Algorithmic trade-offs for girth approximation in undirected graphs

Avi Kadria* Liam Roditty' Aaron Sidford? Virginia Vassilevska Williams®
Uri Zwick?

Abstract

We present several new efficient algorithms for approximating the girth, g, of weighted and unweighted
n-vertex, m-edge undirected graphs. For undirected graphs with polynomially bounded, integer, non-negative
edge weights, we provide an algorithm that for every integer £ > 1, runs in 5(m + nttl/k log g) time and
returns a cycle of length at most 2kg. For unweighted, undirected graphs we present an algorithm that for
every k > 1, runs in O(n'+'/*) time and returns a cycle of length at most 2k[g/2], an almost k-approximation.
Both algorithms provide trade-offs between the running time and the quality of the approximation. We also
obtain faster algorithms for approximation factors better than 2, and improved approximations when the girth
is odd or small (e.g., 3 and 4).

1 Introduction

The problem of computing the shortest cycle of a graph or its length, known as the girth of the graph, are
fundamental problem in algorithmic graph theory that has been studied extensively since the 1970s.

Several results are known on the complexity of exactly solving these problems. Itai and Rodeh [IR78] proved
that the girth g of an n-vertex, m-edge unweighted graph can be computed in min{O(mn), O(n*)} time, where
w < 2.37286 [AV21] is the matrix multiplication exponent. Further, Roditty and Vassilevska W. [RV12] extended
Itai and Rodeh’s result, showing that for directed or undirected graphs with positive integer weights bounded
by M, the girth can be computed in O(M n¥) time. For graphs with arbitrary weights and no negative cycles,
the fastest known algorithms for computing the shortest cycle also solve the All-Pairs Shortest Paths (APSP)
problem. Despite more than seven decades of research, the fastest algorithms for APSP and for computing the
girth of weighted graphs run in O(min{mn + n?loglogn,n?/exp(y/logn)}) time [Pet04, Will8].

Improving these running times further is a notoriously difficult problem and various attempts have been made
to characterize the complexity of this problem and related problems. For example, computing the girth of an
unweighted graph exactly is at least as hard as deciding whether a given graph contains a triangle. The latter
problem is very well-studied and the fastest known algorithm for it runs in O(n*) time. It is conjectured that no
faster algorithm exists (see e.g. [Vas19]).

Further, a very close formal connection between computing the value of the girth, triangle detection and
computing APSP was proven by Vassilevska W. and Williams [VW18]. For weighted graphs, they proved that
APSP and girth are subcubical equivalent, i.e. that a truly subcubic time (O(n3~¢)-time for constant ¢ > 0)
algorithm for either problem implies one for the other. APSP is conjectured to require n3~°() time on a word-
RAM with O(logn) bit words (see e.g. [Vasl9]), and since the girth problem in weighted graph is equivalent to
APSP, a truly subcubic time algorithm for it would be hard to obtain.

" *Department of Computer Science, Bar Ilan University, Ramat Gan 5290002, Israel. E-mail avi.kadria3@gmail.com.

fDepartment of Computer Science, Bar Ilan University, Ramat Gan 5290002, Israel. E-mail liam.roditty@biu.ac.il. Supported
in part by BSF grants 2016365 and 2020356.

fDepartments of Management Science and Engineering and Computer Science, Stanford University, Stanford, CA, 94305, USA.
E-mail sidford@stanford.edu. Supported in part by BSF grant no. 2016365, a Microsoft Research Faculty Fellowship, NSF CAREER
Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellowship

$Department of Electrical Engineering and Computer Science and CSAIL, MIT, Cambridge, MA, USA. E-mail virg@nit.edu.
Supported in part by NSF CAREER Award 1651838, NSF Grants CCF-1909429 and CCF- 2129139, BSF grants 2016365 and
2020356, a Google Research Fellowship and a Sloan Research Fellowship.

IBlavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel. E-mail zwick@tau.ac.il. Supported in
part by BSF grants 2016365 and 2020356.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Vassilevska W. and Williams [VW18] also gave a connection between girth and APSP in unweighted graphs.
They proved that any “combinatorial” algorithm?! that computes the exact girth or can detect a triangle in truly
subcubic runtime implies a truly subcubic time combinatorial algorithm for multiplying two Boolean matrices,
and therefore also for APSP.

A natural approach to overcome these barriers for computing the girth, is to settle for an approximation of the
girth. The girth can be approximated either by an additive approximation or by a multiplicative approximation.
For ¢ > 1, a multiplicative c-approximation algorithm returns a cycle of length between g and ¢ - g. For ¢ > 0,
an additive c-approximation for the girth g returns a cycle of length between g and g + ¢; additive approximation
for small ¢ are typically only meaningful for unweighted graphs.

1.1 Prior work on girth approximation While there has been some recent work on approximating the
girth for directed graphs [PRST18, CLRS20, DV20], in this paper we only focus on undirected, possibly weighted
graphs, and we restrict our consideration to such graphs for the remainder of the paper.

Itai and Rodeh [IR78] gave the first girth approximation algorithm: an O(n?) time algorithm that in
unweighted undirected graphs computes a cycle of length at most g + 1 if the girth ¢ is odd and g if g is
even. Their algorithm is based on a simple O(n)-time variant of the BFS algorithm.

While Q(n?) time is needed for problems like APSP whose output is of size n?, the output for the girth problem
is a single number, and it is unclear if Q(n?) time is needed. Indeed, Lingas and Lundell [LL09] presented a
multiplicative approximation algorithm for the girth g in unweighted undirected graphs that breaks the quadratic
time bound. Their algorithm runs in O(n3/ 2) time and returns a cycle that has a length of at most 2g + 2, which
gives a multiplicative 8/3-approximation.

Lingas and Lundell [LL09] also developed an 6(712) time 2-approximation algorithm for undirected graphs
with positive integer weights bounded by poly(n). Roditty and Tov [RT13] and Ducoffe [Ducl9] considered the
same regime. More specifically, Roditty and Tov [RT13] obtained a 5(712) time 4/3-approximation algorithm.
They also gave for € > 0, an O(n2/e) time (4/3 + ¢)-approximation algorithm for the girth of undirected graphs
with non-negative real weights. Ducoffe [Duc19] developed the first subquadratic time approximation algorithms
for weighted graphs, obtaining a 2-approximation running in O(m + nb/ 3) time for graphs with polynomially
bounded integer weights, almost matching the running time of an algorithm of [RV12] for unweighted graphs.
Ducoffe also presents an (2 + ¢)-approximation running in O(m+n5/ 3polylog(1/¢)) time for graphs with arbitrary
real weights, and shows that the dependence on m can be removed if the edges in all adjacency lists are given
sorted by weight.

Roditty and V. Williams [RV12] presented an O(n®/3logn) time algorithm that computes for an unweighted
undirected graph of girth g = 4¢ — z for some ¢ > 1 and z € {0, 1,2,3} a cycle of length at most 6¢ — z if g is
even, and 6¢ — z+ 1 if g is odd. This is never worse than a 2-approximation, and it is almost a 3/2-approximation
with a slight additive error. It was the first subquadratic time 2-approximation algorithm for the girth.

Dahlgaard, Knudsen and Stockel [DKS17b] presented two trade—offs for unweighted undirected graphs. The
first is an O(n?~1/*(logn)!~1/*)-time algorithm that computes a cycle of length at most 2[£] + 2[5y, for
any integer k > 2. This generalized the results of [LL09] (who showed it for & = 2) and [RV12] (who showed it
for k = 3). The second is an O(n'+1/*logn)-time algorithm that computes a cycle of length at most 2¥g, for any
integer k > 2, with probability 1 — 1/n.

In this paper we present a variety of improved algorithms with different runtime versus approximation quality
trade—offs for unweighted and weighted undirected graphs.

1.2 Our Results Our first result is a time-approximation trade-off for girth approximation in unweighted
graphs. We essentially obtain for every integer k > 1 a k-approximation running in O~(n1+1/ k) time. The previous
best approximation algorithm running in O(nl'H/ k) time [DKS17a] achieved a 2¥ approximation factor. We thus
obtain an exponential improvement.

THEOREM 1.1. For every integer k > 1, there is an algorithm that computes a cycle C in any n-vertex unweighted
undirected graph G in O(n**/*logn) time such that wt(C) < 2k - [g/2], where g is the girth of G.

TWhile the term “combinatorial” is not well-defined in this context, we use it to denote any algorithm that avoids the impracticalities

of the Strassen-like algebraic algorithms for fast matrix multiplication.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

The theorem appears as Theorem 4.3 in the body of the paper.

Theorem 1.1 generalizes a result of Itai and Rodeh [IR78] which proved it for &k = 1. Further, the theorem
for k = 2 is similar to the 2-approximation of Roditty and Vassilevska W. [RV12]; in comparison, Theorem 1.1
has a better running time but a slightly worse approximation if the girth is odd.

We note that for graphs with w(n1+1/ ¥logn) edges, our algorithm is sublinear. To obtain this, we develop
a tool for girth approximation in unweighted undirected graphs that after running in O(min{n'**/* m}) time,
allows us to assume that m < O(n!t/k).

For known odd girth and & > 2 we show how to extend the techniques that yield Theorem 1.1 to obtain
alternative time approximation trade—offs of interest in Appendix B.

Our next result is a trade—off for weighted graphs, generalizing [LL09] which proved the case of k = 1. This
is the first trade—off curve for weighted graphs.

THEOREM 1.2. Let G = (V, E) be a weighted undirected graph with |V| = n,|E| = m, with integral edge weights
from the range [1, M] and with girth g For every integer k > 2, there is an O((n*t'/*logn + m)lognM) time
algorithm that computes a cycle C of weight wt(C) < 2k - g.

The theorem appears as Theorem 4.1 in the body of the paper.

We note that both the O(n?)-time 4/3-approximation algorithm of Roditty and Tov [RT13] and the
O(m+n®/3)-time 2-approximation algorithm of Ducoffe [Duc19], have better approximations than what our trade-
off would be for k = 1. Our theorem gives improved results for k£ > 2, achieving, for instance, a 4-approximation
faster than both [RT13] and [Ducl9).

We also obtain improved algorithms for sparse graphs when the girth is a small constant.

THEOREM 1.3. For every k > 2, there is an O(min{m,n't'/*}) time algorithm that either succeeds in returning
a < 2k-cycle or fails, in which case m < O(n'*TV*) and there is an algorithm which can find a shortest cycle or
determine that the girth is > g in additional time

e O(min{n'*T2/k VDY) if g =3 or g =4, and

e O(min{n!*T3/k m1+2/(k+11) jif g = 5.

The theorem appears as Corollaries 6.1 and 6.2 in the body of the paper. Theorem 1.3 implies that there is
an algorithm that either determines that the girth is more than g, or returns a cycle of length < 2k, and runs in
time O(min{n'*t2/% m!*+1/*+D1) time if g = 3 or g = 4 and in time O(min{n'*+3/F m1+2/(E+D1) time if g = 5.

