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Abstract
We present an algorithm for computing approximate `p Lewis weights to high precision. Given a full-rank

A ∈ Rm×n with m ≥ n and a scalar p > 2, our algorithm computes ε-approximate `p Lewis weights of A

in Õp(log(1/ε)) iterations; the cost of each iteration is linear in the input size plus the cost of computing
the leverage scores of DA for diagonal D ∈ Rm×m. Prior to our work, such a computational complexity was
known only for p ∈ (0, 4) [CP15], and combined with this result, our work yields the first polylogarithmic-depth
polynomial-work algorithm for the problem of computing `p Lewis weights to high precision for all constant
p > 0. An important consequence of this result is also the first polylogarithmic-depth polynomial-work
algorithm for computing a nearly optimal self-concordant barrier for a polytope.

1 Introduction to Lewis Weights

In this paper, we study the problem of computing the `p Lewis weights1 of a matrix.

Definition 1. [Lew78, CP15] Given a full-rank matrix A ∈ Rm×n with m ≥ n and a scalar p ∈ (0,∞), the
Lewis weights of A are the entries of the unique2 vector w ∈ Rm satisfying the equation

(1.1) w
2/p
i = a>i (A

>W
1−2/p

A)−1ai for all i ∈ [m],

where ai is the i’th row of matrix A and W is the diagonal matrix with vector w on the diagonal.

Motivation. We contextualize our problem with a simpler, geometric notion. Given a set of m points
{ai}mi=1 ∈ Rn (the rows of the preceding matrix A ∈ Rm×n), their John ellipsoid [Joh48] is the minimum3 volume
ellipsoid enclosing them. This ellipsoid finds use across experiment design and computational geometry [Tod16]
and is central to certain cutting-plane methods [Vai89, LSW15], an algorithm fundamental to mathematical
optimization (Section 1.3). It turns out that the John ellipsoid of a set of points {ai}mi=1 ∈ Rn is expressible
[BV04] as the solution to the following convex program, with the objective being a stand-in for the volume of the
ellipsoid and the constraints encoding the requirement that each given point ai lie within the ellipsoid:

(1.2) minimizeM�0 det(M)
−1
, subject to a>i Mai ≤ 1, for all i ∈ [m].

The problem (1.2) may be generalized by the following convex program [Woj96, CP15], the generalization
immediate from substituting p =∞ in (1.3):

(1.3) minimizeM�0 det(M)
−1
, subject to

m∑
i=1

(a>i Mai)
p/2 ≤ 1.

Geometrically, (1.3) seeks the minimum volume ellipsoid with a bound on the p/2-norm of the distance of the
points to the ellipsoid, and its solution M is the “Lewis ellipsoid” [CP15] of {ai}mi=1.

The optimality condition of (1.3), written using w ∈ Rm defined as wi
def
= (a>i Mai)

p/2, is equivalent to (1.1),
and this demonstrates that solving (1.3) is one approach to obtaining the Lewis weights of A (see [CP15]). This

∗The full version of the paper can be accessed at https://arxiv.org/abs/2110.15563
†University of Washington
‡Stanford University
1From hereon, we refer to these simply as “Lewis weights” for brevity.
2Existence and uniqueness was first proven by D.R.Lewis [Lew78], after whom the weights are named.
3The John ellipsoid may also refer to the maximal volume ellipsoid enclosed by the set {x : |x>ai| ≤ 1}, but in this paper, we use

the former definition.
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equivalence also underscores the fact that the problem of computing Lewis weights is a natural `p generalization
of the problem of computing the John ellipsoid.

More broadly, Lewis weights are ubiquitous across statistics, machine learning, and mathematical optimization
in diverse applications, of which we presently highlight two (see Section 1.3 for details). First, their interpretation
as “importance scores” of rows of matrices makes them key to shrinking the row dimension of input data [DMM06].
Second, through their role in constructing self-concordant barriers of polytopes [LS14], variants of Lewis weights
have found prominence in recent advances in the computational complexity of linear programming.

From a purely optimization perspective, Lewis weights may be viewed as the optimal solution to the following
convex optimization problem (which is in fact essentially dual to (1.3)):

(1.4) w = arg min
w∈Rm

>0

F(w) def
= − log det

(
A>WA

)
+

1

1 + α
1>w1+α, for α = 2

p−2 .

As elaborated in [CP15, LS19], the reason this problem yields the Lewis weights is that an appropriate scaling
of its solution w transforms its optimality condition from wαi = a>i (A

>WA)−1ai to (1.1). The problem (1.4) is
a simple and natural one and, in the case of α = 1 (corresponding to the John ellipsoid), has been the subject of
study for designing new optimization methods [Tod16].

In summary, Lewis weights naturally arise as generalizations of extensively studied problems in convex
geometry and optimization. This, coupled with their role in machine learning, makes understanding the complexity
of computing Lewis weights, i.e., solving (1.4), a fundamental problem.

Our Goal. We aim to design high-precision algorithms for computing ε-approximate Lewis weights, i.e., a
vector w ∈ Rm satisfying

(1.5) wi ≈ε wi, for all i ∈ [m], where w is defined in (1.1) and (1.4).

where a ≈ε b is used to denote (1 − ε)a ≤ b ≤ (1 + ε)a. To this end, we design algorithms to solve the convex
program (1.4) to ε̃-additive accuracy for an appropriate ε̃ = poly(ε, n), which we prove suffices in Lemma 2.1.

By a “high-precision” algorithm, we mean one with a runtime polylogarithmic in ε. We emphasize that for
several applications such as randomized sampling [CP15], approximate Lewis weights suffice; however, we believe
that high-precision methods such as ours enrich our understanding of the structure of the optimization problem
(1.4). Further, as stated in Theorem 1.3, such methods yield new runtimes for directly computing a near-optimal
self-concordant barrier for polytopes.

We use number of leverage score computations as the complexity measure of our algorithms. Our choice is a
result of the fact that leverage scores of appropriately scaled matrices appear in both ∇F(w) (see Lemma 2.3) and
in the verification of correctness of Lewis weights. This measure of complexity stresses the number of iterations
rather than the details of iteration costs (which depend on exact techniques used for leverage core computation,
e.g., fast matrix multiplication) and is consistent with many prior algorithms (see Table 1).

Prior Results. The first polynomial-time algorithm for computing Lewis weights was presented by [CP15]

and performed only Õp(log(1/ε))
4 leverage score computations. However, their result holds only for p ∈ (0, 4).

We explain the source of this limited range in Section 1.2.
In comparison, for p ≥ 4, existing algorithms are slower: the algorithms by [CP15], [Lee16], and [LS19]

perform Ω̃(n), Õ(1/ε), and Õ(
√
n) leverage score computations, respectively. [CP15] also gave an algorithm

with total runtime O( 1ε nnz(A) + cpn
O(p)). Of note is the fact that the algorithms with runtimes polynomial in

1/ε ([Lee16, CP15]) satisfy the weaker approximation condition w
2/p
i ≈ε a>i (A>W

1−2/p
A)−1ai, which is in fact

implied by our condition (1.5).
We display these runtimes in Table 1, assuming that the cost of a leverage score computation is O(mn2)

(which, we reiterate, may be reduced through the use of fast matrix multiplication). In terms of the number of
leverage score computations, Table 1 highlights the contrast between the polylogarithmic dependence on input
size and accuracy for p ∈ (0, 4) and polynomial dependence on these factors for p ≥ 4. The motivation behind our
paper is to close this gap.

