. Since the spatial and
vertical scale was normalized for the snow fence height, snow fence
height was set to 1 in this figure. The corresponding equivalent snow
fence heights for the perforated snow fences as well as the other
parameters a, b, and ¢ were determined by automated trial-and-error
iterations (grid search). The model parameters are shown on the
corresponding panels of Figure 3, and the length of the area influenced
by the fence is 50 m. The snowdrift areas in the upstream as well as
the downstream sections show very good agreement. Therefore, model
configuration with a snow fence in the middle domain was found to be

effective in one-dimensional cases.
3.2 | Two-dimensional simulations with and
without snow fences

Here we applied the SMOOTH model to snow distributions on actual

irregular terrain in the Laramie Range (Figure 4) using LiDAR-observed
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FIGURE 3 Model-simulated snowdrift profiles (area graph) and

the corresponding observed synthesized snow distributions (dots)
(Tabler, 2003). Wind direction is from left to right

snow depth data from April 2016 available through previous work
(e.g., He et al., 2019). Further, the airborne LiDAR system produced
scans with and without snow cover during 2014 and 2016, respec-
tively, and differentiating them yielded the snow depth map at 0.5 m
spatial resolution with +1 cm accuracy. Four rectangular model
domains within the region were selected for the model demonstration.

Figure 5 illustrates the model calibration and validation results for
snow fenced areas along Interstate 80 (I-80). The model parameters
are on the upper right corner and the error measure (RMSD) are on
the left panels [(a) and (e)] of Figure 5. NSE was omitted for the natu-
ral terrain applications because the no-snow areas often mislead the
NSE model performance evaluation. The snow-free initial condition
(h = 2) and the flat NBC (dh/dx = 0) for all ends of the computational
domain are used. The standard Wyoming-type perforated fences in
the Malody and Honey Tree areas are approximately 3-4 m tall and
to the west of 1-80. The equivalent snow fence height of 1.3 m which

is slightly higher value than the 1D runs was adopted because of
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irregularity and roughness effect of the terrain. Although westerly
wind is expected in this area, the model was calibrated by the grid-

search method without using wind information. Nonetheless, the

SD

wy —

site location

Malody

snow fence. Blair Wallis

N
KVDW
A

station
~2km

Honey tree
snow fence

o

1000m

FIGURE 4 Model domains for SMOOTH model performance with
and without snow fences in Southeast Wyoming. The Malody and
honey tree areas were utilized for simulations with snow fences. Dale
Creek (relatively open with some riparian vegetation) and Blair Wallis
(partially forested open area) were selected for simulations without
snow fences

advection in the southerly direction (b,) was determined to be zero
while the observed prevailing wind direction (wind rose in Figure 5)
was westerly during the snow accumulation period of the 2016 sea-
son (December 2015-April 2016). Hence, it is reasonable to estimate
the advection coefficient from the wind direction record. Panel
(d) shows the 50 m-long area of influence downstream from the
fence. Even though accuracy in the validation run in the Honey Tree
site (RMSD = 0.76 m) dropped compared to the calibration run in the
Malody site (RMSD = 0.41 m), the SMOOTH model reproduced the
snowdrift patterns around the snow fences. Differences were found
mainly around [-80 where snow ploughing and snowmelt enhance-
ment by deicing measures (salt and sand) may have had an effect.
Figure 6 compares the SMOOTH model outputs to the LiDAR-
observed snow depth map at the other two sites; Dale Creek for the
open riparian zone, and Blair Wallis for the partial forest cover. The
Dale Creek model was calibrated independently for all seven parame-
ters (ay, by, ¢y f, ay, by, and c,) by the grid-search method to verify
SMOOTH model description accuracy of snowdrift patterns in a
hydrologically important riparian zone (Figure 6). The parameters for
the Dale Creek and Blair Wallis sites were slightly different from the
snow fence sites; snow patterns in the open areas can be reproduced
well without the eddy effect (zero erosion coefficients c, and c,). Con-
sidering that running SMOOTH requires very little computational
power (only a few minutes with a standard desktop PC for each run),
this model is a robust cost-effective tool to quantify the highly hetero-
geneous snowmelt water input to the riparian hydrological system.

