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The exon shu®ling theory posits that intronic recombination creates new domain combinations,

facilitating the evolution of novel protein function. This theory predicts that introns will be

preferentially situated near domain boundaries. Many studies have sought evidence for exon

shu®ling by testing the correspondence between introns and domain boundaries against chance
intron positioning. Here, we present an empirical investigation of how the choice of null model

in°uences signi¯cance. Although genome-wide studies have used a uniform null model, exclu-

sively, more realistic null models have been proposed for single gene studies. We extended these

models for genome-wide analyses and applied them to 21 metazoan and fungal genomes. Our
results show that compared with the other two models, the uniform model does not recapitulate

genuine exon lengths, dramatically underestimates the probability of chance agreement, and

overestimates the signi¯cance of intron-domain correspondence by as much as 100 orders of
magnitude. Model choice had much greater impact on the assessment of exon shu®ling in fungal

genomes than in metazoa, leading to di®erent evolutionary conclusions in seven of the 16 fungal

genomes tested. Genome-wide studies that use this overly permissive null model may exaggerate

the importance of exon shu®ling as a general mechanism of multidomain evolution.

Keywords: Exon shu®ling; null model; intron.

This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under

the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND)
License which permits use, distribution and reproduction, provided that the original work is properly cited,

the use is non-commercial and no modi¯cations or adaptations are made.

OPEN ACCESS
Journal of Bioinformatics and Computational Biology

Vol. 19, No. 6 (2021) 2140013 (17 pages)

#.c The Author(s)

DOI: 10.1142/S0219720021400138

2140013-1

J. 
B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

21
.1

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 6

7.
16

3.
15

0.
14

1 
on

 0
1/

23
/2

2.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.

https://dx.doi.org/10.1142/S0219720021400138


1. Introduction

Soon after the discovery of introns, Gilbert1 hypothesized that exon-intron gene

organization could facilitate the evolution of gene function, through a process he

called exon shu®ling. If exons encode speci¯c functions, then new combinations of

these functional units can arise through recombination within introns. Blake2 sub-

sequently observed that a new architecture arising from reassortment of exons must

encode a foldable protein to be advantageous. This is most likely to occur if the exons

themselves correspond to structural units. These observations, taken together, pre-

dict (1) that sequences °anked by introns encode \integrally folded protein units"3

and (2) that introns will be situated near the boundaries of those units.

The notion of what constitutes an \integrally folded protein unit" evolved over

time. Exons are typically too short to encode entire folds. That exons might encode

smaller, structurally compact regions or elements of secondary structure was con-

sidered, but no compelling relationship between exons and a quantum of protein

structure emerged.4 Moreover, intron gains and losses can obscure an one-to-one

relationship between ancestral exons and units of protein structure. With this in

mind, the formation of novel protein architectures through intronic recombination

was reframed in terms of larger structural modules, so-called domains, sequences that

encode an entire fold and may be encoded by more than one exon.

Over the intervening 40 years, studies have probed the role of exon shu®ling in the

origins of ancient genes (the \exon theory of genes"; see Ref. 5 for a detailed review)

and the evolution of modular protein architectures,6–10 especially during emergence

of metazoan multicellularity.11 Due to the limited availability of sequence and

structural data, early studies focused on the spatial relationship between intron and

structural units one gene at a time.5

Sequencing of eukaryotic genomes provided a much larger sample of genes with

intron/exon structure for such studies. Moreover, the rapid growth of sequence data

enabled prediction of domains from multiple sequence alignments, relaxing the need

for structural data. In the ¯rst genome-scale study, Liu and Grigoriev7 tested the

second prediction, that introns will be preferentially situated near the boundaries of

domains, in nine metazoan genomes against a null model of uniformly distributed

intron positions. They reported \a striking correlation" between introns and domain

boundaries, concluding that \exon shu®ling was extensive throughout evolution of

eukaryotes and contributed signi¯cantly to the complexity of their proteomes". They

subsequently examined the evolutionary role of domains °anked by introns at both

ends, but did not carry out genome-scale statistical tests.8 Fifteen years later,

Smithers et al.10 applied a similar approach to a larger and more broadly taxo-

nomically distributed set of eukaryotic genomes, and concluded that \domain

shu®ling … is indisputably found widely across the eukaryotic tree".

