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Abstract

Snowdrift, which results from deposition of wind transported snow, has been primar-

ily estimated empirically rather than using physically-based modelling since the snow

redistribution process is extremely complex. This study demonstrates a practical pre-

dictive model for snow redistribution based on the Linear Particle Distribution equa-

tion, which consists of snow surface diffusion, snow surface advection, and snow

surface erosion components. Here, we focus on numerical model development and

implementation for two-dimensional natural terrains at meter-scale resolutions with

and without perforated snow fences, which has been difficult to model in a two-

dimensional field. First, a selected numerical scheme was implemented in the Snow

Movement Over Open Terrain for Hydrology model platform and tested by the exact

solutions under a few well-defined boundary conditions. Then, to simulate snowdrifts

around the snow detention structures in the middle of the computational domain, an

equivalent solid snow fence concept was introduced and tested. The model was

applied to several terrains in the Laramie Range, Wyoming, and at two sites on the

North Slope of Alaska, where wind-induced snow redistribution plays a major role.

Data from Airborne Light Detection and Ranging, Ground Penetrating Radar, and

Unmanned Aerial Vehicle photogrammetry were used to calibrate and validate the

model. The numerical snow redistribution model effectively reproduces the observed

snowdrift distributions when snow densification and snowmelt effects were minimal.

The model applications illustrated that the diffusion effect generally dominated snow

redistribution with limited contributions of advection and erosion effects for abrupt

terrain transition and perforated object, respectively.
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1 | INTRODUCTION

Wind redistribution of snow including snowdrifting around an object

or abrupt terrain transition is important for the ecosystem in wind-

swept, open areas in temperate and high-latitudes and altitudes. For

example, the near surface ground temperature in Arctic polygonal tun-

dra landscapes is sensitive to the redistributed snow depth that serves

as an insulator (e.g., Bisht et al., 2018) for the underlying permafrost.

However, the prediction of snow patterns around objects such as veg-

etation and buildings is not straightforward. Snowdrift is affected by

numerous factors including, but not limited to, wind field, local turbu-

lence, surface roughness, atmospheric boundary layer thickness, parti-

cle Reynolds number, snow particle size distribution, particle shape,

density of snow particles in the air, and snow surface cohesion
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(e.g., Mott et al., 2018). Therefore, many coarse-scale land surface

process models have ignored the effect of wind-snow redistribution

because of limited understanding of the multiple factors that influence

it. For estimation of snowdrifts around snow fences and for roof top

snow load, for example, the empirical drift patterns developed from

numerous field-observed and experimental profiles are typically used

(e.g., O'Rourke, 2010; Tabler, 2003). However, further characteriza-

tion of snow redistribution seems to be possible because there is a

similarity among snowdrift patterns depending on the object type,

local wind field, and antecedent weather conditions

(e.g., Tabler, 1975).

One method to characterize snow distribution uses self-similarity

theory, where snow thickness is represented as a fractal across a

range of linear scales using various snow distribution data

(Blöschl, 1999; Cline et al., 1998; Dadic et al., 2010; Deems

et al., 2006; Grünewald et al., 2010; Kuchment & Gelfan, 2001; Mott

et al., 2011; Trujillo et al., 2007, 2009). Recently, Moon et al. (2019)

analysed correlation structure in snow depth distribution on sea ice

using Multifractal Detrended Fluctuation Analysis (MF-DFA). They

found an effective correlation structure within a 60 m grid while the

structure became unclear on a larger scale. He et al. (2019) reached

the same conclusion independently from LiDAR-derived snow depth

over wind swept areas of the Rocky Mountains. The sharp decay in

spatial correlation of snow depth implies that the pure statistical

model insufficiently represents the sub-grid variability of snow at

greater than 60 m grid resolution. However, it may be noteworthy

that the combination of statistical characteristics with physically-

based modelling was possible, for example, using the Fokker–Planck–

Kolmogorov equation (FPE) that describes the evolving probability

density function (PDF) of snow depth (He & Ohara, 2019).

Wind tunnel and water flume experiments have been considered

effective to study snowdrifts around buildings based on the similarity

between snow and other stable particles, such as high-density silica

sand (Anno, 1984; Iversen, 1980; Kind, 1976, 1986; Kind &

Murray, 1982; Oikawa et al., 2007) despite differences in particle

material (Aksamit & Pomeroy, 2016). Anno (1984) analysed the snow-

drift profiles around a perforated snow fence using a wind tunnel and

clay particles. O'Rourke et al. (2004) used water channel experiments

to characterize snow patterns and snow mass transport rates on

gabled roofs, flat roofs, and stepped flat roofs. Zhang et al. (2010)

studied the particle volume concentration distribution around the per-

forated snow fence using a wind tunnel. Wang et al. (2014) used an

open circuit wind tunnel to examine the relationship of mass transport

rate and particle deposition patterns around three dimensional

stepped flat roofs. In such a well-defined flow domain, a Computa-

tional Fluid Dynamics (CFD) model is an effective tool to describe par-

ticle distribution. Uematsu et al. (1991) performed snowdrift

modelling around a solid snow fence using a CFD model. Tominaga

and Mochida (1999) presented a CFD technique, the Launder-Kato-

type k-ϵ model, for the prediction of snowdrift thickness around a

nine-story apartment building under construction. Beyers et al. (2004)

performed a three-dimensional numerical simulation of snow drifting

surrounding a 2 m cubic obstacle. Zhou et al. (2014, 2016) and Yu

et al. (2019) employed the combined CFD and wind tunnel approach

to simulate snowdrift patterns on flat and stepped roofs under various

conditions. However, this CFD approach is computationally very

intensive and even inappropriate for snow redistribution process

modelling at watershed or basin scales for season-long simulations

with significant uncertainty in land surface and weather conditions.