Let us compare Theorem 1.3 to Theorem 1.1. For any integer ¢ > 2 and girth g, Theorem 1.1 returns in

O(n't1/%) time a cycle of length at most 2¢[¢/2]. In order for the length of this cycle to be at most 2k, we need
(=t

[9/2]

Notice that ¢ needs to be an integer, so that one can only get exactly the same cycle length guarantee
as Theorem 1.3 with Theorem 1.1 for values of k that are divisible by [g/2]. For these values, the running
[9/2]

3)

time guaranteed by Theorem 1.1 is O(n't (For other values, the running time is slightly higher,

O(n1+1/(t(k/rg/21)J)),)

Thus, for g = 3 and g = 4, the running time obtained by Theorem 1.1 (for k divisible by [g/2]), is O(n*+2/*),
and that for g = 5 is O(n1+3/ *). Thus, the running time from Theorem 1.3 is always at least as good, and always
better for m = o(nHl/ k). In particular, for sparse graphs, the improvement is significant.

For the special case of 2-approximation of the girth, it can be returned via Theorem 1.3 in O(min{n5/3, m®/4})
time whenever the girth is 3, in O(min{n3/2,m%°}) time whenever the girth is 4, and in O(min{n®°, m4/3})
time whenever the girth is 5. These are the best algorithms for 2-approximation of the girth for small values of g.

We obtain a slightly weaker improvement for approximating the girth of sparse graphs when the girth is 6.

THEOREM 1.4. There is an O(min{nm?/®, n7/*}) time algorithm that in m-edge n-vertex graphs, either returns
a cycle of length at most 8, or determines that the girth is more than 6.

There is an O(min{nlg/m}) time algorithm that in m = O(n)-edge n-vertex graphs, either returns a cycle of
length at most 10, or determines that the girth is more than 6.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

The theorem appears as Theorem 6.3 in the body of the paper. The first algorithm is no worse than
Theorem 1.1 for k = 4 and improves upon its running time for sparse graphs. The second algorithm offers
an improvement over Theorem 1.1 for kK = 5 and very sparse graphs.

Our final result is an algorithm that achieves a better than 2-approximation in subquadratic time, with a
small additive error.

THEOREM 1.5. Let G = (V,E) be a given n-vertex, m-edge unweighted undirected graph with unknown girth

g, and let € € (0,1) be given. There is an algorithm that computes a cycle C' in 6(n1+1/(2_5)) time such that
wt(C) <4[4] -2[e[4]] < (2—-€)g+4ifg < log?n and wt(C) < 4[5 — el < (2—€¢/2)g+ 3 if g > log? n.

Theorem 1.5 appears as Theorem 7.1 in the body of the paper.

Notice that when g < log”n if we set ¢ = 1 — 1/(k — 1), we get 4[4] — 2|(1 — 1/(k — 1))[4]] =
241 =2|(=1/(k—=1))[4]]. This is bounded by 2[$] + 2[(1/(k —1))[5]].

This almost matches the first trade-off presented by Dahlgaard, Knudsen and Stéckel [DKS17b]. The running
time is the same and the bound on the cycle length is slightly worse when g is odd, since they get a bound of
2[8] + 2555 |-

The main advantage of our algorithm is that we can set € to be any real value between 0 and 1 and not only
1 —1/k for integer values of k, as in the algorithm of Dahlgaard, Knudsen and Stéckel [DKS17b]. This allows us
to obtain infinitely many new algorithms. B

For example, for € = 1/3 we get a running time of O(n®/®) and a bound of 4[%] — 2([41] ~ 5g. For a very
small value of €, such as e = 1/101, we get a running time of O(n#1) that is close to O(n2), while keeping the
multiplicative approximation better than 2, for a large enough g. Notice that in the result of Dahlgaard, Knudsen
and Stockel [DKS17b] the best running time for a better than 2 multiplicative approximation is always Q(n°/3).
We present in Table 20 in Appendix A a comparison between the two results, for a multiplicative approximation
better than 2.

Our better-than-2 approximation algorithms are based on the following result.

LEMMA 1.1. Let G be a given n-vertex undirected unweighted graph and let t and c be integers. Then:

o There is an algorithm running in time O(nHﬁ) that either returns a cycle of length at most 4t — ¢, or
determines that the girth of G is strictly more than 2t.

o There is an algorithm running in time O((t—c)nHﬁ) that either returns a cycle of length at most 4t — 2c¢,
or determines that the girth of G is strictly more than 2t.

The Lemma appears as Lemmas 7.6 and 7.7 in the body of the paper.

The second result in the Lemma is better than the first whenever ¢ — ¢ is small. We mostly use the second
result, but the first is useful for graphs with large girth.

For large enough ¢, the results can be viewed as additive approximations. For instance, if g is even, for t = ¢g/2

and a = t — ¢, we can return a cycle of length at most g + a in time O(anHH%).

1.3 Additional Related Work Bondy and Simonovits [BS74] first showed that for any integer k > 2, any
n-vertex graph that has at least 100kn't'/* edges must contain a 2k-cycle. Yuster and Zwick [YZ97] made
this result algorithmic, providing an O(n?) time algorithm for outputting a 2k-cycle if one exists in a graph for
any constant integer k& > 2. Dahlgaard, Knudsen and Stockel [DKS17a] extended this result further to sparse
graphs, providing an O(m?*/(*+1) time algorithm for returning a 2k-cycle in an m-edge graph, if one exists. As
> 100kn'+1/*-edge graphs must contain a 2k-cycle, the algorithm of [DKS17a] always runs in no more than O(n?)
time. Alon, Yuster and Zwick [AYZ97] provide algorithms for outputting a k-cycle in a directed or undirected
graph, running in time O(m?~2/%) time for even k and O(m?~%/(*+1)) time for odd k. Yuster and Zwick [YZ04]
and Dalirrooyfard, Duong Vuong and Vassilevska W. [DVV19] improve these running times using rectangular
matrix multiplication.

Pachocki et al. [PRST18], Chechik et al. [CLRS20], Dalirrooyfard and Vassilevska W. [DV20] and Chechik and
Lifshitz [CL21] consider the girth approximation problem for directed graphs. Chechik et al. [CLRS20] obtain the
first constant factor approximation algorithm running faster than APSP. They obtain a trade-off, for every k, an

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1: Ball0rCycle(v, R)

1 Q + {v} with key 0;

2 while Q # 0 do

3 u + Extract-Min(Q), k(u) gets the key of u;

4 | VEVEU{u);

5 14 1;

6 while (i < |E(u)]) and k(u) + wt(E(u,i)) < R do
7 (u,w) < E(u,i) ;

8 if w € @ then

9 L return null, P(LCA(u,w),u) U {(u, w)} U P(LCA(u,w),w);
10 Q <+ QU {w} with key k(u) + wt(u,w) ;
11 El « BERU{(u,w)} ;
12 141+1;

13 return (V' EF) null;

O(k log k)-approximation in O(mn'/*) time. Dalirrooyfard and Vassilevska W. [DV20] improve upon the constant
factor in the big-O of the approximation factor of [CLRS20], obtaining a (2+ ¢)-approximation algorithm running
in O(m+/n) time and a 2-approximation running in O(mn?®/*) time. Chechik and Lifshitz [CL21] improve this to
a 2-approximation in O(min{n?,m/n}) time.

2 Preliminaries

Let G = (V, E) be a weighted undirected graph, where n = |V| and m = |E|. Let wt : E — {1,2,3,..., M} be a
weight function on the edges of G. We assume that edges incident to every vertex are sorted in a non-decreasing
order by weight and let E(v,1) denote the i-th edge incident to v in this ordering. Further, we let F(v) be the set
of edges incident to v and for any S C V' we let E(S) be the set of all edges with at least one endpoint in E. For
every u,v € V, let dg(u,v)? be the distance between u and v in G, that is, the length of the shortest path between
u and v. We use P(u,v) to denote an ordered set of edges on a shortest path between u and v. For an edge
e = (u,v) € E and a vertex w € V we define the distance between w and e to be min{dg(w, u), dg(w, v)} + wt(e)
and denote this distance by dg(w,e).

Let the girth of G be the length of the shortest cycle in G. We denote the length of the girth by g¢.If
C ={uy,...,us} is a cycle in G then (ut,up) € E and (u;,u;41) € E, for every 0 < i <t — 1. Let wt(C) be the
length of C.

For every u € V and a real number k we define the ball graph H(u,k) = (VX EX) of u as follows. The vertex
set is VF = {v € V| dg(u,v) < k}. The edge set is EF = {e € E | dg(u,e) < k}. Let TF be a shortest paths tree
rooted at u whose vertex set is V.*.

Given a graph G = (V, E) and a set of vertices U C V we define G — U to be G[V \ U], that is, the graph
obtained from G by deleting all the vertices of U together with their incident edges.

For graphs H = (V/,E’) and G = (V,E) if V' CV and E’ C E then we say H C G.

3 Tools

In this section we present several tools we use to obtain our main results.
We proceed by proving an important property of the ball graph H (v, k) for a vertex v (see the Section 2 for
the definition).

LEMMA 3.1. Let G = (V, E) be a weighted undirected graph, let v € V, and let k and R be real numbers. If there
is no cycle in H(v,k + R) then none of the vertices in V¥ are part of any cycle of length at most R in G.

Proof. We prove the claim by showing that if there is a vertex u € V,* that is part of a cycle of length at most R
in G then there is a cycle in H(v,k + R). Let C = {uy,us,...,u:} be a cycle such that u; = u and wt(C) < R.

ZWhen the graph G is clear from the context we omit the subscript.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

We show that all the edges of C present in H(v,k + R). Notice that from the definition of ball graphs it follows
that for every e € F and w € V if dg(w, e) < £ then e is in H(w,¥).

Consider now an edge (z,y) € C. Since the entire length of C' is at most R we have either dg (u, z)+wt(z,y) <
R or dg(u,y) + wt(x,y) < R. This implies that dg(u, (z,y)) < R.

Next, we show that every edge (x,y) € C is part of H(v,k + R). From the triangle inequality it follows
that dg (v, (7,y)) < dg(v,u) + dg(u, (z,y)). Since u € V¥ it follows that dg(v,u) < k and we get that
de(v, (z,y)) < k+ R. This implies that every edge (z,y) € C is part of H(v,k + R). |

In the case of unweighted graphs we prove the following:

LEMMA 3.2. Let G = (V,E) be an unweighted undirected graph and let v € V. If there is no cycle in
H(v,k+ [R/2]) then all the vertices in V. are not part of any cycle of length at most R in G.

Proof. The proof follows the same structure as the proof of Lemma 3.1. Let e = (z,y) € E and w € V. Notice
that in unweighted graphs we have dg(w, e) = min{dg(w, x), dg(w,y)} + 1.