These conclusions depend crucially on the assessment of signi¯cance of intron-

domain boundary agreement, which in turn depends on the use of realistic null

models. In early studies,12 three null models were developed that preserve features of
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the genuine data to di®erent extents. Only one, the uniform model, was used in later

genome-scale studies.7,10 The appropriateness of a uniform model of random intron

positioning and its in°uence on the conclusions of the study were not examined.

Here, we investigate how the choice of null model a®ects the assessment of the

exon shu®ling hypothesis empirically. We specify test statistics for both predictions,

that domains °anked by introns at both ends will be overrepresented and that

introns will be preferentially situated at domain boundaries. We extend null models

from studies of single genes12 for use in genome-wide analyses and use them to assess

the signi¯cance of both test statistics in ¯ve metazoan and 16 fungal genomes.

Our empirical results show that these null models vary substantially in their

propensity for Type I errors in genome scale studies and the extent to which they

preserve the properties of gene architecture. In particular, the widely-used uniform

model does not recapitulate exon length distributions, even approximately, and

results in highly exaggerated signi¯cance estimates. The impact on metazoan gen-

omes is minimal; exon shu®ling statistics are signi¯cant under all three models.

However, statistical tests in fungal genomes are highly sensitive to the choice of

model. Moreover, even when highly signi¯cant, the e®ect size in fungal genomes is

extremely small. Only 3% of domains, on average, coincide with an intron at both

ends. Our results are consistent with conclusions of prior studies that exon shu®ling

contributed to metazoan, but not fungal genome evolution.11 Importantly, this work

demonstrates the importance of selecting null models that preserve the features of

genuine data: more permissive null models may overestimate the signi¯cance, leading

to incorrect biological conclusions.

2. Models for Testing the Exon Shu®ling Hypothesis

Agreement between \the exon-structure of the genes and the domain-organization of

proteins"13 is a source of evidence for exon shu®ling. Here, we consider two test

statistics that capture di®erent aspects of this correlation, expressed in terms of the

relative positions of introns and domain boundaries. For each of these test statistics,

we use three di®erent null models to assess the deviation from chance agreement

between exon and domain organization.

Our analyses use the following general procedure for all six combinations of test

statistic and null model, with one exception discussed below. Let g be a gene in

genome G of length lðgÞ codons with KðgÞ exons and DðgÞ domains, and let Tg be a

gene-speci¯c test statistic that quanti¯es the agreement between introns and domain

boundaries in g. We de¯ne a genome-wide test statistic TG ¼ P
g2GTg to assess this

agreement across the genome as a whole.

The expected value of TG is estimated by repeatedly generating ensembles of

randomized intron positions and calculating the genome-wide test statistic for each

ensemble. This procedure is repeated forM iterations, resulting inM estimates of the

genome-wide test statistic. In this study, M ¼ 108.

Evidence for exon shu®ling is sensitive to model choice
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This calculation is carried out on a per-gene basis at each iteration. For each gene

g 2 G, KðgÞ � 1 random intron positions are generated according to the null model.

The value of the gene-speci¯c test statistic for the ith ensemble, T
ðiÞ
g , is obtained by

comparing the simulated intron positions with the true domain boundaries. From

these, the ith genome-wide test statistic is calculated: T
ðiÞ
G ¼ P

g2GT
ðiÞ
g :

The expected value of the genome-wide test statistic, E½TG�, is the mean of the M

genome-wide test statistics, fT ð1Þ
G ; . . . ;T

ðMÞ
G g, generated by this procedure. We then

use a �2 goodness-of-¯t test with one degree of freedom to assess whether the ob-

served coincidence between domain boundaries and introns di®ers signi¯cantly from

the coincidence expected under a null model of intron positioning.

Test statistics. We consider two test statistics (Fig. 1) corresponding to two

properties that are predicted to facilitate the formation of novel protein architectures

by intronic recombination.

The intron test statistic: Recombination in introns located outside sequences that

encode protein modules is less likely to disrupt the structural integrity of the protein.

