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Abstract—Characterizing computational demand of Cyber-
Physical Systems (CPS) is critical for guaranteeing that multiple
hard real-time tasks may be scheduled on shared resources
without missing deadlines. In a CPS involving repetition such
as industrial automation systems found in chemical process
control or robotic manufacturing, sensors and actuators used
as part of the industrial process may be conditionally enabled
(and disabled) as a sequence of repeated steps is executed. In
robotic manufacturing, for example, these steps may be the
movement of a robotic arm through some trajectories followed
by activation of end-effector sensors and actuators at the end
of each completed motion. The conditional enabling of sensors
and actuators produces a sequence of Monotonically Ascending
Execution times (MAE) with lower WCET when the sensors are
disabled and higher WCET when enabled. Since these systems
may have several predefined steps to follow before repeating the
entire sequence each unique step may result in several consecutive
sequences of MAE. The repetition of these unique sequences
of MAE result in a repeating WCET sequence. In the absence
of an efficient demand characterization technique for repeating
WCET sequences composed of subsequences with monotonically
increasing execution time, this work proposes a new task model to
describe the behavior of real-world systems which generate large
repeating WCET sequences with subsequences of monotonically
increasing execution times. In comparison to the most applicable
current model, the Generalized Multiframe model (GMF), an
empirically and theoretically faster method for characterizing the
demand is provided. The demand characterization algorithm is
evaluated through a case study of a robotic arm and simulation of
10,000 randomly generated tasks where, on average, the proposed
approach is 231 and 179 times faster than the state-of-the-art in
the case study and simulation respectively.

Index Terms—real-time systems, control systems, cyber-
physical systems

I. INTRODUCTION

Characterizing computational demand of Cyber-Physical

Systems (CPSs) is critical for guaranteeing multiple hard real-

time tasks may be scheduled on a shared processor without

missing deadlines. Demand characterization using Demand

Bound Functions (DBFs) is important as it bounds the max-

imum demand a particular task may place on a processor

and is commonly used in real-time systems [9], [18], [23].

Precise demand characterization also helps avoid overprovi-

sioning of processing resources as pessimistic characterization
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can cause designers to use more processors, higher power

processors, or both - resulting in an unnecessary increase in

the size, weight, and power of computing systems. In modern

manufacturing, robotic systems are used to execute repeated

motions to process parts. The end effectors of these systems

are typically interchangeable tools such a deburrers, drills,

welders, grinders, or other manipulators used to process parts

being manufactured [12], [22].

When using a particular end effector, the controller respon-

sible for motion and operation enables the tool as necessary.

Consider, for example, a robot like the one depicted in Figure

1a required to move in a pattern shown in Figure 1b. Suppose

that upon arrival to the desired locations shown in Figure 1b,

the end effector is activated. Since the end effector is enabled

as needed, the sensors and actuators of the end effector are not

always in use. Thus, the real-time workload associated with

sensor sampling, fusion, and control of end-effector actuators

is only present during some of the repeated trajectories the

robot moves through. The real-time task controlling the robot

and its end effector would show a predictably variable se-

quence of WCETs where lower WCET would be expected

without end-effector sensors and actuators enabled but higher

WCET expected when in motion and enabling the end effector.

This pattern would manifest as a sequence of Monotonically

Ascending Execution times (MAE). Moreover, since the MAE

sequence would repeat for each unique movement of the robot

to a new location where the end effector will be enabled

before repeating entirely, several MAE sequences would be

concatenated to form a repeating WCET sequence. Figure 2

shows an example repeating WCET sequence composed of

two subsequences with Monotonically Ascending Execution

times. The repeating WCET sequence repeats at time t = 16.

Over the intervals [0, 6] and [6, 16] the WCET of jobs is mono-

tonically increasing. In practice, the solid jobs may represent

the constant workload of a robotic arm such as the use of

accelerometers and gyroscopes to locate the arm in space.

The striped jobs would represent the conditionally-enabled

workload of the end effector. For deburring end effector, the

striped jobs may represent increased workload from encoders

and torque sensors regulating speed and force [16].

Research Need: The most applicable demand characteriza-

tion for systems that demonstrate a repeating WCET sequence











given w is then the sum of WCETs of jobs with both releases

and deadlines within the interval.