4We use Op to hide a polynomial in p and Õ and Ω̃ to hide factors polylogarithmic in p, n, and m.
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1.1 Our Contribution. We design an algorithm that computes Lewis weights to high precision for all p > 2

using only Õp(log(1/ε)) leverage score computations. Together with [CP15]’s result for p ∈ (0, 4), our result
therefore completes the picture on a near-optimal reduction from leverage scores to Lewis weights for all p > 0.

Theorem 1.1. (Main Theorem (Parallel)) Given a full-rank matrix A ∈ Rm×n and p ≥ 4, we can compute
(Algorithms 1 and 2) its ε-approximate Lewis weights (1.5) in O(p3 log(mp/ε)) iterations5. Each iteration
computes the leverage scores of a matrix DA for a diagonal matrix D. The total runtime is O(p3mn2 log(mp/ε)),
with O(p3 log(mp/ε) log2(m)) depth.

Theorem 1.1 is attained by a parallel algorithm for computing Lewis weights that consists of polylogarithmic
rounds of leverage score computations and therefore has polylogarithmic-depth, a result that was not known prior
to this work.

Theorem 1.2. (Main Theorem (Sequential)) Given a full-rank matrix A ∈ Rm×n and p ≥ 4, we can
compute (Algorithms 1 and 3) its ε-approximate Lewis weights (1.5) in O(pm log(mp/ε)) iterations. Each
iteration computes the leverage score of one row of DA for a diagonal matrix D. The total runtime is
O(pmn2 log(mp/ε)).

Remark 1.1. The solution to (1.3) characterizes a “Lewis ellipsoid,” and the `∞ Lewis ellipsoid of A is precisely
its John ellipsoid. After symmetrization [Tod16], computing the John ellipsoid is equivalent to solving a linear
program (LP). Therefore, computing Lewis weights in O(log(mp/ε)) iterations would imply a polylogarithmic-depth
algorithm for solving LPs, which, given the current O(

√
n) depth [LS19], would be a significant breakthrough in

the field of optimization. We therefore believe that it would be difficult to remove the polynomial dependence on p
in our runtime.

Authors Range of p
Number of

Leverage Score

Computations/Depth

Total Runtime

[CP15] p ∈ (0, 4) O
(

1
1−|1−p/2| · log

(
log(m)
ε

))
O
(

1
1−|1−p/2| ·mn

2 · log
(

log(m)
ε

))
[CP15] p ≥ 4 Ω(n) Ω(mn3 · log

(
m
ε

)
)

[CP15]* p ≥ 4 not applicable O
(

nnz(A)
ε + cpn

O(p)
)

[Lee16]* p ≥ 4 O
(
1
ε · log(m/n)

)
O
((

nnz(A)
ε + n3

ε3

)
· log(m/n)

)
[LS19] p ≥ 4 O(p2 · n1/2 · log

(
1
ε

)
) O(p2 ·mn2.5 · poly log

(
m
ε

)
)

Theorem 1.1 p ≥ 4 O(p3 · log
(
mp
ε

)
) O(p3 ·mn2 · log

(
mp
ε

)
)

Table 1: Runtime comparison for computing Lewis weights. Results with asterisks use a weaker notion of
approximation than our paper (1.1). All dependencies on n in the running times of these methods can be
improved using fast matrix multiplication.

1.2 Overview of Approach. Before presenting our algorithm, we describe obstacles to directly extending
previous work on the problem for p ∈ (0, 4) to the case p ≥ 4. For p ∈ (0, 4), [CP15, LS19] design algorithms
that, with a single computation of leverage scores, make constant (dependent on p) multiplicative progress on
error (such as function error or distance to optimal point), thus attaining runtimes polylogarithmic in ε. However,
these methods crucially rely on contractive properties that, in contrast to our work, do not necessarily hold for
p ≥ 4.

For example, one of the algorithms in [CP15] starts with a vector v ≈c w, where w is the vector
of true Lewis weights and c some constant. Consequently, we have (a>i (A

>V1−2/pA)−1ai)
p/2 ≈c|p/2−1|

(a>i (A
>W

1−2/p
A)−1ai)

p/2. Due to this map being a contraction for |p/2− 1| < 1, or equivalently, for p ∈ (0, 4),

5Our algorithms work for all p > 2, as can be seen in our proof in Section 3.1. However, for p ∈ (2, 4), the algorithm of [CP15] is
faster, and therefore, in our main theorems, we state runtimes only for p ≥ 4.
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O(log(log n)) recursive calls to it give Lewis weights for p < 4, but the contraction - and, by extension, this
method - does not immediately extend to the setting p ≥ 4.

Prior algorithms for p ≥ 4 therefore resort to alternate optimization techniques. [CP15] frames Lewis
weights computation as determinant maximization (1.3) (see Section D) and applies cutting plane methods
[GLS81, LSW15]. [Lee16] uses mirror descent, and [LS19] uses homotopy methods. These approaches yield
runtimes with poly(n) or poly( 1ε ) leverage score computations, and therefore, in order to attain runtimes of
polylog(1/ε) leverage score computations, we need to rethink the algorithm.

Our Approach. As stated in Section 1, to obtain ε-approximate Lewis weights for p ≥ 4, we compute a w
that satisfies F(w) ≤ F(w) ≤ F(w) + ε̃, where F and w are as defined in (1.4) and ε̃ = O(poly(n, ε)). In light
of the preceding bottlenecks in prior work, we circumvent techniques that directly target constant multiplicative
progress (on some potential) in each iteration.

Our main technical insight is that when the leverage scores for the current weight w ∈ Rn>0 satisfy a certain
technical condition (inequality (1.6)), it is indeed possible to update w to get multiplicative decrease in function
error (F(w) − F(w)), thus resulting in our target runtime. To turn this insight into an algorithm, we design a
corrective procedure that ensures that (1.6) is always satisfied: in other words, whenever (1.6) is violated, this
procedure updates w so that the new w does satisfy (1.6), setting the stage for the aforementioned multiplicative
progress. An important additional property of this procedure is that it does not increase the objective function
and is therefore in keeping with our goal of minimizing (1.4).

Specifically, the technical condition that our geometric decrease in function error hinges on is

(1.6) max
i∈[m]

a>i (A
>WA)−1ai
wαi

≤ 1 + α .

This ratio follows naturally from the gradient and Hessian of the function objective (see Lemma 2.3). Our
algorithm’s update rule to solve (1.4) is obtained from minimizing a second-order approximation to the objective
at the current point, and the condition specified in (1.6) allows us to relate the progress of a type of quasi-Newton
step to lower bounds on the progress there is to make, which is critical to turning a runtime of poly(1/ε) into
polylog(1/ε) (Lemma 2.5).