According to the exon shu®ling theory, the presence of introns separating sequences

that encode domains is advantageous for acquisition of novel domain architectures

and therefore, there should be an over-representation of domain-°anking introns,

that is, introns in domain boundary boxes, de¯ned in what follows.

This property is represented by the number of introns that agree with domain

boundaries (TI). Following Refs. 7, 8 and 10, we de¯ne a domain boundary box to be

w contiguous amino acids straddling the end of a domain. Two values of w were

considered7,8: For w ¼ 20, the box extends 10 amino acids on either side of the

domain boundary. For w ¼ 6, the box consists of 5 amino acids outside and 1 amino

acid inside the domain boundary. Then, TI;g and TI;G are de¯ned to be the number of

introns located in domain boxes in gene g and genome-wide, respectively.

Fig. 1. Calculation of the test statistics TI and TD for a hypothetical gene withKðgÞ ¼ 5 exons encoding a

protein with DðgÞ ¼ 2 domains. Two introns (exon boundaries) labeled with check-marks fall into a

boundary box of domain 1. The other two introns, labeled with cross-marks, do not agree with any domain
boundary box in the gene. So, in this example, TI;g ¼ 2. Both of the ¯rst domains boxes agree with some

intron; this is not true for domain 2. Thus, TD;g ¼ 1 in this example.
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The domain test statistic: Protein modules that are encoded by an integral number of

exons are more likely to fold correctly following intronic recombination. That is, if

intron-mediated recombination of sequences encoding structural or functional

modules plays an important role in the formation of novel protein architectures, then

sequences that encode those modules should be °anked by introns at both ends.

This property is quanti¯ed by the number of domains that contain at least one intron

in each domain boundary box (TD).

2.1. Null models of intron positions

Three approaches have been introduced to model the chance intron positions in a

single gene: uniform, sampling from the empirical exon length distribution, and

permutating exon order.4 Here, we extend those models for use in genome-wide tests.

The uniform null model. Intron positions in gene g are simulated by sampling

KðgÞ � 1 integers uniformly at random from the interval ½0; lðgÞ�. This model pre-

serves the number of introns per gene, but not characteristic exon lengths.

For the uniform model, the expected value of the intron test statistic (TI;g) can

also be estimated from known quantities without resorting to simulation. The

probability of an intron falling into a domain boundary box in g is wðgÞ, the fraction
of the lðgÞ residues in g that are within any boundary box in g. The expected number

of introns that agree with some domain boundary in g is

E½TI;g� ¼ ðKðgÞ � 1ÞwðgÞ:
This expression was used to assess signi¯cance in two previous studies.8,10 Liu and

Grigoriev used an analogous expression to calculate a genome-wise intron test sta-

tistic directly, without the intermediate step of comparing intron positions with

domain boundaries on a per-gene basis.7 That approach preserves the number of

introns in the genome as a whole, but not the number of introns per gene.

The permutation null model. Intron positions in gene g are simulated by per-

muting the order of the exons in g. All KðgÞ! permutations are assigned with equal

probability. This model preserves both the number of introns and the gene-speci¯c

exon lengths. It does not, however, preserve length distributions associated with exon

order. The number of permutations grows super-exponentially with the number of

exons, with potential complications at both ends of the scale. For some genes, the

total number of permutations will be smaller than M , the number of ensembles to be

generated, necessitating sampling with replacement. For other genes, the number of

permutations will be so large as to require subsampling.

To address these issues, for genes with nine or fewer exons, we ¯rst enumerate all

permutations and calculate the associated values of Tg. These precalculated values

are then sampled with replacement to obtain M gene-speci¯c test statistics. To

reduce the computational overhead for genes with more than nine exons, the number

of permutations generated is capped at 9!. The associated precalculated test statistics

Evidence for exon shu®ling is sensitive to model choice
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are then sampled with replacement to obtain M values of Tg. Note that this process

still generates M distinct genome-wide ensembles because the same permutation will

be combined with di®erent permutations of other genes in each replicate.

