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HIGHLIGHTS

e Hydrometeorological variables drive prices and emissions on California’s grid.

® Time scale controls which combination of variables exert the greatest influence.

® Market prices appear most sensitive to periods of extreme abundance (over supply)
® Historical data severely underrepresents the occurrence of these low price events.

ARTICLE INFO ABSTRACT

Hydrometeorological conditions influence the operations of bulk electric power systems and wholesale markets
for electricity. Streamflow is the “fuel” for hydropower generation, wind speeds and solar irradiance dictate the
availability of wind and solar power production, and air temperatures strongly affect heating and cooling de-
mands. Despite growing concern about the vulnerability of power systems to hydrometeorological uncertainty,
including “compound” extremes (multiple extremes occurring simultaneously), quantifying baseline probabil-
istic risks remains difficult even without factoring in climate change. Here, we use newly developed power
system simulation software to show how uncertainties in spatially and temporally correlated hydro-
meteorological processes affect market prices and greenhouse gas emissions in California’s wholesale electricity
market. Results highlight the need for large synthetic datasets to access rare, yet plausible system states that have
not occurred in the recent historical record. We find that time scale strongly controls which combinations of
hydrometeorological variables cause extreme outcomes. Although scarcity caused by low streamflows and high
air temperatures has long been considered a primary concern in Western power markets, market prices are more
profoundly impacted by weather and streamflow conditions that lead to an overabundance of energy on the grid.
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1. Introduction

Variability in hydrometeorological processes is known to affect
electricity supply and demand [1], with corresponding impacts on
emissions of greenhouse gases and other air pollutants, system cost [2]
and reliability [3-7], and market prices [8-10]. However, historical
observations of weather and streamflow capture a limited number of
extreme events, necessitating the use of large stochastic simulations to
assess risk. Stochastic simulations can enable higher fidelity char-
acterization of the possible combinations of extreme

hydrometeorological states, including rare yet plausible events outside
recorded observations. However, care must be taken to reconstruct
spatial and temporal statistical dependencies among multiple hydro-
meteorological variables and across scales. Risk characterization must
also consider the interconnected topologies of bulk electric power sys-
tems, which give system operators some ability to manage spatially
explicit hydrometeorological stress [11]. For example, an area experi-
encing high temperatures (electricity demand) and simultaneous scar-
city in wind and water (electricity supply) may be able to cost-effec-
tively transfer electricity from a distant system that is not experiencing
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extreme conditions [11].

Previous efforts to quantify the impacts of hydrometeorological
extremes on large, interconnected power systems have not fully cap-
tured the joint uncertainties that occur in spatially distributed weather
and streamflow processes [12-14,3,5], nor have they adequately ex-
plored the role of timescale in controlling which phenomena drive ex-
treme outcomes on the grid. In this study, we simultaneously assess the
role of stationary uncertainties in weather and streamflow on electricity
market dynamics for a large, interconnected power system. Going be-
yond the historical record, we characterize risks from compound ex-
treme events on multiple time scales, ranging from interannual to
hourly. We assess system performance in terms of two key metrics:
wholesale electricity prices and plant level greenhouse gas emissions
(we do not account for upstream emissions from construction or the fuel
cycle). Wholesale prices and emissions are of critical importance to the
power sector, directly informing construction/decommission of power
plants, investment in transmission infrastructure, and bidding strategies
for market participants. Both also represent dynamic measures of
system performance that aggregate information about generation re-
source availability (supply) and load (demand). Extreme high or low
values may indicate periods of stress, when system operators struggle to
achieve a balance between supply and demand. For example, very high
prices indicate scarcity (e.g., periods of high demand and low avail-
ability of hydropower and variable renewable energy, when system
operators are forced to use more expensive, fossil-fuel based thermo-
electric power plants). Extremely low prices indicate “over-supply”
(periods when production from hydropower, wind and solar and certain
“must-run” resources (e.g. nuclear) is so great that these technologies
satisfy or exceed demand).

