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Abstract

Learning in any domain depends on how the data for learning are represented. In the

domain of language acquisition, children’s representations of the speech they hear determine

what generalizations they can draw about their target grammar. But these input

representations change over development as a function of children’s developing linguistic

knowledge, and may be incomplete or inaccurate when children lack the knowledge to parse

their input veridically. How does learning succeed in the face of potentially misleading data?

We address this issue using the case study of “non-basic” clauses in verb learning. A

young infant hearing What did Amy fix? might not recognize that what stands in for the

direct object of fix, and might think that fix is occurring without a direct object. We follow a

previous proposal that children might filter non-basic clauses out of the data for learning

verb argument structure, but offer a new approach. Instead of assuming that children

identify the data to filter in advance, we demonstrate computationally that it is possible for

learners to infer a filter on their input without knowing which clauses are non-basic. We

instantiate a learner that considers the possibility that it mis-parses some of the sentences it

hears, and learns to filter out those parsing errors in order to correctly infer transitivity for

the majority of 50 frequent verbs in child-directed speech. Our learner offers a novel solution

to the problem of learning from immature input representations: learners may be able to

avoid drawing faulty inferences from misleading data by identifying a filter on their input,

without knowing in advance what needs to be filtered.

Keywords: Language acquisition, verb learning, argument structure, bootstrapping,

computational modeling, Bayesian inference
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1 Introduction

Learning involves incrementally building on prior knowledge. This is true in language

acquisition just as in other forms of learning: a child who can’t count is not able to learn

arithmetic, and a child who can’t identify the category ‘verb’ is not able to learn whether her

language has verb raising. Linguistic theories since Chomsky (1965) have typically abstracted

away from time and resource constraints, idealizing language acquisition as an instantaneous

process that maps an entire corpus of input onto a grammar (e.g., Wexler & Culicover, 1980).

Many modern approaches make similar idealizations in asking whether the data as a whole

support grammar selection, either accessed all at once or one data point at a time (e.g.,

Abend, Kwiatkowski, Smith, Goldwater, & Steedman, 2017; Clark & Lappin, 2012; Fodor &

Sakas, 2005; Legate & Yang, 2007; Maurits, Perfors, & Navarro, 2009; Mitchener & Becker,

2010; Pearl & Lidz, 2009; Pearl & Sprouse, 2013, 2019; Perfors, Tenenbaum, & Wonnacott,

2010; Perfors, Tenenbaum, & Regier, 2006, 2011; Sakas & Fodor, 2012, 2001; Yang, 2002).

But while enabling insights into language learnability at a global level, these approaches have

abstracted away from an important dimension of the learning problem: how learners perceive

and use their input, and how this changes as they learn their language.

This paper investigates a puzzle that arises from incorporating development into a

model of grammar acquisition. Children not only take in their input gradually over time, but

the nature of the data that they take in also changes during this process. The way that

children perceive their input depends on their current knowledge of their language, which

they use to assign structure and meaning to the speech that they hear. These input

representations change as children’s linguistic knowledge develops, and determine what

further inferences children can draw about their target grammar. Learning cannot wait until

children can veridically parse all of their input, or there would be nothing further to learn;

instead, children must learn from the immature parses that they can assign to their input at

each stage of development (Fodor, 1998; Valian, 1990). How do learners avoid being misled if

their input representations are incomplete or inaccurate?
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Our case study is the role of transitivity in verb learning. At very early stages in

grammatical development, learners use verbs’ distributions in transitive and intransitive

clauses to draw inferences about verb meanings and argument structure (Fisher, Gertner,

Scott, & Yuan, 2018; Fisher, Jin, & Scott, 2019; Lidz, White, & Baier, 2017). But accurately

perceiving those distributions is not trivial, as transitive and intransitive clauses can be

realized in variable ways within a language and cross-linguistically. The arguments in “basic”

English clause types like (1) and (2) might be easier to recognize than those in “non-basic”

clause types that do not follow the language’s canonical word order, like (3):

(1) John ate a sandwich. Amy fixed her bicycle.

(2) John ate. (*Amy fixed.)

(3) What did John eat? What did Amy fix?

If a child knows that English has canonical subject-verb-object word order, she could

recognize that the sentences in (1) contain both subjects and objects, and the sentences in

(2) contain only subjects. These data could lead her to conclude that fix is obligatorily

transitive whereas eat can alternate between transitive and intransitive uses, which has

implications for what those verbs might mean. But transitivity might be harder to recognize

in the wh-object questions in (3), in which a fronted argument (what) stands in a non-local

dependency with the verb, and acts as the verb’s object even though it does not surface in

canonical direct object position. These data may be misleading for a child who has not yet

learned how to identify wh-dependencies in her language, and does not know that what is a

wh-word. She might note the absence of a direct object after the verb and perceive the

sentences in (3) as intransitive, mistakenly concluding that fix can alternate just like eat.

One solution to this problem proposes that learners somehow “filter out” non-basic

clauses like wh-object questions early in language acquisition. Under this approach, young

children avoid learning about basic argument structure, clause structure, and verb meanings

from sentences that do not follow the canonical word order of their language, because these
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sentences obscure the systematic relations between syntax and semantics that are useful for

learning (Gleitman, 1990; Lidz & Gleitman, 2004a, 2004b; Pinker, 1984, 1989). This

approach has implicitly assumed that learners know which sentences to filter out, but the

mechanism by which they identify these sentences has not yet been established. Furthermore,

learning to identify argument displacement in non-basic clauses would seem to depend on

knowing some core argument structure properties of the language: learning that what is the

object of fix in a wh-question like (3) arguably depends on knowing that fix takes a direct

object (Gagliardi, Mease, & Lidz, 2016; Perkins & Lidz, 2020, 2021). Thus, an apparent

paradox arises. Learning basic verb transitivity, a first step in the acquisition of argument

structure, may require filtering out data from non-basic clauses. But identifying which

clauses are non-basic may require already knowing which verbs are transitive. Empirical

evidence suggests that learners face this paradox in their second year of life. Findings from

behavioral studies show that verb transitivity knowledge develops in tandem with infants’

ability to identify common non-basic clause types like wh-dependencies, before they turn two

years old (Gagliardi et al., 2016; Lidz et al., 2017; Perkins & Lidz, 2020, 2021; Perkins, 2019;

Seidl, Hollich, & Jusczyk, 2003).

Here, we resolve this apparent paradox computationally. We present a Bayesian model

that learns to filter its input to infer verb transitivity, without knowing what types of

sentences it should filter out. Our model does so under the assumption that it occasionally

parses sentences erroneously, and it learns how much of its parses to trust and how much it

should treat as noise for the purposes of verb learning. This allows the learner to avoid

drawing faulty inferences from non-basic clauses, without having to know which clauses are

non-basic. In simulations on child-directed speech, we show that our model learns

appropriate parameters for filtering its input in order to accurately categorize the majority of

frequent transitive, intransitive, and alternating action verbs. We thus provide a model for

the first steps of argument structure acquisition that have been attested in infancy,

demonstrating how those steps of learning could take place before non-basic clause



FILTERING INPUT FOR ARGUMENT STRUCTURE ACQUISITION 6

acquisition is complete. In doing so, we propose a new solution to the problem of learning

from input that a learner cannot parse veridically. It may be possible for learners to avoid

drawing faulty inferences from misleading data by identifying a filter on their input, without

knowing in advance what needs to be filtered.

2 Non-Basic Clauses in Verb Learning

Non-basic clauses are problematic for theories of learning that rely on systematic

relations between verbs’ syntactic properties and their meanings, e.g. semantic and syntactic

bootstrapping (Fisher et al., 2018, 2019; Gleitman, 1990; Grimshaw, 1981; Landau &

Gleitman, 1985; Lasnik, 1989; Pinker, 1984, 1989). Bootstrapping proposes that these

correspondence relations could drive learning in the following way: if learners are aware of

how the syntactic environments in which verbs distribute correspond to conceptual

categories of events, then learners can use evidence about one of these properties (syntactic

or conceptual) to draw inferences about the other.1

In semantic bootstrapping, a child who represents an event under a particular

conceptual structure might be able to use these correspondence relations to draw inferences

about the syntax of the clause describing that event (Grimshaw, 1981; Pinker, 1989, 1984).

For example, a child who perceives an event with an agent and a patient, and knows that

subjects of active transitive clauses tend to name agents and objects name patients, might

then infer which argument is the subject and which is the object in a clause describing that

event. Conversely, in syntactic bootstrapping, a child who represents a clause under a

particular syntactic structure might be able to use these correspondence relations in the

opposite direction to draw inferences about which event the clause describes (Fisher et al.,

2018, 2019; Gleitman, 1990; Landau & Gleitman, 1985; Lasnik, 1989). For example, a child

who hears an unknown verb in a clause that she represents as transitive might then infer
1Here we abstract away from the precise characterization of these correspondence relations (also known

as “linking principles”), a topic with a substantial literature (e.g., M. Baker, 1997; Dowty, 1991; Grimshaw,
1990; Jackendoff, 1972; Levin & Rappaport Hovav, 2005; Pearl & Sprouse, 2019; Williams, 2015).
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that this clause describes an event she perceives as having an agent and a patient, allowing

her to narrow down the range of events that the verb labels.

A large body of experimental literature finds that learners begin to use these

meaning-distribution correspondence relations for verb learning in their second year of life,

particularly those pertaining to transitivity. In preferential looking tasks, English-learning

infants as young as 17 months can use the canonical subject-verb-object word order of

English to identify that the individual named by the subject of a transitive clause is the

agent of an event, and the individual named by the object is the patient2 (Hirsh-Pasek &

Golinkoff, 1996; Gertner, Fisher, & Eisengart, 2006). By 19 months, infants reliably infer a

causal meaning for a novel verb in a transitive vs. an intransitive clause, and do so under the

right circumstances at 15 months as well (Arunachalam & Waxman, 2010; Arunachalam,

Escovar, Hansen, & Waxman, 2013; Jin & Fisher, 2014; Messenger, Yuan, & Fisher, 2015;

Naigles, 1990; Yuan & Fisher, 2009; Yuan, Fisher, & Snedeker, 2012). Children draw even

finer-grained inferences on the basis of hearing novel verbs participate in particular

transitive-intransitive alternations. How a verb distributes in intransitive clauses is related to

its meaning: intransitives whose subjects are agents (e.g. John baked) tend to describe

activities of those agents, whereas intransitives whose subjects are patients (e.g. The bread

rose) tend to describe changes undergone by those patients (Fillmore, 1968, 1970; Levin &

Rappaport Hovav, 2005; Williams, 2015). Another line of experimental work has found that

2-year-olds are sensitive to these distinctions (Bunger & Lidz, 2004, 2008; Naigles, 1996;

Scott & Fisher, 2009).

However, both bootstrapping theories acknowledge that the correspondence relations

between syntax and meaning only hold probabilistically, and may be obscured when they

interact with other grammatical properties of the language (Gleitman, 1990; Lidz &

Gleitman, 2004a, 2004b; Pinker, 1984, 1989). This raises a potential challenge to

bootstrapping as a feasible learning mechanism early in grammatical development. It is not
2We note that these data do not tell us whether infants at this age represent subjects and objects within a

hierarchical clause structure, or merely encode their linear order (Fisher, 1996).
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trivial to identify which sentences have undergone particular transformations, and learners

who do not yet know the surface signals for these transformations might mis-perceive the

structure of non-basic clause types in their input. If so, this will disrupt learners’ attempts

to put the syntactic environments in which verbs occur into correspondence with conceptual

categories of events they perceive in the world.3 This problem was first recognized in some of

the earliest bootstrapping work in Pinker (1984). Following Keenan (1976), Pinker notes

that “the semantic properties of subjecthood hold only in what [Keenan] calls ‘basic

sentences’: roughly, those that are simple, active, affirmative, declarative, pragmatically

neutral, and minimally presuppositional. In nonbasic sentences, these properties may not

hold ... Thus one must have the child not draw conclusions about grammatical relations

from nonbasic sentences.”