The empirical exon length null model. Intron positions in gene g are simulated

by sampling KðgÞ exons of lengths fl1; . . . ; lKðgÞg from the genome-wide empirical

exon length distribution. Some early studies sampled lengths from a lognormal dis-

tribution with mean and standard deviation calculated from the empirical data.4

With the genome-scale data sets now available, exon lengths can be modeled directly

by the genome-wide empirical distribution. This model preserves the number of

introns and approximately preserves the genome-wide distribution of exon lengths.

Like the permutation model, it does not account for di®erences in exon lengths at

di®erent ordinal positions in the gene.

To ensure that the simulated gene length agrees with the actual gene length, the

lengths are scaled by a factor of lðgÞ=̂l, where l̂ ¼ PKðgÞ
k¼1 lk. The resulting distribution

of scaled exon lengths will deviate from the empirical distribution from which the

lengths were originally sampled. This deviation can be mitigated by repeatedly

sampling sets of KðgÞ exons until their combined length is close to the actual gene

length, but at a considerable increase in running time.

To balance these needs, we introduce a procedure where the tradeo® between

accuracy and performance is controlled by three adjustable parameters, �, � and M 0.
For each g 2 G, sets of KðgÞ lengths are sampled repeatedly from the empirical exon

length distribution until either ĵl � lðgÞj < � or the number of tries reaches � . Upon

termination, the sample is scaled and added to the set of ensembles for g. We de-

termined empirically that � ¼ 20 and � = 100 represent a reasonable tradeo®.

We further limit the computational costs by sampling fewer than M ensembles

per gene and apply a memoization strategy similar to that used for the permutation

model. For each gene,M 0 < M ensembles of randomized intron positions are sampled

in advance and TI;g and TD;g are calculated for each ensemble. In this study, the

number of ensembles is limited toM 0 ¼ 10;000. Next,M di®erent genome ensembles

are generated by sampling with replacement from theM 0 precomputed test statistics

for each gene. The choice of M 0 ¼ 10;000 improves speed without unduly

compromising the statistical power: for all genes with seven or fewer exons, the em-

pirical model o®ers more statistical power than the permutation model, since

10;000 > 7!. This is especially relevant for intron-poor organisms. In almost all fungal

species examined here, more than 80% genes examined have seven exons or fewer.

3. Results

In order to determine how model choice in°uences conclusions about the exon

shu®ling hypothesis, we examined the evidence empirically using both the intron-

based and the domain-based test statistics and all three null models discussed in the

previous section. The test statistics were calculated with two di®erent domain box

sizes used in prior studies7,8: w ¼ 20 and 6.

X. Cui, M. Stolzer & D. Durand
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We analyzed the ¯ve of the nine metazoan genomes originally analyzed by Ref. 7,

as well as 16 fungal genomes (Fig. 2). Fungal genomes were selected for this study

because they possess a broad range of intron sizes and frequencies,14,15 ranging from

0:4 to 4:7 introns per gene in our dataset. Gene model coordinates were downloaded

from NCBI, Ensembl, and JGI (Table S1). Domain predictions were extracted from

the SUPERFAMILY 2 database.16 Following Refs. 7 and 8, genes with at least one

intron and at least one annotated domain that does not coincide with the ¯rst or last

w amino acids of the protein, were considered.

3.1. The uniform model generates unrealistic exon lengths

Testing the exon shu®ling hypothesis requires models of chance intron positions that

are consistent with intron-exon structure in actual genes. To assess the suitability of

the null models used here, we compared the exon length distributions generated by

the uniform and empirical models to the genuine exon length distribution (Fig. 3).

(Exon lengths in ensembles simulated by permutation are the same as the genuine

data and were not included in this comparison.)

Visual inspection shows that while neither model preserves the genuine exon

length distribution (Fig. 3(a)), the deviation is much greater for the uniform model.

A quantitative comparison using the Kolmogorov–Smirnov (KS) distance, a measure

of the di®erence between two cumulative distribution functions with range [0,1],

indicates that the uniform model provides a much poorer ¯t than the empirical model

for all 21 genomes analyzed (Fig. 3(b)).