Malody (a) 6, = 0.0163
oey ()] @ ; b, =0.001
snow fence Fence  c.=-0.0004
Calibration) B /= 0-00001
N a,=-0.0005
e by =0.000
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\ B -0 FIGURE 5 LiDAR-observed and
= “_10'_ 1560 model-simulated snowdrifts in
s 8'0 11 1'0 Malody (calibration) and honey tree
[ 570-3880 (validation) snow fence areas along
B s60-.5.70 interstate 80, Southeast Wyoming.
B 5i0-360 The wind rose used the data from the

0.50 -2.10 closest road weather information

Calms: 0.00% system (RWIS) site (KVDW)
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FIGURE 6 LiDAR-observed and
model-simulated snowdrifts in Dale
Creek (calibration) and Blair Wallis
(validation) in the open and partially
forested areas without snow fences
at Southeast Wyoming

Dale Creek .
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RMSD 0459 rnaﬁ-

(a)f\;
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This may be particularly significant because LiDAR data is available for
only a few selected areas during calm periods.

The same model configuration was applied to the Blair Wallis site
as shown in panels (d) through (f) of Figure 6. Despite the validation
run, the RMSD value for the Blair Wallis site (RMSD = 0.19) was
smaller than the calibration run for the Dale Creek site (RMSD = 0.46)
because the Dale Creek area had shallower average snow cover due
to smoother terrain despite the presence of sparse forest cover. How-
ever, the snowdrift associated with the patchy forested area at Blair
Wallis may not be reproduced very well, although the snow patterns
due to the topography were well expressed by the model. Because
vegetation growth is mainly limited by water supply from snowmelt in
this region, quantification of turbulence generated by the vegetation
will be important to assess synergy between vegetation and snow-
drift. Clearly, snow redistribution is not insignificant in windy regions

like Wyoming.

3.3 | Snowdrift profile around the lakeshore cliff of
a frozen Thermokarst Lake in Alaska

The SMOOTH model was applied to the snowdrift profile imaged with
GPR (Mald ProEx, 250Mhz, GuidelineGeo, Sundbyberg, Sweden)
around a natural lakeshore cliff of a thermokarst lake at Inigok, North

T X
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‘\\} 0 Obs. \\} ¥ Sim
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£=0.00003
a,=-0.0105
b, =-0.0005
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~ (@ B
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=T )’ : ‘,‘i Fa e
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Slope, Alaska (70.00134°N, 153.06758°W). The snowdrifts that
develop on steep slopes surrounding thermokarst lakes in these
regions are a critically important component of the water budget, and
provide water storage on the land surface late into the melt season,
yet they are poorly quantified (Sturm & Liston, 2003). Figure 7 shows
this model application for a snowdrift induced by steep terrain in the
absence of surface vegetation with the NBC. The GPR data were col-
lected on 22 April 2016 near maximum snowpack conditions and the
data were processed in ReflexW (Sandmeier Software, Karlsruhe,
Germany) using dewow and a linear gain with topographic correction
adapted from the ArcticDEM. The GPR can image the stratigraphy in
the snowpack due to the different relative dielectric permittivity of
the layers (Davis & Annan, 1989; Neal, 2004). The reflections that
occur due to density differences caused by snow metamorphism and
freeze-thaw cycles may be regarded as a historical snow surface
(e.g., Annan et al., 1994). Therefore, the snowdrift model was sequen-
tially calibrated from the bottom reflection line (rflex4) to the
shallower reflection line (rflex1) toward the snow surface by the grid-
search method. The flat NBC and the snow-free initial condition were
applied. Referring to the model parameters determined in Table 1, the
parameters are different between snow accumulation periods. This
implies the snow particle motion parameters varied during this single
snow drifting season. Especially, the erosion coefficient c started with