To appreciate the full extent of Pinker’s problem, let us consider the case of the

wh-object question in (3), repeated here as (4), as well as other non-basic clause types such

as relative clauses (5) and passives (6).

(4) What did Amy fix?

(5) I like the bicycle that Amy fixed.

(6) The bicycle was fixed (by Amy).

In each of these examples, a syntactic transformation has applied such that the

argument acting as the object of the verb no longer surfaces in canonical object position. If a

child is not aware of these transformations, she may be misled when she relates the linguistic

structure she (mis-)perceives in these clauses with her conceptual representations of events.

For example, a semantic bootstrapper who takes (6) to be a description of an event in which

she perceives Amy as an agent and the bicycle as a patient might construe “Amy” as the
3This problem is not unique to transformation-based grammatical theories. Under theories in which

transitive clauses, wh-object questions, and passives are separate “constructions” (Fillmore, Kay, & O’Connor,
1988; Goldberg, 1995; Langacker, 1999), the learner must still ultimately recognize that only verbs that occur
in transitives can also occur in wh-object questions and passives. Whether this is encoded transformationally
or via a construction hierarchy, the same logical problem holds.
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subject and “the bicycle” as the object, resulting in a parse that is not only erroneous but

also implies that English has object-verb-subject (OVS) word order. Likewise, the fronted

arguments in (4) and (5), if recognized as arguments, might be taken as evidence for optional

OSV word order in English rather than as evidence for the wh-movement that actually

produced this non-canonical word order. And if these phrases are not recognized as

arguments of fix, a variety of other inaccurate parses would be available for these sentences:

perhaps English allows syntactic null objects, or perhaps fix can take an implicit object, like

eat. This could lead to faulty inferences about the syntactic properties of particular verbs

and of the grammatical properties of the target language.

Conversely, a syntactic bootstrapper who is not aware of the transformations in these

sentences may draw faulty inferences about which events in the world they describe. Because

direct objects are not realized in their canonical post-verbal position, a child may not

recognize that these clauses are underlyingly transitive, and thus may not infer that they

describe causal events. In this case, an event in which she perceives Amy to be the agent and

the bicycle to be the patient may no longer count for her as a possible “fixing.” The problem

is not necessarily solved as soon as she observes fix in a basic clause that she can recognize

as transitive. In that case, she may infer that fix belongs to some class of verbs that can

alternate between transitive and intransitive uses, like eat or rise, leading to inaccurate

inferences about both its syntactic and semantic properties.4

2.1 Empirical Evidence

Empirical evidence shows that learners encounter this problem very early in

grammatical development. Non-basic clauses are prevalent in the input to infants. In
4This problem is also not solved under the hypothesis that verb meanings play a role in acquiring verb

alternation properties (Pinker, 1989). A learner who believes that a verb describes an event with an agent
and a patient still cannot be certain whether the verb will syntactically alternate (although subtler conceptual
correlates may be informative; see Resnik (1996)). Eatings always involve an eater and a thing eaten, and
fixings always involve a fixer and a thing fixed, but eat can freely drop its object and fix cannot. This means
that a learner who fails to recognize the displaced objects in (4-6) now has a choice: if she knows that fixings
always involve something fixed, she might be suspicious that these sentences have objects after all, or she
might conclude that fix allows object-drop just like eat.
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particular, English-learning children hear a large number of wh-questions before their second

birthday (around 15% of their total input), the majority of which contain non-canonical

word orders (Cameron-Faulkner, Lieven, & Tomasello, 2003; Newport, Gleitman, &

Gleitman, 1977; Stromswold, 1995). Identifying the structure of these clause types requires

knowing how particular transformations are realized in the target language. For example, in

order to identify the structure of wh-object questions like (4), a child must detect that a

fronted argument (what) stands in relation to a verb (fix) that needs an object and is locally

missing one. But this requires the child to know that what is an argument, even though it is

a functional element that does not distribute like other arguments in the language. The child

would also need to know that fix needs an object, and is not being used intransitively.

Experimental findings show that infants’ abilities to identify the structure of these

common non-basic clause types develops in tandem with basic argument structure

knowledge. Infants as young as 15 and 16 months old show sensitivity to verb transitivity.

Jin and Fisher (2014) found that 15-month-olds were able to draw inferences about the

meaning of a novel verb on the basis of hearing it in a transitive frame, and Lidz et al. (2017)

found that 16-month-olds with high verb vocabulary predicted an upcoming direct object for

a known transitive verb during online sentence processing. However, infants’ wh-dependency

knowledge at 15 months appears fragile. One early preferential looking study found that

15-month-olds looked at the right answer for subject but not object wh-questions (Seidl et

al., 2003). Two additional studies found apparent success with object questions at this age

(Gagliardi et al., 2016; Perkins & Lidz, 2020), but the authors argued that this behavior

might arise from developing verb knowledge and pragmatic reasoning, rather than an

adult-like representation of the wh-dependencies in these sentences. For instance, if

15-month-olds know that the verb bump requires a direct object, then a question like Which

dog did the cat bump? might lead them to look towards an individual who got bumped by a

cat, even if they don’t syntactically represent the fronted wh-phrase as the required object.

In support of this account, Perkins and Lidz (2020) found that 15-month-olds’ performance
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was predicted by vocabulary, a likely correlate of verb knowledge.

Additional work suggests that infants begin to represent wh-dependencies syntactically

at 18 to 20 months of age. Infants begin to produce wh-questions in their own speech by 20

months (Rowland, Pine, Lieven, & Theakston, 2003; Stromswold, 1995) and reliably

comprehend them in preferential looking tasks at this age (Gagliardi et al., 2016; Seidl et al.,

2003). Moreover, Perkins and Lidz (2021) found that infants at 18 months recognize the

complementarity between a local object and an object wh-phrase in a wh-question.

18-month-olds listened longer to basic declarative sentences where transitive verbs occur with

a required local object vs. without (e.g. A dog! The cat should bump him! > *A dog! The

cat should bump!), but displayed the opposite pattern of preference for wh-questions, where a

wh-phrase acts as the required object non-locally (e.g. Which dog should the cat bump? >

*Which dog should the cat bump him?). However, 14- and 15-month-olds did not differentiate

between these sentence types. These results suggest that infants represent the wh-phrase as

a non-local object of the verb at 18 months, but not earlier.

In summary, the current experimental evidence points towards the following

developmental trajectory. Basic verb transitivity knowledge appears to develop early, at

15-16 months for English learners, and emerges before infants represent a fronted wh-phrase

as an argument in a wh-question, at 18-20 months. This implies that infants must have a

way to begin learning argument structure and basic clause structure even before they can

parse some of the most common non-basic clause types in their input— and even though

those clause types provide misleading data for bootstrapping.

2.2 Filtering

The solution proposed in the bootstrapping literature is for learners’ input to be

filtered in such a way as to boost the signal from basic clauses, in which core arguments will

be easier to identify and correspondence relations between syntax and meaning will hold

more reliably (Gleitman, 1990; Lidz & Gleitman, 2004a, 2004b; Pinker, 1984, 1989). That is,
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non-basic clauses are somehow filtered out of the data that young children use to bootstrap

basic argument structure and clause structure.

There are two ways that this filtering might happen: either parents might avoid

producing these sentences in their children’s presence, or children might internally filter

these sentences themselves (Pinker, 1984). Parental filtering does not seem to occur, as

evidenced by the high rate of wh-questions in speech to young infants (Cameron-Faulkner et

al., 2003; Newport et al., 1977; Stromswold, 1995). The second solution assumes that

children can figure out which sentences in their input need to be filtered out. This solution

risks being circular. Learners need to filter non-basic clauses in order to learn argument

structure, but identifying the structure of non-basic clauses would seem to depend on

knowing some core argument structure properties of the language. How can learners identify

non-basic clauses in order to filter them, if they do not yet know what argument movement

looks like in their language?

Pinker (1984, 1989) argues that this circularity can be avoided if children can use

special prosodic, pragmatic, or morphological cues to flag certain utterances as likely to

contain non-basic clauses, without recognizing the structure of those clauses. The challenge

with this solution is identifying how learners know which cues to use. Attempting to define

the criteria by which children should filter their input creates its own learning problem: this

introduces a new set of categories which the learner must know to track, and which may not

always be transparent (Gleitman, 1990).

One might imagine another solution instead: perhaps learners acquire non-basic clause

syntax and verb argument structure by attempting to learn both of these phenomena at the

same time. This simultaneous learning hypothesis may be in principle possible. However, the

empirical evidence suggests that these phenomena are acquired in a certain order, with verb

transitivity knowledge beginning to emerge a few months before knowledge of argument

movement. In order to understand how this is possible, it is useful to look for a solution to

the circularity problem that would allow learning to take place sequentially. We propose a
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solution that does not require learners to know the criteria for identifying non-basic clauses

in order to learn verbs, and thereby provides a way for learning to take place in incremental

steps at this particular stage of development. This not only allows us to account for the

observed developmental trajectory for these phenomena in infancy, but also shows how

learners might arrive at a fruitful starting point from which a subsequent joint learning

process might proceed—an initial bootstrap into the system.

We propose that young learners implicitly assume that they will not accurately parse

everything they hear, and expect that their data will contain a certain amount of noise:

erroneous parses that they shouldn’t trust for the purposes of verb learning. Children might

be able to learn the right way to filter erroneous parses out of their input in order to solve a

particular learning problem– in this case, jointly inferring verb transitivity along with how

much of their data to trust in making that inference. Crucially, this solution doesn’t require

learners to know where those errors came from, thereby sidestepping the problem of which

cues learners should track for identifying non-basic clauses. Under our approach, children

might filter non-basic clauses from the data they use for verb learning without knowing that

they are non-basic clauses. This will allow them to use relations between syntax and

meaning to bootstrap into the target grammatical system, even though they do not yet know

when those relations are masked by other grammatical properties of the language.

2.3 Computational Models of Verb Learning

We adopt a Bayesian framework, in which a learner observes a data pattern and infers

the probability of some properties of the system that may have generated that data. This

framework conveniently allows us to specify the alternative systems (verb transitivity

properties vs. erroneous parses) that our learner considers for the verb distributions it

observes.

Our model follows previous Bayesian approaches to argument structure acquisition

(Alishahi & Stevenson, 2008; Barak, Fazly, & Stevenson, 2014; Parisien & Stevenson, 2010;
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Perfors et al., 2010), but considers a different problem than the one explored in that

literature. The goal of the learners in Alishahi and Stevenson (2008) and Perfors et al. (2010)

is to identify the full set of verb classes that exist in the language, and how verbs in those

classes generalize across syntactic frames. These papers aim to provide an account for an

acquisition phenomenon that arises in preschool-aged children, who sometimes

over-generalize verbs across argument structures that they do not actually participate in.

This behavior occurs in children at a later stage of development than the infant

bootstrappers we are modelling in this paper. Verb over-generalization is the output of

several logically independent steps of learning: (1) perceiving how verbs distribute in

particular syntactic frames; (2) performing an initial classification of verbs according to their

argument-taking properties, e.g., as one-, two-, or three-place predicates; and finally (3)

identifying how productively verbs in a class can generalize across different types of

argument structures, e.g., from the prepositional dative to the double-object dative. The

primary focus of prior models is the third step of learning, but we are concerned with the

earlier processes involved in the first two steps. In particular, we ask how learners are able to

establish a veridical percept of verbs’ distributions with subjects and objects, when they may

not have the linguistic knowledge to reliably identify these core syntactic arguments in

non-basic clauses.