The process of updating w so that (1.6) goes from being violated to being satisfied corresponds, geometrically,
to sufficiently rounding the ellipsoid E(w) = {x : x>A>WAx ≤ 1}; specifically, the updated ellipsoid satisfies

E(w) ⊆ {‖W
1

2−pAx‖∞ ≤
√
1 + α} (see Section C), and this is the reason we use the term “rounding” to describe

our corrective procedure to get w to satisfy (1.6) and the term “rounding condition” to refer to (1.6).
We develop two versions of rounding: a parallel method and a sequential one that has an improved dependence

on p. Each version is based on the principles that (1) one can increase those entries of w at which the rounding
condition (1.6) does not hold while decreasing the objective value, and (2) the vector w obtained after this update
is closer to satisfying (1.6).

We believe that such a principle of identifying a technical condition needed for fast convergence and the
accompanying rounding procedures could be useful in other optimization problems. Additionally, we develop
Algorithm 4, which, by varying the step sizes in the update rule, maintains (1.6) as invariant, thereby eliminating
the need for a separate rounding and progress steps.

1.3 Applications and Related Work. We elaborate here on the applications of Lewis weights we briefly
alluded to in Section 1. While for many applications (such as pre-processing in optimization [CP15]) approximate
weights suffice, solving regularized D-optimal and computing Õ(n) self-concordant barriers to high precision do
use high precision Lewis weights.

Pre-processing in optimization. Lewis weights are used as scores to sample rows of an input tall data
matrix so the `p norms of the product of the matrix with vectors are preserved. They have been used in row
sampling algorithms for data pre-processing [DMM06, DMIMW12, LMP13, CLM+15, PPP21], for computing
dimension-free strong coresets for k-median and subspace approximation [SW18], and for fast tensor factorization
in the streaming model [CCDS20]. Lewis weights are also used for `1 regression, a popular model in machine
learning used to capture robustness to outliers, in [DLS18] for stochastic gradient descent pre-conditioning,
[LWYZ20] for quantile regression, [BDM+20] to provide algorithms for linear algebraic problems in the sliding
window model, and in [CD21] for bounds on query complexity of least absolute deviation regression.
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John ellipsoid and D-optimal design. As noted in Remark 1.1, a fast algorithm for Lewis weights could
yield faster algorithms for computing John ellipsoid, a problem with a long history of work [Kha96, SF04, KY05,
DAST08, CCLY19, ZF20]. It is known [Tod16] that the John ellipsoid problem is dual to the (relaxed) D-optimal
experiment design problem [Puk06]. D-optimal design seeks to select a set of linear experiments with the largest
confidence ellipsoid for its least-square estimator [AZLSW17, MSTX19, SX20].

Our problem (1.4) is equivalent to p
p−2 -regularized D-optimal design, which can be interpreted as enforcing

a polynomial experiment cost: viewing wi as the fraction of resources allocated to experiment i, each wi is

penalized by w
p

p−2

i . This regularization also appears in fair packing and fair covering problems [MSZ16, DFO20]
from operations research.

Self-concordance. Self-concordant barriers are fundamental in convex optimization [NN94], combinatorial
optimization [LS14], sampling [KN09, LLV20], and online learning [AHR08]. Although there are (nearly) optimal
self-concordant barriers for any convex set [NN94, BE15, LY18], computing them involves sampling from log-
concave distributions, itself an expensive process with a poly(1/ε) runtime. [LS14] shows how to construct nearly
optimal barriers for polytopes using Lewis weights. Unfortunately, doing so still requires polynomial-many steps
to compute these weights; [LS14] bypass this issue by showing it suffices to work with Lewis weights for p ≈ 1.
In this paper, we show how to compute Lewis weights by computing leverage scores of polylogarithmic-many
matrices. This gives the first nearly optimal self-concordant barrier for polytopes that can be evaluated to high
accuracy with depth polylogarithmic in the dimension.

Theorem 1.3. (Applying Theorem 1.1 to [LS19, Section 5]) Given a non-empty polytope P = {x ∈
Rn | Ax > b} for full rank A ∈ Rm×n, there is a O(n log5m)-self concordant barrier ψ for P such that for any
ε > 0 and x ∈ P , in O(mnω−1 log3m log(m/ε))-work and O(log3m log(m/ε))-depth, we can compute g ∈ Rn and
H ∈ Rn×n with ‖g −∇ψ(x)‖∇2ψ(x)−1 ≤ ε and ∇2ψ(x) � H � O(logm)∇2ψ(x). With an additional O(mω+o(1))
work, H ∈ Rn×n with (1− ε)∇2ψ(x) � H � O(1 + ε)∇2ψ(x) can be computed as well.

1.4 Notation and Preliminaries. We use A to denote our full-rank m×n (m ≥ n) real-valued input matrix
and w ∈ Rm to denote the vector of Lewis weights of A, as defined in (1.1) and (1.4). All matrices appear in
boldface uppercase and vectors in lowercase. For any vector (say, σ), we use its uppercase boldfaced form (Σ)
to denote the diagonal matrix Σii = σi. For a matrix M, the matrix M(2) is the Schur product (entry-wise
product) of M with itself. For matrices A and B, we use A � B to mean A − B is positive-semidefinite. For
vectors a and b, the inequality a ≤ b applies entry-wise. We use ei to denote the i’th standard basis vector. We

define [n]
def
= {1, 2, . . . , n}. As in (1.4), since we defined α

def
= 2

p−2 , the ranges of p ∈ (2, 4) and p ≥ 4 translate to

α > 1 and α ∈ (0, 1], respectively. From hereon, we work with α. We also define ᾱ = max{1, α}. For a matrix

A ∈ Rm×n and w ∈ Rm>0, we define the projection matrix P(w)
def
= W1/2A(A>WA)−1A>W1/2 ∈ Rm×m. The

quantity P(w)ii is precisely the leverage score of the i’th row of W1/2A:

(1.7) σi(w)
def
= wi · a>i (A>WA)−1ai.

Fact 1.1. ([LS14]) For all w ∈ Rm>0 we have that 0 ≤ σi(w) ≤ 1 for all i ∈ [m],
∑
i∈[m] σi(w) ≤ n, and

0 � P(w)(2) � Σ(w).

2 Our Algorithm

We present Algorithm 1 to compute an ε̃-additive solution to (1.4). We first provide the following definitions that
we frequently refer to in our algorithm and analysis. Given α > 0 and w ∈ Rm>0, the i’th coordinate of ρ(w) ∈ Rm
is

(2.1) ρi(w)
def
=
σi(w)

w1+α
i

.

Based on this quantity, we define the following procedure, derived from approximating a quasi-Newton update on
the objective F from (1.4):

(2.2) [Descent(w,C, η)]i
def
= wi

[
1 + ηi ·

ρi(w)− 1

ρi(w) + 1

]
for all i ∈ C ⊆ {1, 2, . . . ,m}.
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Using these definitions, we can now describe our algorithm. Depending on whether the following condition
(“rounding condition”) holds, we run either Descent( · ) or Round( · ) in each iteration:

(2.3) ρmax(w)
def
= max

i∈[m]
ρi(w) ≤ 1 + α.

Specifically, if (2.3) is not satisfied, we run Round( · ), which returns a vector that does satisfy it without
increasing the objective value. We design two versions of Round(·), one parallel (Algorithm 2) and one sequential
(Algorithm 3), with the sequential algorithm having an improved dependence on α, to update the coordinates
violating (2.3). We apply one extra step of rounding to the vector returned after Ttotal iterations of Algorithm 1
and transform it appropriately to obtain our final output. In the following lemma (proved in Section B), we
justify that this output is indeed the solution to (1.5).