For a given demand window, w, since implicit deadlines

are used (p = d), the maximum number of jobs of a task with

releases and deadlines within the window is:

nj(δ) =

⌊

δ

p

⌋

. (14)

When building a DBF, a safe approach is to search all

possible window positions and sizes since DBF (δ) must

always be greater than or equal to the demand of any individual

window of the same size. To limit the number of windows that

must be examined, the following lemma establishes that any

window, w, may be transformed into a new window, w′, in

which the window size is an integer multiple of the period (i.e.

δ mod p = 0) while maintaining the same maximum number

of jobs that may be contained within the window.

Lemma 2 (Demand Window Discretization):

∀w = (a, δ) | δ mod p 6= 0,

∃w′ =
(⌊

a
p

⌋

p,
⌊

δ
p

⌋

p
)

|nj(δ) = nj

(⌊

δ
p

⌋

· p
)

Proof 2: Let W be the set of all demand windows, w =
(a, δ). Let w = (a, δ) ∈ W where δ mod p 6= 0. Let W′ be

the set of all demand windows, w = (a, δ) | δ mod p = 0.

Let w′ =
(⌊

a
p

⌋

· p,
⌊

δ
p

⌋

· p
)

∈ W
′. The maximum number of

jobs of a task with releases and deadlines within w is given

by Equation 14. The maximum number of jobs of a task with

releases and deadlines within w′ is:

nj

(⌊

δ

p

⌋

· p

)

=









⌊

δ
p

⌋

· p

p







 =
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δ

p

⌋⌋

=

⌊

δ

p

⌋

. (15)

Since nj(δ) = nj

(⌊

δ
p

⌋

· p
)

, maximum number of jobs of

a task with releases and deadlines within w remains constant

after reducing a and δ to the closest integer multiple of p

releases and deadlines. Thus, the maximum demand either

window could contain is equal.

Given the above lemma, any window depicted in the remain-

der of the work is assumed to have an offset, a, and window

size, δ, which are integer multiples of p - meaning the leftmost

(t = a) and rightmost (t = a + δ) points of the window will

align with job releases.

D. Reducing DBF Search Space

To further reduce the search space, two additional methods

are presented. First, the WCD of a single super period, P ,

is shown to be sufficient for calculating demand of windows

larger than the super period (i.e. when δ > P ). Second,

any window not aligned with a reset time is shown to be

transformable into a window which is aligned with a reset time

and has equal or greater demand. The nondecreasing nature of

job WCETs after a reset time enables this second method.

These techniques combine to produce the DBF calculation

procedure presented in Algorithm 1 (in Section IV-E).

1) Shortening Windows with Super Periods: Suppose the

DBF for a given repeating WCET sequence is provided for

all values of δ in the range [0, P ]. For any window w = (a, δ)
in which δ > P , the worst-case demand may be calculated by

multiplying the WCD over a single setpoint period (DBF(P ))

by the number of setpoint periods, P , that fit within δ

(N =
⌈

δ
P

⌉

). The WCD over N setpoint periods, DBF (P )·N ,

may then be summed with the WCD of the remaining time,

DBF (δ mod P ), to produce the WCD for δ. Formally, the

equation for this is given by:

DBF (δ) =
{ ⌊

δ
P

⌋

·DBF (P ) +DBF (δ mod P ) if δ > P

lookup in DBF table produced by Alg. 1 if δ ≤ P
(16)

This approach avoids building a DBF for values larger than

δ = P as any window of size δ > P may be broken down

into N number of setpoint period WCDs plus the WCD of

some window size δ < P .
2) Aligning Demand Windows: Another search space re-

duction comes from exploiting the nondecreasing WCETs

described in Lemma 1. Since job WCETs are nondecreasing

between two consecutive reset times, this allows any window,

w = (a, δ), in which the rightmost edge of the window

((a+δ) mod P ) does not align with a reset time ((a+δ) mod
P 6= r ∀r ∈ R) to be transformed into a window w′ = (a′, δ′),
in which the rightmost edge of the window ((a′+ δ′) mod P )

aligns with a reset time (∃r ∈ R | (a′ + δ′) mod P = r)

while maintaining or increasing demand. The proof for this is

broken into three cases presented in Lemmas 3-5 below.