This question has not yet been answered in previous models of argument structure

acquisition, in which a learner’s ability to veridically represent the input has been largely

assumed. Alishahi and Stevenson (2008) acknowledge that this assumption is most likely

unrealistic, and simulate noise in their learner’s syntactic representations by randomly

removing some of the distributional features that it learns from. Yet the “noise” faced by a

learner in real life is not random. As the authors note, “A more accurate approach must be

based on careful study of the types of noise that can be observed in child-directed data, and

their relative frequency” (Alishahi & Stevenson, 2008). This invites us to consider the ways

in which learners might mis-perceive the data in their input, and how a learner can avoid
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being misled by that data when identifying a verb’s syntactic distribution in the language.

Our approach differs from these prior verb learners in another important way. Rather

than modelling the simultaneous acquisition of all verb classes, we focus on only verb

transitivity as the earliest-attested form of argument structure knowledge in infancy, and

arguably the most basic. This allows us to explicitly model a particular developmental stage

suggested by the empirical literature, which learners transit on their way to acquiring the full

argument structure system of their language. That is, we model development by breaking a

large acquisition problem into smaller steps. We ask how learners first identify the core

argument-taking properties of verbs— their distributions with subjects and objects— in

order to provide a scaffold for further inferences about the target grammar, including the

finer-grained distributional classes and alternations that verbs participate in.

Other previous computational models have investigated how learners might benefit

from simultaneously making use of semantic information during this process. These models

ask how learners might use conceptual structure to identify the core grammatical rules and

word order properties of the language, and then use syntactic representations to infer the

meaning of words and utterances (Abend et al., 2017; Kwiatkowski, Goldwater, Zettlemoyer,

& Steedman, 2012; Maurits et al., 2009). While shedding light on how semantic and

syntactic bootstrapping might proceed in tandem, these models still presuppose the step of

learning that we are concerned with in this paper: how a learner gains access to accurate

representations to form the basis of these bootstrapping inferences. As prior work has noted,

the noise introduced by non-basic clauses types is equally disruptive for both types of

bootstrapping, semantic or syntactic (Pinker, 1984, 1989; Gleitman, 1990). We focus here on

the learner’s syntactic percept, but in doing so, we do not deny that it might be helpful to

make use of conceptual information as well. Our goal is simply to ask how far a learner

could get in identifying verb transitivity on the basis of distributional information, when

those distributions may not be accurately perceived. In order to isolate this distributional

signal for bootstrapping, we therefore set aside the question of how conceptual information
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could be accessed or used in this process, a question we will return to later in the discussion.

In the experiments below, we test the computational feasibility of our proposed

solution: whether a learner could, in principle, jointly infer verb transitivity along with the

parameters for filtering errorful sentence representations from the data it uses for learning.

In Simulation 1, we demonstrate that a learner can accomplish this joint inference on the

basis of the syntactic distributions of frequent English action verbs in child-directed speech.

Our learner performs this inference using only rates of overt direct objects after verbs, and

does not condition on any other utterance features, such as wh-words, prosody, or

extra-linguistic discourse context; it succeeds even though it cannot distinguish object

wh-questions from basic intransitive clauses. In Simulation 2, we ask how much the learner’s

performance in Simulation 1 depended on its a priori assumption that transitive, intransitive,

and alternating verbs are equally likely. We show that our learner performs no better when

it assumes these categories will occur in the proportions in which they actually do occur in

child-directed English. However, it does not differentiate transitivity categories as well when

it is extremely biased towards the alternating class, showing that the deterministic categories

must be weighted sufficiently in the model’s hypothesis space in order to be identified in its

input. Thus, we provide a proof of concept that a child may be able to filter non-basic

clauses from her input in order to correctly identify verb transitivity, without knowing in

advance which clauses are non-basic. This inference requires prior knowledge that verbs

might be transitive or intransitive, but does not require specific knowledge about the

frequency of those transitivity categories in the learner’s target language.

3 Model

We present a Bayesian model that learns how to filter its input in order to infer verb

transitivity. The learner performs this inference only on the basis of observing how verbs

distribute with and without direct objects, and does not use any other syntactic or

non-syntactic cues to identify its filter. Instead, the learner assumes that some of its parses
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are not trustworthy sources of information for learning its language, because it does not have

enough linguistic knowledge to accurately parse every sentence in its input. The learner

infers the right way to filter erroneous parses out of the data it uses for verb learning,

without knowing why those parses were erroneous. This filtering allows it to identify the

transitivity properties of verbs in its input, despite misleading data from non-basic clauses.

In this section, we first specify the generative model, which encodes the learner’s

assumptions about how its direct object observations are generated. Then, we specify how

the learner jointly infers verb transitivity along with the parameters for filtering its input,

given its data. In the following sections, we present simulations demonstrating that this joint

inference is successful when tested on child-directed speech.5

We do not claim that the Bayesian inference performed by our model represents the

exact algorithms performed by child learners, although there is substantial literature on

young children’s statistical inference capabilities (Gomez & Gerken, 2000). Our model is

framed at Marr’s (1982) computational level: we characterize the mental computation

involved in this learning process as particular kind of joint inference, and investigate whether

this type of joint inference would lead to successful learning, given the information available

to learners and our hypothesized characterization of their perceptual abilities. This invites

further algorithmic questions about how well learners are able to access that information,

and whether they put it to use in a way that accords with this idealized model. Our

approach follows a rich tradition in the language acquisition literature, including previous

models of argument structure learning (e.g., Abend et al., 2017; Alishahi & Stevenson, 2008;

Dillon, Dunbar, & Idsardi, 2013; Elman, 1990; Frank, Goodman, & Tenenbaum, 2009;

Goldwater, Griffiths, & Johnson, 2009; Pearl & Sprouse, 2019; Perfors et al., 2010, 2011;

Vallabha, McClelland, Pons, Werker, & Amano, 2007). But although this model provides an

idealized implementation of children’s inference processes, it provides a more realistic

account than previous models of the steps of learning involved in bootstrapping: specifically,
5Code for running these simulations is available at https://github.com/perkinsl/noise-filter.
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how learners establish a veridical percept of verbs’ syntactic distributions in the face of

messy data, in order to enable further bootstrapping inferences.

3.1 Generative Model

A generative model represents a learner’s assumptions about the processes that

generated its observed data. In our case, the observed data are counts of direct objects with

particular verbs, as the learner represents them; specifically, the learner tracks how

frequently it represents an overt direct object or no overt direct object following the verb. It

assumes that there are two reasons why it might observe direct objects or no direct objects.

On one hand, the transitivity of the verb determines whether it always, never, or sometimes

takes a direct object. This means that the rate of direct objects following the verb gives the

learner evidence for inferring whether the verb is transitive, intransitive, or alternating. But

on the other hand, the learner might also mis-perceive whether a direct object is present,

because it lacks the grammatical knowledge to identify the full structure of some sentences in

its input. If this is the case, some of the observed data points might not reflect the true

transitivity of the verb and should be filtered from the data that the learner uses to infer

transitivity. Thus, there is some probability of error in the learner’s direct object

observations, and our learner infers two parameters for filtering this error: how frequently

mis-parses of sentences occur, and whether the learner is more likely to miss a direct object

that is underlyingly present or mistake another constituent for a direct object.

Figure 1 provides the graphical model for our learner. The model’s observations of

direct objects or no direct objects are formalized as the Bernoulli random variable X. Each

X(v) represents an observation from a sentence containing verb v in the model’s input, with

a value of 1 if the sentence contains a direct object and 0 if it does not. These observations

of direct objects can be generated by two processes: the transitivity of verb v, represented by

the variables T and θ in the upper half of the model, or an erroneous parse of the sentence,

represented by the variables e, ε, and δ in the lower half of the model. We will describe each



FILTERING INPUT FOR ARGUMENT STRUCTURE ACQUISITION 19

of these processes in turn.

Figure 1 . Graphical Model

In the upper half of the model, each X(v) is conditioned on the parameter θ(v), a

continuous random variable defined for values from 0 to 1 inclusive. This parameter controls

how frequently a verb v will be used with a direct object: the learner assumes that for every

observation X(v), a biased coin is flipped to determine whether the sentence contains a direct

object, with probability θ(v), or does not, with probability 1− θ(v). The parameter θ(v) is

conditioned on the variable T (v), which represents the transitivity of verb v. T is a discrete

random variable that can take on three values, corresponding to transitive, intransitive, and

alternating verbs. Each of these values determines a different distribution over θ. For the

transitive category of T , θ always equals 1: the verb should always occur with a direct object.

For the intransitive category, θ always equals 0: the verb should never occur with a direct

object. For the alternating category, θ takes a value between 0 and 1 inclusive. The prior

probability distribution over θ in this case is a uniform Beta(1, 1) distribution. We begin

with the simplifying assumption that all three values of T have equal prior probability—

that is, the learner assumes that any verb in the language is equally likely a priori to be

transitive, intransitive, or alternating. In later simulations, we explore our model’s behavior

when this assumption is changed.

In the lower half of the model, each X is conditioned on a Bernoulli random variable e,
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which represents the input filter. If e(v)
i = 0, the observation in X(v)

i was generated by θ(v)

and T (v), and accurately reflects the transitivity of verb v. But if e(v)
i = 1, the observation in

X
(v)
i was generated by an erroneous parse, meaning the learner did not have adequate

grammatical knowledge to parse the sentence correctly. This observation was not generated

by θ(v) and T (v), and may not accurately reflect the transitivity of verb v, so it should be

ignored for the purpose of inferring T (v). Each e(v) is conditioned on the variable ε, which

represents the probability of an erroneous parse occurring for any sentence in the input. The

model learns a single parameter value for ε across all verbs.

The second parameter of the input filter is δ, which represents the probability of

generating a direct object in error. Thus, the learner assumes that the direct objects in its

parses depend on one of two biased coins, which are flipped via the following process. An

accurate vs. erroneous parse is generated with probability ε. If an accurate parse is

generated (e(v)
i = 0), then one biased coin is flipped and the sentence contains a direct object

with probability θ(v): this direct object comes from the verb’s transitivity properties. If an

erroneous parse is generated (e(v)
i = 1), then a different biased coin is flipped and the

sentence contains a direct object with probability δ: this direct object comes from a noise

process. Like ε, δ is a shared parameter across all verbs. We assume that both ε and δ have

a uniform Beta(1, 1) prior distribution.

3.2 Joint Inference

We use Gibbs sampling (Geman & Geman, 1984) to jointly infer the transitivity of

each verb (T ) and the two parameters of the input filter (ε and δ). In this form of sampling,

we start with randomly-initialized values for ε and δ, and use those values to calculate the

posterior probability of each transitivity category T for each verb, given the observed data

and those filter parameters. We sample values for T from this posterior probability

distribution. Then, we use the sampled transitivity categories to sample new values for ε and

δ from estimates of their posterior probability distributions. This cycle is repeated over
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many iterations until the model converges to a stable distribution over T , ε and δ, which

represents the optimal joint probability solution for these three variables. See the Appendix

for details of the sampling procedure.

4 Simulation 1

In Simulation 1, we ask whether inferring the parameters of an input filter will allow a

learner to accurately identify the transitivity categories of verbs in the speech that children

hear, assuming the immature representational abilities of a 15- to 17-month-old infant. We

tested our joint inference model on a dataset containing distributions of the 50 most frequent

transitive, intransitive, and alternating verbs in corpora of child-directed English. In order to

determine whether this inference is successful, we compare our model’s performance to an

oracle model that already knows appropriate parameters for filtering its input, and baseline

models with inappropriate filter parameters.