Lemma 2.1. (Lewis Weights from Optimization Solution) Let w ∈ Rm>0 be a vector at which the objective

(1.4) is ε̃-suboptimal in the additive sense for ε̃ = α8ε4

(25m(
√
n+α)(α+α−1))4

, i.e., F(w) ≤ F(w) ≤ F(w) + ε̃.

Further assume that w satisfies the rounding condition: ρmax(w) ≤ 1 + α. Then, the vector ŵ defined as
ŵi = (a>i (A

>WA)−1ai)
1/α satisfies ŵi ≈ε wi for all i ∈ [m], thus achieving the goal spelt out in (1.5).

Algorithm 1 Lewis Weight Computation Meta-Algorithm

Input: Matrix A ∈ Rm×n, parameter p > 2, accuracy ε
Output: Vector ŵ ∈ Rm>0 that satisfies (1.5)

For all i ∈ [m], initialize w
(0)
i = n

m .

Set α = 2
p−2 , ᾱ = max(α, 1), ε̃ = α8ε4

(25m(
√
n+α)(α+α−1))4

, and Ttotal = O(max(α−1, α) log(m/ε̃)).

for k = 1, 2, 3, . . . , Ttotal do
w̃(k) ← Round(w(k−1),A, α) . Invoke Algorithm 2 (parallel) or 3 (sequential)

w(k) ← Descent(w̃(k), [m], 1
3ᾱ1) . See (2.2) and Lemma 2.2

end

Set wR ← Round(w(Ttotal),A, α)
Return ŵ ∈ Rm>0, where ŵi = (a>i (A

>WRA)−1ai)
1/α. . See Section B

Algorithm 2 RoundParallel(w, A, α)

Input: Vector w ∈ Rm>0, matrix A ∈ Rm×n, parameter α > 0
Output: Vector w ∈ Rm>0 satisfying (2.3)
Define ρ(w) as in (2.1)
while C = {i | ρi(w) > 1 + α} 6= ∅ do

w ← Descent(w,C, 1
3ᾱ1) . See Section 3

end
Return w

Algorithm 3 RoundSequential(w, A,α)

Input: Vector w ∈ Rm>0, matrix A ∈ Rm×n, parameter α > 0
Output: Vector w ∈ Rm>0 satisfying (2.3)
Define ρ(w) as in (2.1) and σ(w) as in (1.7)
Define C = {i | ρi(w) ≥ 1}
for i ∈ C do

wi ← wi(1 + δi), where δi solves ρi(w) = (1 + δiσi(w))(1 + δi)
α . see Section 4

end
Return w
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2.1 Analysis of Descent( · ). We first analyze Descent( · ) since it is common to both the parallel and
sequential algorithms.

Lemma 2.2. (Iteration Complexity of Descent( · )) Each iteration of Descent( · ) (described in (2.2))
decreases the value of F . Assuming that Round( · ) does not increase the value of the objective in (1.4), for
any given accuracy parameter 0 < ε̃ < 1, the number of Descent( · ) steps that Algorithm 1 performs before
achieving F(w) ≤ F(w) + ε̃ is given by the following bound:

Ttotal = O(max(α−1, α) log(m/ε̃)).

As is often the case to obtain such an iteration complexity, we prove Lemma 2.2 by incorporating the maximum
sub-optimality in function value (Lemma 2.5) and the initial error bound (Lemma 2.4) into the inequality
describing minimum function progress (Lemma 2.6). The assumption that Round( · ) does not increase the
value of the objective is justified in Lemma 3.1.

Since our algorithm leverages quasi-Newton steps, we begin our analysis by stating the gradient and Hessian
of the objective in (1.4) as well as the error at the initial vector w(0), as measured against the optimal function
value. The Hessian below is positive semidefinite when α ≥ 0 (equivalently, when p ≥ 2) and not necessarily so
otherwise. Consequently, the objective is convex for α ≥ 0, and we therefore consider only this setting throughout.

Lemma 2.3. (Gradient and Hessian) For any w ∈ Rm>0, the objective in (1.4), F(w) = − log det
(
A>WA

)
+

1
1+α1

>w1+α, has gradient and Hessian given by the following expressions.

[∇F(w)]i = w−1
i · (w

1+α
i − σi(w)) and ∇2F(w) = W−1P(w)(2)W−1 + αWα−1.

Lemma 2.4. (Initial Sub-Optimality) At the start of Algorithm 1, the value of the objective of (1.4) differs
from the optimum objective value as F(w(0)) ≤ F(w) + n log(m/n).

2.1.1 Minimum Progress and Maximum Sub-optimality in Descent( ·). We first prove an upper bound
on objective sub-optimality, necessary to obtain a runtime polylogarithmic in 1/ε. Often, to obtain such a rate, the
bound involving objective sub-optimality has a quadratic term derived from the Hessian; our lemma is somewhat
non-standard in that it uses only the convexity of F . Note that this lemma crucially uses (2.3).

Lemma 2.5. (Objective Sub-optimality) Suppose w ∈ Rm>0 and ρmax(w) ≤ 1 + α. Then the value of the
objective of (1.4) at w differs from the optimum objective value as follows.

F(w)−F(w) ≤
∑
i∈[m]

w1+α
i

1 + α

(
1 +

ρi(w)

α

)
(ρi(w)− 1)

2 ≤ 5max{1, α−1}
∑
i∈[m]

w1+α
i

(ρi(w)− 1)2

ρi(w) + 1
.

Proof. Since g(w)
def
= − log det

(
A>WA

)
is convex and [∇g(w)]i = −w−1

i σi(w), we have

g(w) ≥ g(w) +∇g(w)>(w − w) = g(w) +
∑
i∈[m]

(
−σi(w)wi

wi
+ σi(w))

)
,

and therefore,

F(w)−F(w) = g(w)− g(w) + 1

1 + α

∑
i∈[m]

(
[w]1+αi − w1+α

i

)
≥

∑
i∈[m]

ci where ci
def
= −σi(w)wi

wi
+ σi(w) +

1

1 + α

(
[w]1+αi − w1+α

i

)
.
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To prove the claim, it suffices to bound each ci from below. First, note that

ci ≥ min
v≥0
−v · σi(w)

wi
+ σi(w) +

1

1 + α

(
v1+α − w1+α

i

)
= − α

1 + α

(
σi(w)

wi

)1+ 1
α

+ σi(w)−
w1+α
i

1 + α

=
w1+α
i

1 + α

[
−αρi(w)1+

1
α + (1 + α)ρi(w)− 1

]
(2.4)

where the first equality used that the minimization problem is convex and the solutions to −σi(w)w−1
i + vα = 0

(i.e. where the gradient is 0) is a minimizer, and the second equality used ρi(w) = σi(w)/w
1+α
i . Applying

ρi(w) ≤ 1 + α, 1 + x ≤ expx, and expx ≤ 1 + x+ x2 for x ≤ 1 yields

ρi(w)
1
α = (1− (1− ρi(w)))

1
α ≤ exp

(
1
α (ρi(w)− 1)

)
≤ 1 +

1

α
(ρi(w)− 1) +

1

α2
(ρi(w)− 1)2.(2.5)

Combining (2.5) with (2.4) yields that

ci ≥
w1+α
i

1 + α

[
−αρi(w)

[
1 +

(
ρi(w)− 1

α

)
+

(
ρi(w)− 1

α

)2
]
+ (1 + α)ρi(w)− 1

]

=
w1+α
i

1 + α

[
−1 + 2ρi(w)− ρi(w)2 −

ρi(w)

α
· (ρi(w)− 1)2

]
= −w

1+α
i

1 + α

(
1 +

ρi(w)

α

)
· (ρi(w)− 1)

2

The claim then follows from the fact that for ρi(w) ≤ 1+α, we have (1+ρi(w)α−1)(1+ρi(w))
1+α ≤ 1

1+α +
1
α +1+1+ 1

α ≤
5max{1, α−1}.