Larger scale snow distribution may be simulated by integrated

microclimate, blowing snow, erosion and deposition of snow models

(e.g., Lehning et al., 2008; Liston & Sturm, 1998; Marsh et al., 2020;

Vionnet et al., 2014). However, watershed-scale snowdrift prediction

can also be achieved by the wind modification parameter Sx that char-

acterizes the degree of shelter or exposure of a point provided by the

upwind terrain (Winstral et al., 2002; Winstral & Marks, 2002). This

empirical parameterization was cost-effective when predicting snow

distribution at the watershed scale (Erickson et al., 2005; Molotch

et al., 2005; Schirmer et al., 2011; Winstral et al., 2013). Schön

et al. (2015, 2018) demonstrated that the estimates of the parameter

Sx resulted in the successful delineation of the starting zones of small-

and medium-sized avalanches in Col du Lac Blanc, France. It was still

difficult to predict the starting point of extreme avalanches with very

high return periods, especially with coarser than 10 m resolution

(Veitinger et al., 2015). Parameterization of the wind-driven snow

redistribution process based on topography and vegetation indices

has been widely implemented in numerical models, such as Prairie

Blowing Snow Model (PBSM) (Essery et al., 1999; Pomeroy

et al., 1993), SnowTran3D/SnowModel (Greene et al., 1999; Liston

et al., 2007, 2018; Liston & Sturm, 1998), SYTRON3 (Durand

et al., 2005), Apine3D (Lehning et al., 2006; Lehning et al., 2008;

Mott & Lehning, 2010), SnowDrift3D (Schneiderbauer &

Prokop, 2011), and Meso-NH/Crocus (Vionnet et al., 2014). Funda-

mentally, these models are combinations of micro-meteorological

wind modification and experimentally obtained snow transport formu-

lations. However, the snow transport formulations available are not

conclusive because of non-linearity in aerodynamic processes, vari-

ability in snow quality, and snow transport modes; therefore, consid-

erable knowledge gap between wind field and snow particle motion

still remains. As a result, the variation in snow transport estimates

from wind speed can easily vary by multiple orders of magnitude

depending on snow type and transport mode.

Macroscopic particle motion processes of snow particles can be

described in terms of snow surface diffusion, advection, fetch, and

eddies, which are functions of snow surface elevation. Some progress

in this area was recently reported through the incorporation of classi-

cal process observations (e.g. Bagnold, 1941) through decoupling from

the micro-meteorological wind field. For example, based on the snow

transport formulas (e.g., Pomeroy & Gray, 1990), the snow particle

dispersion coefficient was theoretically derived proportional to the

autocorrelation length of wind friction speed (Ohara, 2014). The

derived expression was incorporated in the FPE snow model to esti-

mate the probability diffusion coefficient of snow depth (He &

Ohara, 2019). Marsh et al. (2020) showed that the finite volume rep-

resentation of the advection–diffusion blowing snow model with

much simplified wind flow model can significantly reduce the
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computational requirement without sacrificing the snow distribution

prediction ability. Ohara (2017) introduced a linear erosion term to

the advection dispersion equation (the Linear Particle Distribution

(LPD) equation), which can reproduce snow depth profiles affected by

trees and perforated snow fences. He showed that the model based

on the LPD equation was effective for analysing the snowdrift pattern

around perforated snow fences and abrupt terrain features in wind-

swept open terrains.

This study expands the use of the LPD equation for spatial snow

distribution modelling with variously oriented snow fences over irreg-

ular terrain. In particular, it addresses two numerical issues: the artifi-

cial diffusion for advection instability, and the inner “boundary”
condition of the snow fence in the middle of the modelling domain.

To address the advection instability issue, the specialized numerical

algorithm and the flux limiter method (e.g., Hirsch, 2007) have been

implemented and tested using one-dimensional analytical exact solu-

tions of the LPD equation, which are free from numerical artefacts.

For the internal boundary condition issue, a combination of the

“equivalent solid fence” and the “local erosion coefficient” modifica-

tions are introduced in this study. Finally, spatial model applications

over representative real terrains are presented with corresponding

snow depth measurements through manual probing, airborne LiDAR,

ground penetrating radar (GPR), and UAV-based photogrammetry.

We envision that this modelling approach will be particularly useful

for diagnosing the snow particle motion processes from observable

snowdrift patterns and for snowdrift prediction for watershed and

regional scale applications at excellent computational efficiency.

2 | METHOD

2.1 | Linear particle distribution equation

The mass conservation equation along the wind direction x on a one-

dimensional horizontal surface can be written as:

∂h
∂t

¼� 1
ρp

∂Q
∂x

þ f

� �
ð1Þ

where h is the relative snow surface height or simply snow depth in

the case of flat terrain [L], ρp is the density of particle deposit [M/L3],

Q is the depth-integrated horizontal particle mass flux per unit width

including snowfall and abrasion [M/T/L], f is the vertical mass flux

term describing snow precipitation, compaction, and abrasion [M/T/

L2], x is the horizontal distance or length along the flow line [L] and

t is time [T]. Ohara (2017) parameterized the local snow particle flux

difference (∂Q∂x ) using dispersion, advection, linear erosion, and snow

mass exchange relating the snow surface elevation. The LPD equation

for dynamic one-dimensional particle distribution as:

∂h
∂t

¼� 1
ρp

a x,tð Þ ∂
2h

∂x2
þb x,tð Þ ∂h

∂x
þc x,tð Þhþ f x,tð Þ

" #
ð2Þ

where a is the mass dispersion coefficient [M/T/L], b is the mass

advection coefficient [M/T/L2], and c is the mass erosion coefficient

[M/T/L3]. When snow redistribution over an irregular terrain surface

is discussed, the relative snow surface height h is snow surface eleva-

tion from the datum such as the local average surface elevation. In

practice, h is snow surface elevation from a datum in the dispersion

and advection terms while h may be simply snow depth in the erosion

term. The LPD equation is in the same form as the mathematical

model of slope development proposed by Hirano (1968) and consists

of dispersion, advection, erosion, and source terms. These particle

motion parameters can be expressed as,

a¼�ρpD ð3Þ

b¼ ρpφ ð4Þ

c¼ ρpε ð5Þ

where D is the surface diffusion coefficient or particle dispersion coef-

ficient [L2/T], φ is wave migration velocity or celerity [L/T], and ε is

the erosion coefficient [1/T]. Among these parameters, the erosion

coefficient was newly introduced by Ohara (2017) where linearity is

assumed, which implies that the model parameters, diffusion, drift,

and erosion coefficients, must be independent of the state variable h,

the relative height of the surface. Also, snow density variation is not

considered in Ohara (2017). Therefore, ignoring local snowfall and

snowmelt during the drifting period (f = 0) to obtain an analytical solu-

tion, Equation (1) can be reduced to,

∂h
∂t

¼D
∂2h
∂x2

�φ
∂h
∂x

�εh: ð6Þ

A useful analytical solution of this simplified LPD equation exists

for one dimensional snowdrift profile.