We focus our analysis on the U.S. West Coast power system, and
specifically the California Independent System Operator (CAISO).
CAISO oversees one of the largest grids in the world (through which
80% of California’s electricity flows) as well as a wholesale electricity
market from which retail utilities in the state buy electricity to serve
their roughly 30 million customers [15]. California’s power grid is
vulnerable to an array of hydrometeorological extremes. In an average
year, 15% of California’s electricity demand is met by hydropower
produced within the state(California Energy [16]. Significant amounts
of hydropower are also imported from the Pacific Northwest (primarily
from dams in the Columbia River Basin) and Southwest (primarily from
the Hoover Dam on the Colorado River), making California particularly
exposed to periodic (though rare) West Coast-wide drought [17]. There
is also increasing evidence that climate change is increasing the like-
lihood that precipitation deficits in California are associated with ele-
vated temperatures (including heat waves [18,19]). This combination
occurred recently during the state’s historic 2012-2016 drought
[18,20], leading to consecutive years of high electricity demand for
cooling and low hydropower availability.

However, scarcity on the California grid is not the only potential
outcome from compound hydrometeorological extremes. California is
increasingly reliant on wind power (in-state generation has more than
doubled since 2009) and solar power (more than quadrupled since 2009
[16]1), both of which exhibit fluctuations due to variable meteorological
conditions and climate modes [21]. As its dependence on variable re-
newable energy grows, California is experiencing more frequent periods
of oversupply during which the available supply of renewable and
must-run generation eclipses the grid’s demand for electricity. A no-
table example occurred in early 2017, when California experienced an
extreme wet period initiated by several atmospheric rivers, leading to
high streamflow, an abundance of hydropower and, in combination
with wind and solar, frequent negative prices and renewable energy
curtailment throughout February and March [22].

Recent studies have explored the impacts of drought on hydropower
availability and power sector emissions in California [23-25]; the role
of hydrometeorological conditions in driving electricity demand in the
state [26]; and the effects of uncertainty in variable renewable energy
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[27,28] production on outcomes in the CAISO market. However, no
study has been able to fully characterize electricity price and emissions
outcomes probabilistically under hydrometeorological uncertainty.

We employ a new open source simulation framework designed
specifically to evaluate performance of the CAISO system under un-
certainties in multiple spatially and temporally correlated hydro-
meteorological processes. The core of the model is a stochastic “engine”
that generates synthetic daily records of temperatures, wind speeds,
solar irradiance and unregulated streamflow at more than 100 mon-
itoring stations distributed throughout the West Coast. The statistical
properties (moments, cross correlations, spatial and temporal structure)
of the synthetic hydrometeorological data mirror those of the historical
record, and the large number of synthetic records (i.e., capable of ob-
serving hundreds or thousands of replicate worlds) allows for a better
characterization of plausible compound extreme events. We then use
the augmented synthetic records of hydrometeorological variables to
simulate hourly electricity demand, wind power production, solar
power production and hydropower availability. These synthetic power
system inputs drive a multi-zone unit commitment and economic dis-
patch model that simulates the hourly operation of the West Coast
power system (Fig. 1), including the CAISO market, outputting corre-
sponding hourly time series of power plant CO, emissions and market
prices for electricity. We quantify risks associated with compound hy-
drometeorological extremes by simulating system behavior over 1000
synthetic years, which previous results [29] suggest is a sufficient si-
mulation length to capture uncertainty in the multivariate state space
and produce higher fidelity estimates of plausible compound extreme
events relative to the historical record. For comparison, we also simu-
lated the model using historical hydrometeorological data from the
years 2000-2017.

2. Methods

In this study we make use of the California and West Coast Power
System (CAPOW) model, an open source simulation framework for
evaluating risks from correlated hydrometeorological processes in bulk
power systems and wholesale electricity markets. The modeling fra-
mework is Python-based and all code and data are freely available via
online public repositories. CAPOW accurately reproduces historical
price dynamics in CAISO, while also offering unique capabilities for
stochastic simulation that are well suited to the challenge of isolating
the role of hydrometeorological uncertainty (including compound ex-
treme events) on electricity market outcomes. The following sections
provide details about the two core components of the model: a simu-
lation model for relevant electric power system infrastructure, and a
stochastic “engine” that generates synthetic records of hydro-
meteorological variables. Full mathematical descriptions of the CAPOW
model’s core components, as well as extensive validation, can be found
in a separate paper by the authors [29].