Let C = {uy,uz,...,u:) be a cycle such that u; = w and ¢ < R. Consider an edge (z,y) € C. Since
(z,y) is on a cycle of length at most R we have dg(u,z) < R/2 and dg(u,y) < R/2 when R is odd and either
dg(u,z) < R/2 and dg(u,y) < R/2 or dg(u,z) < R/2 and dg(u,y) < R/2 when R is even. This implies that
da(u, (z,y)) < [R/2]. Similar to before, triangle inequality yields that (z,y) is an edge in H (v, k+ [R/2]). O

Next, we present a procedure called Bal10rCycle with pseudocode in Algorithm 1. This procedure is similar
to the Bounded Dijkstra procedure presented in [LL09]. The input is a vertex v and parameter R. This procedure
is a based on Dijkstra’s algorithm in the case of weighted graphs and BFS in the case of unweighted graphs. We
start to grow a shortest paths tree from v. We initiate a priority queue @) and add v to Q with key 0. As long
as @ is not empty we extract the vertex with the minimum key from . Let this vertex be u. Next, we scan the
set E(u) in non decreasing order as follows. Let (u,w) € E(u). We check if k(u) + wt(u, w) < R. If this is the
case and w ¢ @ we add w to @ with key equals to k(u) + wt(u,w). If w € @ then a cycle is detected. Let z be
the least common ancestor (LCA) of v and w in the shortest paths tree rooted at v. We return the edge (u,w)
together with the path between v and 2z and the path between w and z, as the detected cycle.

We now analyse procedure BallOrCycle.

LEMMA 3.3. Letv € V. If H(v, R) is not a tree, procedure Ball0rCycle(v, R) reports a cycle of length at most 2R
in H(v, R). If H(v, R) is a tree then Ball0rCycle(v, R) returns H(v, R). The running time of Ball0rCycle(v, R)
is O(|V,[t|logn). For unweighted graphs the running time of Ball0rCycle(v, R) is O(|V,E|).

Proof. If H(v, R) is not a tree then there is at least one edge (u,w) such that d(v, (u,w)) < R and (u,w) ¢ TE.
This implies that d(v,u) < R and d(v,w) < R. Since at any stage the maximum key in @ is at most R and
d(v, (u,w)) < R it follows from the correctness of Dijkstra’s algorithm that at some stage we extract a vertex z
from @ for which we encounter an edge (x,y) while scanning E(z) such that y € @ and d(v, (z,y)) < R. This
results in a cycle of length at most 2R. If H(v, R) is a tree it follows from the correctness of Dijkstra’s algorithm
that we will scan all the vertices at distance at most R from v. Since we add a condition that we only scan edges
at distance at most R from v the algorithm stops once all the edges of H(v, R) are scanned and since there is
no cycle in H (v, R) it cannot stop before that. If H(v, R) is a tree the cost of Ball0rCycle is O(|V,[*|logn). If
H(v, R) is not a tree then a cycle is reported at the first time a vertex is updated in @ for the second time. The
cost of BallOrCycle in this case is also O(|V,f!|logn). If the graph is unweighted it is easy to implement the
algorithm in O(|V,F|) time, using BFS implementation. |

For unweighted undirected graphs, prior work [IR78, RV12, LL09] considered an algorithm BFS-Cycle with
input a vertex v that would be identical to our algorithm Ball0rCycle(v, 0o) run with parameter R = oo on the
unweighted graph. The following is a useful Lemma from prior work.

LeEmMA 3.4. ([IR78, RV12, LL09]) Let v be a vertex in an n-vertex undirected unweighted graph such that v is
at distance at most d from a cycle of length g. Then BFS-Cycle runs in O(n) time and outputs a cycle of length
at most 2d + g, if g is even, and at most 2d + g+ 1, if g is odd.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2: Cycle(G, R, k)

1 if G is empty then return No;
2 Let v € V' be an arbitrary vertex;
3 H(v,0) « ({v}, @),
4 for i <1 tok do
(H(v,iR),C) + BallOrCycle(v,i- R) ;
6 if C # null then return C;
/* n is a global variable denoting the size of the original graph */

if (ViR < n'/k |V, DE| then
L return Cycle(G\ vi—VE R k)

w

®

4 A general scheme for girth approximation

In this section we preset an algorithm called Cycle with pseudocode in Algorithm 2. The algorithm gets as an
input a weighted undirected graph G = (V, E) and two parameters R and k. The algorithm either returns a
cycle of length at most 2kR or reports that there is no cycle of length at most R in G. The algorithm works as
follows. We pick an arbitrary vertex v € V as a source and iterate over ¢, from 1 until k. In the ith iteration,
we call Ball0rCycle(v,i - R). If BallOrCycle(v,i - R) reports a cycle, we stop the loop and report a cycle. If

Vv(i—l)-R

not, we check if the size of V,'% is larger than the size of by a factor that is at most n'/F. If this is

the case then we return the result of a recursive call to the algorithm with the graph G\ Vv(j’_l)'R. If this is not
the case, we proceed to the next iteration. As we will show in the analysis, there must be an iteration i, where
1 <i <k, in which V"® is larger than the size of VU(FI)R by a factor that is at most n'/¥. Notice that in order
to obtain a slightly more efficient implementation we do not need to compute H(v,7 - R) from scratch in the ith
iteration, instead we can use H (v, (i —1)- R) as the starting point for the run of Bal1l0rCycle(v,i- R). This allows
us to avoid a factor of k in the running time. Moreover, to implement efficiently the deletion of the vertex set
Vv(ifl)'R from the graph, we assume that every edge has pointers to its endpoints, so when a vertex w € Vv(ifl)'R
is removed from G, we can delete every edge (w,w’) € E(w) also from the adjacency list of w’ in constant time.

Next, we prove that Algorithm Cycle(G, R, k) detects a cycle of length at most 2kR if G has a cycle of length
at most R .

LEMMA 4.1. If G has a cycle C such that wt(C) < R then Algorithm Cycle(G, R, k) returns a cycle of length at
most 2kR.

Proof. If a cycle is reported then it must be of length at most 2kR since for every source v for which we call
BallOrCycle(v,i - R), we have i < k. Let C' = {uy,...,ut} be a cycle in G such that wt(C) < R. Assume,
towards a contradiction, that Cycle(G, R, k) does not report a cycle. Notice that this cannot happen if no vertex
of C' is removed from G because at some stage a vertex w from C will be picked as a source and in the call
BallOrCycle(w, R), for i = 1, we will detect a cycle of length at most 2R.

Thus, there must be a stage in which a vertex of C' is removed from G. Let v be the first source that while
performing its for loop at least one vertex of C' is removed from G and let ¢ be the iteration in which this happened.
This implies that VU(FDR contains a vertex of C. It follows from Lemma 3.1 and from the fact that wt(C) < R
that in such a case Ball0rCycle(v,i - R) should have returned a cycle, thus we reach a contradiction. O

For the case of unweighted graphs we can prove the following:

LEMMA 4.2. Let G = (V, E) be an unweighted undirected graph. If G has a cycle C such that wt(C) < R then
Algorithm Cycle(G, [R/2], k) returns a cycle of length at most 2k[R/2].

Proof. If a cycle is reported then it must be of length at most 2k[R/2] since for every source v for which we call
BallOrCycle(v, [i- R/2]), we have i < k. Let C = {uq,...,us} be a t-cycle in G such that ¢t < R.

Assume, towards a contradiction, that Cycle(G, [R/2],k) does not report a cycle. Notice that this cannot
happen if no vertex of C' is removed from G because at some stage a vertex w from C' will be picked as a source
and in the call Ball0rCycle(w, [R/2]), for i = 1, we will detect a cycle of length at most 2[R/2].

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Thus, there must be a stage in which a vertex of C' is removed from G. Let v be the first source that while
performing its for loop at least one vertex of C' is removed from G and let ¢ be the iteration in which this happened.
This implies that Vv(i_l)rR/ 2] contains a vertex of C'. However, it follows from Lemma 3.2 and from the fact that
the length of C, ¢t is < R that in such a case BallOrCycle(v,i - [R/2]) should have returned a cycle, thus we
reach a contradiction. 0

We now turn to analyze the running time of Algorithm Cycle(G, R, k).
LEMMA 4.3. Algorithm Cycle(G, R, k) runs in O(m +n'*t1/*logn) time.

Proof. When a vertex v € V is picked as a source in line 2 we iterate in a for loop over i in lines 4-8 from 1 to k.
We refer to the for loop performed right after v is picked to be a source, as the for loop of v. We denote by G(v)
the input graph to the run of Cycle in which v is picked to be the source.

Notice first that if a cycle is never found in line 6, while iterating from 1 to k, then there must be an iteration
in which |V!| < n!/F.|Vi=1|. To see this assume, for the sake of contradiction, that this is not the case, and in
every iteration |V;!| > n'/* . |Vi=1| for every 1 < i < k. This implies that |V;’| > n'/*, for every 1 < i < k, and
in particular, |V*¥| > n, a contradiction.

Thus, the loop ends either in line 6 or line 7. If the loop ends in line 6 then a cycle is detected. In such a
case the total cost of the for loop of v is O(nlogn), assuming the computation of Ball0rCycle(v,i - R - i) uses
the output of BallOrCycle(v, (i — 1) - R).

If the loop ends in line 7 then a recursive call to Cycle is initiated with the graph G(v) \ V;/~1. Consider the
vertices of V,i~1. Each one of these vertices, except v, was not a source up to this stage. This follows from the fact
that when a vertex is a source it is either removed or a cycle is detected. The vertices of V;'~! are now removed
and hence each one of them will not be a source from this stage onward. Since |V| < n!/* . |[Vi=1|, the cost of
computing Bal10rCycle(v, R-j), for every 1 < j < i, is O(n'/*|Vi~1|logn), assuming that Bal10rCycle(v, R-j)
uses the output of Bal10rCycle(v, R - (j — 1)). We charge every vertex of V=1 with a cost of n'/*logn to cover
the cost of the call to Ball0rCycle(v, R - j), for every 1 < j < 4. We charge every vertex u that is removed with
deg(u) to pay the cost of deleting its edges from the graph.

We can now analyze the total cost of Cycle(G, R, k). There is at most one source for which a cycle is detected.
The cost of the for loop for this vertex is O(nlogn). The cost of the for loop of a source w from which a cycle is
not found is paid by charging the vertices that are removed at the for loop of w. Since a vertex can be removed
at most once, every w € V is charged with a cost of O(n'/*logn + deg(w)). Therefore, the total running time is
O(m +n'+t1/*logn). O

We can now use Algorithm Cycle(G, R, k) in order to obtain the main result of this section.