2.2 | Physical significance of the LPD equation

2.2.1 | Dispersion coefficient

The snow particle dispersion process is analogous to the well-

established concept of the mass dispersion process known as Fick's

1st law. When the wind-driven redistribution of snow is discussed,

snow surface diffusion, or snow particle dispersion may be induced

by the random fluctuation of snow particles. According to

Ohara (2014), for a horizontal two-dimensional field, the diffusion

coefficient of the blowing snow can be expressed as a time integra-

tion of the autocovariance function of the friction velocity of air. In

practice, because the mean wind speed component is accounted

for by snow particle advection, it is possible to reduce the correla-

tion structure of the wind speed time series to the delta correlation.

Thus, we have,
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a¼�ρpD¼�ρcv
hcv

ðT

0
Cov us Tð Þus T�τð Þ½ �dτ

¼�ρcv
hcv

k�2
ðT

0
Cov u� Tð Þu� T�τð Þ½ �dτ

¼�ρcv
hcv

k�2lt �Var u�ð Þ

ð7Þ

where us is snow particle speed; u� is the friction velocity of air or a

representative wind speed; T is the snow drifting time; τ is dummy

variable for time for the integration; k* is the velocity-based snow

drag coefficient; ρcv is the density of blowing snow (mixture of

snow and air) within a control volume with thickness of hcv; and lt

is the correlation length of snow particle speed. Despite the process-

based formulation of the dispersion coefficient, there is considerable

variation in control volume specifications depending on the mode of

transport (e.g., suspension, saltation; see Table 1, Ohara, 2014;

Aksamit & Pomeroy, 2016). However, it is theoretically clear that

the dispersion coefficient is proportional to the variance of wind

speed during the period of time, T. Additionally, this snow surface

diffusion is known as “curvature effect” because it depends on the

snow surface curvature (∂
2h

∂x2 ) as showing in Equation (2). In other exis-

ting models (e.g., SNOWTRAN3D, Liston et al., 2007), the wind speed

is empirically modified by the surface curvature to describe this

effect.

2.2.2 | Advection coefficient

The advection coefficient b x,tð Þ becomes equal to the mean snow

particle travel speed when particles can travel freely within the air as

suspended particles and saltation occurs over a relatively flat area.

However, the advection coefficient typically corresponds to the celer-

ity of the snow surface feature instead because the snow depth

h represents the spatial snow particle concentration. This downwind

migration of snowdrift may be caused by erosion of windward slope

erodes and deposits of leeward slope. On the other hand, snow dunes

might possibly shift upward in the direction of the wind when

saltating particles cannot easily climb over the hill. Therefore, the

advection coefficient can be either positive or negative depending on

the dominating mechanism of particle transportation; it is likely pro-

portional to the mean wind speed with positive coefficient

(φ/ u�;φ>0). According to Ohara (2014), the advection coefficient

can be written as

b¼ ρcv
hcv

us ¼ ρcv
hcv

k� �u� ð8Þ

whereus is mean snow particle speed, and u� is the mean friction

velocity of air. Additionally, this effect is known as “slope effect” in

the empirical snow redistribution modelling (Liston et al., 2007).

2.2.3 | Erosion coefficient

The linear erosion term, the third term in the right hand side of

Equation (6), was introduced to describe the snow surface erosion as

proportional to the snow depth relative surface elevation. The posi-

tive erosion coefficient c x,tð Þ describes the initiation of blowing snow,

called fetch process. As the erosion coefficient becomes smaller, the

snow surface is hard to erode by wind. Hence, the erosion coefficient

indicates how soft the snow is which is an important addition to the

advection-dispersion model describing the snowdrift pattern around

abrupt terrain features such as cliff and solid fence. Interestingly,

although the erosion coefficient should intuitively remain positive, the

negative erosion coefficient seems to be effective in describing the

snowdrift observed around perforated objects such as trees and snow

fences. Therefore, Ohara (2017) called it the fetch-eddy effect using

the possible solution map of the LPD equations on the advection-

erosion coefficient plane. Though the particle distribution (bedform)

dynamics has often been considered a non-linear process

(e.g., Andreotti et al., 2012; Csah�ok et al., 2000), this liner erosion

term is flexible enough to describe practically the snowdrift shape.

The linearity of the governing LPD equation provides a significant

advantage in analysing snow distributions using this framework. It is

obvious that snowdrift shape h x,tð Þ depends on the relative magni-

tudes of three particle motion parameters (D, φ,ε ) while the average

magnitude determines the evolution speed (e.g., snow storm dura-

tion). In other words, the time–space scale invariant relationships are

explicitly built-in. Moreover, even an analytical solution can be

obtained with constant model parameters under the following initial

and boundary conditions:

h 0,tð Þ¼ ho; t≥0 ð9Þ

h x,tð Þ≠∞; x!∞,t≥0 ð10Þ

h x,0ð Þ¼0; x≥0 ð11Þ

TABLE 1 Model parameters and
performance root mean square
difference (RMSD) for the SMOOTH
model application shown in Figure 7

a b c f RMSD (m) Lapse time (hour)

Surface �0.009 0.0008 0 0 0.217 549

rflex1 �0.012 0.0104 0.0002 �0.0007 0.057 57

rflex2 �0.0055 0.0029 �0.00021 �0.0006 0.14 112

rflex3 �0.0015 0.0059 �0.0003 �0.0009 0.093 83

rfex4 �0.0005 0.0014 �0.00004 �0.0003 0.061 321
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where ho is a delta function which is the height of the snow fence at

x = 0. Note that h is the snow surface elevation that h x,tð Þ¼
d x,tð Þþ z xð Þ where d(x,t) is snow depth and z(x) is surface elevation.