2.1. Power systems model

The model’s geographical scope covers nearly the entirety of the
U.S. West Coast bulk electric power system (Fig. 1), including most of
the states of Washington, Oregon and California and the operations of
two wholesale electricity markets, the Mid-Columbia (Mid-C) market in
the Pacific Northwest and the California Independent System Operator
(CAISO) in California. The modeled system topology is comprised of
five major zones (one in the Pacific Northwest, and four in California),
which are linked via aggregated high voltage transmission pathways.
Interregional connectivity is also captured between California and the
Southwest (power flows between these two regions are modeled sta-
tistically). Each zone is associated with a portfolio of generating re-
sources and a separate time series of electricity demand. We simulate
power system operations using a multi-zone unit commitment and
economic dispatch (UC/ED) model formulated as a mixed integer linear
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Fig. 1. Topology of the power system model used and map of existing generators.

program. The model’s objective function is to minimize the cost of
meeting demand for electricity and operating reserves in the two major
markets represented, and its solution is constrained by limits on in-
dividual generators, the capacity of transmission pathways linking
zones, and others.

The primary inputs to the model are time series of hourly electricity
demand, available wind and solar power production in each zone, and
available hydropower production on a daily basis, which the optimi-
zation program dispatches according to its least cost objectives.
Measured outputs are hourly zonal electricity prices ($/MWh) and cu-
mulative system wide emissions of CO,. In a given hour, we estimate
the market price of electricity for each zone as the shadow price of an
energy balance constraint. In reality, locational marginal prices in
California vary on a nodal basis, with the overall (‘hub’) price calcu-
lated as a weighted average of all the nodes. In order to estimate the
overall CAISO price from our 4 modeled zonal prices, we apply a re-
gression trained on historical (2012-2016) zonal price data. In this
study, we assume 2016 grid resources, including thermal generators,
hydroelectric dams, installed wind/solar power capacity, and high
voltage transmission pathways. Power plant emissions (tracked in terms
of CO, equivalents) are calculated on the individual generator level
using the simulated generation amount (MWh) and an emission coef-
ficient for each plant (kg/MWh) developed from the U.S. EPA eGrid
[30] database.

2.2. Stochastic engine

The use of historical hydrometeorological observations to evaluate
critical infrastructure performance has a long history of mis-
representing risks from extreme events [31-33]. This practice is parti-
cularly problematic when considering risks associated with compound
events. Very long simulations may be needed to adequately explore
complex joint uncertainties that exist across variables, time and space,
and produce rare combinations of system states that are especially
hazardous [34,31]. Thus, in this study we rely on an expanded (1000-
year) synthetic dataset of relevant hydrometeorological variables and
power system inputs, which is created as follows.

First, historical records of daily average temperature and wind
speed data at 17 major airports (Fig. 2b, c, f, g) across the U.S. West
Coast are gathered from the NOAA Global Historical Climatological

Network [35]. Temperature data cover the period of 1970-2017,
whereas wind data only cover 1998-2017. Missing wind data
(1970-1998) at each site are filled by bootstrapping historical data,
conditioned on minimizing the RMSE between daily temperatures.
Concurrent records of global horizontal irradiance are taken from six
sites (Fig. 2d, h) in the National Renewable Energy Laboratory’s Na-
tional Solar Radiation Database (NSRDB) [36]. Observed daily
streamflow for 108 sites (Fig. 2a, e) throughout the Pacific Northwest
and California are taken for 1954-2008 from the BPA Modified
Streamflow database ([37]) and the California Data Exchange Center
(CDEC) [38].

Synthetic hydrometeorological data is created in a manner that
maintains the statistical moments for each individual process, as well as
spatiotemporal and cross correlations among variables on multiple time
scales (annual, seasonal, daily, hourly). Using the hourly historical data
for temperatures and wind speeds described above, we generate an
average 365-day profile for each observation site. Similarly, historical
irradiance data is used to create a profile of average ‘clear sky’ condi-
tions. The period 1998-2017 is selected to ensure contemporaneous
records across variables. Then residuals of the temperature and wind
profiles are generated by subtracting the average profile from observed
data. A similar operation is done for irradiance data to calculate
“losses” in irradiance from cloud coverage. All of the residuals are
transformed to approximate Gaussian distributions, and then the
transformed residuals are used to parameterize a vector autoregressive
(VAR) model to capture both autocorrelation and covariance across
variables. The error terms in the VAR model are generated from a
multivariate Gaussian distribution whose covariance matrix is calcu-
lated from the historical residual dataset. The number of lags is de-
termined using the Akaike Information Criteria (AIC). Synthetic re-
siduals for temperatures, wind speeds and irradiance are then “un-
whitened”, back-transformed and added to the average profiles to si-
mulate daily temperature, wind speed and irradiance values.