Lemma 2.6. (Function Decrease in Descent( · )) Let w, η ∈ Rm>0 with ηi ∈ [0, 1
3ᾱ ] for all i ∈ [m]. Further,

let w+ = Descent(w, [m], η), where Descent is defined in (2.2). Then, w+ ∈ Rm>0 with the following decrease in
function objective.

F(w+) ≤ F(w)−
∑
i∈[m]

ηi
2
· w1+α

i · (ρi(w)− 1)2

ρi(w) + 1
.

The proof of this lemma resembles that of quasi-Newton method: first, we write a second-order Taylor
approximation of F(w+) around w and apply Fact 1.1 to Lemma 2.3 to obtain the upper bound on Hessian:

∇2F(w̃) = W̃−1P(w̃)(2)W̃−1 + αW̃α−1 � W̃−1Σ(w̃)W̃−1 + αW̃α−1. We further use the expression for ∇F(w)
in this second-order approximation and simplify to obtain the claim, as detailed in Section A.

2.1.2 Iteration Complexity of Descent( · ).
Proof. [Proof of Lemma 2.2] Since Algorithm 1 calls Descent( · ) after running Round( · ), the requirement
ρmax(w) ≤ 1 + α in Lemma 2.5 is met. Therefore, we may combine Lemma 2.5 alongwith Lemma 2.6 and our
choice of ηi =

1
3ᾱ in Algorithm 1 to get a geometric decrease in function error as follows.

F(w+)−F(w) ≤ F(w)−F(w)− 1

6max(α, 1)

m∑
i=1

w1+α
i

(ρi(w)− 1)2

ρi(w) + 1

≤
(
1− 1

30max(1, α) ·max(1, α−1)

)
(F(w)−F(w)).(2.6)

We apply this inequality recursively over all iterations of Algorithm 1, while also using the assumption that
Round( · ) does not increase the objective value. Setting the final value of (2.6) to ε̃, bounding the initial error as
F(w) − F(w) ≤ n log(m/n) ≤ m2 by Lemma 2.4, observing max(1, α) ·max(1, α−1) = max(α, α−1), and taking
logarithms on both sides of the inequality gives the claimed iteration complexity of Descent( · ).

3 Analysis of Round( · ): The Parallel Algorithm

The main export of this section is the proof of our main theorem about the parallel algorithm (Theorem 1.1). This
proof combines the iteration count of Descent( · ) from the preceding section with the analysis of Algorithm 2
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(invoked by Round( · ) in the parallel setting), shown next. In Lemma 3.1, we show that RoundParallel( · )
decreases the function objective, thereby justifying the key assumption in Lemma 2.2. Lemma 3.1 also shows an
upper bound on the new value of ρ after one while loop of RoundParallel( · ), and by combining this with the
maximum value of ρ for termination in Algorithm 2, we get the iteration complexity of RoundParallel( · ) in
Corollary 3.1.

Lemma 3.1. (Outcome of RoundParallel( · )) Let w+ ∈ Rm>0 be the state of w ∈ Rm>0 at the end of one while
loop of RoundParallel( · ) (Algorithm 2). Then, F(w+) ≤ F(w) and ρmax(w

+) ≤ (1 + α
3ᾱ(2+α) )

−αρmax(w).

Proof. Each iteration of the while loop in RoundParallel( · ) performs Descent(w,C, 1
3ᾱ1) over the set of

coordinates C = {i : ρi(w) > 1 + α}. Lemma 2.6 then immediately proves F(w+) ≤ F(w), which is our first
claim.

To prove the second claim, note that in Algorithm 2, for every i ∈ C

w+
i = wi +

wi
3ᾱ
·
[
ρi(w)− 1

ρi(w) + 1

]
≥ wi +

wi
3ᾱ
·
[

α

1 + 1 + α

]
= wi ·

(
1 +

α

3ᾱ(2 + α)

)
,

where the second step is by the monotonicity of x → x−1
x+1 for x ≥ 1. Combining it with w+

i = wi for all i /∈ C

implies that w+ ≥ w. Therefore, for all i ∈ C, we have

ρ(w+)i = [w+
i ]

−α[A(A>W+A)−1A>]ii ≤
[
1 +

α

3ᾱ(2 + α)

]−α
· w−α

i [A(A>WA)−1A>]ii.(3.1)

Corollary 3.1. Let w be the input to RoundParallel( · ). Then, the number of iterations of the while loop of

RoundParallel( · ) is at most O
(
(1 + α−2) log

(
ρmax(w)

1+α

))
.

Proof. Let w(i) be the value of w at the start of the i’th execution of the while loop of RoundParallel( ·
). Repeated application of Lemma 3.1 over k executions of the while loop gives ρmax(w

(k)) ≤

ρmax(w)
(
1 + α

3ᾱ(2+α)

)−αk
. We set ρmax(w)

(
1 + α

3ᾱ(2+α)

)−αk
≤ 1 + α in accordance with the termination con-

dition of RoundParallel( · ). Next, applying 1 + x ≤ exp(x), and taking logarithms on both sides yields the
claimed limit on the number of iterations, k.

Lemma 3.2. Over the entire run of Algorithm 1, the while loop of RoundParallel( · ) runs for at most

O
(
Ttotal · α−2 · log

(
m

n(1+α)

))
iterations if α ∈ (0, 1] and O

(
Ttotal · α · log

(
m

n(1+α)

))
iterations if α ≥ 1.

Proof. Note that ρmax(
n
m ) ≤ (mn )

1+α; consequently, in the first iteration of Algorithm 1, there are at most
O((α+ α−2) log(m/(n(1 + α)))) iterations of the while loop of RoundParallel( · ) by Corollary 3.1. Note that
between each call to RoundParallel( · ), for all i ∈ [m],

w+
i = wi +

wi
3ᾱ
·
[
ρi(w)− 1

ρi(w) + 1

]
≥ wi +

wi
3ᾱ
·
[

−1
1 + 1 + α

]
= wi ·

(
1− 1

(3ᾱ)(2 + α)

)
,

where the first inequality is by using the fact that the output w of RoundParallel( · ) satisfies ρmax(w) ≤ 1+α.
Therefore, applying the same logic as in (3.1), we get that between two calls to RoundParallel( · ), the value

of ρi(w) increases by at most
(
1− 1

(3ᾱ)(2+α)

)−(1+α)

= O(1) for all i ∈ [m]. Combining this with Corollary 3.1

and the total initial iteration count and observing that Ttotal is the total number of calls to RoundParallel( · )
finishes the proof.