Case 1 addresses when the driving function value of the

job released at the leftmost window edge (at t = a) is no less

than driving function values of the job released at the rightmost

window edge (F (a) ≥ F (a+δ)). In Case 1, the demand of the

window is maintained or increased by increasing the window

offset by one period (a′ = a + p). Case 2 addresses when

the driving function value of the job released at the leftmost

window edge is less than the driving function value of the

job released at the rightmost edge (F (a) < F (a + δ)) and

when this inequality would be maintained if the offset was

reduced by one period (F (a − p) ≤ F (a − p + δ)). In Case

2, the demand of the window is maintained or increased by

decreasing the window offset by one period (a′ = a−p). Case

3 addresses when neither of the above cases are true. In this

case, it is shown that the window must be aligned with a reset

time (∃i ∈ Z
+ | a+ δ mod P = ri).

Lemma 3 (Case 1: Increasing Window Offsets): Given a

demand window w = (a, δ) where F (a) ≥ F (a + δ) then

w′ = (a+ p, δ) has equal or greater demand than w.

Proof 3: Let w = (a, δ) be a window such that F (a) ≥
F (a+ δ). Suppose the offset of w is increased by one period

such that a′ = a + p creating the new demand window w′.

The increased offset will reduce the demand of the window

by C(a) but raise the demand of the window by C(a+ δ).

F (a) ≥ F (a+ δ) By definition

⇒ C(a) ≤ C(a+ δ) By Eqn. 11
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V. EXPERIMENTAL EVALUATION AND RESULTS

Using the system model and DBF calculations provided, the

robotic arm described in the introduction was implemented

as a case study except that a conditionally enabled sensors

simulated with an ultrasonic rangefinder as opposed to a

deburring or welding tool. To explore runtime improvement

of the proposed DBF at scale and across random task sets,

schedulability analysis was performed on 10,000 randomly

generated task sets composed of one RWS task and a random

number of periodic tasks. All source code for the experiments

and case study may be found online [24]. In both the case

study and simulation, analysis is performed for a uniprocessor.

A. Case Study

To evaluate practical application and assess DBF calculation

improvement in a real system, a robotic arm, shown in Fig. 7

was implemented. The robotic arm demonstrates conditional

enabling of sensors. The robotic arm used FreeRTOS [1] on

the Arduino Mega 2560 for computation. The hardware and

software setups are provided below.
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Fig. 7. Case study robot arm and schematic.

1) Hardware Setup: An Arduino Mega 2560 is the real-

time controller with a uniprocessor clock speed of 16MHz. For

yaw and pitch sensing, an Inertial Measurement Unit (IMU)

and potentiometer are used. For yaw and pitch actuation,

the arm uses two 6VDC motors with 48:1 transmissions

powered by an HW95 breakout with an L298N Dual DC

H Bridge. The HC-SR04 Ultrasonic Distance Sensor at the

end of the arm simulates the conditionally-enabled sensor

(extra computational workload) carried by an end effector. In

practice, this may be a tool such as a deburrer, spot welder,

drill, or other sensor-enabled end effector.

2) Software Setup: The real-time operating system is a port

of FreeRTOS [1] and all code is in C. The AVR-GCC compiler

is used (included with the Arduino IDE). Pulse Width Mod-

ulation is used to control motors, Inter-Integrated Circuit for

the IMU, and Analog-to-Digital Converter for potentiometer

sampling. The Simple MPU6050 library is also used [26].

Two proportional feedback controllers use tracking errors from

the IMU and potentiometer to demonstrate repeating motion.

TABLE I
CASE STUDY MODEL PARAMETERS

Parameter Value Units

C [14.0,6.0,5.0] ms

B [0,10,45,180] degrees

f(t) 120 · e−0.0188t N/A

S [120,0] degrees

R, P [0,1080], 2700 ms

p 18 ms

δ 2700 ms

3) Conditional-Enabling Description and Parameteriza-

tion: The robot arm is provided two setpoints for the arm base

to drive to. When the arm base error is below 45 degrees, the

end-effector potentiometer is enabled so the wrist may adjust

to its setpoint. When the arm base error is below 10 degrees,

the ultrasonic rangefinder is enabled. The wrist potentiometer

sampling and ultrasonic rangefinder pings activated by the task

raise WCET as arm base error decreases. Table I provides

the task parameters for the implemented arm. Note that this

is a very short sequence of setpoints and the entire motion

sequence is completed in 2.7 seconds.