Creating synthetic streamflow records is a two-step process. First,
Gaussian Copulas are used to capture observed statistical dependences
among total annual streamflow at each gauge site, and between total
annual streamflow and average air temperatures. To do this, a longer
observed temperature record (1953-2008) at seven meteorological
stations is transformed into heating and cooling degree days (HDDs and
CDDs, respectively), which are measures of deviation from 18.33
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Fig. 2. Hydrometeorological observations for the highest price (panels a-d) and lowest price (panels e-h) realizations years in our 1000 synthetic simulation runs.

degrees Celsius. Then total annual HDDs and CDDs are calculated by
summing the daily HDDs and CDDs for each year, providing a coarse
measure of each historical year’s “hotness” and “coolness”. Historical
annual HDDs, CDDs and total annual streamflow for all sites are then
transformed into quantile space by calculating empirical cumulative
probability distribution of each variable:

P=PQz=gq) (€Y

where

Q = variable of interest (total annual streamflow, annual HDDs,
annual CDDs)

The empirical distribution is transformed again into a uniform dis-
tribution between —1 and 1 to ensure a zero-mean coherent dataset:

Y =2(P-0.5) (©))

Random samples are then drawn from a multivariate Gaussian
distribution with mean 0 and covariance matrix C calculated across all
sites and values of HDDs, CDDs and annual streamflow. The sampled
data is then transformed back by reversing Eqgs. (1) and (2).

The next step is to disaggregate total annual flows down to a daily
time step. The synthetic samples of HDDs, CDDs and annual streamflow
produced using the Gaussian Copula approach are matched with daily
temperatures generated using the VAR model described above. For each
year of synthetic data desired, a single year of HDDs and CDDs gener-
ated using the VAR model is selected via mean squared error. The
corresponding daily temperatures are then compared alongside the
historical record to find the year with the most similar spring and
summer temperatures. Daily flow fractions for this historical year are
then multiplied by total annual flows simulated via Gaussian Copula to
produce a synthetic record of streamflow at each gauge site. This ap-
proach ensures that synthetic streamflow capture observed correlations
across sites, as well as relationships with temperatures, on multiple time
scales.

After synthetic records of hydrometeorological variables (tempera-
tures, wind speeds, solar irradiance and streamflow) are created, these
time series are translated into corresponding records of power system
inputs. Using multi-variate regression models fitted to historical data,
we use synthetic hydrometeorological data to create daily records of
zonal electricity demand (via temperatures and wind speeds); wind
power generation (via wind speeds); and solar power production (via

irradiance), with regression residuals then represented using VAR
processes. Hourly values are resampled from historical datasets main-
tained by Bonneville Power Administration and CAISO.

Daily values of available hydropower production are created by
passing synthetic streamflow records through mass-balance hydrologic
models of dams in the Columbia River basin and major storage re-
servoirs in in California, as well as through a machine learning re-
presentation of high altitude hydropower production in California; a
small amount of remaining hydropower capacity is also represented via
scaled model outputs. Daily hydropower availability is then dispatched
optimally on an hourly basis by the UC/ED model. Detailed descriptions
of all models used to translate raw hydrometeorological variables into
power system inputs can be found in Su et al [29].

Synthetic records of zonal electricity demand, hydropower avail-
ability, and variable renewable energy production are then pushed
through the UC/ED model, resulting in 1000-year empirical distribu-
tions of prices and emissions. In order to isolate the role of hydro-
meteorological uncertainty and compound extremes on system out-
comes, we fix the price of natural gas at $4.5/MMBtu. Thus, when we
refer in this paper to prices in specific historical years (e.g. 2011), this
should be interpreted as prices calculated by the model using observed
2011 hydrometeorological data, assuming a natural gas price of $4.5/
MMBtu.