3.1 Proof of Main Theorem (Parallel).
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Proof. (Proof of Theorem 1.1) First, we show correctness. Note that, as a corollary of Lemma 2.2, F(w(Ttotal)) ≤
F(w) + ε̃. By the properties of Round as shown in Lemma 3.1, we also have that F(wR) ≤ F(w) + ε̃ and
ρmax(wR) ≤ 1 + α for wR = Round(w(Ttotal),A, α). Therefore, Lemma 2.1 is applicable, and by the choice of

ε̃ = α4ε4

(2m(
√
n+α)(α+α−1))4

, we conclude that ŵ ∈ Rm defined as ŵi = (a>i (A
>WRA)−1ai)

1/α satisfies ŵi ≈ε wi
for all i ∈ [m]. Combining the iteration counts of Descent( · ) from Lemma 2.2 and of RoundParallel( · )
from Lemma 3.2 yields the total iteration count as O(α−3 log(m/(εα))) if α ≤ 1 and O(α2 log(m/ε)) if α > 1.
As stated in Section 1.4, α = 2

p−2 , and so translating these rates in terms of p gives O(p3 log(mp/ε)) for p ≥ 4

and O(p−2 log(mp/ε)) for p ∈ (2, 4), thereby proving the stated claim. The cost per iteration is O(mn2)6 for
multiplying two m× n matrices.

4 Analysis of Round( · ): Sequential Algorithm

We now analyze Algorithm 3. Note that these proofs work for all α > 0.

Lemma 4.1. (Coordinate Step Progress) Given w ∈ Rm>0, a coordinate i ∈ [m], and δi ∈ R, we have

F(w + δiwiei) = F(w)− log(1 + δiσi(w)) +
w1+α
i

1 + α
((1 + δi)

1+α − 1).

Proof. By definition of F , we have

F(w + δiwiei) =− log det
(
A>WA+ δiwiaia

>
i

)
+

1

1 + α

∑
j 6=i

w1+α
j +

w1+α
i

1 + α
(1 + δi)

1+α.

Recall the matrix determinant lemma: det
(
A+ uv>

)
= (1 + v>A−1u) det(A). Applying it to

det
(
A> diag(w + δiwiei)A

)
in the preceding expression for F(w + δiwiei) proves the lemma.

Lemma 4.2. (Coordinate Step Outcome) Given w ∈ Rm>0 and C = {i : ρi(w) ≥ 1}, let w+ = w + δiwiei for

any i ∈ C, where δi = argminδ

[
− log(1 + δσi(w)) +

1
1+αw

1+α
i ((1 + δ)1+α − 1)

]
. Then, we have F(w+) ≤ F(w)

and ρi(w
+) ≤ 1.

Proof. We note that minδ

[
− log(1 + δσi(w)) +

1
1+αw

1+α
i ((1 + δ)1+α − 1)

]
≤ 0. Then, Lemma 4.1 implies the

first claim. Since the update rule optimizes over F coordinate-wise, at each step the optimality condition given
by ρi(w

+) = 1 is met for each i ∈ C. The second claim is then proved by noting that for j 6= i, w+
j = wj and by

the Sherman-Morrison-Woodbury identity, ρj(w
+) ≤ ρj(w):

a>j (A
>W+A)−1aj = a>j (A

>WA)−1aj − δiwi
(a>j (A

>WA)−1aj)
2

1 + δiwia>i (A
>WA)−1ai

≤ a>j (A>WA)−1aj .

Lemma 4.3. (Number of Coordinate Steps) For any 0 ≤ ε̃ ≤ 1, over all Ttotal iterations of Algorithm 1,
there are at most O(mmax(α, α−1) log(m/ε̃)) coordinate steps (see Algorithm 3).

Proof. There are at most m coordinate steps in each call to Algorithm 3. Combining this with the value of Ttotal
in Algorithm 1 gives the count of O(mα−1 log(m/ε̃)) coordinate steps.

4.1 Proof of Main Theorem (Sequential). We now combine the preceding results to prove the main theorem
about the sequential algorithm (Algorithm 1 with Algorithm 3).

6This can be improved to O(mnω−1) using fast matrix multiplication.
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Proof. (Proof of Theorem 1.2) The proof of correctness is the same as that for Theorem 1.1 since the parallel
and sequential algorithms share the same meta-algorithm. Computing leverage scores in the sequential version
(Algorithm 1 with Algorithm 3) takes O(mmax(α, α−1) log(m/(αε))) coordinate steps. The costliest component
of a coordinate step is computing a>i (A

>(W + δiwieie
>
i )A)−1ai. By the Sherman-Morrison-Woodbury formula,

computing this costs O(n2) for each coordinate. Since the initial cost to compute (A>WA)−1 is O(mn2), the
total run time is O(max(α, α−1)mn2 log(m/ε)). When translated in terms of p, this gives O(pmn2 log(mp/ε)) for
p ≥ 4 and O(p−1mn2 log(mp/ε)) for p ∈ (2, 4).

5 A “One-Step” Parallel Algorithm

We conclude our paper with an alternative algorithm (Algorithm 4) in which each iteration avoids any rounding
and performs only Descent( · ).

Algorithm 4 One-Step Algorithm

Input: Matrix A ∈ Rm×n, parameter p > 2, accuracy ε
Output: Vector ŵ ∈ Rm>0 that satisfies (1.5)

For all i ∈ [m], initialize w
(0)
i = 1. Set α = 2

p−2 . Set ε̃ =
α4ε4

(2m(
√
n+α)(α+α−1))4

.

Set β = 1
1000 min(α2, 1) and Ttotal =

{
O(α−3 log(mp/ε̃)) if α ∈ (0, 1]
O(α2 log(mp/ε̃)) α > 1

for k = 0, 1, 2, 3, . . . , Ttotal − 1 do

Let η(k) ∈ Rm where for all i ∈ [m] we let η
(k)
i =

{
1
3ᾱ if ρi(w

(k)) ≥ 1
1
3ᾱβ if ρi(w

(k)) < 1

w(k+1) ← Descent(w(k), [m], η(k)) . See (2.2) and Lemma 2.2
end

Return ŵ ∈ Rm>0, where ŵi = (a>i (A
>W(Ttotal)A)−1ai)

1/α. . See Section B

Theorem 5.1. (Main Theorem (One-Step Parallel Algorithm)) Given a full rank matrix A ∈ Rm×n

and p ≥ 4, we can compute ε-approximate Lewis weights (1.5) in O(p3 log(mp/ε) iterations. Each iteration com-
putes the leverage score of one row of DA for some diagonal matrix D. The total runtime is O(p3mn2 log(mp/ε)).

We first spell out the key idea of the proof of Theorem 5.1 in Lemma 5.1 next, which is that (2.3) is maintained
in every iteration through the use of varying step sizes, without explicitly invoking rounding procedures. Since
(2.3) always holds, we may use Lemma 2.5 in bounding the iteration complexity.

Lemma 5.1. (Rounding Condition Invariance) For any iteration k ∈ [Ttotal − 2] in Algorithm 4, if
ρmax(w

(k)) ≤ 1 + α, then ρmax(w
(k+1)) ≤ 1 + α.