The corresponding exact solution of the LPD equation (Equation 6)

obtained by Ohara (2017) can be written as,

h x,tð Þ¼ ho
2
exp

φx
2D

� �
� exp x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2

4D2
þ ε

D

s0@ 1A24
�erfc

ffiffiffiffiffiffiffi
1
4D

r
xffiffi
t

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2

4D
þε

s
�

ffiffi
t

p
0@ 1A

þexp �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2

4D2
þ ε

D

s0@ 1A
�erfc

ffiffiffiffiffiffiffi
1
4D

r
xffiffi
t

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2

4D
þε

s
�

ffiffi
t

p
0@ 1A35

ð12Þ

where

erfc xð Þ¼1�erf xð Þ:

This analytical solution of the one-dimensional LPE is convenient

for testing the numerical algorithm introduced as well as analysing the

snow surface diffusion, advection, and fetch/eddy effects in the

downwind areas of various snow fences.

2.3 | Numerical algorithm

An appropriate two-dimensional numerical algorithm is required to

simulate the spatial snowdrift patterns on highly irregular topography.

A numerical algorithm of the advection-dispersion type equation

unavoidably suffers from the convective instability for the high Péclet

number cases. Numerical diffusivity (e.g., through up-winding) is typi-

cally introduced to overcome convective instability, but that is unde-

sirable for snowdrift modelling because snowdrift was shown to be

controlled by the relative magnitude of three effects: diffusion, advec-

tion, and fetch/eddy, as in the solution types mapped by Ohara (2017).

To minimize numerical diffusivity, we adopted the flux limiter method

(e.g., Hirsch, 2007) in this study.

The volume-based LPD equation for a two-dimensional spatial

field can be written as,

∂h
∂t

¼Dx
∂2h
∂x2

�φx
∂h
∂x

�εxhþDy
∂2h
∂y2

�φy
∂h
∂y

� εyhþ f
ρp

ð13Þ

where the subscripts denote spatial direction (x or y) and f is the snow

mass change due to snow precipitation and snow surface sublimation

[M/L2/T]. Note that the relative snow surface elevation can be

decomposed as h x,y,tð Þ¼ d x,y,tð Þþ z x,yð Þ where d is snow depth and

z is ground surface elevation. Equation (11) can be discretized with a

mixed finite difference-volume method as,

hnþ1
i,j ¼ hni,jþDx

Δt
Δxð Þ2

hniþ1,j�2hni,jþhni�1,j

� �
�Δt
Δx

J�iþ1
2,j
� J�i�1

2,j

� �
�Δtεxhni,j

þDy
Δt
Δyð Þ2

hni,jþ1�2hni,jþhni,j�1

� �
�Δt
Δy

J�i,jþ1
2
� J�i,j�1

2

� �
�Δtεyhni,j

þΔt
ρw
ρp

p

ð14Þ

where superscript (n) denotes time step, subscript (i, j) denotes spatial

grid number, p is snow precipitation (m/s), ρw is the density of water

(1000 kg/m3), Δt is time increment,Δx and Δy are spatial resolutions,

and J� is snow particle flux due to advection. The snow particle flux of

the advection terms in Equation (11) between computational cells

may be evaluated by,

J�iþ1=2,j ¼
φx ̃h

W
iþ1=2,j;φx ≥0

φx ̃h
E
iþ1=2,j;φx <0

8<:
J�i,jþ1=2 ¼

φy ̃h
S
i,jþ1=2;φy ≥0

φy ̃h
N
i,jþ1=2;φy <0

8<:
ð15Þ

where eh is the modified surface elevation with the flux limiter Φ,

and W, E, S, and N refer to the west, east, south, and north sides at the

computational cell (i, j), respectively. The flux limiter can prevent spurious

oscillations in the high order spatial discretization scheme due to sharp

snow surface elevation discontinuities around a snow fence or a cliff.

Based on the Monotonic Upstream-Centered Scheme for Conservation

Laws (MUSCL) scheme (van Leer, 1979), the interface values between

computational cells can be expressed as a linear extrapolation of the

average values at the two upwind cells. They can be computed as

̃hWiþ1=2,j ¼ hi,jþ1
2
Φþ

i�1
2,j

hi,j�hi�1,j

� �
,

̃hEiþ1=2,j ¼ hiþ1,j�1
2
Φ�

iþ3
2,j

hiþ2,j�hiþ1,j

� �
,

̃hSi,jþ1=2 ¼ hi,jþ1
2
Φþ

i,j�1
2
hi,j�hi,j�1

� �
,

̃hNi,jþ1=2 ¼ hi,jþ1�1
2
Φ�

i,jþ3
2
hi,jþ2�hi,jþ1

� �
,

ð16Þ

and

Φþ
i�1=2 ¼Φ rþi�1=2

� �
, Φ�

iþ1=2 ¼Φ r�iþ1=2

� �
: ð17Þ

The positive sign in the superscript means effective when the

wave velocity φ is positive while the negative superscript means

effective when the wave velocity φ is negative. The limiters are

required to eliminate numerical oscillations. The ratio between succes-

sive gradients, r, can be estimated by

rþ
i�1

2,j
¼ hiþ1,j�hi,j
hi,j�hi�1,j

, r�iþ3
2,j
¼ hi,j�hiþ1,j

hiþ1,j�hiþ2,j
,

rþ
i,j�1

2
¼ hi,jþ1�hi,j
hi,j�hi,j�1

, r�i,jþ3
2
¼ hi,j�hi,jþ1

hi,jþ1�hi,jþ2
:

ð18Þ
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Through comparisons among the flux limiters, Van Leer's (Van

Leer, 1974), min-mod (Roe, 1986), superbee (Roe & Baines, 1982),

and MUSCL limiter (Van Leer, 1979), the MUSCL limiter provided the

best performance for bell-shaped solutions. The MUSCL limiter (Van

Leer, 1979), which can be expressed as,

Φ rð Þ¼max 0,min 2r, rþ1ð Þ=2,2ð Þ½ �, ð19Þ

was selected for use in this study. This numerical algorithm was

implemented in the SMOOTH model platform (Ohara, 2014).