2.3. Limitations

There are some limitations in this work that should be noted. The
model employs a relatively coarse (zonal) resolution. This limitation is
due mostly to a lack of detailed demand and transmission data in the
system of interest. As a result, we do not capture impacts from local
transmission congestion. At the same time, we also note that detailed
representation of transmission systems may dramatically scale model
computational requirements, making the probabilistic analysis per-
formed here much more difficult.

3. Results and discussion
3.1. The most extreme simulations

We have structured the discussion of our results by time scale,
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Fig. 3. Parallel coordinate plots of hydrometeorological state variables (panel a) and power system state variables (panel b) for all 1000 simulation realizations. The

highest, lowest, 5th and 95th percentile price years are highlighted in color.

beginning with annual and then proceeding to seasonal, daily and
hourly. On an annual time scale, we find that simultaneous extremes in
temperatures and streamflow occurring across the entire West Coast
cause the largest swings in market prices and CO, emissions (Fig. 2).
The year with the highest average price ($48/MWh) out of the 1000
synthetic realizations is an extremely “hot and dry” year (Fig. 2a—d).
High air temperatures increase demand for electricity in California,
while low streamflow across the West Coast decreases the availability of
hydropower in California and the availability of hydropower imports
from the Pacific Northwest (PNW). The lowest price year ($36/MWh) is
on average extremely “cool and wet” (Fig. 2e-h). These conditions
correspond to low electricity demand, plentiful hydropower in Cali-
fornia, and abundant hydropower imports from the Pacific Northwest.

3.2. Extremes on an annual scale

Fig. 3 shows the direct relationship between hydrometeorological
state variables (panel a), corresponding power system state variables
(panel b), and performance metrics (prices and emissions) for all 1000
one-year realizations. Hydrometeorological variables shown are
average values across all monitoring stations. For example, the tem-
perature values shown represent averages across the 17 NOAA GHCN
stations (Table S1). Average streamflow values are calculated across all
the California streamflow sites (Table S4). PNW streamflow is re-
presented using simulated flows at The Dalles (Dalles ARF), near the

mouth of the Columbia River. Irradiance data are the average across the
seven NREL NSRDB sites shown in Table S2. Wind speed data are cal-
culated as the average across the 17 GHCN stations in Table S1. This
figure confirms, once again, that West Coast-wide hot and dry condi-
tions contribute to high prices and high emissions in the system, while
cool and wet conditions drive low prices and emissions. Fig. 3b largely
mirrors Fig. 3a — affirmation that power system state variables respond
directly to hydrometeorological conditions during extreme price and
emission years on both the high and low end.

The green lines in Fig. 3 track performance metrics (prices, emis-
sions) and state variables for the same highest-price year depicted in
Fig. 2a-d. This connection between “hot and dry” years and high
average prices is largely consistent among years with prices at or above
the 95th percentile (gold lines in Fig. 3). The red lines in panel Fig. 3
tracks performance metrics (prices, emissions) and state variables for
the same lowest-price year depicted in Fig. 2e-h. The connection be-
tween “cool and wet” conditions and low prices is largely consistent
among years that experience prices at or below the 5th percentile (blue
lines in Fig. 3).

The 3D scatter plot in the lower diagonal of Fig. 4 shows how CAISO
prices respond to different combinations of in-state hydropower pro-
duction, PNW imports, and electricity demand over the 1000-year
synthetic dataset. Note that the min and max price years (the same ones
shown in Figs. 2 and 3) correspond to simultaneous extremes in these
three state variables.
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The pair plots in the upper right show that our use of synthetic
hydrometeorological data captures historical correlations among key
state variables and performance metrics on an annual basis. The pair
plots also highlight the importance of utilizing an expanded synthetic
dataset to capture plausible compound extreme events that are not well
represented within the limited length of the available historical record.
In each plot along the diagonal, the stochastic results capture a wider
range of decision relevant outcomes than what is produced by the
historical data.