Proof. By the definition of Descent( · ) in (2.2) and choice of η
(k)
i in Algorithm 4, we have,

w
(k+1)
i = w

(k)
i ·

[
1 + η

(k)
i

(
ρi(w

(k))− 1

ρi(w(k)) + 1

)]
(5.1)

≥ w(k)
i (1− η(k)i ) ≥ w(k)

i

(
1− β

3ᾱ

)
.(5.2)

Applying this inequality to the definition of ρ(w) in (2.1), for all i ∈ [m], we have

(5.3) ρi(w
(k+1)) =

[
w

(k+1)
i

w
(k)
i

]−α
1

[w
(k)
i ]α

a>i (A
>W(k+1)A)−1ai ≤

(
1− β

3ᾱ

)−1
[
w

(k+1)
i

w
(k)
i

]−α

ρi(w
(k)).

Plugging (5.2) into (5.3) when ρi(w
(k)) ≤ 1 and using the upper bound on β yields that

ρi(w
(k+1)) ≤

(
1− β

3ᾱ

)−(1+α)

≤ 1 + α .
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If ρi(w
(k)) ≥ 1, then (5.3), the equality in (5.2), the bound on β, and ρi(w

(k)) ≤ 1 + α imply that

ρi(w
(k+1)) ≤

(
1− β

3ᾱ

)−1 [
1 +

1

3ᾱ

(
ρi(w

(k))− 1

ρi(w(k)) + 1

)]−α
ρi(w

(k)) ≤ 1 + α.

Proof. [Proof of Theorem 5.1] By our choice of w
(0)
i = 1 for all i ∈ [m], we have that ρi(w

(0)) = σi(w
(0)) ≤ 1

by Fact 1.1. Then applying Lemma 5.1 yields by induction that ρmax(w
(k)) ≤ 1 + α at every iteration k. We

may now therefore upper bound the objective sub-optimality from Lemma 2.5; as before, combining this with the
lower bound on progress from Lemma 2.6 (noticing that ηi ≥ β

3ᾱ ) yields

F(w+)−F(w) ≤ F(w)−F(w)− β

6ᾱ

m∑
i=1

w1+α
i

(ρi(w)− 1)2

ρi(w) + 1

≤
(
1− β

30max(1, α)max(1, α−1)

)
(F(w)−F(w)).(5.4)

Thus, Descent( · ) decreases F . Using F(w)−F(w) ≤ n log(m/n) ≤ m2 from Lemma 2.4 and setting (5.4) to ε̃
gives an iteration complexity of O(β−1α−1 log(m/ε̃)) = O(α−3 log(m/ε̃)) if α ∈ (0, 1] and O(αβ−1 log(m/ε̃)) =
O(α log(m/ε̃)) otherwise. As in the proofs of Theorems 1.1 and 1.2, we can then invoke Lemma 2.1 to construct
the vector that is ε-approximate to the Lewis weights.
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Appendices
We start with a piece of notation we frequently use in the appendix. For a given vector x ∈ Rm, we use Diag(x)
to describe the diagonal matrix with x on its diagonal. For a matrix X, we use diag(X) to denote the vector
made up of the diagonal entries of X. Further, recall as stated in Section 1.4, that given any vector x, we use its

uppercase boldface name X
def
= Diag(x).

A Technical Proofs: Gradient, Hessian, Initial Error, Minimum Progress

Lemma 2.3. (Gradient and Hessian) For any w ∈ Rm>0, the objective in (1.4), F(w) = − log det
(
A>WA

)
+

1
1+α1

>w1+α, has gradient and Hessian given by the following expressions.

[∇F(w)]i = w−1
i · (w

1+α
i − σi(w)) and ∇2F(w) = W−1P(w)(2)W−1 + αWα−1.

Proof. The proof essentially follows by combining Lemmas 48 and 49 of [LS19]. For completeness, we provide the
full proof here. Applying chain rule to the log det function and then the definition of ρ(w) from (2.1) gives the
claim that

∇iF(w) = −(A(A>WA)−1A>)ii + wαi = −a>i (A>WA)−1ai + wαi =
−σi(w)
wi

+ wαi .

We now set some notation to compute the Hessian: let M
def
= A(A>WA)−1A>, let h ∈ Rm be any arbitrary
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vector, and let H
def
= Diag(h). For f : Rn → R and for x, h ∈ Rn we let Dxf(x)[h] denote the directional derivative

of f at x in the direction h, i.e., Dxf(x)[h] = limt→0(f(x+ th)− f(x))/t. Then we have,

Dw〈h,−Diag(A(A>WA)−1A>)〉[h] = 〈h,−Diag(ADw(A>WA)−1[h]A>)〉
= 〈h,Diag(A(A>WA)−1Dw(A>WA)[h]A>WA)−1A>)〉
= 〈h,Diag(MHM)〉

=
∑
i,j

hihjMijMji =
∑
i,j

hihjM
2
ij ,

where the last step follows by symmetry of M. This implies

∇2
ijF(w) =

{
(a>i (A

>WA)−1aj)
2 if i 6= j

(a>i (A
>WA)−1aj)

2 + αwα−1
i otherwise

,

which, in shorthand, is ∇2F(w) = M ◦M + αWα−1. We may express this Hessian as in the statement of the
lemma by writing M in terms of P(w).

Lemma 2.4. (Initial Sub-Optimality) At the start of Algorithm 1, the value of the objective of (1.4) differs
from the optimum objective value as F(w(0)) ≤ F(w) + n log(m/n).

Proof. We study the two terms constituting the objective in (1.4). First, by choice of w(0) = n
m1, we have

(A.1) − log det
(
A>W(0)A

)
= − log det

(
(n/m)A>A

)
.

Next, since leverage scores always lie between zero and one, the optimality condition for (1.4), σ(w) = (w)1+α,
implies w ≤ 1, which in turn gives W � I. This implies A>WA � A>A. Therefore,

(A.2) − log det
(
A>A

)
≤ − log det

(
A>WA

)
.

Combining (A.1) and (A.2) gives

(A.3) − log det
(
A>W(0)A

)
≤ − log det

(
A>WA

)
+ n log(m/n).

Next, observe that 1>(w(0))1+α = m · (n/m)1+α, and 1>(w)1+α =
∑m
i=1 σi(w) = n, where we invoked Fact 1.1.

By now applying m ≥ n, we get

(A.4) 1>(w(0))1+α ≤ 1>(w)1+α.

Combining (A.3), (A.4), and the definition of the objective (1.4) finishes the claim.

Lemma 2.6. (Function Decrease in Descent( · )) Let w, η ∈ Rm>0 with ηi ∈ [0, 1
3ᾱ ] for all i ∈ [m]. Further,

let w+ = Descent(w, [m], η), where Descent is defined in (2.2). Then, w+ ∈ Rm>0 with the following decrease in
function objective.

F(w+) ≤ F(w)−
∑
i∈[m]

ηi
2
· w1+α

i · (ρi(w)− 1)2

ρi(w) + 1
.

Proof. By the remainder form of Taylor’s theorem, for some t ∈ [0, 1] and w̃ = tw + (1− t)w+

(A.5) F(w+) = F(w) + 〈∇F(w), w+ − w〉+ 1

2
(w+ − w)>∇2F(w̃)(w+ − w).