negative during early season while it approached to zero as the
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FIGURE 7 Snowdrift stratigraphy
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surface was smoothened by the snowpack development. Given the
approximate resolution of this GPR instrument is ~0.2 m, the model
was able to reproduce all reflections within measurement uncertainty
(Table 1). However, the model for lower layers (rflex1 ~ 4) required a
negative source parameter (f < 0) that indicates uniform snow depth
reduction during the period to fit the model simulations to the obser-
vations. This source term was originally introduced for snow depth
thickening due to new incoming snowfall during the simulation period.
The model application indicates that uniform snow compaction and
abrasion prevailed over snow accumulation in this cliff section, and
most of the snow was likely formed by drifted snow from upwind.
Additionally, snow surface hardening effect between the sequential
runs was described by erosion limitation of the previous snow surface.
This application suggests that some missing model components such
as snow densification might improve the predictability of snowdrift
thickness; snow metamorphism and snowdrift event history clearly
influence model performance.

3.4 | Spatial snow distribution in the Arctic

Snowdrifts affect the thermal regime of permafrost because a rela-
tively thick snowpack can effectively insulate the permafrost from
cold winter air temperatures of the Arctic (Stieglitz et al., 2003) and
result in warmer subsurface temperatures. Conversely, snow that per-
sists well into the summer reduces the period of soil warming and
diminishes heat flow to depth. This efficient numerical algorithm for
the LPD equation could be an ideal tool for two-dimensional snow-
drift modelling over complex terrains with sparse or negligible vegeta-
tion such as the Arctic Coastal Plain in northern Alaska. A
demonstrative preliminary model output around a drained
thermokarst lake basin referred to as Central Marsh, part of the Cir-
cumpolar Active Layer Monitoring (CALM) Network (N71.30259° N,
156.60075° W, 2.93 km?) east of Utqgiagvik, Alaska, is shown in
Figure 8. The snow-free terrain model was prepared using UAV pho-
togrammetry techniques on 04 August 2019 at 0.25 m spatial resolu-
tion. The snow depth distribution was measured on 15 April 2019
using the same UAV photogrammetry technique, as shown in
Figure 8 (left panel marked as “Obs.”) (Nichols, 2020). All images

were collected with a Phantom 4 UAV (P4RTK) and post-processed/

georeferenced to NAD83 Zone 4 North in Ellipsoid heights using a
propeller aeropoint and Pix4D (version 4.3.33 for April survey, 4.4.12
for August). A spatial resolution of 25 cm was selected during post-
processing, as this achieved a good balance of resolution and file size.
DEM creation was done in Quick Terrain Modeller (QTM) with the
densified point cloud from Pix4D. The vertical accuracy of the
dataset is a product of the structure-for-motion (SfM) software. Ver-
tical accuracy for the April survey was 18 cm and 10 cm for the
August survey.

The simulated and UAV-observed snow accumulation pattern is
consistent with the development of seasonal snow along drained lake
basin, lake, river and coastal shorelines in this region (Benson &
Sturm, 1993; Kénig & Sturm, 1998; Sturm & Liston, 2003) as well as
ice wedge troughs and pits (Liljedahl et al. 2016). The optimum model
parameter combination was determined by more than 13 000 itera-
tive simulations through a grid search using a desktop computer (Intel
Core i7-4790K, Quad-Core 4.0 GHz); each season-long computation
takes only a few minutes. After the calibration exercise, the model
reproduced the snowdrift pattern at RMSD of 0.115 m. The advection
coefficients (b = —0.001 and b, = 0.000) indicate an easterly wind,
which is the prevailing winter wind direction. The erosion coefficients
in both directions were calibrated as zero, which implies that the
advection-dispersion model is sufficient to model the snowdrift in
snow-fence or vegetation-free environments. This SMOOTH model
can interpolate and possibly extrapolate the observed seasonal snow
distributions over any windy open areas including the Arctic, where it
is difficult to operate the UAV or even ground-based systems during
most of the winter season. Additionally, the modelled snow depth
(right panel in Figure 8) can resolve the detailed snowdrift structure
affected by polygonal patterned ground, widespread ice-wedge poly-

gons in the Arctic tundra.