Conidiobolus coronatus

Mortierella verticillata

Tuber melanosporum

Aspergillus nidulans

Aspergillus terreus

Botrytis cinerea

Chaetomium globosum

Fusarium graminearum

Rhodotorula graminis

Melampsora larici-populina

Mixia osmundae

Malassezia globosa

Ustilago maydis

Wallemia mellicola

Piloderma croceum

Coprinopsis cinerea

Fig. 2. Tree of the 16 fungal species in this study, adapted from Spatafora et al.17
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Figure 3 provides an assessment of the agreement between the genome-wide

distributions of simulated and genuine exon lengths, but does not address the pos-

sibility that exon lengths might di®er in di®erent classes of genes or domains.

A violation of the assumption that the genome-wide distribution is an appropriate

model for all genes could be particularly problematic if mobile or promiscuous

domains are encoded by exons with a di®erent characteristic length distribution.

However, visual comparison of exon sizes across proteins with varying numbers of

domains (Fig. S1) suggests that they are not dramatically di®erent and this is not a

huge factor in this data set. Another possibility not addressed is that exons lengths

might di®er at di®erent positions in the exon–intron structure. Indeed, empirical

evidence suggests that exon length distributions vary with ordinal position in the gene

and that this e®ect varies across taxonomic lineages.18 None of the models used in this

study account for a possible interaction between exon position and exon length.

3.2. Estimates of chance agreement are highly sensitive

to model choice

We next asked how the choice of null model in°uences the signi¯cance of genome-

wide intron-domain boundary agreement.

0 50 100 150 200 250 300

Exon length (aa)
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Genuine exons

Uniform sampled

Empirical sampled
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Fig. 3. (a) Histograms of exon lengths from the genuine data and two simulation models for a represen-
tative metazoan and a representative fungal genome. (b) KS distances between the genuine exon length

distribution and the exon length distributions implied by the uniform model (white bars) and the empirical

model (hatched bars), respectively.

X. Cui, M. Stolzer & D. Durand

2140013-8

J. 
B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

21
.1

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 6

7.
16

3.
15

0.
14

1 
on

 0
1/

23
/2

2.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



The numerical range of p-values obtained with the three models is astounding.

The uniform null model consistently yields the smallest expected agreement, the

most stringent p-values, and the greatest signi¯cance. Compared with the most

conservative estimate (obtained with the permutation model), p-values inferred with

the uniform model can di®er by ten to � 100 orders of magnitude (Fig. 4).

Fig. 4. �2 Goodness-of-Fit (�log10ðpÞ) and relative di®erence (ðT � EÞ=E) for the intron-based (top) and

domain-based (middle) test statistics (w ¼ 20), with the e®ect sizes (bottom). Dashed lines indicate
signi¯cance threshold (� ¼ 0:001). Circles and triangles indicate p-values that are signi¯cant and not

signi¯cant, respectively, at the � level. ND and NI are the total number of domains and introns in G,
respectively. The smallest p-value obtainable with the R function pchisq() is 5E-324.
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For the ¯ve metazoan genomes, the p-values are so extreme that the choice

of null model is of minor importance; for both test statistics and especially TD,

intron-domain boundary agreement in these genomes is highly signi¯cant under all

null models. Most fungal genomes, however, have much less stringent p-values.

Intron-domain boundary agreement is not signi¯cant under all null models in three

fungal genomes with respect to TI and two for TD. Importantly, for TI , at a signif-

icance threshold of 0.001, three species have signi¯cant agreement under the uniform

model, but are not signi¯cant with the other null models. This is also the case for four

fungal genomes when TD is considered. The choice of null model leads to di®erent

conclusions for three genomes for the smaller box size (w ¼ 6, Fig. S2) as well. Thus,

for fungal genomes, the choice of null model not only leads to di®erent numerical

values, but potentially can result in di®erent biological conclusions.

3.3. Few domains are °anked by introns

Statistical signi¯cance provides a measure of the frequency of intron-domain

boundary agreement relative to chance expectations, but does not tell us how im-

portant this agreement is to the evolution of novel protein architectures. As an

assessment of the size of this e®ect, the fraction of introns that are associated with a

domain boundary is consistently modest, ranging from 9% to 15% across the 21

genomes studied (Fig. 4).

We further asked what fraction of domains coincide with an intron at both ends.

In metazoa, on average, 21% of all domain instances are °anked by introns in the

vertebrates and 7% in the invertebrates. In contrast, in the fungal genomes tested, on

average, only � 3% of all domain instances are °anked by introns at both ends.