4.1 Data

We prepared a dataset of four corpora selected from the CHILDES Treebank (Pearl &

Sprouse, 2013). This resource provides parse trees for several corpora of child-directed

speech on CHILDES (MacWhinney, 2000), generated by the Charniak or Stanford parser

and hand-checked by undergraduates. The selected corpora contain 803,188 words of

child-directed speech, heard by 27 children between the ages of 6 months and 5 years. See

Table 1 for corpus details.

Table 1
Corpora of Child-Directed Speech

Corpus # Children Ages # Words # Utterances
Brown- Adam, Eve, & Sarah (Brown, 1973) 3 1;6-5;1 391,848 87,473
Soderstrom (Soderstrom et al., (2008)) 2 0;6-1;0 90,608 24,130
Suppes (Suppes, 1974) 1 1;11-3;11 197,620 35,904
Valian (Valian, 1991) 21 1;9-2;8 123,112 25,551
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Our dataset was created by extracting sentences with the 50 most frequent action

verbs in these corpora that could be characterized as transitive, intransitive, or alternating.

We excluded verbs whose other argument-taking properties would preclude them from being

categorized into the three argument structure classes under consideration. These included

obligatorily ditransitive verbs or those that frequently take clausal or verbal complements:

mental state verbs (e.g. want), aspectual verbs (e.g. start), modals (e.g. should), auxiliaries

(e.g. have), and light verbs (e.g. take). We sorted the selected 50 verbs into transitive,

intransitive, and alternating categories according to the English verb classes described in

Levin (1993), supplemented by our own intuitions for verbs not represented in that work.

These classes provide a target for learning meant to align with adult speaker intuitions,

independent of the corpus data that the model learns from. The transitive and intransitive

categories are conservative; any verb that could occur in a transitivity alternation was

classified as alternating, regardless of the frequency or type of alternation. So, verbs like

jump are considered alternating even though they occur infrequently in their possible

transitive uses (e.g. jump the horses over the fence). These target categories thus set a very

high bar for our model to reach.

We then conducted an automated search over the Treebank trees for the total

occurrences of each verb in the corpora, in all inflections, and the total occurrences with overt

direct objects following the verb (right NP sisters of V). We ignored all other constituents

and features of the sentences, including direct objects that were fronted in non-basic clauses.

For example, sentences like You’re eating a cookie and Who’s eating a cookie? were both

coded as observations of eat with a direct object. Sentences like You’re eating or What are

you eating? were both coded as observations of eat without a direct object from the

perspective of our learner, even though the second sentence of this pair is actually transitive.

That is, we assume a learner with the knowledge of 15- to 17-month-old English-learning

infants as determined by previous behavioral studies: one who can use the canonical word

order properties of English to identify direct objects when they occur after verbs, but does
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not yet know how to identify arguments in non-canonical positions, like the fronted

wh-phrase what. Table 2 lists the complete dataset provided to the learner: counts of the

selected 50 verbs, along with their counts of overt post-verbal direct objects. For legibility we

also report the percentages of direct objects with each verb, although our model learns from

raw counts rather than percentages. Notice that our heuristic for identifying direct objects in

the manner of a 15-month-old infant creates substantial noise in these data: all transitive

verbs appear to have rates of direct objects less than 100%, and nearly all intransitive verbs

have direct object rates greater than 0%. This means that filtering is necessary for our

modelled learner to recover transitivity categories that align with adult intuitions.

Table 2
Dataset: Counts and Percentage Uses with Overt Direct Objects (DO) of 50 Verbs

Verb Total # DO % DO
Transitive Verbs
feed 220 205 93%
fix 337 305 91%
bring 605 541 89%
throw 312 275 88%
hit 214 187 87%
buy 358 299 84%
catch 185 141 76%
hold 579 406 70%
wear 477 287 60%
Alternating Verbs
pick 331 299 90%
drop 169 149 88%
lose 185 160 86%
close 166 141 85%
touch 183 153 84%
leave 356 297 83%
wash 195 161 83%
pull 331 268 81%
push 352 274 78%
open 342 265 77%
cut 263 198 75%
bite 191 140 73%
turn 485 350 72%
build 299 215 72%
knock 160 115 72%
read 509 350 69%

Verb Total # DO % DO
Alternating Verbs, cont.
break 550 347 63%
drink 366 221 60%
eat 1318 777 59%
sing 306 161 53%
blow 255 132 52%
draw 375 193 51%
move 238 112 47%
ride 281 114 41%
hang 151 53 35%
stick 192 57 29%
write 583 155 27%
fit 227 49 22%
play 1568 308 19%
stand 294 21 7%
run 228 13 6%
walk 253 11 4%
jump 197 8 4%
swim 180 7 4%
sit 859 11 1%
Intransitive Verbs
wait 383 57 15%
work 256 11 4%
cry 275 8 3%
sleep 451 13 3%
stay 308 4 1%
fall 605 3 0%
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4.2 Results

4.2.1 Verb Transitivity Inference. Our joint inference model infers a

probability distribution over transitivity categories for each verb in its dataset. These

distributions are displayed in Figure 2. Black bars represent the posterior probability

assigned to the transitive category, dark gray bars represent the probability assigned to the

intransitive category, and light gray bars represent the probability assigned to the alternating

category. The target categories for each verb are shown below the horizontal axis.

Figure 2 . Posterior Distributions over Verb Categories (T ), Joint Inference Model

We calculated accuracy by determining which transitivity category was assigned

highest probability to each verb by our model, and comparing these category assignments to

the target categories for each verb. The proportion of verbs categorized correctly by the

model is reported in Table 3. Overall, the model infers the correct transitivity properties for

2/3 of the verbs in our dataset. This is substantially better than chance performance

(p < .001, binomial test): a model that randomly assigned categories to verbs would achieve

33% accuracy, because there are three possible options for each verb. Our joint inference

model performs nearly twice as well overall. It also performs numerically better on all three

verb classes, a result that reaches statistical significance for both the intransitive and

alternating verb classes and is marginally significant for the transitive class (transitive:
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p < 0.067, intransitive: p < 0.017, alternating: p < 0.001, binomial tests6).

Table 3
Proportions of Verbs Categorized Correctly, Simulation 1

Model Transitive Intransitive Alternating Total Verbs
Joint Inference 0.67 0.83 0.63 0.66
Oracle 0.78 0.83 0.51 0.60
No-Filter Baseline 0.00 0.00 1.00 0.70
Chance 0.33 0.33 0.33 0.33

The model achieves highest accuracy in categorizing the intransitive verbs: for all but

one of these verbs, the model assigns highest probability to the intransitive category. The

exception is the verb wait, which the model assigns highest probability under the alternating

category. This is due to prevalent uses of wait with temporal adjuncts, as in wait a minute,

that were indistinguishable from NP direct objects in the CHILDES Treebank parse trees.

Thus, a learner who cannot differentiate these adjuncts from direct objects would infer that

wait is an alternating rather than intransitive verb.

The model assigns 6 out of the 9 transitive verbs highest probability under the

transitive category. Three transitive verbs are assigned highest probability under the

alternating rather than the transitive category: catch, hold, and wear. This is likely because

these verbs display different behavior than the other transitive verbs in the corpus. The verb

hold occurs frequently in verb-particle constructions (e.g. hold on), which might be treated

differently than simple verbs by learners. The verbs catch and wear appear to occur at much

higher rates than other transitive verbs in non-basic clauses: catch occurs frequently in

passives (e.g. get caught), and wear occurs frequently in wh-object questions (e.g. what are

you wearing?). We leave for future work the question of whether children likewise

mis-classify these verbs, or whether they can accommodate their different distributional

behavior by using more sophisticated information than our modeled learner.
6We interpret these statistical comparisons for individual verb classes with caution given the small numbers

of transitive and intransitive verbs in the dataset.
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The model assigns highest probability for most of the alternating verbs to the

alternating verb category. There are 13 exceptions. The verbs pick, drop, lose, close, touch,

leave, and wash are assigned highest probability under the transitive category because they

infrequently occur in their possible intransitive uses in child-directed speech. The verb pull is

assigned equal probability under the transitive and alternating categories for the same

reason. (This verb was not considered to be correctly assigned to the alternating category in

our accuracy calculation.) The verbs run, swim, walk, jump, and sit are assigned highest

probability under the intransitive category because these verbs very infrequently occur in

their possible transitive uses.7 Thus, the model over-regularizes the alternating verbs that

alternate infrequently, preferring the more deterministic transitive and intransitive verb

categories.

4.2.2 Filter Parameter Inference. Recall that our model identifies verb

transitivity categories by jointly inferring parameters for filtering its input. These

parameters are ε, which represents the frequency of erroneous parses, and δ, which represents

whether those errors are likely to cause direct objects to go missing, or to spuriously appear.

Figure 3 displays the posterior probability distributions inferred by the model for ε and δ. In

order to evaluate the model’s inference of these parameters, we estimated their true value in

our dataset. The proportion of transitive verbs without overt post-verbal direct objects in

the dataset (e.g. who did you feed?) gives us an estimate of (1− δ)× ε, and the proportion

of intransitive verbs with spurious direct objects (e.g. wait a minute) gives us an estimate of

δ × ε. Solving these two equations, we find that δ = 0.18 and ε = 0.24. The posterior

probability distribution over δ inferred by our model has a mean of 0.25, and the probability

distribution over ε has a mean of 0.19. Our model thus slightly over-estimates the value of δ

and under-estimates the value of ε, but it infers values for these parameters that are close to
7Note that four out of these five verbs are manner of motion verbs (run, swim, walk, jump), and their

transitive uses do not typically involve agent-patient relations (e.g., walk a mile, swim the channel, jump the
turnstile). Even when a causative meaning may be used, as in the case of jump the horse, this implies less
direct causation than a typical alternating verb such as break or open. So, even though our conservative target
categories treated these verbs as alternating, in some ways they behave more typically like intransitives.
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the true values in the corpus.

Figure 3 . Posterior Distributions over ε and δ, Simulation 1

4.3 Model Comparisons

4.3.1 Oracle Model. The primary contribution of our model is demonstrating

that a learner can filter its input without knowing anything in advance about what needs to

be filtered out. Therefore, it makes sense to compare our model against an “oracle” that

knows a lot about what needs to be filtered out. We instantiated an oracle model in which δ

is fixed to 0.18 and ε to 0.24 in order to reflect their true values in our dataset, as estimated

in the previous section. This oracle model thus knows the parameters for the input filter in

advance: it knows how frequently erroneous parses are likely to occur, and how they will

behave. By comparing our model to this oracle, we can determine whether our model’s

performance is impaired by having to learn these parameters.

The posterior probability distributions over verb categories inferred by the oracle

model are displayed in Figure 4. The posterior probabilities inferred by the oracle are less

graded than those inferred by our joint inference model; this is unsurprising, as the oracle

considers only one value each for δ and ε instead of sampling over multiple values. But when

considering which transitivity category is assigned highest probability to each verb, the two
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models classify most of these verbs in the same way, and achieve comparable performance

overall (60% vs. 66%, p = 0.87 (n.s.), Fisher’s exact test). Our joint inference model

classifies intransitive verbs identically to the oracle model, and performs almost as well with

transitive verbs: the oracle succeeds in identifying one more transitive verb, catch, as

transitive. Our model performs qualitatively better than the oracle in categorizing

alternating verbs: the oracle has a slightly higher tendency to over-regularize the verbs that

alternate infrequently. Inferring the parameters of the input filter thus results in comparable

accuracy in categorizing verbs compared to a model that knows these parameters in advance.