THEOREM 4.1. Let G = (V, E) be a weighted undirected graph with integral edge weight from the range [1, M|
and girth g. There is an algorithm that computes a cycle C' in O((n'*Y*logn 4+ m)lognM) time such that
wt(C) <2k-g

Proof. We perform a binary search over the interval [I,nM]. Let R¥FS be a value for which Cycle(G, RY®S k)
returns a cycle and let RN© be a value for which Cycle(G, RN©, k) does not returns a cycle. At the beginning of
the search we set RYES to Mn and RNO to 1. In each step if RYPS— RNO > 1 we set R to RNO+[(RYFS — RNO) /2],
otherwise we stop and the result is the output of Cycle(G, RY®S k). If Cycle(G, R, k) returns a cycle we set
RYES to R. If Cycle(G, R, k) does not return a cycle we set RN to R. It follows from Lemma 4.3 that the cost
of each step in the search O(n'*t'/*logn + m), thus the total cost of the search is O((n'+t'/*logn + m)lognM).
From Lemma 4.1 it follows that RNC < g since Cycle(G, RN©, k) does not returns a cycle. Since RYES — RNO =1
we get that RYFS < g and since the call to Cycle(G, RYPS k) return a cycle of length at most 2kRYFS we get
that 2kRYES < 2k - g. O

For unweighted graphs we prove a slightly better result.
THEOREM 4.2. Given any m-edge, n-vertex unweighted undirected graph, there is an algorithm that computes a

cycle C in G in O((n* /% +-m)logn) time such that wt(C) < 2k - [g/2] and g is the girth of G.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3: DegenerateOrCycle(G, k)

Let m’ = 1+ [nD] for D := 1 + min{n'/* 2m!/*+11
if m > m’ then G < the edge induced subgraph from an arbitrary subset of 1 + [nD] edges of G ;
dy <+ the degree of a for all a € V' ;
S+ {aeV|d, < D};
while S # 0 do
Pick a € S and let S < S\ {a} ;
For all {a,b} € E(a) let dy < dp — 1 and if as a result d, < D add b to S ;
Remove a and all of incident edges from G ;

if G#(0,0) then
10 (B,C) < BallOrCycle(a, k) for arbitrary a € V'
11 | return C'; // C is a cycle of length < 2k

0w N o A W N -

©

12 return () ; // G is D-degenerate

Proof. The proof is almost identical to the proof of Theorem 4.1. There are two changes. The first is that
we do a binary search over the interval [1,n]. The second is that any usage of Cycle(G, X, k) is replaced with
Cycle(G, [X/2],k), where X € {RNO RYES R}. The rest of the proof is identical. O

In the next section, in Theorem 5.1 we present a tool for removing the dependence on m in girth approximation
algorithms in unweighted graphs. The algorithm of Theorem 5.1 runs in O(min{m,n'T/*}) time, and either
returns a < 2k-cycle, or determines that m < ni+1/k,

This allows us to obtain the following improvement to Theorem 4.2 by first running the algorithm of
Theorem 5.1, and if it does not return a cycle, running the algorithm of Theorem 4.2.

THEOREM 4.3. For every integer k > 1, there is an algorithm that computes a cycle C' in any n-vertex unweighted
undirected graph G in O(n**/*logn) time such that wt(C) < 2k - [g/2], where g is the girth of G.

5 Sublinear approximation algorithms for dense graphs

In this section we show how to remove the additive m in the algorithms of the previous section and achieve sublinear
runtimes. To do this, we provide a more general result that given a graph it is possible to efficiently either find a
cycle or conclude that the graph is degenerate. The algorithm for this procedure, DegenerateOrCycle, is given
as Algorithm 3 and the main result of this section is the following theorem bounding its performance.

THEOREM 5.1. (DEGENERATE OR CYCLE) Given unweighted n-vertex m-edge G = (V, E) and integer k > 1,
DegenerateOrCycle(G, k) (Algorithm 3) in O(min{m,nD}) time for D := 1 + min{n'/* 2m"/*F+D} cjther
outputs a cycle of length at most 2k or () in which case G is D-degenerate and hence m < nD.

To prove this theorem we first give the following lemma regarding the performance of Bal10rCycle on graphs
of large degree.

LEMMA 5.1. (BALLORCYCLE IN LARGE-DEGREE GRAPHS) If G = (V, E) is an n-vertex undirected graph where
every vertex has degree at least 1 + n'/* for integer k > 1 then BallOrCycle(a, k) returns a cycle of length at
most 2k in O(n)-time.

Proof. By Lemma 3.3 it suffices to show that Ball0rCycle(a, k) does not output a ball. Proceed by contradiction
and suppose that Bal10rCycle outputs a ball. In this case the edges inside that ball constitute a tree rooted at v
where every vertex of depth < k has degree at least 1 + n'/¥ and therefore at least n'/* children. Consequently,
for all integers i < k this implies that the tree has at least n*/* vertexs at depth i. Therefore the tree has at least
n vertices at depth k and since k > 1, the root, v, is not one of these k vertices. Consequently, the tree has n+ 1
vertices contradicting that G is a n-vertex graph. |

Leveraging Lemma 5.1 we prove Theorem 5.1.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. [Proof of Theorem 5.1] The algorithm simply picks an arbitrary set of at most m’ edges, where
m’ = 1+ [nD], in O(min{m,m’}) = O(min{m,nD}) time and then repeatedly removes vertices of degree
at most D in O(nD) time. If after the removal the resulting graph is nonempty (Line 9) then a cycle found by
BallOrCycle is returned, otherwise the algorithm returns that the graph is degenerate. By Lemma 3.3, which
bounds the runtime of Ball0rCycle with O(n) we get that the runtime of the algorithm is O(min{m,nD}), as
desired.

To prove that the algorithm has the desired output, first note that if m < m/ (so the subset of at most m’
edges is the entire graph) and G = (0, () in Line 9, then the graph is D-degenerate (every vertex was removed
from the original graph and it had degree at most D when it was removed. On the other hand if m > m/' then
since every vertex removal in an iteration of the while loop removes < D edges at most nD < m' edges are
removed and G # (), () in Line 9. Consequently, it only remains to show that whenever G # ((,) in Line 9 then
the returned C' is a cycle of length 2k.

For this last case, suppose G # (0,0) in Line 9. Let N and M denote the number of vertices and edges
respectively in the graph at this time. If D = 1 4 n'/* then every vertex in G at Line 9 has degree at least
14+nt/k > 14NV (since vertices were only removed from the original graph). On the other hand, if D = 1+2m1/*
then since every vertex of G' at Line 9 has degree at least 1+ 2m!/(*+1) it is the case that N (1+2m!/*+1)) < 2.
Further, since M < m (since edges were only removed from the original graph) this implies that N < M*/(k+1)
and m!/(B+1) > Nt/ (k1) > N1/E Iy either case every vertex of G at Line 9 has degree at least 1 + N/ and a
cycle of length at most 2k is output by Lemma 5.1. O

6 Faster algorithms for small girth and sparse graphs

In this section we will use the following theorem of Alon, Yuster and Zwick [AYZ97].
THEOREM 6.1. ([AYZ97]) Given an m-edge graph of degeneracy at most D, for any integer £ > 1,
e a 40 — 2-cycle if one exists can be found in O(m>~/¢D'=1/t) time,
e a4l —1 or a 4l-cycle if one exists can be found in O(m>~/¢D) time, and
e a 40 + 1-cycle if one exists can be found in O(m>~ /¢ DYFV/Y) time.
We begin by proving the following general theorem:

THEOREM 6.2. For every k > 2, there is an O(min{m,n'*/*}) time algorithm that either returns a < 2k-cycle,
and if it fails then m < O(n*t1/*) and then one can find a shortest cycle or determine that the girth is > g in
additional time

o O(m2= 11/ UAD=1/(Ch+1))) if g = 4 — 2,

o O(m2~ VYA if g =40 — 1 or g = 4L, and

o O(m2—V/H/UADF/WR+1)) if g = 40 4 2.

As corollaries we obtain the following results for small girth.

COROLLARY 6.1. For every k > 2, there is an O(min{m,n'*/¥}) time algorithm that either returns a < 2k-
cycle, and if it fails then m < O(n1+1/k) and then one can find a shortest cycle or determine that the girth is > g
in additional time

o O(min{n'*T2/k VDY) if g =3 or g =4, and
e O(min{n'*T3/k m1+2/(k+11) jif g = 5.

COROLLARY 6.2. Let k > 2 be an integer. There is an algorithm that given an n-, m-edge graph either determines
that the girth is more than g, or returns a cycle of length < 2k, and runs in time O(min{n'*T2/* m!+1/(k+1)1)
time if g =3 or g =4 and in time O(min{n'T3/F m+2/=+DV) time if g = 5.

Now we can prove Theorem 6.2.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. First, we can assume that the girth is at least g, as we can first run the algorithm for the setting g — 1.
If the number of edges m of G is > 14 n'*t1/* then by Theorem 5.1, running Algorithm 3 on G and k will
return a cycle of length < 2k in O(n”l/k) time and we do not need to run the rest of the algorithm below.
Hence we can assume that m < [n”l/ *]. Here we can afford to go through all edges and compute the degrees
in O(m) time. Then we also run Algorithm 3. If the algorithm returns a < 2k-cycle, then we are done. Hence
assume otherwise.
In this case, from Theorem 5.1 we know that G is D-degenerate, where D < 2m!/(*+1) We can now run the
cycle-finding algorithm of Alon, Yuster and Zwick on the D-degenerate graph. The running time is as follows:

e For g = 4¢ — 2 the running time is O(m?>~/¢D'=/%) time, which for our setting of D < 2m!/(+1 ig
O(m2=1/ 1/ (k+1)=1/(¢(k+1))

e For g = 40 — 1 or g = 4/ the running time is O(m?>~'/¢D), which for our setting of D < 2m!/(*+1) ig
O(m271/l+1/(k+1)), and

e For ¢ = 40 4 1 the running time is O(m?~/¢D'*1/¢) which for our setting of D < 2m!/(k+1) ig
O(m2=1/ 41/ (R 1)4+1/(#(k+1)))

|

Finally, we present an algorithm for g = 6 that beats the O(n1+3/ k) runtime of Theorem 4.2 when the girth
is 6, in the special case when k is either 4 or 5 and m is small.

THEOREM 6.3. Fork =4 and k = 5, there is an O(min{nm!/2+1/2k+2) pn3/241/kV) time algorithm that in m-edge
n-vertex graphs, either returns a cycle of length at most 2k, or determines that the girth is more than 6.

Proof. We run Algorithm 3 on G and k. We either get a 2k-cycle and are done, or we have degeneracy at most
D = 2mY* D) and m < n*tV/k edges.

Then, we want to handle the case that the shortest cycle has a vertex of degree A, for a parameter A. We
sample O(n/A) vertices S, and for every s € S we run BFS-Cycle(s).

The sample S can either be obtained in a randomized way, or can be done deterministically by the greedy
algorithm for hitting set, where we are trying to hit the neighborhoods of all vertices of degree at least A. This
would take O(nA) time, and is subsumed by the rest of the running time of the algorithm.

If the shortest cycle has a high degree vertex, some s € S is at distance at most 1 from the cycle, by Lemma 3.4,
BFS-Cycle will return a cycle of length no more than 8 if the girth is at most 6. If 8 < 2k, we are done, so this
will work as long as k > 4.

The greedy degeneracy assignment of edges to one of their end-points given by Theorem 5.1 is an acyclic
orientation of the edges. Thus any cycle in G has a vertex d whose edges in the cycle are not assigned to it, i.e.
d is a sink for the degeneracy orientation. Thus, every 6-cycle of G can be decomposed into two length 3 paths
a—b—c—dand a—V —c —dsothat c—d is assigned to c and ¢’ —d is assigned to ¢’. Moreover, we can assume
that all vertices on these 3-paths have degree at most A, as otherwise we would have found a short cycle already.