4 | DISCUSSION

The field-observed snow distribution patterns were analysed by the
improved SMOOTH model, a model that can partition the various
effects such as: diffusion, advection, and fetch/eddy effects, over the
winter season. For this purpose, the numerical scheme in the

SMOOTH model must be free from numerical viscosity (artificial
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diffusion). The analytical (exact) solutions for the downstream sections
of snow fences with the DBCs were very useful for testing the numer-
ical code. It is well known that the over-diffused numerical scheme
(e.g., upwind finite difference [FD] scheme) is an effective aid against
convective instability. As such, it demonstrated the utility of the
MUSCL numerical scheme as a flux limiter method, which hybridizes
the upwind FD and the higher order discretization. The MUSCL
scheme was successfully implemented in the SMOOTH model
because it was able to reproduce the exact solutions of the LPD equa-
tion under any realistic parameter combinations as demonstrated in
Figure 1. Hence, the calibrated 2D models for the observed high-
quality snow distribution data in Wyoming and Alaska can explain the
physical processes acted during the accumulation period.

Linearity of the governing LPD equation provides a substantial
advantage in interpretation of the simulation results and the deter-
mined particle motion parameters (diffusion, advection, and erosion
coefficients). According to Ohara (2017), the snowdrift profile shape
is mainly determined by the relative magnitude of the particle motion
parameters while the average magnitude controls the evolution speed,
assuming that most snowdrifts in natural terrain are considered in a
transient state. For example, doubling all particle motion parameters
results in a two-times faster snowdrift development without changing
its overall shape. The demonstrative model applications presented
here used a typical, estimated season total snowstorm duration in the
regions for the model calibrations. Therefore, if the winter period
weather condition is available, it is possible to adjust the snowdrifting
period or snowstorm duration by scaling the parameters while the rel-
ative magnitude of the parameters remain valid. Figure 9 shows the
fractional magnitudes of the particle motion parameters for various
applications presented in this study. The magnitudes were evaluated

using the Pythagorean theorem for two-dimensional cases. This
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FIGURE 9 Fractional contributions of the particle motion

parameters (a = diffusion, b = advection, and ¢ = erosion coefficient)
to the snowdrifts in the applications in Wyoming and Alaska. (a)-

(d) one-dimensional synthesized snow profiles for various snow fence
types; (e) two-dimensional snow distribution around snow fence on
the natural terrain; (f) snow distribution on the open terrain including
incised channel gully; (g) snow surface profile across the lakeshore
cliff in Inigok; and (h) snow distribution on the open arctic terrain

in CALM

analysis illustrates similarity among snowdrift patterns around the
solid fence (d), Dale Cr. (f), and Inigok (g) with significant contribution
of advection effect due to the abrupt change in surface elevation. On
the other hand, the perforated snow fences (a), (b), and (c) clearly
require the fetch/eddy effect with minimum advection effect. The
two-dimensional snow fence case (e) is somewhere between the
abrupt elevation change and the perforated snow fence cases,
suggesting that both effects of the natural terrain and the snow fence
affect the snow distribution even with the fence influence area con-
sideration. Overall, the diffusion effect dominates the snow redistribu-
tion in the open terrains over the other two effects. Especially, the
snow distribution in the relatively mild terrain of the CALM grid was
almost entirely driven by the diffusion effect. This result suggests that
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incorporation of diffusion effect may suffice in watershed or regional
scale snow modelling for snow redistribution unless snowdrift pat-
terns around perforated objects or sharp terrain transition are of
interest. At least, the advection dispersion model should be adequate
for most natural, relatively smooth terrains without significant surface
roughness, forest, or perforated snow fences. Consequently, the ero-
sion coefficient is an optional freedom to the model configuration
unless surface roughness or steep terrain affects snowdrift patterns.

Despite the highly dynamic atmospheric system affecting the
snow redistribution (Aksamit & Pomeroy, 2016), the case studies pres-
ented here showed solid performance of the model with the spatially
uniform time-averaged model parameters after the calibration to the
ground truth snow distributions. This indicates that three macroscopic
snow particle motion effects in two directions (total six parameters)
were capable to describe the time-integrated wind driven snow redis-
tribution processes represented by the observable snow distribution
in these areas. The two main parameters, snow surface diffusion and
advection coefficient, could be estimated from wind data as they were
values consistent with the prevailing wind data. Generally, the advec-
tion coefficient agreed well with the prevailing mean wind direction,
while the diffusion coefficient along the prevailing wind direction was
larger than the lateral direction. Although the snow particle motion
parameters clearly depend on the prevailing wind field, spatially uni-
form time-averaged values can successfully reproduce snow distribu-
tion patterns affected by topography.