Figure 4 . Posterior Distributions over Verb Categories (T ), Oracle Model

4.3.2 Random Filter Parameters. If the values of the filter parameters aren’t

important, then it wouldn’t be remarkable that our joint inference model performs

comparably to the oracle model. To test whether the filter parameters actually matter, we

ran 500 model simulations in which ε and δ were fixed to randomly-sampled values. Fig. 5

displays the model’s resulting accuracy in inferring transitivity categories given each set of

filter parameters, with ε along the x-axis and δ along the y-axis. Lighter colors denote higher

percentages of verbs categorized correctly. The gray rectangle marks the range of filter

parameter values that were considered highest probability by our joint inference model—

specifically, these are the values within one standard deviation of the mean in the posterior

probability distributions that our model inferred.
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Figure 5 . Accuracy (% Verbs Categorized Correctly) by Varying Values of ε and δ

A visual scan of these plots shows that it is not trivial to infer filter parameters that

will result in high accuracy across all three transitivity categories. Higher values of ε yield

higher accuracy on categorizing transitive and intransitive verbs, but lower accuracy for

alternating verbs. This is because the learner assumes there is more error in its transitive

and intransitive verb observations, and lowers the threshold for assigning verbs to those

categories. The learner thus assigns more verbs in its dataset to the transitive and

intransitive categories rather than the alternating category. On the other hand, higher values

of δ yield lower accuracy for transitive verbs, but higher accuracy for intransitive verbs. With

higher values of δ, the learner assumes that more of its errorful sentence observations contain

mistaken direct objects, rather than missing direct objects. The learner therefore expects

more error in its intransitive verb observations because there should be more intransitive

verbs appearing with spurious direct objects. This lowers the threshold for assigning verbs to

the intransitive class, resulting in higher accuracy for intransitives. Conversely, the learner

expects less error in its transitive verb observations because there should be fewer transitive

verbs appearing with missing direct objects. This raises the threshold for assigning verbs to

the transitive class, resulting in lower accuracy for transitives.

Thus, successfully categorizing verbs in all three transitivity classes requires inferring

filter parameters that fall within a somewhat narrow range. Our model performs comparably

to the best-case oracle model not merely because it infers an input filter, but because it infers
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the best parameters for such a filter given our dataset. Note that our model is not actually

optimizing for the accuracy values plotted in the graph in Fig. 5, because it is not trained on

our target classifications for verb transitivity. Instead, the model is optimizing for probability:

it is searching for the best joint-probability solution for verb transitivity categories and filter

parameters to explain the distributions in its data. The fact that our model performs well

with respect to our target verb classifications means that the parameter values that have

high probability under our model also result in good accuracy across all three verb classes.

4.3.3 No-Filter Baseline. Our model accurately categorizes verbs across

transitivity categories by inferring appropriate parameters for a filter on its input, and the

model comparisons above show that the values of these filter parameters are important.

Models with grossly inappropriate filter parameters might have better accuracy on some verb

classes, but do not perform as well across all three transitivity categories. A special case of

these models would be those where ε equals exactly zero, representing zero probability of

parsing errors: this produces models that do not have an input filter at all. Comparing

against a no-filter baseline tells us how much having a filter matters in identifying verb

transitivity.

As values of exactly zero were never randomly sampled in the simulations reported in

Fig. 5, we conducted an additional simulation setting ε to zero. The value of δ in this case

does not matter, because it is never used. Because every verb in our dataset occurs some but

not all of the time with overt post-verbal direct objects, and this no-filter model assumes

there are no parsing errors to filter out, it assigns every verb to the alternating category. It

thus categorizes 100% of the alternating verbs correctly, achieving 70% overall accuracy

because alternating verbs make up 70% of our dataset. This overall accuracy is comparable

to that of our joint inference model (70% vs. 66%, p = 0.88 (n.s.), Fisher’s exact test).

However, this accuracy comes at the cost of failing to categorize any verbs as transitive or

intransitive. Our joint inference model performs substantially better in this regard,

categorizing the majority of transitive and intransitive verbs correctly. This demonstrates
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that an input filter is important for differentiating alternating from non-alternating verbs.

4.3.4 Threshold Comparisons. By inferring how frequently parsing errors occur

in its sentence observations and the behavior of those errors, our model is essentially

inferring where to put thresholds for classifying verbs as transitive or intransitive based on

rates of observed direct objects. Another way of evaluating our model’s performance is to

compare it against a simple threshold model, which classifies verbs as transitive if their

percentage occurrence with overt direct objects falls above a certain threshold, and as

intransitive if their percentage occurrence with overt direct objects falls below a certain

threshold. There are several differences between this type of threshold model and our model.

Instead of setting hard thresholds that delineate each of these categories, our model uses soft

thresholds that take into account how much data it has available for any particular verb.

And the primary advance in our model is that these soft thresholds are learned: the model

does not need to know the true distributions of transitive and intransitive verbs in advance.

If our model performs comparably to a model that knows the best thresholds for classifying

its data, this will give us another indication that it is learning successfully.

To create these comparisons, we hand-fit the thresholds for classifying verbs by

percentage overt direct objects to maximize accuracy on the model’s dataset. Table 4 reports

the accuracy of the best-performing threshold models, compared to our joint inference model.

The thresholds that yielded the best performance overall were 87% and 4%: this model

classifies verbs as transitive if they occur with direct objects above 87% of the time, and

verbs as intransitive if they occur with direct objects less than 4% of the time. This model

was able to achieve 80% accuracy overall. However, its performance on classifying transitive

and intransitive verbs was lower than for our joint inference model. Our second threshold

comparison thus aimed to maximize overall accuracy without performing lower than our

joint inference model on these two verb classes. Thresholds of 83% and 5% allowed the

model to achieve 72% overall accuracy, while achieving the same accuracy as our joint

inference model on transitive and intransitive verbs. Finally, our third threshold comparison
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attempted to maximize overall accuracy while achieving higher accuracy than our joint

inference model on transitive and intransitive verbs. The best thresholds for this model were

76% and 15%. This threshold model’s higher performance on transitive and intransitive

verbs led to lower accuracy on alternating verbs, and it only achieved 64% accuracy overall.

Table 4
Proportions of Verbs Categorized Correctly: Best-Performing Threshold Models

Model Transitive Intransitive Alternating Total Verbs
Joint Inference 0.67 0.83 0.63 0.66
Thresholds of 87%, 4% 0.56 0.66 0.89 0.80
Thresholds of 83%, 5% 0.67 0.83 0.71 0.72
Thresholds of 76%, 15% 0.78 1.00 0.54 0.64

Although our joint model is not explicitly learning thresholds, we can use the filter

model parameters that our model inferred to estimate the soft thresholds it is effectively

using. Because ε is the inferred rate of error and δ is the inferred proportion of error that has

direct objects, ε× (1− δ) gives an estimate of the rate of missing direct objects for transitive

verbs. Therefore, 1− ε× (1− δ) can be interpreted as a threshold of direct object rates

above which verbs are more likely classified as transitive. Conversely, ε× δ estimates the rate

of spurious direct objects for intransitive verbs, and thus provides an estimate for a threshold

below which verbs are more likely classified as intransitive. When we estimate thresholds

based on the means of the distributions over ε and δ that our model inferred (0.19 and 0.25),

we obtain estimated thresholds of 85% and 5%. These are very close to the thresholds that

yielded the best performance in our threshold models.

In summary, these comparisons show that it is possible for a simple threshold model to

achieve higher overall accuracy than our joint inference model, if it is allowed to use

thresholds that are hand-fit to maximize performance on this dataset. However, it is not

trivial to find hard thresholds that will ensure high performance across all three verb classes.

In particular, the best-performing threshold models may have exceeded the overall accuracy

of our joint inference model, but they never exceeded our model’s accuracy on both
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transitive and intransitive verbs without reducing overall accuracy. This shows us that the

soft thresholds that our model is essentially learning are appropriate to its dataset: our

model performs just as well as the best-performing threshold models on identifying these

deterministic verb categories. And this is true even though our model is not optimizing for

accuracy. Unlike the threshold models, our model does not have access to the target

classifications for verb transitivity in its dataset, and cannot use those classifications to

identify its thresholds. Instead, our model learns where to put these soft thresholds by

finding the best joint probability solution for verb transitivity categories and the parameters

for error in its dataset.

4.4 Discussion

Our model accurately categorizes 2/3 of the most frequent transitive, intransitive, and

alternating verbs in child-directed speech on the basis of their distributions with and without

direct objects, by learning to filter out sentences that were likely mis-parsed. This enables

the learner to avoid drawing faulty inferences about verb transitivity from non-basic clause

types that may be mistaken for intransitive clauses. Our model performs comparably to an

oracle model that knows in advance the best parameters for a filter given its dataset, and

better than many models with inappropriate filter parameters. It performs substantially

better in categorizing transitive and intransitive verbs than a baseline model that lacks an

input filter altogether, and performs twice as well overall as would be expected by chance. It

also performs just as well on categorizing transitive and intransitive verbs as the

best-performing threshold models, which categorize verbs using thresholds of direct object

rates that are hand-fit to the dataset. These results demonstrate that an input filter both

matters for verb transitivity learning, and can be learned.

The model makes two types of mistakes in inferring verb categories. First, it is unable

to correctly categorize some transitive and intransitive verbs that behave differently than

other verbs in their category, such as catch, hold, wear, and wait. Further investigation is



FILTERING INPUT FOR ARGUMENT STRUCTURE ACQUISITION 34

necessary to determine whether these verbs pose difficulties for child learners as well. A

second type of mistake is over-regularizing alternating verbs that alternate infrequently: the

model prefers to assign these verbs to the transitive and intransitive categories. This is an

example of a learner preferring a more deterministic analysis for probabilistic input, a

tendency also found in child learners in artificial language studies (Hudson Kam & Newport,

2009). The error-filtering mechanism we present here could thus potentially provide a way to

model other forms of over-regularization in learning.

There are three factors that contribute to our model’s ability to regularize its input.

First, our learner only needs to infer two parameters for its input filter: it makes the simple

assumption that there is a single value for ε and δ shared across all verbs, rather than having

to infer separate values for these parameters on a verb-by-verb basis. This allows the learner

to use distributions of direct objects across verbs to inform its estimates of how much error is

present in its sentence representations, and what that error looks like. If instead the learner

expected a different ε and δ for each verb, it would be difficult for the learner to tell whether

a particular rate of direct objects observed for a verb is due to a particular rate of transitivity

alternation (θ) or due to a particular type of error that occurs only with that verb.

Intuitively, the expectation of a single shared value for these filter parameters

corresponds to the expectation that the noise process generating the error in the learner’s

sentence representations reflects some properties that are independent of the particular verbs

in those sentences. We believe that this expectation is not only a helpful simplification, but

also a realistic one. While our learner has no commitment to what this noise process is, in

reality it reflects the contribution of a variety of grammatical operations that the learner has

mis-parsed. These operations are due to independent properties of the grammar, and apply

to entire classes of verbs, not on a verb-by-verb basis. A more sophisticated learner might

identify that there are several noise processes at work, corresponding to these different

grammatical properties, and use distributions of direct objects across verbs along with other

surface features of these sentences to infer a different ε and δ for each of these properties.
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Additionally, the learner’s inference of its input filter is successful because it encounters

a wide variety of verb behavior in its data. Some verbs appear more deterministic than

others: they alternate less frequently, instead show a stronger preference for solely transitive

or intransitive frames. Just as we used the true transitive and intransitive verbs in the

dataset to arrive at our estimates of the true values for ε and δ, our learner can anchor its

estimates of these parameters by using the distributions of direct objects with the more

deterministic verbs it observes— those that it thinks are more likely to be transitive or

intransitive. If instead all verbs alternated at exactly the same rate, the learner would have

difficulty knowing whether all verbs have exactly the same transitivity properties, or whether

there is additional error present. This raises the question of whether all languages have

enough variety in verb distributions to enable successful learning by this filtering mechanism.