We enumerate all such paths as follows: go over all edges (a,b) where b has degree at most A, go over all the
at most A neighbors ¢ of b and the at most D edges (¢, d) assigned to ¢. We enumerate these paths in O(mDA)
time and try to find two that share their endpoints, in the same time. If we find two such paths, we have found
a < 6-cycle.

We thus find a 2k-cycle, a g + 2 = 8-cycle, a < 6-cycle, or determine that the girth is more than 6. The
running time is minimized for when n?/A = mDA, so A? = n?/(mD).

Notice that since m < n't/* we have that A2 = n?/(mD) = n?/(2mFE+2/E+1)) > n2 /(2p1+2/k) =
711*2/’“/27 which is at least 1 for £ > 2 and large enough n.

Thus, we can set A = ©(n/vmD), and this will be more than 1 for our choice of k£ = 4, 5. The running time
is O(v'mDn) = O(nm!/>+1/(2k+2)),

As m < n'*tY* we obtain the following running time upper bound purely in terms of n:

O(nnHD/E-(42)/ D)y < B(3/2F17K),

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

The algorithm is never worse than the O(n!™3/%) runtime of Theorem 4.2 if k = 4, and it gets faster for lower
sparsity.

Let’s consider the special case when m = O(n). Then the algorithm runs in O(n3/2+1/(2k+2)) time. The
exponent is better than the 1+ 3/k exponent of Theorem 4.2 whenever k < 5. Thus, we obtain a faster algorithm
for g = 6 for very sparse graphs and k =4 or 5.

7 Additive approximation scheme

In this section we focus on additive approximation in unweighted graphs. Our goal is to get an approximation that
is better than a multiplicative approximation of 2 at the price of a bit worse running time. The main technical
contribution in this section is an algorithm that given two parameters R and a, where a < [R/2], returns a cycle
of length at most 2[R/2] + 2a if there is a cycle of length at most R in the graph.

The algorithm is composed of a couple of building blocks. Each building block on its own is relatively simple.
The main technical challenge is in combining these building blocks carefully into an efficient algorithm.

We start with a simple procedure called IsDense. The input to IsDense is a graph G = (V, E), a vertex w
in V, and two integers, D and r. The procedure IsDense is a simple variant of a BFS from w. The search is
performed as long as the total number of edges that were scanned during the search, D’ is less than D and the
farthest vertex from w is at distance at most r. Recall that H(w,r) = (V,}, E7,) is the ball graph of w at distance
r. Procedure IsDense returns No if |E] | < D and Yes if |E])| > D.

The procedure is implemented in a similar way to the BFS algorithm. We keep in j the current distance
between w and the next vertex to be dequeue from a queue). We have two counters . and ¢,,, where /. is
updated to reflect the number of vertices that are left in @) at distance j, and ¢, is updated to reflect the number
of vertices that are added to @ at distance 5 + 1. We initialize ¢, to 1, ¢,, to 0 and j to 0. When ¢, reaches 0 we
set L. to €, £, to 0 and increment j by one. When a vertex u is dequeue from @ we scan F(u) if j < r and as
long as D’ < D. We increment £,, by one for each vertex that is added to). Procedure IsDense is presented in
in Algorithm 4. In the next Lemma we prove the running time and the correctness of IsDense.

LEMMA 7.1. Procedure IsDense(G,w, D,r) runs in O(D) time. If IsDense(G,w,D,r) = No then |E!| < D and
|[Vir| < D. If IsDense(G,w, D,r) = Yes then |EL| > D and if H(w,r) is also a tree then |V,5| > D.

Proof. The value of D’ is incremented by one in each iteration of the inner while loop. The outer while loop ends
immediately if the inner loop ends because D’ = D, thus the running time is O(D).

As long as D' < D, the algorithm increments D’ by one for every edge (z,y) € E%3. Therefore, |E"| > D'.

If the main while loop ends and D’ < D then all the edges of EI, were scanned in the inner while loop and
hence |E],| = D’ < D . Thus, if IsDense(G,w,D,r) = No then |E] | < D. Since |V;J| < |E} | + 1 we get that
|V < D.

If the main while loop ends and D’ = D then the set of edges that were scanned by the inner while loop is
contained in EJ, and hence |E])| > D. Thus, if IsDense(G,w,D,r) = Yes then |kE],| > D. If we also have that
H(w,r) is a tree then |VJ| = |E}| + 1 and we get that |V)|=|E}|+1>D+1> D. O

We proceed with a simple but yet crucial property of procedure IsDense that allows us use information
obtained on using IsDense on one graph also on other versions of that graph.

LEMMA 7.2. Let = and D be positive integers. If IsDemnse(G,w,D,z)=No and G' C G then
IsDense(G’,w,D,z) = No.

Proof. The fact that IsDense(G,w, D,z) = No implies that |E%| < D. Since G’ C G we have |E’, | < |EX| < D
and from Lemma 7.1 it follows that IsDense(G’,w, D, x) = No. 0

We now proceed with proving a property of IsDense that allows us to aggregate information gained by
applying IsDense to different vertices of the graph.

LEMMA 7.3. Let xz,y and D be positive integers and let w € V. If IsDense(G,w,D* x)=No and
IsDense(G,u, DY,y) = No, for every u € V, then |VETY| < D*TY,

3Notice that once an edge (u,v) is scanned by u we remove it from E(v) to avoid double counting (u,v)

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 4: IsDense(H,w,D,r)

1D 0,0+ 1,0,+0,7j+0;

2 Q« {w};

3 while (Q is not empty) and (j < r) and (D’ < D) do
4 u + dequeue(Q);

5 be— 0. —1,1+0;

6 | while (i <|E(u)|) and (j <r) and (D’ < D) do
7 (u,v) + E(u,i) ;

8 remove (u,v) from E(v);

9 D'« D +1;

10 if v is not marked then

11 LQ(—QU{U},markv,&ﬁ—&L—i—l;

12 141+ 1;
13 if /. =0 then

14 be Ly, by <0

15 j=i+1;

16 if (D' = D) or (D =1landr= 0) then return Yes;
17 else return No;

Proof. Let w € V and assume that IsDense(G,w, D*,x) = No. We also know that IsDense(G,u, DY,y) = No,
for every u € V. Notice that V2t =, cy» Vi¥. Therefore, VIt =|U,cp. VI

It follows from Lemma 7.1 that |V.7| < D* since IsDense(G,w, D*,x) = No. It also follows from Lemma 7.1
that |VY| < DY, for every u € V¥ since IsDense(G,u, DY, y) = No, for every u € V. Thus, we get:

U v YD v) pv <Dt

ueVye ueVz ueVz

w w w

We conclude that [VE1TY| < D*+y, o
We use this Lemma to prove the following Corollary:

CO_ROLLAF_{Y 7.1. Let x and D be positive integers. If IsDense(G,w, D%, x) = No for every w € V, then
|[Viw| < D™ for every w € V and i > 1.

Proof. The proof is by induction on i. For i = 2 it follows from Lemma 7.3 that |V;2*| < D?®. Assume now the
claim holds for j <4 — 1. This implies that |V1,(1271)z| < DDz for every w € V. Combining this with the fact
that |V,2| < D*, for every w € V, we get that |V:*| < D for every w € V and i > 1. 0

We now present the second building block, a procedure called SparseOrCycle, that gets as an input a graph
G = (V,E) and three parameters D, z and y. In SparseOrCycle we scan the vertices of G. For each vertex w
we call IsDense(G,w, D*, x). If IsDense(G,w, D* x) returns Yes we call Ball0rCycle(w,x + y). The call to
BallOrCycle either returns a cycle of length at most 2(z + y) or the ball graph H(w, z+y). If a cycle is returned
then we return the cycle as the output of Sparse0rCycle. In case that the ball graph H(w,z + y) is returned
then we remove the set of vertices V7 from G and repeat the same process with a new vertex. If the loop ends
without finding a cycle then we return null. Procedure SparseOrCycle is presented in Algorithm 5.

In the analysis we denote with G(w) the current version of the input graph G during the execution of
SparseOrCycle(G, D, z,y) when the vertex considered by the for-all loop is w. We also denote with G= (V, E’)
the graph G = (V, E) after the execution of Sparse0rCycle(G, D, z,y) ends. We denote with W C V the set of
vertices for which Bal10rCycle was called during the execution of SparseOrCycle(G, D, z,y) and a cycle was not
found. We assume that y > 0. Consider a vertex u € V'\ V. This means that there is a vertex w € W such that
when w was considered by the for-all loop w € V.7 and thus removed from H. We denote with p(u) the vertex w
that is responsible for removing u from G. Notice that for w € W we have p(w) = w.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 5: SparseOrCycle(G, D, x,y)

1 for allw eV do

if IsDense(G,w,D* x) = Yes then
(H(w,z +vy),C) < BallOrCycle(w,z + y) ;
if C # null then return C;
else G+ G\ VZ;

SO

6 return null;

In the next lemma we analyze the running time of SparseOrCycle.
LEMMA 7.4. The running time of Sparse0rCycle(G, D, z,y) is O(|V|D" + 3 o (IVETY])).

Proof. The cost of each call to IsDense is O(D?). In the worst case we call O(|V|) times to IsDense. The total
cost of this step is O(|V|D¥). Each call to Bal10rCycle(w,z + y) that does not return a cycle costs O(|VE1Y|).
At most one call to Ball0rCycle returns a cycle. We can bound this call with O(n). The cost of removing the
set V.Z from G is bounded by O(|EZ™1|). However, since we are in the case that Bal10rCycle(w,z + y) does not

w

return a cycle it follows that H(w,x + y) is a tree and |EZ| = O(|[VEH)). O
We now turn to prove several useful properties of SparseOrCycle.

LEMMA 7.5. If Sparse0rCycle(G, D, x,y) returns a cycle C then wt(C) < 2(z +y).
If SparseOrCycle(G, D, xz,y) does not return a cycle then:

(i) If u € V\'V then u is not part of a cycle of length at most 2y in G(p(u)).
(ii) If u € V then IsDense(G,w, D" x) = No.
(iii) If x = 0 then G is empty.

Proof. (i) Let u € V\ V. Let w = p(u). Thus, u € V;* and Ball0rCycle(w,z + y) returned null. It follows
from Lemma 3.2 that w is not on a cycle of length 2y in G(w).

(ii) Let u € V. This implies that v was not removed by SparseOrCycle(G,D,z,y) and thus was con-
sidered at the for-all loop at some stage of the execution of SparseOrCycle(G,D,x,y). At this stage
TIsDense(G(u), u, D*,) was No, as otherwise u would have been removed. Since G C G/(u), it follows from
Lemma 7.2 that IsDense(G,w, D*, x) = No.

(iii) If = = 0 then IsDense(G(u),u,1,0) = Yes for every u € V. Thus, a vertex u € V is removed
during the execution of SparseOrCycle(G,D,0,y) either because the for-all loop reached to w and
IsDense(G(u),u,1,0) = Yes or because u is in V¥, where w is a vertex reached by the for-all loop.