4. Discussion

The exon shu®ling hypothesis, later recast in terms of domain shu®ling, makes two

predictions: (1) sequences that fold independently will be preferentially encoded by

an integral number of exons (i.e. will be °anked by introns at both ends) and

(2) introns will tend to be located outside of the sequences that encode these modules.

One commonly used strategy for testing this hypothesis is to assess the frequency of

introns positioned near structural boundaries against chance models of intron posi-

tioning. Although several null models of intron positioning have been proposed for

the analysis of individual genes,4,12,19,20 genome-scale studies have only considered

uniformly distributed introns, leaving the choice of null model out of the discussion.

In addition, genome-scale studies that have used this approach have focused exclu-

sively on the second prediction.7,10 The importance of domains °anked by introns to

multidomain evolution has been discussed,8 but not tested statistically.

In this study, we evaluated the performance of three null intron position models

empirically in ¯ve metazoan and 16 fungal genomes. We considered both predictions

of the exon shu®ling hypothesis: In addition to the widely used intron test statistic,
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we introduced a new statistic representing domains that are °anked by introns at

both ends. The models were compared with respect to their propensity to reject the

null hypothesis, the extent to which they preserve gene and genome properties, and

ease of computation.

Preservation of gene and genome features: Generally speaking, statistical hypothesis

testing can be compromised when the null model preserves too few aspects of the

genuine data. Our results show that the exon length distributions generated by

uniformly distributed intron positions deviate greatly from genuine exon length

distributions, with an unrealistic excess of very short exons (Fig. 3). The genomic

exon length distribution is preserved exactly by the permutation model and ap-

proximately by the empirical model, although some distortion is introduced by the

length adjustment required to keep the gene length constant. We did not probe the

accuracy of the models in reproducing exon length distributions in di®erent classes of

genes or domains, although we do observe that, in this data set, exon length dis-

tributions do not vary greatly with the number of domains encoded. Exon length

distributions are known to vary with exon position,18 a phenomenon not accounted

for by any of the models tested here. The importance of models that capture exon

length variation on a ¯ner scale warrants further investigation.

Propensity to reject the null hypothesis: Themodels di®er in howwell they recapitulate

genuine exon lengths. As might be expected, they also di®er in their assessment of

signi¯cance. Indeed, the impact of model choice on p-values is dramatic. Despite this

enormous variation (up to100 orders ofmagnitude in ourdata), the variation inp-values

may have little impact on exon shu®ling tests in metazoa. In all metazoan genomes

tested, intron-domain boundary agreement is signi¯cant with both test statistics and

with all threemodels. In contrast, in fungal genomes,model choice has a real impact. For

almost half (7/16) of the fungal genomes studied, using di®erent null models leads to

di®erent conclusions with at least one of the two test statistics used (Fig. 4).

Ease of computation: The models used in this study were originally designed for per-

gene statistical tests. Extending these models for genome scale simulation required

developing heuristics to mitigate the computational burden associated with genome-

scale sampling without unduly compromising the properties of the model. Our per-

mutation-based randomization procedure accounts for the wide variation in the

number of possible permutations across genes, depending on intron count. The

empirical model required a randomization strategy that satis¯es the constraint that

sampled exons must agree with the gene length, but also preserves typical exon

lengths. With the uniform model, simulation is required to estimate E½TD�, the

expected number of domains °anked by introns. Exceptionally, the expected number

of introns associated with domain boundaries (E½TI �) can be calculated analytically,

allowing for rapid determination of signi¯cance using a �2 goodness of ¯t test. This

may be why genome-scale statistical tests have used the intron statistic with the

uniform model exclusively. Despite this computationally compelling advantage, our

Evidence for exon shu®ling is sensitive to model choice
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empirical results suggest that, outside metazoa, the use of the uniform model can

compromise the integrity of the analysis.

Possible confounding factors: The results presented here could be in°uenced by

several factors that we did not consider in this study. Paralogous genes with similar

domain content and intron–exon structure could distort the signal through a \double

counting" e®ect; see, for example, Refs. 6 and 21. We did not correct for duplicated

genes, consistent with the studies that inspired this work,7,10 which allowed for

comparisons with the results of those studies. Correction for paralogy should be

carried out for any de¯nitive study of exon shu®ling as an evolutionary mechanism.