2.4 | Validation of the numerical algorithm in 1D
snow profiles

The numerical solutions were verified by the one-dimensional analytical

(exact) solution, presented in Equation (11), around a snow fence, to

check how well anticipated numerical diffusion is suppressed. Figure 1

shows the two demonstrative numerical simulation results and the

corresponding analytical (exact) solutions (Equation (11)) for both positive

(upper panel) and negative (lower panel) erosion coefficient cases. The

Dirichlet boundary condition (DBC) (at the upstream end with the snow

fence unit height h[0] = 1.0 m) was used for both model verification

cases. Note that the positive erosion coefficient represents the snowdrift

around a solid fence while the negative one corresponds to the perfo-

rated snow fence case (Ohara, 2017). The effect of perforated fence

must be eliminated when snow surface reaches the physical fence top.

The accuracy of the numerical algorithm was measured by the

root-mean-square deviation (RMSD) and the Nash–Sutcliffe model

efficiency (NSE), displayed in Figure 1. The differences were very

small for both cases, although a slightly larger error was found in the

negative erosion coefficient case (lower). It can be concluded that the

numerical algorithm presented above effectively limits the anticipated

convective instability without introducing numerical diffusivity.

3 | APPLICATIONS

Realistic snow particle motion parameters for the SMOOTH model are

discussed in this section using the state-of-art observed snow distribu-

tions in several representative terrains in Southeast Wyoming and

Northern Alaska, where wind dominates snow distribution. Ideally,

these physical model parameters should be estimated from wind and

snow drag characteristics. However, since the dynamic snow motion

information is hardly accessible in reality, the model is used as a tool in

this study to gain insight into the physical processes through the exten-

sive calibration to the observed snow distribution data assuming uni-

form and stationary model parameters for each application.

3.1 | One-dimensional simulation for snow fences

Since snow fences are an effective tool to alter snowdrift patterns for

easier road maintenance and local water resource enhancement,

snowdrift distributions have been studied in the literature

(e.g. Hinkel & Hurd Jr, 2006; Stuefer & Kane, 2016; Sturm &

Stuefer, 2013; Tabler, 1986; Wangstrom, 1989). For example, Tabler

(e.g., Tabler, 2003), over decades, documented numerous snowdrift

patterns around various snow fence types mainly in Wyoming and

synthesized all available snowdrift profiles along the prevailing wind

stream line. The snowdrift pattern around perforated snow fences is

an excellent first step toward understanding the effects of irregular

topography and vegetation on snow distribution. The LPD equation

successfully described the snowdrift patterns downstream from vari-

ous snow fences with the DBC at the upstream end (Ohara, 2017).

However, the DBC is inappropriate for snowdrift simulation with a

snow fence in the middle of the computational domain. The snowdrift

can be described by an equivalent elevation lift of the terrain, called

“equivalent solid fence” in this study. Snowdrift distribution associ-

ated with this equivalent solid fence may be modified by an eddy

effect brought about by the negative erosion coefficient for the perfo-

rated fence in the middle of the domain. This treatment of the inner

“boundary” condition is required for variously oriented snow fences

on irregular two-dimensional terrain. The equivalent height of the per-

forated snow fence may not be determined by physical properties but

by model calibration in this study. In this section, the new equivalent

solid snow fence, which results in the same snowdrift pattern as the

perforated snow fence, is discussed.

In addition to the three particle motion parameters, the snowdrift

around a snow fence can be described by two additional parameters: the

height of the equivalent solid fence and the length of the influenced area.

Figure 2 illustrates the proposed equivalent snow fence configuration

F IGURE 1 Verification of the numerical algorithm by the
analytical (exact) solution (Equation (11)) of the LPD equation for
typical solid (upper) and perforated (lower) snow fence cases
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with modification in the fetch-eddy effect (erosion coefficient). The dis-

persion and the advection coefficients may be assumed to be less sensi-

tive to the snow fence influence while the erosion coefficient may be

considerably modified by the snow fence. In fact, Ohara (2017) showed

that the negative linear erosion coefficient can result in the single peaked

snowdrift around a perforated snow fence due to turbulence created by

the fence. In this study, therefore, the negative erosion coefficient was

applied only downstream of the fence while it was set at zero for the rest

of the area to limit unnecessary snowdrift elsewhere. To determine the

area influenced by the fence, the advection coefficient b, which repre-

sents the wind direction, was used in the numerical model. Thus, the

snowdrift around the snow fence in the middle of the computational

domain was described by three parameters: the height of the equivalent

solid fence, the length of the influenced area, and the erosion coefficient

c in the influenced area.

Figure 3 illustrates the comparison between the SMOOTH model

output and the synthesized, field-observed snowdrift profiles

(Tabler, 2003) both upstream and downstream of solid and perforated

snow fences. Note that porosity (open area between fence slats), which

is expressed as a proportion of the total fence area, is a design parame-

ter of a snow fence. The snow-free initial condition (h = 0) is adopted

while the flat Neumann Boundary Condition (NBC) (dh/dx = 0) are

given for both ends of the computational domain. Since the spatial and

vertical scale was normalized for the snow fence height, snow fence

height was set to 1 in this figure. The corresponding equivalent snow

fence heights for the perforated snow fences as well as the other

parameters a, b, and c were determined by automated trial-and-error

iterations (grid search). The model parameters are shown on the

corresponding panels of Figure 3, and the length of the area influenced

by the fence is 50 m. The snowdrift areas in the upstream as well as

the downstream sections show very good agreement. Therefore, model

configuration with a snow fence in the middle domain was found to be

effective in one-dimensional cases.

3.2 | Two-dimensional simulations with and
without snow fences

Here we applied the SMOOTH model to snow distributions on actual

irregular terrain in the Laramie Range (Figure 4) using LiDAR-observed

snow depth data from April 2016 available through previous work

(e.g., He et al., 2019). Further, the airborne LiDAR system produced

scans with and without snow cover during 2014 and 2016, respec-

tively, and differentiating them yielded the snow depth map at 0.5 m

spatial resolution with ±1 cm accuracy. Four rectangular model

domains within the region were selected for the model demonstration.