0

We are now ready to present the main algorithm of this section. The input is an unweighted undirected
graph G = (V, E) and two parameters R and c¢. If R is odd then R = 2t — 1 and if R is even then R = 2¢t. The
algorithm either returns a cycle of length at most 4t — 2¢ or reports that the girth of G is strictly more than 2t.
The algorithm starts by calling to Sparse0rCycle(G, D,t — ¢, t). If a cycle is not found the algorithm proceeds
by setting d to ¢, g to LtTTCJ and running a repeat-until loop. In each iteration of the repeat-until loop we execute
an inner loop implemented as a for loop. In the for loop the index i runs from 1 to ¢g. In each iteration we call to
Sparse0rCycle(G,D,t — ¢ —i-d,t). If the inner loop ends without finding a cycle we set r to (t —¢) mod d, d
tot mod r and g to Lt?TCJ We stop when r = 0. Algorithm CycleAdditive is presented in Algorithm 6.

Before we turn to analyse the algorithm we introduce some notation to ease the presentation. We denote
with ¢ be the number of iterations of the outer loop (the repeat-until loop). Let 1 < j < . We denote the values
of r, d and ¢ in the beginning of the jth iteration of the outer loop with r;, d; and ¢;. Let 1 <u < ¢;. We denote
with G; (G’;) the current version of the input graph G at the beginning (end) of the ith iteration of the inner

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

loop right before (after) the call to SparseOrCycle(G?, D,t — ¢ — id;,t). We denote with W7 the set of vertices

for which SparseOrCycle(G‘z, D,t — ¢ —idj,t) initiated a call to BallOrCycle in the ith iteration of the inner
loop during the jth iteration of the outer loop.

LEMMA 7.6. Let G = (V,E). Let R and c¢ be two parameters and let t = [R/2]. If CycleAdditive(G, R,c)
returns a cycle C' then wt(C) < 4t —2c. If CycleAdditive(G, R, ¢) returns No then the girth of G is strictly more

than 2t. The running time of Cycleddditive(G, R,c) is O((t — ¢) ~n1+ﬁ).

Proof. We first show that if CycleAdditive(G, R, c) returns a cycle C then wt(C) < 4t — 2¢. During the run of
the algorithm every call to Sparse0rCycle(G, D, x,y) is with x < t — ¢ and y = t. Thus, when Sparse0rCycle
returns a cycle C it follows from Lemma 7.5 that wt(C) < 2(z +y) < 4t — 2¢.

We now turn to show that if CycleAdditive(G, R, ¢) returns No then the girth of G is strictly more than 2¢.
Notice that in this case every call to SparseOrCycle returns No.

We start by showing that if the algorithm ends without returning a cycle then G'ZZ is empty. Since / is the
last iteration of the outer loop 7 is updated to 0 after the inner loop ends, therefore, (¢t — ¢) mod dp is 0. Let
x =1t—c— qedg. Since (t —¢) mod dy =0 and g = Ltd’—;j we have x = 0. Thus, in the ¢, iteration of the inner
loop during the ¢ iteration of the outer loop we call to Sparse0rCycle(G{‘, D,0,t). It follows from Lemma 7.5(iii)
that G is empty.

Next, we use the fact that CA?ZZ is empty to show that there is no cycle of length at most 2¢ in G. Let C =
{u1,...,up} be acycle in the input graph G. Assume towards a contradiction that wt(C') < 2¢. Since Gz"] is empty
every vertex of C is removed at some stage during the execution of CycleAdditive(G, R, ¢). Let u € C be the first
vertex that is being removed. This event either happens during the execution of Sparse0rCycle(G,D,t — ¢, t)
before the outer loop starts or during the execution of SparseDrCycle(Gé», D,t—c—1i-dj,t), where 1 < j < /{
and 1 <4 < gqj.

In case that SparseOrCycle(G,D,t — c¢,t) removed wu then C is in G(p(u)). In case that
Sparse0rCycle(G%, D,t — ¢ — i - dj,t) removed u then C is in G%(p(u)). However, since u is removed it fol-
lows from Lemma 7.5(i) that u is not on a cycle of length at most 2¢ in G/(p(u)) in the former case and in G%(p(u))
in the later case, a contradiction.

Finally, we turn to prove that the running time of CycleAdditive(G,R,c) is O((t — c)nHﬁ). Let

D = nr—e. First, recall that from Lemma 7.4 it follows that the running time of SparseOrCycle(G,D,x,y)
is O(IVID* + 3 ew IVatY]).

In every call to SparseOrCycle(H, D, x,y), during the execution of CycleAdditive(G, R, c), we have H C G
and x <t — ¢, hence, the term O(|V|D?) in the running time is bounded by O(nH%). There are at most ¢t — ¢

calls to SparseOrCycle thus, total contribution to the cost of this term is bounded by O((t — c)nH%).

Consider the first call to Sparse0rCycle(G, D,t—c,t) right before the outer loop starts. For every w € W the
call to IsDense with w returned Yes and since no cycle was found, it follows from Lemma 7.1 that [V.~¢| > D!~¢.
The call to Bal10rCycle(w,t — ¢ 4 t) costs O(n) = O(D?~¢), since D = n'/(*=). Since |V}=¢| > D*~¢ and the
vertices of V!~¢ are removed from the graph and will not be considered any more, we can charge every vertex of
Vi=¢ with a cost of D! to cover the O(D*~¢) cost of Ball0rCycle(w,t — ¢ +t).

Consider now the first iteration of the outer loop. In this iteration d; = ¢. From Lemma 7.5(ii) it follows
that if w € V after the execution of SparseOrCycle(G, D,t — ¢, t) then IsDense(CAv*7 w, D¢t —¢) = No.

We analyze the cost of Sparse0rCycle(GY, D,t — ¢ —idy,t), where 1 < i < ;. For every w € W7 the call to
IsDense with w returned Yes and since no cycle was found, it follows from Lemma 7.1 that |V;}—¢~id1| > pt—e—idi,
The cost of a call to Ball0rCycle with w is O(|V,I-¢~idi+t)),

Since w survived all the calls to SparseDrCycle(Gil/, D,t — ¢ — i'dy,t), where ¢/ < i, it follows from
Lemma 7.5(ii) that IsDense(G%,w,D!~¢~#d1 t — ¢ — i'd)) = No. Since Gi(w) C G¥, it follows from

Lemma 7.2 that IsDense(Gi(w),w,D!=¢~"d1 ¢ — ¢ —i'd;) = No. In particular, for i = i — 1 we have
IsDense(GY (w),w, D!=¢~(=Ndi ¢ (j —1)d;) = No.

Notice that d; = ¢, thus, t — ¢ — (i — 1)dy +t —¢c = t — ¢ — id; + t. Since for w we
have IsDense(Gi(w),w,D!=¢~(=Ndi ¢ — ¢ — (i — 1)d;) = No and for every u in Gi(w) we have

IsDense(GY(w),u, D!=¢ t—c) = No we can apply Lemma 7.3 to bound the O(|V;}~¢~*1+t|) cost of Ball0rCycle
with Dt=¢=idi+t We can charge every vertex of V!=¢~d with D* to cover this cost, since |Vi=¢7id1| > pt—e—idi,

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 6: CycleAdditive(G, R, c)

t+ [%L D « n-e ;
C + SparseOrCycle(G,D,t — c,t) ;
if C # null then return C;
d<c;
g |55 ;
repeat
for i <1 to q do
C + SparseOrCycle(G,D,t —c—i-d,t) ;
L if C # null then return C;
10 r<« (t—c) modd;
11 d<+t modr;
| ge 5
13 until » = 0;
14 return No ;

© 0 N O oA~ W N =

Consider now the case of an iteration j > 1 of the outer loop. Recall that the values of r, d and ¢ in the
beginning of the jth iteration are denoted with r;, d; and g;.

Notice that 7; = (t —¢) mod d;_1 = (t — ¢) — gj—1d;j_1, thus, when the (j — 1)th iteration of the outer loop
ends it follows from Lemma 7.5(ii) that IsDense(CA?;y:l1 ,u, D", r;) = No for every u in G‘?’:ll. From Corollary 7.1
it follows that IsDense(éjﬂ’ll,u7Dz'Tj,z -r;) = No, for every integer z. Since ¢t — d; is a multiple of r; and
G;'- C G’?fll, where 1 <7 < gy, it follows from Lemma 7.2 that IsDense(G;,u, D=4 ¢ — d;) = No for every u
in GY. ‘

Consider the call to SparseDrCycle(G;.,D,t —c—1idj,t). For every w € W; the call to IsDense returned
Yes and since no cycle was found, it follows from Lemma 7.1 that |V1Z*c*idj| > D!=¢7ii_ The cost of a call to
BallOrCycle with w is O(|Vy © "%t). Since w survived the (i—1)th iteration of the inner loop and is in Gé-_l and
since G C G’;‘l it follows from Lemma 7.5(ii) and Lemma 7.2 that IsDense(G%,w, Dt=e=(=0d; ¢ (i—1)d;) =
No.

As Gi(w) € G, it follows from Lemma 7.2 that IsDense(GY(w),w, Dit=e=(i=Dd; ¢ _ ¢ — (i —1)d;) = No and
IsDense(G'(w),u, D'~%,t — d;) = No for every u in Gi(w). We use this to apply Lemma 7.3 and bound the
O(|Vut,_c_idj+t|) cost of Ball0rCycle with D!=¢#di*+* We can charge every vertex of Vi 7" with D! to cover
the cost of the call to Ball0rCycle with w since [V "% | > Dt—e=id;]

Notice that using Lemma 7.6 we can compute efficiently an approximation whenever the girth is bounded
by O(log” n), for some constant x. There are, however, degenerated cases of very sparse graphs with very large
girth. In such a case the factor of (¢t — ¢) in the O((t — ¢) - n1+ﬁ) running time becomes dominant. We can
avoid the (t — ¢) factor at a price of slightly worse approximation.

LEMMA 7.7. Let G = (V,E). Let R and ¢ be two parameters and let t = [R/2]. If CycleAdditive'(G, R,c)
returns a cycle C then wt(C) < 4t —c. If CycleAdditive' (G, R, c) returns No then the girth of G is strictly more

than 2t. The running time of Cycleddditive' (G, R,c) is O(n“‘ﬁ).

We defer the details regarding the implementation of CycleAdditive'(G, R,¢) and the proof of Lemma 7.7
to the Appendix.
We can now use Lemma 7.6 and Lemma 7.7 to prove the following result.

THEOREM 7.1. Let G = (V,E) be a given n-vertex, m-edge unweighted undirected graph with unknown girth

g, and let € € (0,1) be given. There is an algorithm that computes a cycle C' in 5(n1+1/(2*6)) time such that
wt(C) <141~ 21e[4]] < (2 - g +4 if g < logn and wH(C) < A[$] — [e[4]) < (2 - ¢/2)g+3 if g > log"n.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Assume that g < log®n. Let t = [g/2]. Let c(z,€) = |ze|, where z is an integer.