Answering this question would require testing this model with cross-linguistic corpora of

child-directed speech, a future direction that we discuss more in the General Discussion.

Finally, our learner’s ability to successfully regularize depends on having deterministic

categories in its hypothesis space: it expects that some verbs will only occur in transitive or

intransitive frames, and makes the simplifying assumption that these verbs are equally likely

a priori as verbs that can alternate. However, we might ask how realistic it is for a learner to

have this assumption, as in reality these categories will occur in different proportions in the

target language. Will a learner perform just as well if it expects transitive, intransitive, and

alternating verbs to occur with different frequency? We can answer this question by

examining the model’s performance when it has different prior beliefs about the probability

of these verb classes. If there is no difference in performance, then it suffices to merely have

transitive or intransitive categories in the learner’s hypothesis space, regardless of how they

are weighted. But if there is a difference in performance, this would show that the model’s

prior beliefs about the relative probabilities of transitivity classes matter for its ability to

identify these classes in its input.
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5 Simulation 2

In Simulation 2, we ask whether our model will still accurately identify the transitivity

categories of verbs in child-directed speech if it does not expect transitive, intransitive, and

alternating verbs to be equally likely a priori. Instead of setting a uniform prior over

transitivity categories (P (T (v)) in Equation 7), we biased the model’s prior in favor of

alternating verbs. In Simulation 2a, we set the model’s prior to match the actual frequencies

of verb transitivity categories in its input: we set a prior probability of 0.70 for alternating

verbs, 0.18 for transitive verbs, and 0.12 for intransitive verbs, to match the proportion of

the target verb categories in our dataset. This allows us to determine whether our learner’s

verb transitivity inference is affected if it expects to find verb categories in the same

proportions as they will actually occur in its input. In Simulation 2b, we skewed the model’s

prior even more heavily in favor of the alternating category: we set a prior probability of

0.90 for alternating verbs and 0.05 each for transitive and intransitive verbs. By giving the

alternating category substantially greater prior probability than the two deterministic verb

categories, we can determine whether simply having transitive and intransitive categories in

the learner’s hypothesis space, in any proportion, is sufficient for identifying them in its

input.

5.1 Data

We tested our skewed-prior models on the same dataset of transitive, intransitive, and

alternating verbs in child-directed speech that we prepared for Simulation 1.

5.2 Results

5.2.1 Verb Transitivity Inference. Fig. 6 displays the posterior probability

distribution over transitivity categories that our model inferred for each verb in Simulation

2a, when it expected 70% alternating verbs. Fig. 7 displays the distribution over transitivity

categories inferred in Simulation 2b, when the model expected 90% alternating verbs. Table
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5 reports the proportion of verbs categorized correctly in each transitivity category,

compared to our original joint inference model in Simulation 1.

Figure 6 . Posterior Distributions over Verb Categories (T ), Simulation 2a

Figure 7 . Posterior Distributions over Verb Categories (T ), Simulation 2b

In Simulation 2a, the inferred distribution over transitivity categories is very similar to

the distribution inferred by our original model in Simulation 1. This model assigns highest

probability under the transitive category to the same 6 out of 9 transitive verbs as our

original model, and it assigns highest probability under the intransitive category to the same

5 out of 6 intransitive verbs. The model also assigns highest probability under the

alternating category to 23 alternating verbs, and considers the remaining 12 to be either

transitive or intransitive, over-regularizing at nearly the same rate as our original model.
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Table 5
Proportions of Verbs Categorized Correctly, Simulations 1 and 2

Model Transitive Intransitive Alternating Total Verbs
Simulation 1 0.67 0.83 0.63 0.66
Simulation 2a 0.67 0.83 0.66 0.68
Simulation 2b 0.33 0.67 0.94 0.80

Thus, skewing the model’s prior to expect alternating verbs 70% of the time resulted in very

little difference in verb categorization compared to our original model (68% vs. 66%, p=0.99

(n.s.), Fisher’s exact test).

In Simulation 2b, when we skewed the model’s prior to expect alternating verbs 90% of

the time, the model still achieved comparable accuracy to our original model (80% vs. 66%,

p=0.54 (n.s.), Fisher’s exact test), but it inferred a different distribution over transitivity

categories. There are two general trends to observe in these data. First, even though this

learner was heavily biased against the transitive and intransitive categories, there are still

several verbs that it assigns high probability under these categories. To an extent, the model

was able to overcome its biased prior and identify some deterministic verbs in its input.

On the other hand, there are fewer verbs that this model assigns highest probability

under the transitive and intransitive categories, and more verbs that it assigns highest

probability under the alternating category. This results in higher accuracy for alternating

verbs: this model only over-regularizes one of these verbs (pick) as transitive, and one of

these verbs (sit) as intransitive. Because alternating verbs are most frequent in the model’s

data, the model’s higher accuracy on alternating verbs leads to higher total accuracy as well.

But the model achieves lower accuracy for the transitive and intransitive categories. The

model assigns highest probability to the transitive category for only 3 of the 9 transitive

verbs, and it assigns highest probability to the intransitive category for only 4 of the 6

intransitive verbs. Of the target transitive verbs, the model now considers throw, hit, and

buy to be alternating, along with catch, hold, and wear. Of the intransitive verbs, the model
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now considers work to be alternating along with wait. The model still performs better than

chance in categorizing alternating verbs, but it is no better than chance in categorizing

transitive and intransitive verbs (alternating: p < 0.001, transitive: p = 1.0, intransitive:

p < 0.10, binomial tests).

In summary, we found comparable performance to our original model when we skewed

the model’s prior to expect transitive, intransitive, and alternating categories in the same

proportions as they actually occur in the input. However, when we biased the model more

strongly towards the alternating category, it identified transitive and intransitive verbs at a

much lower rate. The model’s rate of regularization was not affected by its bias against

deterministic categories in Simulation 2a, but was affected by its stronger bias in Simulation

2b.

5.2.2 Filter Parameter Inference. Figs. 8 and 9 display the posterior

probability distributions over ε and δ inferred by the skewed-prior models. Although the

shapes of these distributions are different, they are centered around similar values as those

inferred by our original model in Simulation 1. The mean of the distribution over ε is 0.22 in

Simulation 2a and 0.19 in Simulation 2b, compared to 0.19 for our original model. The mean

of the distribution over δ is 0.23 in Simulation 2a and 0.21 in Simulation 2b, compared to

0.25 for our original model. Just as for our original model, these values are close to the

estimated true values of ε = 0.24 and δ = 0.18 in the model’s dataset, as calculated for

Simulation 1.

Thus, changing the learner’s prior beliefs about how transitivity categories distribute in

its input did not substantially affect its inference about the parameters of its input filter: it

still inferred appropriate values for the frequency and behavior of error in its data. This

result is somewhat surprising: one may have expected that a prior heavily skewed in favor of

alternating verbs would lead the learner to filter less, as the learner’s dataset appears to

support a large number of alternating verbs even with very low rates of filtering. Instead, the

learner filtered in approximately the same way as in previous simulations. This might be
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Figure 8 . Posterior Distributions over ε and δ, Simulation 2a

because the learner is anchoring that inference on the distributions of the verbs that it

considers to be transitive and intransitive with the highest probability. Because both models

in Simulation 2 did identify some transitive and intransitive verbs, and those verbs are a

subset of the verbs that our original model categorized as transitive and intransitive with

highest probability, it is not so surprising that all three models found similar parameters for

their input filters. Moreover, inferring these parameters is what allowed the model in

Simulation 2b to still categorize some verbs as transitive and intransitive, despite its strong

bias against those categories. Without a filter, the model would perform identically to the

no-filter baseline in Simulation 1, and categorize all verbs as alternating.

5.3 Model Comparison: Random Prior Parameters

We found different results for the model’s verb transitivity inference depending on how

much we biased its prior against transitive and intransitive verbs. This raises the question:

under what circumstances does the model’s prior substantially affect its ability to identify

verb transitivity, and under what circumstances does it not matter? That is, how much bias

against deterministic verb categories can our learner accommodate and still accurately

identify those categories in its input?
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Figure 9 . Posterior Distributions over ε and δ, Simulation 2b

To answer this question, we ran 500 model simulations in which the model’s prior

probabilities over transitive, intransitive, and alternating categories were fixed to randomly

sampled values that summed to 1. Because the models in Simulations 1 and 2 inferred

similar values for ε and δ, for ease of computation we set these filter parameters to the mean

values of ε = 0.20 and δ = 0.23 that were inferred in those previous simulations. Fig. 10

plots the learner’s accuracy in categorizing transitive, intransitive, and alternating verbs as

its prior becomes more skewed towards the alternating category. The x-axis displays varying

values of the model’s prior on alternating verbs, and the y-axis displays the average

percentage of verbs in each class categorized correctly at each of those values. A curve of

best fit is plotted using a running LOESS regression (local nonparametric regression;

Cleveland & Devlin, 1988).

This plot shows that the learner’s accuracy in verb categorization remains steady

across a large range of prior parameter values. When its prior probability on alternating

verbs is less than approximately 0.75, the learner’s performance is fairly consistent: it

correctly categorizes on average 6/9 transitive verbs, 5/6 intransitive verbs, and 22/35

alternating verbs. Performance only begins to vary when its prior probability on alternating

verbs is pushed above 0.75. Above this value, its accuracy on categorizing transitive and
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Figure 10 . Accuracy (% Verbs Categorized Correctly) by Prior Probability on Alternating
Verbs

intransitive verbs declines and its accuracy on alternating verbs increases, as it categorizes

fewer verbs as transitive and intransitive. Thus, it appears that there is a large range of bias

towards or against deterministic verb categories that our learner can accommodate without

affecting its ability to identify those verbs in its input. It only begins to lose that ability

when its bias against deterministic categories becomes extreme.

5.4 Discussion

While Simulation 1 shows that an appropriate input filter is important for learning

verb transitivity, Simulation 2 shows that learning is also affected to some extent by the

learner’s prior beliefs about the relative frequency of transitivity categories in its input.

Skewing the model’s prior to expect verb transitivity categories in the same proportions that

it would actually encounter in its input did not affect its performance; its accuracy in

categorizing transitive, intransitive, and alternating verbs was nearly identical to our original

model. However, skewing the model’s prior more extremely in favor of alternating verbs

resulted in different performance. With a heavy bias against deterministic categories, the

model over-regularized alternating verbs much less, leading to higher accuracy on that verb

class and higher accuracy overall. But the model did not perform above chance levels at
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identifying the target transitive and intransitive verbs.

This behavior reveals two properties of our learner. First, it did not matter whether

the learner expected transitive, intransitive and alternating verbs to be equally likely a

priori, or whether it expected them to occur in the same proportions as they actually do

occur in child-directed English. In fact, it appears that our model’s performance would be

very similar across a large range of prior parameters. It is desirable that our learner can

succeed at identifying verb transitivity without prior expectations that match the

proportions of transitivity categories in the input— this will allow the learners to be

somewhat flexible in learning different target languages, even if transitivity categories

distribute differently in those languages compared to English or compared to the learners’

own priors. However, there is a point where the learner’s prior does exert an influence on its

verb categorization. When it was extremely biased to expect alternating verbs, our learner

was not able to successfully categorize transitive verbs. This means that merely having

deterministic categories in the learner’s hypothesis space, in any proportion, does not suffice

for accurately identifying those categories in the learner’s input. A learner must give those

categories sufficient prior weight in order to find them.