Figure 5 illustrates the model calibration and validation results for

snow fenced areas along Interstate 80 (I-80). The model parameters

are on the upper right corner and the error measure (RMSD) are on

the left panels [(a) and (e)] of Figure 5. NSE was omitted for the natu-

ral terrain applications because the no-snow areas often mislead the

NSE model performance evaluation. The snow-free initial condition

(h = z) and the flat NBC (dh/dx = 0) for all ends of the computational

domain are used. The standard Wyoming-type perforated fences in

the Malody and Honey Tree areas are approximately 3–4 m tall and

to the west of I-80. The equivalent snow fence height of 1.3 m which

is slightly higher value than the 1D runs was adopted because of

F IGURE 2 Schematic of the
proposed model configuration using
an equivalent solid snow fence and its
area of influence

F IGURE 3 Model-simulated snowdrift profiles (area graph) and
the corresponding observed synthesized snow distributions (dots)
(Tabler, 2003). Wind direction is from left to right
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irregularity and roughness effect of the terrain. Although westerly

wind is expected in this area, the model was calibrated by the grid-

search method without using wind information. Nonetheless, the

advection in the southerly direction (by) was determined to be zero

while the observed prevailing wind direction (wind rose in Figure 5)

was westerly during the snow accumulation period of the 2016 sea-

son (December 2015–April 2016). Hence, it is reasonable to estimate

the advection coefficient from the wind direction record. Panel

(d) shows the 50 m-long area of influence downstream from the

fence. Even though accuracy in the validation run in the Honey Tree

site (RMSD = 0.76 m) dropped compared to the calibration run in the

Malody site (RMSD = 0.41 m), the SMOOTH model reproduced the

snowdrift patterns around the snow fences. Differences were found

mainly around I-80 where snow ploughing and snowmelt enhance-

ment by deicing measures (salt and sand) may have had an effect.

Figure 6 compares the SMOOTH model outputs to the LiDAR-

observed snow depth map at the other two sites; Dale Creek for the

open riparian zone, and Blair Wallis for the partial forest cover. The

Dale Creek model was calibrated independently for all seven parame-

ters (ax, bx, cx, f, ay, by, and cy) by the grid-search method to verify

SMOOTH model description accuracy of snowdrift patterns in a

hydrologically important riparian zone (Figure 6). The parameters for

the Dale Creek and Blair Wallis sites were slightly different from the

snow fence sites; snow patterns in the open areas can be reproduced

well without the eddy effect (zero erosion coefficients cx and cy). Con-

sidering that running SMOOTH requires very little computational

power (only a few minutes with a standard desktop PC for each run),

this model is a robust cost-effective tool to quantify the highly hetero-

geneous snowmelt water input to the riparian hydrological system.

F IGURE 4 Model domains for SMOOTH model performance with
and without snow fences in Southeast Wyoming. The Malody and
honey tree areas were utilized for simulations with snow fences. Dale
Creek (relatively open with some riparian vegetation) and Blair Wallis
(partially forested open area) were selected for simulations without
snow fences

F IGURE 5 LiDAR-observed and
model-simulated snowdrifts in
Malody (calibration) and honey tree
(validation) snow fence areas along
interstate 80, Southeast Wyoming.
The wind rose used the data from the
closest road weather information
system (RWIS) site (KVDW)
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This may be particularly significant because LiDAR data is available for

only a few selected areas during calm periods.

The same model configuration was applied to the Blair Wallis site

as shown in panels (d) through (f) of Figure 6. Despite the validation

run, the RMSD value for the Blair Wallis site (RMSD = 0.19) was

smaller than the calibration run for the Dale Creek site (RMSD = 0.46)

because the Dale Creek area had shallower average snow cover due

to smoother terrain despite the presence of sparse forest cover. How-

ever, the snowdrift associated with the patchy forested area at Blair

Wallis may not be reproduced very well, although the snow patterns

due to the topography were well expressed by the model. Because

vegetation growth is mainly limited by water supply from snowmelt in

this region, quantification of turbulence generated by the vegetation

will be important to assess synergy between vegetation and snow-

drift. Clearly, snow redistribution is not insignificant in windy regions

like Wyoming.

3.3 | Snowdrift profile around the lakeshore cliff of
a frozen Thermokarst Lake in Alaska

The SMOOTH model was applied to the snowdrift profile imaged with

GPR (Malå ProEx, 250Mhz, GuidelineGeo, Sundbyberg, Sweden)

around a natural lakeshore cliff of a thermokarst lake at Inigok, North

Slope, Alaska (70.00134�N, 153.06758�W). The snowdrifts that

develop on steep slopes surrounding thermokarst lakes in these

regions are a critically important component of the water budget, and

provide water storage on the land surface late into the melt season,

yet they are poorly quantified (Sturm & Liston, 2003). Figure 7 shows

this model application for a snowdrift induced by steep terrain in the

absence of surface vegetation with the NBC. The GPR data were col-

lected on 22 April 2016 near maximum snowpack conditions and the

data were processed in ReflexW (Sandmeier Software, Karlsruhe,

Germany) using dewow and a linear gain with topographic correction

adapted from the ArcticDEM. The GPR can image the stratigraphy in

the snowpack due to the different relative dielectric permittivity of

the layers (Davis & Annan, 1989; Neal, 2004). The reflections that

occur due to density differences caused by snow metamorphism and

freeze–thaw cycles may be regarded as a historical snow surface

(e.g., Annan et al., 1994). Therefore, the snowdrift model was sequen-

tially calibrated from the bottom reflection line (rflex4) to the

shallower reflection line (rflex1) toward the snow surface by the grid-

search method. The flat NBC and the snow-free initial condition were

applied. Referring to the model parameters determined in Table 1, the

parameters are different between snow accumulation periods. This

implies the snow particle motion parameters varied during this single

snow drifting season. Especially, the erosion coefficient c started with

negative during early season while it approached to zero as the

F IGURE 6 LiDAR-observed and
model-simulated snowdrifts in Dale
Creek (calibration) and Blair Wallis
(validation) in the open and partially
forested areas without snow fences
at Southeast Wyoming
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surface was smoothened by the snowpack development. Given the

approximate resolution of this GPR instrument is �0.2 m, the model

was able to reproduce all reflections within measurement uncertainty

(Table 1). However, the model for lower layers (rflex1 � 4) required a

negative source parameter (f < 0) that indicates uniform snow depth

reduction during the period to fit the model simulations to the obser-

vations. This source term was originally introduced for snow depth

thickening due to new incoming snowfall during the simulation period.