We do a binary search in the range [1,log?n]. We denote with RY®S a value for which a call to
CycleAdditive(G, RYES ¢([RYFS/2],€)) returns a cycle. We denote with RN a value for which a call to
CycleAdditive(G, RNO, c¢([RNC/2],¢)) does not return a cycle. At the beginning of the search we set RYFS
to [logZn] and RNO to 1. As long as RY"S — RNO > 1 we set R to RNO + [(RYPS — RNO)/2| and call to
CycleAdditive(G, R,c([R/2],¢€)). If it returns a cycle we set RYES to R and if not we set RN© to R. Once
RYES — RNO — 1 we output the result of CycleAdditive(G, RYES ¢([RYES /2], ¢)).

From Lemma 7.6 it follows that RN© < g since CycleAdditive(G, RNC, c([RNO/2],¢€)) does not returns a
cycle. Since RYES — RNO = 1 we get that RY®S < g and since the call to CycleAdditive(G, RYES ¢([RYFS /2] ¢))
returns a cycle C such that wt(C) < 4([RYFS/2]) — 2¢([RYFS /2], €), we get that wt(C) < 4[2] —2¢([4], €).

We now get 4[5] —2¢([§],¢€) <29 +2—2[eg/2], since c([5],¢) = |[[5]e] < [eg/2]. Now 29+ 2 —2|eg/2] <
20+2—2(eg/2—-1)=2g+4—eg=(2—¢€)g+4.

When g > log? n we simply switch the call to CycleAdditive with a call to CycleAdditive’. In this case
CycleAdditive' (G, RY®S c¢([RY®S /2], ¢)) returns a cycle of length at most 4([RY®S/2]) — ¢([RY®S/2],¢). This
is bounded by 4[4] —c([§],€). We now get 4[4] —c([5],€) < 29+2— [eg/2], since c([5],€) = |[[§]e] < [eg/2].
Now 29+ 2 — |eg/2| <29+2—(eg/2—1) =29+ 3 —€g/2=(2—¢€/2)g + 3.

Since we do not know in advance the value of g we run first the algorithm for the case that g < log®n. If no
cycle is returned then we run the algorithm for g > log® n. |

References

[AV21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10 - 13, 2021, pages 522-539. STAM, 2021.

[AYZ97] Noga Alon, Raphy Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica, 17:209-223,
1997.

[BS74] John A. Bondy and Miklés Simonovits. Cycles of even length in graphs. Journal of Combinatorial Theory, pages
16:97-16:105, 1974.

[CL21] Shiri Chechik and Gur Lifshitz. Optimal girth approximation for dense directed graphs. In Déniel Marx, editor,
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10 - 13, 2021, pages 290-300. STAM, 2021.

[CLRS20] Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford. Constant girth approximation for directed graphs
in subquadratic time. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 1010-1023. ACM, 2020.

[DKS17a] Sgren Dahlgaard, Mathias Baek Tejs Knudsen, and Morten Stockel. Finding even cycles faster via capped
k-walks. In Proc. of 49th STOC, pages 112—-120, 2017.

[DKS17b] Sgren Dahlgaard, Mathias Beek Tejs Knudsen, and Morten Stockel. New subquadratic approximation algorithms
for the girth. CoRR, abs/1704.02178, 2017.

[Duc19] Guillaume Ducoffe. Faster approximation algorithms for computing shortest cycles on weighted graphs. In Christel
Baier, lIoannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
49:1-49:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.

[DV20] Mina Dalirrooyfard and Virginia Vassilevska Williams. Conditionally optimal approximation algorithms for the
girth of a directed graph. In Proceedings of the 47th ICALP, volume 168 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2020.

[DVV19] Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. Graph pattern detection: hardness
for all induced patterns and faster non-induced cycles. In Moses Charikar and Edith Cohen, editors, Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 1167-1178. ACM, 2019.

[IR78] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413-423, 1978.

[LL09] Andrzej Lingas and Eva-Marta Lundell. Efficient approximation algorithms for shortest cycles in undirected graphs.
Inf. Process. Lett., 109(10):493-498, 2009.

[Pet04] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci., 312(1):47—
74, 2004.

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

[PRST18] Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams. Approximating
cycles in directed graphs: Fast algorithms for girth and roundtrip spanners. In Artur Czumaj, editor, Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1374-1392. SIAM, 2018.

[RT13] Liam Roditty and Roei Tov. Approximating the girth. ACM Trans. Algorithms, 9(2):15:1-15:13, 2013.

[RV12] Liam Roditty and Virginia Vassilevska Williams. Subquadratic time approximation algorithms for the girth.
In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 833-845. STAM, 2012.

[Vas19] Virginia Vassilevska Williams. On Some Fine-Grained Questions in Algorithms and Complexity. In Proceedings
of the International Congress of Mathematicians ICM 2018, volume 3, pages 3447-3487, 2019.

[VW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix, and triangle
problems. J. ACM, 65(5):27:1-27:38, 2018.

[Will8] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5):1965-1985,
2018.

[YZ97] Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM J. Discret. Math., 10(2):209-222, 1997.

[YZ04] Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular matrix multiplication and dynamic
programming. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 254—260. STAM, 2004.

A An additive approximation for very sparse graphs

Algorithm 7: CycleAdditive'(G, R, ¢)

tef%},D%nﬁ;

1

2 g |4

374 (t—c) modc;

4 C <+ SparseOrCycle(G,D,t —c,t) ;

5 if C' # null then return C;

6 for allw eV do

7 fori< 1tog—1do

8 if IsDense(G,w, D™ ic) = Yes and IsDense(G,w, DUtVe (i 4+ 1)c) = No then
9 (H(w,ic+1),C) < BallOrCycle(w,ic+t) ;

10 if C # null then return C;

11 else

12 G+ G\ Vit

13 L exit the inner for loop and proceed with a new vertex ;

14 C « Sparse0rCycle(G,D,t — |[(c+1)/2],1) ;
15 if C' # null then return C,

16 C < SparseOrCycle(G,D,t — [(c+1)/2],1) ;
17 if C # null then return C|

18 C < Sparse0rCycle(G,D,t —c —r,t) ;

19 if C' # null then return C,

20 return No;

For the case of g > log? n we use a different approach that allows us to avoid the factor of t — ¢ in the running
time of O((t —¢) - nHﬁ) of CycleAdditive.

Let ¢ = [=¢] and 7 = (¢ — ¢) mod ¢. We start by running Sparse0OrCycle(G, D,t — ¢,t). If a cycle is
not returned we proceed and scan the set V using a for-all loop. For every w € V we execute an inner loop
implemented using a for loop with index ¢ running from 1 to ¢ — 1. If we encounter 1 < i < ¢ — 1 such that
IsDense(G,w, D, ic) = Yes and IsDense(G,w, DtV (i + 1)c) = No we run BallOrCycle(w,ic + t). If a
cycle is returned we return the cycle and stop, if not we remove V,°~! from G and exit from the inner for loop
and proceed to the next vertex in the outer for-all loop. Notice that it is easy to implement IsDense such that
IsDense(G,w, DUHDe (i +1)c) uses the information computed by IsDense(G,w, D™, ic) to avoid an extra factor

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

of ¢ in the running time.

If a cycle is not reported during the entire execution of the for-all loop then we make three additional calls to
SparseOrCycle, where each subsequent call is executed only if the previous call did not report a cycle. We first
call to Sparse0rCycle(G,D,t — |(c+r)/2],t) then if needed we call to SparseOrCycle(G, D,t — [(c+1)/2],t)
and then, again only if needed, we call to Sparse0rCycle(G,D,t —c —r,t).

We denote this version of CycleAdditive with CycleAdditive’. The algorithm is presented in Algorithm 7.
Next, we prove the correctness and the running time of CycleAdditive'.

Reminder of Lemma 7.7. Let G = (V,E). Let R and ¢ be two parameters and let t = [R/2]. If
Cycleddditive (G, R,c) returns a cycle C then wt(C) < 4t — c¢. If Cycleddditive (G, R,c) returns No then

the girth of G is strictly more than 2t. The running time of CycleAdditive (G, R,c) is O(n“‘ﬁ).

Proof. We first show that if CycleAdditive’(G, R, ¢) returns a cycle C' then wt(C) < 4¢ — ¢. During the run of
the algorithm every call to Sparse0rCycle(G, D, x,y) is with © < ¢ — |(c+1)/2] and y = ¢. Since 1 <7 < ¢, we
have t — [(c+7)/2] <t — [¢/2]. Thus, when SparseOrCycle returns a cycle C' it follows from Lemma 7.5 that
wt(C) <2(zx+y) <4t —c

If Bal1l0rCycle(w,ic + t) returns a cycle C for some ¢ and w, then since i < ¢ — 1 we have ic < (¢ — 1)c <
t —2¢ —r, and from Lemma 3.3 we get wt(C) < 2(2t — 2¢ — r) < 4t — 4¢ — 2r.

We now turn to show that if CycleAdditive’(G, R, c) returns No then the girth of G is strictly more than
2t. Notice that in this case every call to SparseOrCycle and BallOrCycle returns No.

Assume the algorithm returns No and assume also for the sake of contradiction that C' = {uy,...,uy} is a
cycle in the input graph G such that wt(C) < 2t.

We first show that if a vertex of C' is being removed at some stage of the run of the algorithm we reach a
contradiction. Let u € C' be the first vertex of C' that is being removed. When u is being removed it is because
u € V2, for some = < t right after a call to Ball0rCycle(w,x + t) returned No (either initiated directly by the
algorithm or by one of the calls to SparseOrCycle). However, since u is the first to be removed C'is in the graph
when BallOrCycle(w,x + t) is called, and from Lemma 3.3 it follows that Ball0rCycle(w,z + t) should have
report a cycle, a contradiction.

Thus, it cannot be that a vertex of C' is removed without a cycle is being reported. But if no vertex of C is
being removed there will be a call to Ball0rCycle(u,z + t), where z < t — [¢/2] for some u € C, while C is in
the graph and a cycle must be reported since wt(C) < 2¢, again a contradiction to the fact that the algorithm
returns No.)

We now turn to analyze the running time. Let D = n?—<. As before we analyze the running time as long as
no cycle is reported. The cost of reporting a cycle is at most O(n) and this can only happen once. The first call
to SparseOrCycle is to SparseOrCycle(G, D,t — ¢, t). The analysis of the running time in this case is the same
as in Lemma 7.6.

Notice that from Lemma 7.5(ii) it follows that if SparseOrCycle(G, D,t — ¢, t) terminated without reporting
a cycle then IsDense(CAv'7 w, D¢t —¢) = No, for every w € V. From Lemma 7.2 it follows that any future call
to IsDense(G’,w, D¢t — ¢), where G’ C G, returns No.

We now analyze the cost and the effect on the graph of the for-all loop. Let w € V be a vertex considered by
the for-all loop. First, the total cost of calling IsDense(G,w, D, ic), for all i € [1,q] is only O(D*=¢~") and not
O(gD!=°7") since we assume IsDense is implemented such that the call to IsDense(G,w, DUTYe (i + 1)c),
where i € [l,q — 1], uses the information computed by IsDense(G,w, D ic). Consider now the cost of
BallOrCycle. We call Ball0rCycle(w,ic +t) if we encounter for w an i such that IsDense(G,w, D, ic) = Yes
and IsDense(G,w, DD (i +1)c) = No, where 1 <i < ¢ — 1.