In particular, we find that using historical hydrometeorological data
alone yields a systematic bias that underrepresents years in which the
CAISO market may experience very low prices caused by “oversupply”
(i.e., periods when available hydropower, variable renewable energy
and must run resources exceed demand). The lowest-price year from the
historical dataset is 2011— a wet year with relatively cool temperatures
and an average price of $41.28/MWh. That price is equivalent to the
10th percentile of the 1000-year synthetic dataset, meaning there are
many plausible combinations of hydrometeorological variables that
force both prices (and emissions) considerably lower than 2011
(Table 1). In contrast, recent historical hydrometeorological data pro-
vide a better approximation of extreme scarcity on the California grid,
thanks in part to the state having experienced a historic drought during
2012-2016 (an event with an estimated return period of between 1-in-
500 and 1-in-1200 years) [39,40].

Hydrometeorological variables significantly impact GHG emissions
in the system. The synthetic results suggest that there could be a 2 x

Table 1

difference in GHG emissions from the best year (about 20 million tons
in CO, equivalents) to the worst year (over 45 million tons). Our results
also closely match historical observations. Using 2016 hydro-
meteorology, our modeling indicates that CAISO-wide emissions would
be about 34 million tons of CO, equivalents, whereas emissions of 38
million tons were reported by CAISO for that year, assuming an 84%/
16% split in in-state/out-of-state generation [41]. Note that our results
only reflect emissions produced during active generation. We do not
consider emissions from plant starts, which may partially explain the
discrepancy between our results and historical observations.

We also find positive correlations between hydropower availability
in California and PNW imports (which consist mostly of hydropower)
(upper diagonal of Fig. 4), confirming a finding from previous studies
[42,43] that these two regions, whose electricity systems are inter-
dependent, are more likely to experience dry or wet hydrologic con-
ditions simultaneously. Additionally, in California, dry conditions (low
hydropower availability) and hot conditions (high electricity demand)
are more likely to occur simultaneously. Thus, for the CAISO system,
covariance among a few key hydrometeorological state variables and
across space acts as a risk multiplier.

Throughout our remaining discussion of sub-annual time scales, we
focus on our evaluation of the CAISO system’s performance in terms of
wholesale prices and not CO, emissions. There are two reasons for not
considering CO, emissions: (1) prices and emissions show a very strong
positive correlation (see Fig. 4), so high/low prices can be viewed as an
indicator of high/low emissions; and (2) sub-annual dynamics in

Comparison of annual power system performance metrics and state variables among the highest and lowest price years from the 1000-year synthetic dataset and

historical dataset (1970-2017).

Simulation Price Emissions Demand Hydro CA PNW Imports Solar Wind

Synthetic (MAX) 99.999% 99.40% 96.30% 2.60% 0.40% 67.10% 99.30%
Synthetic (MIN) 0.001% 0.20% 6.30% 99.80% 99.20% 37.10% 71.90%
Historical (2015) 98.34% 98.26% 92.19% 2.74% 16.45% 38.12% 26.33%
Historical (2011) 10.30% 9.30% 32.56% 89.04% 83.47% 75.83% 24.09%
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emissions are likely to pose smaller consequences for grid participants
relative to volatility in market prices.

3.3. Extremes on a daily scale

Moving from annual to seasonal, daily and hourly time scales, we
find important nuances in how different combinations of hydro-
meteorological states affect system performance. The distribution of
daily electricity prices produced using historical (1970-2017) hydro-
meteorological data (Fig. 5a) shows low prices (as low as $5/MWh) are
more likely to occur during the spring snowmelt (May-June), when
hydropower produced in California and PNW imports are more abun-
dant. High prices (as high as $68/MWh) are most likely to occur in late
summer, when peak snowmelt (hydropower production) has subsided
and temperatures (electricity demand) remain very high.

Prices produced using historical data alone (Fig. 5a) are a strongly
biased underrepresentation of the higher order statistical moments for
pricing in CAISO, especially at extreme outer quantiles. Although there
is general agreement in terms of mean, seasonality, correlation among
state variables, etc., the system’s internal variability as captured in the
1000-year synthetic dataset yields a much wider range of extremes in
market prices (empirical “min/max” values) (Fig. 5b). Underlying these
wider extremes are rare but plausible combinations of hydro-
meteorological conditions that, while reflective of stationary un-
certainty (i.e., no climate change), collectively fall outside the recent
historical record.