Second, even a learner strongly biased in favor of alternating verbs was able to infer

appropriate parameters for filtering sentences that were likely mis-parsed. This allowed it to

identify at least some of the transitive and intransitive verbs in its input, and to avoid

drawing the mistaken inference that all verbs are alternating. This filtering was less effective

for a learner with an extreme bias against the transitive and intransitive categories: its bias

hampered its ability to detect the signals of these deterministic categories in the data that it

let through its filter. However, the fact that the learner inferred appropriate filter parameters

even in this case points towards a promising direction for future research. A more

sophisticated learner might incrementally update its prior over transitivity categories given

more evidence about their distribution in its input, inferring the parameters of that

distribution in a hierarchical model. In this case, the learner’s correct initial estimates of its
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input filter parameters could be very helpful in identifying the right distribution over

transitivity categories. Thus, even if a learner’s prior beliefs about transitivity are grossly

inaccurate, inferring an input filter might allow it to appropriately adjust those beliefs as it

learns more about its language.

6 General Discussion

Learning in any domain depends on how the data for learning are represented. To the

degree that representations of the input change over development, either due to learning or

maturation, this will have an impact on how learners form categories and generalize from

their data. We examine this phenomenon in the domain of language acquisition, focusing on

an apparent paradox concerning the input to argument structure learning.

Learners use verbs’ distributions in transitive and intransitive clauses to draw

inferences about their argument-taking properties and meanings. Non-basic clauses interfere

with these inferences because young learners might not recognize when arguments of the

clause have been displaced from their canonical positions, and therefore might not represent

clause transitivity when it is present. We have followed a proposal that children need to filter

non-basic clauses out of the data they use for verb learning (Lidz & Gleitman, 2004a, 2004b;

Pinker, 1984, 1989), but this creates an apparent paradox. Identifying the structure of

non-basic clauses—in which transformations have applied to displace clause arguments—

would seem to depend on knowing some of the core argument structure properties of the

language, and yet learners need to filter non-basic clauses in order to bootstrap their

learning of those very properties. Empirical findings indicate that this paradox is not merely

hypothetical, but is faced by learners prior to their second birthdays. Experimental work

suggests that English-learning 1-year-olds begin acquiring basic argument structure slightly

before they learn to identify displaced arguments in common non-basic clause types

(Gagliardi et al., 2016; Jin & Fisher, 2014; Lidz et al., 2017; Perkins, 2019; Perkins & Lidz,

2020, 2021; Seidl et al., 2003).
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We offer a new solution to this paradox, which does not require the learner to detect

any direct or indirect signals to non-basicness (Pinker, 1984, 1989; Gleitman, 1990). We

instantiate a learner that considers the possibility that it occasionally parses sentences

erroneously. The learner infers how to filter out errors from the data it uses for verb learning,

without knowing where those errors came from. It observes only verbs’ distributions with

and without direct objects, and does not track any additional syntactic or non-syntactic cues

that might correlate with non-basicness—to this learner, a wh-object question is

indistinguishable from an intransitive clause. Nonetheless, our model successfully infers

appropriate parameters for filtering its input in order to identify the transitivity of the

majority of frequent verbs in child-directed speech. We therefore demonstrate that it is

possible for a learner to filter non-basic clauses for verb learning, without knowing which

clauses are non-basic and without needing to infer what the features of non-basic clauses are.

This provides an account for how the first attested steps of verb argument structure learning

in infancy can take place even as non-basic clause acquisition is still developing.

More broadly, by introducing a mechanism for a learner to filter erroneous parses of its

input, our model helps answer what has remained an open question in bootstrapping and

verb learning: how learners manage to avoid drawing faulty inferences about grammar and

meaning, at stages of development when they lack the linguistic knowledge to arrive at

veridical syntactic representations of sentences they hear. This ability has been traditionally

assumed by theories of both syntactic and semantic bootstrapping (Lidz & Gleitman, 2004a,

2004b; Gleitman, 1990; Pinker, 1984, 1989), and has been presupposed by previous

computational models of verb learning (Alishahi & Stevenson, 2008; Barak et al., 2014;

Parisien & Stevenson, 2010; Perfors et al., 2010). These previous models assume that

learners can veridically represent the arguments in a clause, and use those syntactic percepts

to identify verbs’ core argument-taking properties and their ability to productively generalize

across different argument structure alternations. Our model addresses the question of how

this process begins. We propose that a learner equipped with a filtering mechanism can still
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identify a verb’s basic argument structure, even before that learner can reliably identify all of

the arguments in sentences she hears.

Our case study focuses on only one argument structure property— transitivity— but

one that is arguably at the core of early grammar learning. The categories ‘subject’ and

‘object’ form the core arguments of the clause, providing the skeleton for infants’ earliest

clause structure representations. Furthermore, transitivity is robustly correlated with clause

meaning cross-linguistically, making it a particularly useful cue for early verb learning

(Fisher et al., 2018, 2019; Gleitman, 1990; Hopper & Thompson, 1980; Lidz & Gleitman,

2004a; Naigles, 1990). Although other argument structures and alternations, such as datives,

have received considerable attention in prior literature (C. L. Baker, 1979; Barak et al., 2014;

Parisien & Stevenson, 2010; Perfors et al., 2010; Pinker, 1989), many of these alternations

involve more language-specific and idiosyncratic form-meaning relations. These alternations

are thus less central to the core problem that syntactic and semantic bootstrapping proposed

to solve: how to initially break into a grammatical system whose abstract representations

can be realized as many different surface forms. At the onset of learning, principled

correlations between syntactic and conceptual categories, such as those that exist between

transitivity and causative meanings, might provide the learner with the foothold needed to

bootstrap into this system.

Modelling the initial steps of argument structure acquisition in this way limits the

learner to only consider the set of verbs in the input that can be classified as transitive,

intransitive, or alternating. Our model did not attempt to classify verbs with other types of

argument-taking behaviors, because doing so would require expanding the learner’s

hypothesis space to include the full set of possible argument structure classes in the language.

We believe that restricting the learner’s data at this stage of learning may be a helpful

simplification. This allows a young learner to focus on the portion of the input— the subset

of transitive, intransitive, and alternating action verbs— that provide the best signal for

transitivity acquisition and support the most robust bootstrapping inferences between syntax
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and meaning cross-linguistically. In making this simplification, we follow the majority of the

previous infant bootstrapping literature, which has focused on these verb classes for similar

reasons (see Fisher et al., 2018, 2019).

But considering a wider range of data at this stage of learning might be possible for a

learner with a different goal.8 For instance, a learner whose goal is merely to characterize

verbs’ distributions in transitive frames, as opposed to any other type of structure, could

consider verbs like start or want, which can take both direct objects and clausal or verbal

complements. This would also be possible for a learner whose goal is not to form discrete

transitivity classes, but merely to infer the transitivity rates for any given verb. While our

learner assumes that there exist some verbs (e.g. fix) that deterministically require a direct

object and other verbs that do not (e.g. eat), some theories propose no such categorical

difference between these verb types: verbs can occur in various syntactic frames at varying

rates (e.g. Borer, 1994, 2003; Goldberg, 1995).

However, it may be useful for a learner to hypothesize deterministic transitivity

categories at this stage of grammar acquisition, even under approaches where such categories

do not ultimately characterize the adult grammar. Having deterministic categories in the

hypothesis space predisposes the learner to expect more regular uses of verbs with direct

objects, providing an impetus to filter when presented with noisy data. Without a

regularization bias, a learner will have no a priori reason to expect that some verbs will have

direct object rates close to zero or one. Indeed, in informal simulations, we found that this

type of unbiased model filters its data less, and infers rates of direct objects that more

closely mirror the noisy distributions in its data. That is, even if a learner begins with the

assumption that it might be misparsing its data, without the expectation of deterministic

categories, it lacks guidance about what it could be misparsing: why filter in a way that

pushes direct object rates closer to zero or one, rather than, say, 0.5? Some form of bias in

the learner’s hypothesis space is needed for a learner to identify regularity in the presence of
8We thank Lisa Pearl for this suggestion.
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noise.

Further work is needed to determine whether our implementation of this regularization

bias, in terms of deterministic verb categories, provides the best model for children’s initial

knowledge and learning in comparison to other alternatives. For instance, it is possible that

a softer version of this bias could be implemented by skewing the model’s prior over verb

alternation rates, without assuming discrete verb classes.9 The current empirical data

showing emerging transitivity knowledge in infancy do not tell us the precise nature of

infants’ transitivity representations at this stage of development (Fisher et al., 2018, 2019;

Jin & Fisher, 2014; Lidz et al., 2017; Perkins, 2019; Perkins & Lidz, 2021). In particular, it

is still an open question whether 1-year-old infants assume discrete verb transitivity classes,

and if so, how their categorization of individual verbs at this age compares to that of our

model. Thus, our findings provide an invitation for additional computational and behavioral

work that will speak to the question of how best to model the transitivity hypotheses that

children bring to this learning task.

Our model diverges from previous computational models of bootstrapping (Abend et

al., 2017; Kwiatkowski et al., 2012; Maurits et al., 2009) by learning only from distributional

data: our learner identifies verb transitivity only by using rates of overt direct objects, and

does not have access to any additional syntactic or non-syntactic features of the sentences or

the discourse environment. By limiting our learner’s data in this way, we do not imply that

real-life learning proceeds only from this type of distributional information. On the contrary,

it is likely that children make simultaneous use of a much fuller set of information in

inferring a grammar, including conceptual representations of the extra-linguistic contexts of

the sentences they hear. But by investigating how much can be learned solely from verbs’

syntactic distributions, we are testing the viability of the proposal that infants can use

syntactic information to draw helpful generalizations even if they do not know which event
9That is, an alternative approach could manipulate the model’s Beta prior over θ, following the approach

to regularization taken in e.g. Reali and Griffiths (2009), Culbertson and Smolensky (2012) and Culbertson,
Smolensky, and Wilson (2013).
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in the world a particular sentence describes (Gleitman, 1990).

This issue has not been fully examined in prior bootstrapping models, which assume

that learners begin by accessing the exact meaning (or set of possible exact meanings) of a

sentence, represented under a structure that is homomorphic with the syntactic structure

(Abend et al., 2017; Kwiatkowski et al., 2012; Maurits et al., 2009). Given access to this full

conceptual representation, or instead to the full syntactic representation of a sentence, these

models show that it is simple to learn how to convert from one representation to the other.

This is because the learner’s meaning representation is in a form that encodes all and only

the predicate-argument relations in the syntactic representation of the sentence, and there is

an assumption built into the learner that those two representations will mirror each other.

The bootstrapping task thus reduces to the problem of identifying which lexical items

express which predicates and arguments in the learner’s conceptual structure. Given this

information, the learner can infer the syntactic representation of a sentence by reading off of

its structured conceptual representation, and vice versa.

But bootstrapping is not so simple if learners only have access to approximations of

these representations, or if conceptual structures encode more relations than those expressed

in the sentence’s argument structure. Even if children can perceive events and event relations

in the world in the same way as adults do, it is not straightforward to identify which event

relations a sentence expresses solely from its context of use (Gleitman, 1990; Gillette,

Gleitman, Gleitman, & Lederer, 1999). And when we consider the wide range of syntactic

relations that might be instantiated in a particular sentence, including the various non-local

dependencies found in non-basic clauses, it seems even less straightforward for the child’s

non-linguistic perception of the world to yield a meaning in a form that is homomorphic with

the syntax of that sentence. Here, we ask whether learning can still succeed in cases where a

child might not have access to conceptual and syntactic representations that mirror each

other in their structure. If either of these representations is approximate or incomplete, then

children must use whatever partial information might be useful in one domain— syntax or
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meaning— as probabilistic evidence for drawing inferences about the other domain. We show

how learners might accommodate error in their syntactic percepts, such that those percepts

are still useful as evidence for drawing further generalizations about their language.