The cost of Bal10rCycle(w,ic +t) is O(|V,iTt|). Since IsDense(G,w, D, ic) = Yes and there is no cycle it
follows from Lemma 7.1 that |V,i¢| > D

Now since IsDense(G,w, DUV (i + 1)c) = No and IsDense(G,u, D!t —c) = No, for every u € G we
can use Lemma 7.3 to bound the O(|V;i“**|) cost of Bal10rCycle with DU+1ett=¢ We can charge every vertex
of Vi¢ with D' to cover this cost, since |V,i¢| > D,

We now analyze the cost of the three additional calls to SparseOrCycle. Let G, be the input graph to
the ¢th call to SparseOrCycle after the for-all loop ends, where ¢ € {1,2,3}. Similarly, let W, be the set W
of the ¢th call. Recall that from Lemma 7.4 it follows that the running time of SparseOrCycle(G, D, z,y) is
O(IVID* + 3 ew |V t¥]). In each of the three calls to SparseOrCycle we have z < t, thus the term O(|V|D*)

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Girth [DKS17b] Lemma 7.6
Running Time | wt(C) < | Running Time | wt(C) <
4 O(n1.666) 6 O(n1.666) 6
5 O(n*) 8 O(n*) 8
6 O(n!-9%%) 10 O(n'%) 10
7 O(n!569) 12 O(n'599) 12
8 O(n1-6) 12 O(nt->™) 14
9 O(n1-6%6) 16 O(n162%) 16
10 O(n?-69) 16 O(n!-%5%) 18
11 O(n!-656) 18 O(n'-%) 20
12 O(n1-666) 18 O(n153%) 22
13 O(n1-666) 22 O(n!553) 24
14 O(n1-6%6) 22 O(n!-533) 26
15 O(n?!-696) 24 O(n'>™) 28
16 O(n?!-69) 24 O(n'-529) 30
17 O(n*-9%%) 28 O(n'9%%9) 32
18 O(n*-9%%) 28 O(n'-5%%) 34
19 O(n1-6%6) 30 O(n!555) 36
20 O(n!656) 30 O(n'52%) 38

Table 1: Comparison between Lemma 7.6 and [DKS17b]

is at most O(n'+*/(2t=¢)) in each call.

We now focus on the term O(
Wehavet —c<t—cy <t—cy.

For every w € Wy, where ¢ € {1,2} the call to IsDense with w returned Yes and since no cycle was
found, it follows from Lemma 7.1 that |V ~| > D'=¢ > D!=¢. The call to Ball0rCycle(w,t — ¢; + t) costs
O(n) = O(D*7°), since D = n'/(?*=¢)_ Since [V}}!=¢| > D*~¢ and the vertices of V!~ are removed from the
graph and will not be considered any more, we can charge every vertex of V,}~¢¢ with a cost of D! to cover the
O(D?¢) cost of Ball0rCycle(w,t — ¢g + t). Thus, O3 ,cy,omw, [V tY]) = O(n!+1/(21=9),

We now turn to bound the O(Zwew3 |[V.2HY]) cost of the last call to Sparse0rCycle. For every w € W3 the call
to IsDense with w returned Yes and since no cycle was found, it follows from Lemma 7.1 that |V,=¢~"| > Dt=¢".

The call to Ball0rCycle(w,t — ¢ — r + t) costs O(V2=¢="). Since every vertex in G5 survived the calls to
Sparse0OrCycle(Gy, D,t—cy,t) and Sparse0rCycle(Ga, D, t —c,t) it follows from Lemma 7.5(ii) and Lemma 7.2
that IsDense(Gs(w),u, D'~ t —¢;) = No and IsDense(Gs(w),u, D'~ t — c3) = No, for every u € G3. We
can use Lemma 7.3 together with the fact that ¢; 4+ c2 = ¢+ to bound the O(|V,2!=¢~"|) cost of Ball0rCycle
with O(D2=¢="). We can charge every vertex of VI=¢~" with D' to cover this cost, since [V/=¢~"| > DVu "
0

wew, Ve, for £ € {1,2} . Let ¢1 = [(c+r)/2] and let ¢z = [(c+1)/2].

B 0Odd girth approximation

In this section we present additional algorithms for approximating the girth of an unweighted undirected graph
of odd girth g. The main result of this section is the following theorem.

THEOREM B.1. (ODD GIRTH APPROXIMATION) There is an algorithm which given any n-vertex m-edge undi-
rected graph, integer k > 2, and integer odd g that is at least the girth of g, finds a cycle of length 2k[] + 2 in

time O(m(n?/m)'/*).

To prove this theorem we provide a variant of our general girth approximation scheme, Cycle (Algorithm 2
from Section 4). The two key differences is that in this new algorithm, Cycle0dd (Algorithm 8), Ball0rCycle is
always invoked from the vertex of largest degree and that rather than stopping BallOrCycle when the number
of vertices in the ball graph doesn’t increase too much, we instead consider the number of edges incident to the
ball graph and carefully search for cycles in these edges.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 8: Cycle0dd(G, R, k)

1 if G is empty then return No;

2 Let v € V be the vertex of maximum degree in G;

3 H(v,0) + ({’U},@);

4 for i< 1 tok do

5 (H(v,iR),C) + BallOrCycle(v,i- R) ;

6 if C # null then return C ;

7 | if |[E(ViE)| >n then

8 (H(v,iR +1),C) + BallOrCycle(v,i- R) ;

9 return C
10 | if |E(VIR)] < (n/ deg(v))V/* - [E(V V)| then
11 if there is e € E(Vi®) with e C V' then

12 L return the cycle consisting of e and the path from each endpoint of e to the LCA in H(v,iR)
13 else return Cycle0dd(G \ E(I/v(i_l)R), Rk) ;

To analyze this algorithm, we first provide the following variant of Lemma 3.1 and Lemma 3.2 that allows us
to rule out what edges can be in cycle of length at most R for odd R.

LEMMA B.1. Let G = (V, E) be an unweighted undirected graph and let v € V. Further, let Ey denote all the
edges of E(VF) with both endpoints in VF. If there is no cycle in Ejt|r/2) for odd integer R then all edges in
E(VF) are not part of any cycle of length at most R in G.

Proof. Proceed by contradiction and suppose that there is {a,b} € E(V}) that is part of a cycle, C, of length
at most R. Note that since {a,b} € E(V}F) either dg(v,a) < k or dg(v,b) < k and both dg(v,a) < k+ 1 and
dg(v,b) < k+1. Further, since C has length at most R for odd R it is the case that for every vertex z in C' either
both do(a, z) < |R/2] and de (b, 2) < | R/2], in which case either dg (v, z) < k+|R/2| or dg (v, 2) < k+|R/2] (by
triangle inequality), or either da(a, z) < |R/2|—1 or de(b, 2) < | R/2]—1 in which case one of dg (v, z) < k+|R/2|

Vk+LR/2J

or dg(v,z) < k+ |R/2] (again by triangle inequality). In either case, this implies that z € and since

every vertex of C' is in VUIH'W/2J we have that C'is in Eyy|r/2|-]
Leveraging this we now prove that Algorithm Cycle0dd(G, R, k) detects a cycle of length at most 2k| R/2|+1
if G has a cycle of length at most R for odd R.

LEMMA B.2. Let G = (V, E) be an unweighted undirected graph. If G has a cycle C of length < R for odd, integer
R then Algorithm Cycle0dd(G, |R/2]|,k) returns a cycle of length at most 2k|R/2| + 2.

Proof. Not that |E(V,°%)| = deg(v) and that by Line 10 if the algorithm doesn’t output a cycle on an iteration
of the for loop for a given value of i, it must be the case that |E(Vi%)| > deg(v)(n/deg(v))"/*. However, since
deg(v)(n/ deg(v))*/¥ = n, by Line 7 we see that thee algorithm must return on on some iteration i € [k].

Now, consider each case where a cycle is returned without a recursive call on Line 13. If a cycle is returned
on Line 6 then by Lemma 3.3 it has length at most 2iR < 2kR. On the other hand, if the algorithm returns on
Line 9, then since |E(V,;!?)| > n it must be the case that H(v,iR+1) contains a cycle and therefore by Lemma 3.3,
a cycle of length at most 2iR + 2 < 2kR + 2 is returned. Finally, if a cycle is returned on Line 13 then it has
length at most 2iR + 1.

Consequently, it remains to how that on recursive calls the resulting graph is never empty. However, suppose
G has a cycle C of length at most R. Note that before we remove E(Vv(i_l)R) in a recursive call the method
checks if there is a cycle within the edges that have both endpoints in V!*. By Lemma B.1 this guarantees that C
is not in E(v(ifl)R. Consequently, C' is never removed from the graph and since edges are deleted every recursive
call the procedure must output a cycle of the desired length.

If a cycle is reported then it must be of length at most 2k| R/2] + 1 since for every source v for which we call
BallOrCycle(v, | R/2] -i), we have i < k (since otherwise we would have |E(V,*)| > deg(v)(m/ deg(v))*/* which
is impossible). 0

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

We now turn to analyze the running time of Algorithm Cycle0dd(G, R, k).
LEMMA B.3. Algorithm Cycle0dd(G, R, k) runs in O(m(n?/m)'/*) time.

Proof. First, note that in O(m + n) time we can compute the degree of every vertex and create an array where
element ¢ of the array contains a list of all vertices of degree i. As edges are deleted this array and which is
the largest degree can be maintained in amortized O(1) per deletion and additional O(n) time. Consequently,
maintaining the largest degree vertex can be done in total O(m + n) time.

Next, note that whenever a cycle is returned, the cost of that recursive execution is at most O(m + n).
Further, whenever Cycle0dd is invoked recursively note that the runtime is at most O((n/ deg(v))*/*) more than
the number of edges removed (for deg(v) at the time the vertex was removed). To analyze this total cost. Let
e, ..., ey denote an ordering of the edges in the order in which they were removed. Further, let d; be the degree
of the maximum degree vertex, m; be the number of edges in the graph, and n; be the number of vertices in
the graph all at the time that edge i was removed. Note, that m; > m 4+ 1 — i and n; < n. Consequently,
d; > m;/n; > 2(m+1—14)/n (since the maximum degree vertex is at least the average degree. From this, we see
that the total cost for processing these edges is

n2 1/k
@) (;(n/di)l/k> <0 ,»ez[,;] (2(m+1_2)> —0 (m(nQ/m)l/k)

Where in the last step we used that [z71/*dx = i[ml_l/k —1] = O(m' /%) for k > 2. 0
k

K3
Combining yields the main theorem of this section

Proof. [Proof of Theorem B.1] Correctness follows from Lemma B.2 and runtime follows from Lemma B.3 a

Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Prior work on girth approximation
	Our Results
	Additional Related Work

	Preliminaries
	Tools
	A general scheme for girth approximation
	Sublinear approximation algorithms for dense graphs
	Faster algorithms for small girth and sparse graphs
	Additive approximation scheme
	An additive approximation for very sparse graphs
	Odd girth approximation