An oscilloscope (DS1102E) was used to verify timing

characteristics implemented by the real-time task.

4) Evaluation: Using the empirically derived values as in-

put to the proposed DBF calculation, the runtime improvement

of the proposed algorithm was calculated. Recall that the

GMF approach and the proposed approach to calculating DBF

are both exact; thus the comparison is based on algorithm

runtime alone. For the empirically derived task, the GMF DBF

calculation completed in 132.930ms while the RWS-MAE-

DBF completed in 0.574ms. Thus, proposed DBF calculation

was 231.568 times faster than the GMF approach.

B. Simulations

In addition to the case study, simulations were performed to

determine the runtime improvement of the proposed DBF at

scale and across random task sets. Each task set was composed

of a random number of periodic tasks and one RWS task. The

periodic tasks were generated using the UUNIFAST approach

[5]. The RWS tasks were created using randomly generated

values for f , W, S, and w with uniform distribution. The

hyperperiod of the periodic tasks and the RWS tasks were

then used to bound the DBF calculation. The bounds on

randomly generated parameters are listed in Table II. Note

that the target periodic task utilization is constrained to the

range [1− c0, 1− cm−1]. This constraint prevents the periodic

tasks from having utilizations small enough that the task set

is always feasible (recall that p = 1) or large enough that the

task set is never feasible. Keeping periodic task utilizations in

the range requires analysis via the DBF and results is a mix

of feasible and infeasible task sets. The simulations (including

the case study calculation) were developed using Python 3.8.5.

The simulating platform was an i7-6700HQ CPU @ 2.60GHz

CPU with 16GB RAM.
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function. Keeping the relationship between WCET and the

driving function value the same, the WCET sequences would

be nonincreasing except at reset times (t ∈ R). Applying a

symmetric version of the proofs results in lemmas supporting

the search of demand windows left-aligned with reset times.

If the relationship between the driving function and WCET

were flipped such that lower driving function values implied

lower WCET and vice versa. This inverted relationship would

cause the sequences of WCETs produced to be nonincreasing

except at reset times. Thus, the demand windows which must

be searched are again reduced to windows which are left-

aligned with reset times. While f(x) is defined to be strictly

monotone and the function C(x) is monotonic, the only

demand windows which must be considered to bound demand

will be aligned to reset times.

C. Discretization and Scaling

The model provided accepts continuous-time functions.

Modern real-time control, however, is typically performed

by discrete-time microprocessors. To discretize the system

model, the reset times, R, and super period, P , must be

transformed into the smallest integer multiples of the period

which exceed the original parameter value. For example, given

a reset time ri, the transformed reset time is r′i =
⌈

ri
p

⌉

· p.

This transformation will not alter the original WCET since

a controller with period p which receives a starting value at

time t | t mod p 6= 0 will be unable act on the new starting

value until the next job release at time
⌈

t
p

⌉

· p. After this

transformation, all timing-related values may be scaled such

that p = 1. The assumption that p = 1 is not required but

reduces the computational complexity.

VII. CONCLUSION AND FUTURE WORK

In this work, a new method of modeling real-time workloads

defined by Repeating WCET Sequences with Monotonically

Ascending Execution is presented. An exact DBF calculation

is provided, implemented, and evaluated through case study

and simulation of 10,000 randomly generated task sets. The

proposed approach is, on average, 231 and 179 times faster

than the state-of-the-art in the case study and simulation

respectively. For systems operating in dynamic environments

where schedulability is frequently evaluated online, the pri-

mary importance of this work is the more tractable characteri-

zation of demand. Challenges for future work include allowing

multiple driving functions to be used in generating sequences,

varying reset times and starting values (for example, as a

graph) to incorporate more flexibility.
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