Delta moment-independent sensitivity analysis [44,45] highlights
the dominant factors that influence daily prices (Fig. 6). We find that
the first order sensitivity of daily prices to uncertainty in power system
state variables (especially electricity demand and West Coast-wide hy-
dropower availability) peaks during spring. This is a notable result, and
one that contributes insights beyond previous studies, which have fo-
cused mostly on the potential for supply shortfalls to occur in late
summer [46,47] (typically a hot, dry period). While we also find greater
potential for scarcity (and higher prices) during late summer, our re-
sults strongly suggest that hydrometeorological uncertainty is a more
important driver of market price volatility during periods of relative
abundance (spring).

There are two root causes for this

phenomenon. First,
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Fig. 6. First order sensitivity for power system state variables. (d) Power system
state variables for yearly price extremes.

hydrometeorological uncertainty is greater during spring months (e.g.,
timing and amount of snowmelt in California and the Pacific
Northwest). Second, it is a product of electricity markets’ clearing
mechanism and the evolving structure of power system supply curves,
the bottom of which are increasingly made up of $0/MWh marginal
cost wind and solar. During extremely wet years with low spring de-
mand (mild temperatures), hydropower and variable renewables can
combine to displace higher marginal cost, fossil-fuel power plants from
the market. This causes daily prices to fall sharply.

3.4. Factors contributing to extreme outcomes across time scales

We also find that time scale is important for understanding how
compound hydrometeorological extremes lead to price extremes
(Fig. 7). The violin plots across different time scales (annual/daily/
hourly) capture extremely high/low prices (defined here as 95th/5th
percentile at an annual time step; 99th/1st percentile at daily/hourly
time steps) as well as density maps for the five different power system
state variables. The progression from annual (Fig. 7a) to daily (Fig. 7b)
and then hourly time steps (Fig. 7c) reveals changes in how each state
variable maps to extreme prices. At the annual scale (Fig. 7a), extreme
high prices are driven by low hydropower availability across the West
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Coast and high electricity demand; low price years experience the op-
posite. Transitioning to the daily time scale (Fig. 7b), very high demand
days (e.g., heat waves in late summer) and very low demand days (e.g.,
20 degreesC in May) are the most consistent predictors of price ex-
tremes. Very low daily prices also consistently map to very high values
of California hydropower and PNW imports (often occurring during
spring snowmelt), and the availability of wind and solar. Hourly ex-
tremes paint a somewhat different picture (Fig. 7c). In particular, a
significant number of high price hours coincide with very high Cali-
fornia hydropower production and hydropower imports from the PNW.
This apparent flip in the response of price to hydropower production
results from much of the West Coast’s hydropower capacity operating
strategically as “peaking” resources. Operators deliberately schedule
inexpensive (but finite) hydropower generation to align with hours of
high prices in order to maximize its value.

Generation mix dynamics at finer (daily and hourly) resolutions
provide a more detailed mapping for how system operations and market
prices are influenced by electricity demand and dynamic resource
availability (Fig. 8). Note that “imports” shown in Fig. 8 are not limited
to those from the PNW; they also include some generation imported
from the Southwest. The generation mixes for the two synthetic years
with the lowest (Fig. 8a) and highest (Fig. 8b) average wholesale price
(also discussed in Figs. 2 and 3) show substantial differences. Periods of
high demand and low hydropower availability (e.g., August in Fig. 8b)
increase the need for generation from fossil fuel power plants (mostly
natural gas); as this happens, the market price (system “shadow cost”)
increases. Periods of low demand and plentiful hydropower and vari-
able renewable energy (e.g., beginning of June in Fig. 8a) have the
opposite effect, with prices falling to $5/MWh when there is a glut of
low marginal cost hydropower and renewable energy.

Overall one of the most pronounced differences in the monthly
generation mix between the highest and lowest price synthetic years
relates to the amount of hydropower and fossil fuel generation used. In
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the highest price year (Fig. 8b), the CAISO market meets 42.4% of its
electricity demand using fossil fuel-based power plants, 7% from in-
state hydropower and 21.5% is imported. In the lowest price year
(Fig. 8a), CAISO only uses fossil fuel-based generation to meet 20% of
its electricity demand, 24% comes from in-state hydropower and 26.2%
from imports (including a greater amount of imported hydropower
from the Pacific Northwest).