The model application indicates that uniform snow compaction and

abrasion prevailed over snow accumulation in this cliff section, and

most of the snow was likely formed by drifted snow from upwind.

Additionally, snow surface hardening effect between the sequential

runs was described by erosion limitation of the previous snow surface.

This application suggests that some missing model components such

as snow densification might improve the predictability of snowdrift

thickness; snow metamorphism and snowdrift event history clearly

influence model performance.

3.4 | Spatial snow distribution in the Arctic

Snowdrifts affect the thermal regime of permafrost because a rela-

tively thick snowpack can effectively insulate the permafrost from

cold winter air temperatures of the Arctic (Stieglitz et al., 2003) and

result in warmer subsurface temperatures. Conversely, snow that per-

sists well into the summer reduces the period of soil warming and

diminishes heat flow to depth. This efficient numerical algorithm for

the LPD equation could be an ideal tool for two-dimensional snow-

drift modelling over complex terrains with sparse or negligible vegeta-

tion such as the Arctic Coastal Plain in northern Alaska. A

demonstrative preliminary model output around a drained

thermokarst lake basin referred to as Central Marsh, part of the Cir-

cumpolar Active Layer Monitoring (CALM) Network (N71.30259� N,

156.60075� W, 2.93 km2) east of Utqiaġvik, Alaska, is shown in

Figure 8. The snow-free terrain model was prepared using UAV pho-

togrammetry techniques on 04 August 2019 at 0.25 m spatial resolu-

tion. The snow depth distribution was measured on 15 April 2019

using the same UAV photogrammetry technique, as shown in

Figure 8 (left panel marked as “Obs.”) (Nichols, 2020). All images

were collected with a Phantom 4 UAV (P4RTK) and post-processed/

georeferenced to NAD83 Zone 4 North in Ellipsoid heights using a

propeller aeropoint and Pix4D (version 4.3.33 for April survey, 4.4.12

for August). A spatial resolution of 25 cm was selected during post-

processing, as this achieved a good balance of resolution and file size.

DEM creation was done in Quick Terrain Modeller (QTM) with the

densified point cloud from Pix4D. The vertical accuracy of the

dataset is a product of the structure-for-motion (SfM) software. Ver-

tical accuracy for the April survey was 18 cm and 10 cm for the

August survey.

The simulated and UAV-observed snow accumulation pattern is

consistent with the development of seasonal snow along drained lake

basin, lake, river and coastal shorelines in this region (Benson &

Sturm, 1993; König & Sturm, 1998; Sturm & Liston, 2003) as well as

ice wedge troughs and pits (Liljedahl et al. 2016). The optimum model

parameter combination was determined by more than 13 000 itera-

tive simulations through a grid search using a desktop computer (Intel

Core i7-4790K, Quad-Core 4.0 GHz); each season-long computation

takes only a few minutes. After the calibration exercise, the model

reproduced the snowdrift pattern at RMSD of 0.115 m. The advection

coefficients (bx = �0.001 and by = 0.000) indicate an easterly wind,

which is the prevailing winter wind direction. The erosion coefficients

in both directions were calibrated as zero, which implies that the

advection-dispersion model is sufficient to model the snowdrift in

snow-fence or vegetation-free environments. This SMOOTH model

can interpolate and possibly extrapolate the observed seasonal snow

distributions over any windy open areas including the Arctic, where it

is difficult to operate the UAV or even ground-based systems during

most of the winter season. Additionally, the modelled snow depth

(right panel in Figure 8) can resolve the detailed snowdrift structure

affected by polygonal patterned ground, widespread ice-wedge poly-

gons in the Arctic tundra.

4 | DISCUSSION

The field-observed snow distribution patterns were analysed by the

improved SMOOTH model, a model that can partition the various

effects such as: diffusion, advection, and fetch/eddy effects, over the

winter season. For this purpose, the numerical scheme in the

SMOOTH model must be free from numerical viscosity (artificial

F IGURE 7 Snowdrift stratigraphy
imaged with GPR (solid lines) and the
model-simulated snow depths
(dashed lines) along the line
perpendicular to the lakeshore cliff in
Inigok, north slope, Alaska
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diffusion). The analytical (exact) solutions for the downstream sections

of snow fences with the DBCs were very useful for testing the numer-

ical code. It is well known that the over-diffused numerical scheme

(e.g., upwind finite difference [FD] scheme) is an effective aid against

convective instability. As such, it demonstrated the utility of the

MUSCL numerical scheme as a flux limiter method, which hybridizes

the upwind FD and the higher order discretization. The MUSCL

scheme was successfully implemented in the SMOOTH model

because it was able to reproduce the exact solutions of the LPD equa-

tion under any realistic parameter combinations as demonstrated in

Figure 1. Hence, the calibrated 2D models for the observed high-

quality snow distribution data in Wyoming and Alaska can explain the

physical processes acted during the accumulation period.

Linearity of the governing LPD equation provides a substantial

advantage in interpretation of the simulation results and the deter-

mined particle motion parameters (diffusion, advection, and erosion

coefficients). According to Ohara (2017), the snowdrift profile shape

is mainly determined by the relative magnitude of the particle motion

parameters while the average magnitude controls the evolution speed,

assuming that most snowdrifts in natural terrain are considered in a

transient state. For example, doubling all particle motion parameters

results in a two-times faster snowdrift development without changing

its overall shape. The demonstrative model applications presented

here used a typical, estimated season total snowstorm duration in the

regions for the model calibrations. Therefore, if the winter period

weather condition is available, it is possible to adjust the snowdrifting

period or snowstorm duration by scaling the parameters while the rel-

ative magnitude of the parameters remain valid. Figure 9 shows the

fractional magnitudes of the particle motion parameters for various

applications presented in this study. The magnitudes were evaluated

using the Pythagorean theorem for two-dimensional cases. This

analysis illustrates similarity among snowdrift patterns around the

solid fence (d), Dale Cr. (f), and Inigok (g) with significant contribution

of advection effect due to the abrupt change in surface elevation. On

the other hand, the perforated snow fences (a), (b), and (c) clearly

require the fetch/eddy effect with minimum advection effect. The

two-dimensional snow fence case (e) is somewhere between the

abrupt elevation change and the perforated snow fence cases,

suggesting that both effects of the natural terrain and the snow fence

affect the snow distribution even with the fence influence area con-

sideration. Overall, the diffusion effect dominates the snow redistribu-

tion in the open terrains over the other two effects. Especially, the

snow distribution in the relatively mild terrain of the CALM grid was

almost entirely driven by the diffusion effect. This result suggests that

F IGURE 8 Measured and model-
simulated snow distributions in
CALM, east of Utqiagvik, Alaska. The
upper panel shows the elevation and
snow surface profiles along the line
A-A' in the lower right panel. The
prevailing wind is typically from the
east (right) in this area