The SMOOTH model is a decoupled or stand-alone snow redistri-
bution model from the wind or blowing snow modelling unlike other
integrated physically-based models (Lehning et al., 2008; Liston and
Sturm, 1998; Vionnet et al., 2014; Marsh et al., 2020). Therefore, the
required input data is simply a digital elevation model, which may
include abrupt terrain and snow fences. This simple decoupled model
offers quick solutions within a few seconds to minutes by a standard
PC even for the CALM case (1680 x 743, 1 m resolution). Therefore,
many iterative simulations for searching the best parameter combina-
tion are possible if snow depth data are available; this data can be eas-
ily integrated in the distributed snowmelt model. Additionally, the
time-averaged particle motion parameters determined by model cali-
bration are a useful checkpoint at the interface of the microclimate
and snow dynamics because there is considerable uncertainty in wind
and blowing snow modelling. Finally, since the original form of the
model formulation is very general (e.g., time-space dependent model
parameters), the SMOOTH model can be easily expanded for a fully
dynamic simulation of snowdrift when a better model parameter esti-
mation method associated with dynamic wind field becomes available.

Snow trapping by vegetation likely enhances spring season water
input which is essential for plant growth (Sturm et al., 2001). There-
fore, an understanding of this process is crucial for synergistic feed-
back between snowpack and ecosystems. However, to effectively
model snowdrifts around vegetation or any irregular surface rough-
ness, additional study is needed to determine the snow particle
motion parameters (dispersion, advection, and erosion coefficients)
and is beyond this proposed modelling framework. Also, through the
snowdrift simulation for the steep cliff in Inigok, AK (Figure 7 and

Table 1), uniform snow depth decrease (f < Q) was unavoidable to
match the model to the measured internal reflection lines of the
snowpack. This suggested a missing model component, such as snow
densification, in the current version. Nevertheless, the model applica-
tions suggest the possibility of snowdrift simulation around more
complex and irregular perforated objects, such as vegetation and pat-

chy forest on the irregular terrain by the Eulerian approach.

5 | CONCLUSIONS

The two-dimensional numerical SMOOTH model, based on the LPD
equation, was shown to be applicable and practical for snowdrift predic-
tion in windy open terrains. Model calibration and validation exercises
demonstrated steadiness in snowdrift simulations with and without the
perforated snow fences in the Laramie Range, Wyoming. It can therefore
be concluded that this model is a valid, cost-effective tool for snowdrift
prediction associated with the forecasted wind fields based on the
physically-based predictive equation. Moreover, these model
implementations indicate the possibility of estimating snow particle
motion parameters from resultant snow distribution. The calibrated snow
particle motion parameters and the computational conditions provide
insights for understanding the snow redistribution process.

Overall, the remaining known challenges to the physically-based
Eulerian snowdrift prediction may be summarized as follows: (1) the
particle motion parameters may be dynamic (time dependent) and
heterogeneous (spatially distributed) in nature; (2) better snowpack
dynamics modelling, such as snow densification and abrasion, affect-
ing the model predictions should be incorporated; (3) appropriateness
of the fetch/eddy effect parameterization is still largely unknown
despite the successful demonstrations presented here.

Efforts applied to understand physically-based modelling is of
fundamental importance in elucidating snowpack dynamics. For exam-
ple, such a model could estimate associated parameters from field-
observed particle distributions, which would have physical implica-
tions. This developed model can incorporate any new knowledge
explicitly or be incorporated into the greater modelling framework
directly. The applicability of the SMOOTH model demonstrated here
is encouraging and useful for understanding the hydrological cycles in
wind swept open areas such as the high plains of the Rocky Moun-
tains and the tundra in Arctic regions.
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