Another potential source of error arises from misannotation of gene models and

domains,22 especially in the more recently sequenced fungal genomes. Finally, some

pairs of genomes in this study are too closely related to provide independent

assessments of the coincidence of features in gene and protein architectures; a phy-

logenetic correction is needed to discount results from closely related species.

Other gene and protein properties: This study is focused on the accuracy of null

models for testing the coincidence between the architectural features of gene and

protein sequences. Other types of biological information can contribute to an un-

derstanding of the role of exon structure in promoting the emergence of new proteins.

For example, a comprehensive test of the exon shu®ling hypothesis should also

consider intron phase and exon symmetry.9,13,23–26 In another example, Smithers

et al.10 examined protein age and the presence of disordered regions, providing

contextual information about when and how new protein coding genes emerge.

Impact of model choice on biological interpretation: Large sample sizes can lead to

highly signi¯cant associations even when the number of such associations is quite

small. This is the case in our analysis: in fungal genomes, the percentage of domains

that are °anked by introns is tiny (3% on average). The number of introns found at a

domain boundary is larger, although still modest, and not markedly di®erent in

metazoa and fungi. This observation suggests several hypotheses. Exon shu®ling

may have played an important role in metazoan, but not fungal, evolution, as has

previously been suggested.11 Alternatively, this could indicate that while intronic

recombination contributes to the evolution of novel domain architectures, domains

are not the \integrally folded protein units" that are shu®led by this process or that

shu®ling is more resilient to imprecise boundaries than originally hypothesized.2

A variant on this explanation is that °anking introns do contribute to domain

mobility, but only in a small number of domain families.

Another possibility is that the weak association between introns and domain

boundaries arises for reasons unrelated to exon shu®ling. Other forces acting on gene

and/or protein architecture may drive the juxtaposition of introns and domain

boundaries. For example, intron positions may be constrained by the requirements of

the splicing machinery.27 Similarly, the foldability requirement may constrain do-

main lengths and, by extension, the locations of domain boundaries. Constraints

such as these could result in exon and domain length distributions that are under-
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dispersed, which in turn could increase the chance probability of introns in close

proximity to domain boundaries.

In summary: We observe that the uniform null model widely-used for testing the

exon-shu®ling hypotheses results in a highly skewed estimate of the exon length

distribution. This, in turn, leads to exaggerated assessments of statistical signi¯-

cance. Modeling intron positions by sampling from the empirical distribution or

permuting exon order results in a much more realistic distribution of intron positions.

1 domain
(29790 exons)

H. sapiens

Fr
eq

ue
nc

y 2-4 domains
(63096 exons)

0 50 100 150 200 250 300

Exon length (aa)

> 4 domains
(21885 exons)

1 domain
(8795 exons)

R. graminis

2-4 domains
(8791 exons)

0 50 100 150 200 250 300

Exon length (aa)

> 4 domains
(576 exons)

Fig. S1. Distribution of exon lengths in proteins with one domain, two to four domains, and more than
four domains. (left) Distribution in human, representative species for metazoa. (right) Distribution in R.

graminis, representative species for fungi.

Fig. S2. p-values (top) and relative di®erences (bottom) of intron-domain boundary agreement with

respect to TI , with window size of w ¼ 6 under the uniform per gene model, empirical exon length
distribution model, and permutation model. Dashed line indicates threshold for signi¯cance; circles and

triangles indicate p-values that are signi¯cant and not signi¯cant, respectively. The minimal p-values

obtainable with the pchisq() function in R is 5E-324.
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Application of these models is more costly, computationally, but we suggest that

their use is essential to obtain accurate statistical tests outside of fungi.

Further, in probing e®ect size, we observe that the number of domains °anked by

introns is modest in metazoa and vanishingly small in fungi. Taken together, these

observations lead us to question whether exon shu®ling is really widespread across

the eukaryotic tree.10 Additional investigations of exon shu®ling in eukaryotic

lineages outside of metazoa are an exciting area for future work.
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