Crucially, an input filtering mechanism like the one we propose can flexibly adapt over

the course of a learner’s development. As a learner gains more knowledge of the grammar of

her language, her syntactic percepts will change: she will be learning from more complete

and more accurate parses of the sentences she hears. This means that the error in her

syntactic percepts will also reduce over time, and she will not need to filter as much of her

data for learning. In our case, our model is learning from data that reflects the parses of an

immature learner at a particular stage of development: one who cannot identify objects

when they are realized in non-canonical positions, and who mistakes certain NP adjuncts for

arguments. These data do not veridically reflect the distributions of verbs with direct objects

in the actual input to the learner. Thus, the learner is not inferring filter parameters to fit

its actual input— instead, the learner is inferring filter parameters to fit its erroneous

representations of that input. A more mature learner who has learned to identify argument

displacement in English will have access to a different dataset, one that has a lower rate of

error. This more mature learner would identify different parameters for filtering its data in

order to learn more about its grammar.

Our model is merely a starting point, beginning with one corner of English argument

structure. But having presented a proof of concept that our filtering solution is possible, we

can ask how far it could generalize. In future work, we aim to test whether this model could

be extended to languages with freer word order or rampant argument-drop. These linguistic

properties may make it difficult for learners to identify clause transitivity even in simple,

active, declarative clauses. For example, the relatively free word order of Japanese compared

to English means that word order is less helpful for identifying subjects and objects in a

clause, and learners must use language-specific case morphology instead; furthermore, the

ability of Japanese speakers to freely drop the subject and/or object of a clause if it is salient
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in the discourse means that a learner must use discourse cues to recognize when silent

arguments are present. For these reasons, Japanese and other languages with some of these

properties, like Mandarin and Korean, are potentially problematic for syntactic

bootstrapping strategies that rely on learners accurately identifying transitive verbs (Lee &

Naigles, 2005, 2008), but see Fisher et al. (2019) and Suzuki and Kobayashi (2017) for

evidence that learners do nonetheless succeed. If our model can learn appropriate parameters

for filtering out the relatively higher rate of potentially misleading data in languages like

Japanese, this may help clarify how syntactic bootstrapping is possible in these languages.

An additional question for future work is how children learn to identify the structure of

non-basic clauses in their language. How do learners identify which transformations are

present in sentences that may have initially been parsed in error? Following Gagliardi et al.

(2016) and Stromswold (1995), Perkins (2019) argues that verb transitivity may be an

important first step: if a learner expects a particular argument for a verb and encounters

sentences where that argument does not appear in its canonical position, the learner may be

compelled to examine those sentences to determine the cause of the missing argument. Thus,

a strategy of identifying sentences that were likely parsed in error may help learners not only

filter their input for learning verb transitivity, but also eventually learn how the target

language realizes various grammatical transformations.

More broadly, we might ask whether this filtering mechanism could generalize beyond

verb transitivity learning, to other cases in language acquisition where learners must ignore

misleading data in order to draw correct inferences about their language. For example, prior

work has proposed that some form of input filtering is helpful in other cases where noise

masks regularities that are present in the learner’s input: for instance, in the identification of

vowel categories (Adriaans & Swingley, 2012), and in acquiring the correct constraints on the

antecedent of anaphoric one in English (Pearl & Lidz, 2009). Filtering may also provide a

mechanism for understanding why young learners tend more strongly than adults to

regularize probabilistic input in artificial language studies (Hudson Kam & Newport, 2009),



FILTERING INPUT FOR ARGUMENT STRUCTURE ACQUISITION 52

and how learners can acquire correct generalizations about their first language from noisy

input by second-language speakers (Singleton & Newport, 2004; Schneider, Perkins, &

Feldman, 2020). When our learner expects that noise might be masking regularities in its

data, filtering allows it to identify those regularities, and even to over-regularize in some

cases. As the current work does not tell us precisely how much noise this filtering mechanism

would be able to tolerate, an important direction for future work would be to determine

when filtering can enable successful regularization and when additional learning mechanisms

are needed. A combination of determinism in children’s hypothesis spaces, along with the

expectation of error in their input representations, may help advance our understanding of

when children draw deterministic generalizations about their language and how they draw

the right ones.

Finally, the filtering mechanism we propose offers a new perspective on the use of data

in learning. Typically-developing children acquire a language on the basis of only a few years’

worth of linguistic input— far exceeding the ability of our most advanced language

processing technologies, and using only a fraction of the data that is necessary to train those

systems. Despite the received wisdom that more data is always better, our case study

suggests that children’s success may be in part due to their ability to be strategic about what

data to learn from. By suggesting an advantage to learning from smaller data, this filtering

mechanism is similar in some ways to Newport (1990)’s “Less is More” hypothesis, under

which young children’s language learning is facilitated by extralinguistic cognitive limitations

that restrict the amount of data they can process. But our model’s filter differs in an crucial

way: instead of being a by-product of external processing limitations, this filter is an integral

part of the learning mechanism, arising from the learner’s assumption of a noisy relationship

between its data and the hypotheses it is evaluating. Under our approach, learners jointly

infer the regularities underlying a particular phenomenon in their input, and what data to

use in order to best identify those regularities. This type of input filtering is with respect to

a specific learning goal— a child attempting to acquire a different phenomenon might filter



FILTERING INPUT FOR ARGUMENT STRUCTURE ACQUISITION 53

her input in an entirely different way— and therefore provides more flexibility than an

approach that imposes a hard constraint on the amount of data a learner can access. This

flexibility invites further investigation into how broadly this filtering mechanism might

generalize beyond language learning: it is possible that we might find strategic input filtering

in learning in many other domains in which learners must generalize from noisy or unreliable

data. Understanding when learners choose to learn from their input, and when they choose

not to learn, may help illuminate why learning in these cases can be so remarkably successful.
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Appendix

Details of Gibbs Sampling

We use Gibbs sampling (Geman & Geman, 1984) to jointly infer T , ε, and δ, integrating over

θ and summing over e, with Metropolis-Hastings (Hastings, 1970) proposals for ε and δ.

We begin by randomly initializing ε and δ, and sampling values of T for each verb

given values for those input filter parameters. From observations of a verb with and without

direct objects, the model determines which value of T was most likely to have generated

those observations. For k(v) direct objects in n(v) sentences containing verb v, we use Bayes’

Rule to compute the posterior probability of each value for T (v),

P (T (v)|k(v), ε, δ) = P (k(v)|T (v), ε, δ)P (T (v))∑
T ′(v)

P (k(v)|T ′(v), ε, δ)P (T ′(v))
(7)

Bayes’ Rule tells us that the posterior probability of a particular value of T given k(v)

and the other model parameters is proportional to the likelihood, the probability of k(v)

given that value of T and those parameters, and the prior, the probability of T before seeing

any data. We assume that T is independent of ε and δ. In Simulation 1, we set a uniform

prior over T , which is adjusted to reflect different biases about the proportions of transitivity

categories in Simulation 2.

To calculate the likelihood, we must sum over e. This sum is intractable, but because

all of the values of e for the same verb and the same direct object status are exchangeable,

we make the computation more tractable by simply considering how many errors were

generated for sentences with and without direct objects for a particular verb. We divide the

k(v) observed direct objects for a verb into k(v)
1 direct objects that were observed accurately

and k(v)
0 direct objects that were observed in error. The total n(v) observations for verb v are

likewise divided into n(v)
1 accurate observations and n(v)

0 errorful observations. We then

calculate the likelihood by marginalizing over n(v)
1 and k(v)

1 , again assuming independence

among T , ε, and δ,
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p(k(v)|T (v), ε, δ) =
n(v)∑

n
(v)
1 =0

 k(v)∑
k

(v)
1 =0

p(k(v)|k(v)
1 , n

(v)
1 , δ)p(k(v)

1 |n
(v)
1 , T (v))

 p(n(v)
1 |ε) (8)

The first term in the inner sum is equivalent to p(k(v)
0 |n

(v)
0 , δ), assuming we know n(v),

the total number of observations for a particular verb. This is the probability of observing

k
(v)
0 errorful direct objects out of n(v)

0 errorful observations, which follows a binomial

distribution with parameter δ,

p(k(v)|k(v)
1 , n

(v)
1 , δ) = p(k(v)

0 |n
(v)
0 , δ) =


(

n
(v)
0

k
(v)
0

)
δk

(v)
0 (1− δ)n

(v)
0 −k

(v)
0 if k(v)

0 ≤ n
(v)
0

0 otherwise
(9)

The second term in the inner sum in (8) is the probability of observing k(v)
1 accurate

direct objects out of n(v)
1 accurate observations, which follows a binomial distribution with

parameter θ(v),

p(k(v)
1 |n

(v)
1 , T (v)) =


(

n
(v)
1

k
(v)
1

)
(θ(v))k

(v)
1 (1− θ(v))n

(v)
1 −k

(v)
1 if k(v)

1 ≤ n
(v)
1

0 otherwise
(10)

Recall that θ(v) = 1 for the transitive category of T , and θ(v) = 0 for the intransitive

category of T . For the alternating verb category, θ(v) is unknown, so we integrate over all

possible values of θ(v) to obtain 1
n

(v)
1 +1

.

The last term in (8) is the probability of observing n(v)
1 accurate observations out of the

total n(v) observations for verb v, which follows a binomial distribution with parameter 1− ε,

p(n(v)
1 |ε) =

(
n(v)

n
(v)
1

)
(1− ε)n

(v)
1 (ε)n(v)−n

(v)
1 (11)

After sampling values for T for each verb in the dataset, we then sample values for ε
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and δ. If T denotes the set of values T (1), T (2), ..., T (V ), and k denotes the full set of

observations of direct objects k(1), k(2), ..., k(V ) for all V verbs in the input, we can define

functions proportional to the posterior distributions on ε and δ, f(ε) ∝ p(ε|T, k, δ) and

g(δ) ∝ p(δ|T, k, ε), as

f(ε) = p(k|T, ε, δ)p(ε) (12)

g(δ) = p(k|T, ε, δ)p(δ) (13)

where the likelihood p(k|T, ε, δ) is the product over all verbs v of p(k(v)|T (v), ε, δ), as

calculated in (8).

Within the Gibbs sampler, we resample ε using 10 iterations of a Metropolis-Hastings

algorithm. We begin by randomly initializing ε. At each iteration, we propose a new value ε′,

sampled from the proposal distribution Q(ε′|ε) = N(ε, 0.25). Because the proposal

distribution is symmetric, this new value is accepted with probability

A = min

(
f(ε′)
f(ε) , 1

)
(14)

If the new value ε′ has higher probability given T , k and δ under equation (12), it is

accepted. If it has lower probability under equation (12), it is accepted at a rate

corresponding to the ratio of its probability and the probability of the old value of ε. After

sampling ε, we resample δ with 10 iterations of Metropolis-Hastings. The proposal and

acceptance functions are analogous to those for ε.

We ran multiple chains from different starting points to test convergence of T , ε, and δ.

For the simulations reported here, we ran 1,000 iterations of Gibbs sampling. We took every

tenth value from the last 500 iterations as samples from the posterior distribution over T , ε,

and δ.