Zooming-in to two critical weeks of the highest and lowest price
years, we distinguish how changes in the generation mix control acute
price conditions on an hourly basis. In a particularly low-price two
weeks during the spring of the lowest-price synthetic year (Fig. 8c),
depressed electricity demand (driven by mild temperatures) coincides
with high streamflow (an abundance of hydropower), must run gen-
eration, and variable renewable energy. Some fossil-fuel generation
remains online, primarily to provide operational reserves, but most is
forced out of the market. As a result, the price of electricity frequently
falls to $5/MWh, especially during hours when solar irradiance is
highest (the “belly” of California’s “duck curve” [27].

Also note that despite lower wholesale prices on average, hourly
and daily price patterns during the two-week period in the lowest-price
year (Fig. 8c) are significantly more volatile than those in a dry, hot
period in late summer in the highest-price year (Fig. 8d). Natural gas
power plants must be turned on and ramped up quickly in the early
evening as solar power production declines. In the course of a few
hours, prices can jump from near $0/MWh to close to $50/MWh.

3.5. Results implications

Quantifying the uncertainties as well as defining the distribution of
the possible outcomes can be used in many more ways. To facilitate
better renewable development and helping to transition to a greener
grid, both average and variance of energy prices are valuable in-
formation to help making investment decisions. For example, decision
to build new wind farm may be contingent on the annual average prices
as well as year to year variations. The decision to build an utility scale
battery would require understanding of hourly prices distribution to
optimize the physical specification of the battery.

Hydrometeorological uncertainties drive electricity market out-
comes in complex ways that can significantly impact power system
participants. On an annual level, our results suggest that California
utilities may have experienced close to the worst-case drought scenario
during 2012-2016. However, recent historical data is likely a poor re-
presentation of low price years caused by mild temperatures and high
streamflow. Low market prices, while attractive to retail distribution
companies, impact the financial viability of many projects (including
renewable energy). Our results should aid system participants in ac-
counting for such weather based price risk, which is important in de-
veloping operational, risk management, and long-term infrastructure
strategies.

4. Conclusion

There is growing awareness of the economic and environmental
hazards that hydrometeorological uncertainty, including compound
extreme events, pose for grid operators and electricity market partici-
pants. However, previous efforts to characterize these risks probabil-
istically have fallen short in their consideration of interconnected
system topologies and joint uncertainties across correlated variables.
For the first time, we isolate the impacts of multiple hydro-
meteorological drivers on California’s major wholesale electricity
market and investigate how compound extremes translate to instances
of extreme prices and CO, emissions on the grid. In the course of doing
so, we also show that assessing risks associated with compound hy-
drometeorological events necessitates the use of larger synthetic data-
sets to access rare, yet plausible system states that have not occurred in
the historical record. We find that time scale strongly effects which
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combinations of hydrometeorological variables cause extreme prices
and emissions. At an annual time scale, simultaneous “hot and dry” or
“wet and cool” conditions occurring across the West Coast result in the
highest and lowest price/emissions outcomes, respectively. At a daily
time scale, we find that very high demand (typically caused by heat
waves) drives high price events, while extreme low daily prices are
associated with a combinations of low demand (mild temperatures),
high hydropower availability, and abundant wind and solar power
production. Our modeling confirms a finding in previous studies that
West Cost power systems experience the highest prices and greatest
threats to reliability during combined hot and dry periods in late
summer. However, we find that the market’s response to compound
hydrometeorological extremes (in terms of altered prices) is most pro-
nounced during spring snowmelt, when demand is typically low (tem-
peratures are mild) and there is often an overabundance of power,
especially from hydroelectric dams, available on the grid.

It is important to note that the role that different hydro-
meteorological variables play in power system dynamics today is likely
to change in the future as more variable renewable energy is added into
the grid. An outstanding challenge remains understanding how future
grid configurations, likely comprised of much larger shares of renew-
able energy, will be vulnerable to compound hydrometeorological ex-
tremes. In addition, future work should incorporate growing risks to
power systems from discrete extreme events such as coastal and inland
flooding and wildfire.
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