F IGURE 9 Fractional contributions of the particle motion
parameters (a = diffusion, b = advection, and c = erosion coefficient)
to the snowdrifts in the applications in Wyoming and Alaska. (a)–
(d) one-dimensional synthesized snow profiles for various snow fence
types; (e) two-dimensional snow distribution around snow fence on
the natural terrain; (f) snow distribution on the open terrain including
incised channel gully; (g) snow surface profile across the lakeshore
cliff in Inigok; and (h) snow distribution on the open arctic terrain
in CALM
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incorporation of diffusion effect may suffice in watershed or regional

scale snow modelling for snow redistribution unless snowdrift pat-

terns around perforated objects or sharp terrain transition are of

interest. At least, the advection dispersion model should be adequate

for most natural, relatively smooth terrains without significant surface

roughness, forest, or perforated snow fences. Consequently, the ero-

sion coefficient is an optional freedom to the model configuration

unless surface roughness or steep terrain affects snowdrift patterns.

Despite the highly dynamic atmospheric system affecting the

snow redistribution (Aksamit & Pomeroy, 2016), the case studies pres-

ented here showed solid performance of the model with the spatially

uniform time-averaged model parameters after the calibration to the

ground truth snow distributions. This indicates that three macroscopic

snow particle motion effects in two directions (total six parameters)

were capable to describe the time-integrated wind driven snow redis-

tribution processes represented by the observable snow distribution

in these areas. The two main parameters, snow surface diffusion and

advection coefficient, could be estimated from wind data as they were

values consistent with the prevailing wind data. Generally, the advec-

tion coefficient agreed well with the prevailing mean wind direction,

while the diffusion coefficient along the prevailing wind direction was

larger than the lateral direction. Although the snow particle motion

parameters clearly depend on the prevailing wind field, spatially uni-

form time-averaged values can successfully reproduce snow distribu-

tion patterns affected by topography.

The SMOOTH model is a decoupled or stand-alone snow redistri-

bution model from the wind or blowing snow modelling unlike other

integrated physically-based models (Lehning et al., 2008; Liston and

Sturm, 1998; Vionnet et al., 2014; Marsh et al., 2020). Therefore, the

required input data is simply a digital elevation model, which may

include abrupt terrain and snow fences. This simple decoupled model

offers quick solutions within a few seconds to minutes by a standard

PC even for the CALM case (1680 � 743, 1 m resolution). Therefore,

many iterative simulations for searching the best parameter combina-

tion are possible if snow depth data are available; this data can be eas-

ily integrated in the distributed snowmelt model. Additionally, the

time-averaged particle motion parameters determined by model cali-

bration are a useful checkpoint at the interface of the microclimate

and snow dynamics because there is considerable uncertainty in wind

and blowing snow modelling. Finally, since the original form of the

model formulation is very general (e.g., time–space dependent model

parameters), the SMOOTH model can be easily expanded for a fully

dynamic simulation of snowdrift when a better model parameter esti-

mation method associated with dynamic wind field becomes available.

Snow trapping by vegetation likely enhances spring season water

input which is essential for plant growth (Sturm et al., 2001). There-

fore, an understanding of this process is crucial for synergistic feed-

back between snowpack and ecosystems. However, to effectively

model snowdrifts around vegetation or any irregular surface rough-

ness, additional study is needed to determine the snow particle

motion parameters (dispersion, advection, and erosion coefficients)

and is beyond this proposed modelling framework. Also, through the

snowdrift simulation for the steep cliff in Inigok, AK (Figure 7 and

Table 1), uniform snow depth decrease (f < 0) was unavoidable to

match the model to the measured internal reflection lines of the

snowpack. This suggested a missing model component, such as snow

densification, in the current version. Nevertheless, the model applica-

tions suggest the possibility of snowdrift simulation around more

complex and irregular perforated objects, such as vegetation and pat-

chy forest on the irregular terrain by the Eulerian approach.

5 | CONCLUSIONS

The two-dimensional numerical SMOOTH model, based on the LPD

equation, was shown to be applicable and practical for snowdrift predic-

tion in windy open terrains. Model calibration and validation exercises

demonstrated steadiness in snowdrift simulations with and without the

perforated snow fences in the Laramie Range, Wyoming. It can therefore

be concluded that this model is a valid, cost-effective tool for snowdrift

prediction associated with the forecasted wind fields based on the

physically-based predictive equation. Moreover, these model

implementations indicate the possibility of estimating snow particle

motion parameters from resultant snow distribution. The calibrated snow

particle motion parameters and the computational conditions provide

insights for understanding the snow redistribution process.

Overall, the remaining known challenges to the physically-based

Eulerian snowdrift prediction may be summarized as follows: (1) the

particle motion parameters may be dynamic (time dependent) and

heterogeneous (spatially distributed) in nature; (2) better snowpack

dynamics modelling, such as snow densification and abrasion, affect-

ing the model predictions should be incorporated; (3) appropriateness

of the fetch/eddy effect parameterization is still largely unknown

despite the successful demonstrations presented here.

Efforts applied to understand physically-based modelling is of

fundamental importance in elucidating snowpack dynamics. For exam-

ple, such a model could estimate associated parameters from field-

observed particle distributions, which would have physical implica-

tions. This developed model can incorporate any new knowledge

explicitly or be incorporated into the greater modelling framework

directly. The applicability of the SMOOTH model demonstrated here

is encouraging and useful for understanding the hydrological cycles in

wind swept open areas such as the high plains of the Rocky Moun-

tains and the tundra in Arctic regions.
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