We prove the result by bounding the quadratic form of ∇2F(w̃) from above and leveraging the structure of w+

and ∇F(w). Lemma 2.3 and Fact 1.1 imply that

(A.6) ∇2F(w̃) = W̃−1P(w̃)(2)W̃−1 + αW̃α−1 � W̃−1Σ(w̃)W̃−1 + αW̃α−1 .
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Further, the positivity of wi and σi(w) and the non-negativity of η and ρ imply that (1 − ‖η‖∞)wi ≤ w+
i ≤

(1 + ‖η‖∞)wi for all i ∈ [m]. Since ‖η‖∞ ≤
1
3ᾱ , this implies that

(1− 1
3ᾱ )wi ≤ w̃i ≤ (1 + 1

3ᾱ )wi for all i ∈ [m] .

Consequently, for all i ∈ [m], we bound the first term of (A.6) as[
W̃−1Σ(w̃)W̃−1

]
ii
= e>i W̃

−1/2A(A>W̃A)−1A>W̃−1/2ei =
1

w̃i
a>i (A

>W̃A)−1ai

≤ (1− 1
3ᾱ )

−1 1

wi
a>i (A

>W̃A)−1ai ≤ (1− 1
3ᾱ )

−2 1

wi
a>i (A

>WA)−1ai

= (1− 1
3ᾱ )

−2
[
W−1Σ(w)W−1

]
ii
� 3

[
W−1Σ(w)W−1

]
ii

(A.7)

Further, when α ∈ (0, 1], we bound the second term of (A.6) as

(A.8) W̃α−1 � (1− 1
3ᾱ )

α−1Wα−1 � (1− 1
3ᾱ )

−1Wα−1 � 3Wα−1,

and when α ≥ 1, we have

(A.9) W̃α−1 � (1 + 1
3ᾱ )

α−1Wα−1 � exp

(
α− 1

3ᾱ

)
Wα−1 = exp

(
α− 1

3α

)
Wα−1 � 3Wα−1.

Using (A.7), (A.8), and (A.9) in (A.6), we have that in all cases

∇2F(w̃) � 3
[
W−1Σ(w)W−1 + αWα−1

]
� 3ᾱW−1

[
Σ(w) +W1+α

]
W−1 .

Applying to the above Loewner inequality the definition of w+ gives

(w+ − w)>∇2F(w̃)(w+ − w) ≤
∑
i∈[m]

3ᾱ · (w1+α
i + σi(w)) ·

(
ηi ·

ρi(w)− 1

ρi(w) + 1

)2

=
∑
i∈[m]

3ᾱ · η2i · w1+α
i · (ρi(w)− 1)2

ρi(w) + 1
.(A.10)

Next, recall that by Lemma 2.3, [∇F(w)]i = w−1
i · (w

1+α
i − σi(w)) for all i ∈ [m]. Consequently,

(A.11) 〈∇F(w), w+ − w〉 =
∑
i∈[m]

(w1+α
i − σi(w)) ·

(
ηi ·

ρi(w)− 1

ρi(w) + 1

)
= −

∑
i∈[m]

ηi · w1+α
i · (ρi(w)− 1)2

ρi(w) + 1
.

Combining (A.5), (A.10), and (A.11) yields that

F(w+) ≤ F(w) +
∑
i∈[m]

(
−ηi +

3ᾱη2i
2

)
· w1+α

i · (ρi(w)− 1)2

ρi(w) + 1
.

The result follows by plugging in ηi ∈ [0, (3ᾱ)−1], as assumed.

B From Optimization Problem to Lewis Weights

The goal of this section is to prove how to obtain ε-approximate Lewis weights from an ε̃-approximate solution to
the problem in (1.4). Our proof strategy is to first utilize the fact that the vector wR obtained after the rounding
step following the for loop of Algorithm 1 satisfies the properties of being ε̃-suboptimal (additively) and also
the rounding condition (2.3). In Lemma 2.1, the ε̃-suboptimality is used to show a bound on ‖σ(wR)−w1+α

R ‖∞.
Coupled with the rounding condition, we then show in Lemma B.1 that ŵR constructed as per the last line of
Algorithm 1 then satisfies approximate optimality, σ(ŵ) ≈δ ŵ1+α, for some small δ > 0. In Lemma B.2, we
finally relate this approximate optimality to coordinate-wise multiplicative closeness between ŵ and the vector of
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true Lewis weights. Finally, in Lemma 2.1, we pick the appropriate approximation factors for each of the lemmas
invoked and prove the desired approximation. Since the vector wTtotal obtained at the end of the for loop of
Algorithm 4 also satisfies the aforementioned properties of wR, the same set of lemmas apply to Algorithm 4 as
well. We begin with some technical lemmas.

B.1 From Approximate Closeness to Approximate Optimality.

Lemma B.1. Let w ∈ Rm>0 such that ‖σ(w) − w1+α‖∞ ≤ ε for some parameter 0 < ε ≤ 1
100m2(α+α−1)2 and also

let ρmax(w) ≤ 1+α. Define ŵi = (a>i (A
>WA)−1ai)

1/α. Then, for the parameter δ = 20
√
εm(α+α−1), we have

that σ(ŵ)≈δŵ1+α.

Proof. Our strategy to prove σ(ŵ) ≈δ ŵ1+α involves first noting that this is the same as proving ŵ−1 ·σ(ŵ) ≈δ ŵα

and, from the definition of ŵ in the statement of the lemma, to instead prove A>ŴA ≈δ A>WA.
To this end, we split W into two matrices based on the size of its coordinates, setting the following notation.

Define Ww≤η to be the diagonal matrix W with zeroes at indices corresponding to w > η, and Ŵw≤η to be

the diagonal matrix Ŵ with zeroes at indices corresponding to w > η. We first show that A>Ŵw≤ηA and
A>Ww≤ηA are small compared to A>WA and can therefore be ignored in the preceding desired approximation.
We then prove that for w > η, we have w ≈δ ŵ. This proof technique is inspired by Lemma 4 of [Vai89].

First, we prove that A>Ŵw≤ηA is small as compared to A>Ww>ηA. Since (2.3) is satisfied, it means

a>i (A
>WA)−1ai = σi(w) · w−1

i ≤ (1 + α)wαi .

Combining this with the definition of ŵi as in the statement of the lemma, we may use non-negativity of α to
derive

(B.1) ŵi ≤ (1 + α)1/αwi ≤ 3wi.

We apply this inequality in the following expression to obtain

Tr
(
(A>Ŵw≤ηA)(A>WA)−1

)
=

∑
wi≤η

ŵi(a
>
i (A

>WA)−1ai)

=
∑
wi≤η

(a>i (A
>WA)−1ai)

1+1/α

≤ (1 + α)1+1/α
∑
wi≤η

w1+α
i

≤ 3(1 + α)mη1+α.(B.2)

This implies that7

(B.3) A>Ŵw≤ηA � 3(1 + α)mη1+αA>WA.

Our next goal is to bound A>Ŵw>ηA in terms of A>WA, which we do by first bounding it in terms of
A>Ww>ηA and then bounding A>Ww>ηA in terms of A>WA. By definition, ŵαi = σi(w) · w−1

i . Further, by
assumption, ‖σ(w)− w1+α‖∞ ≤ ε. Therefore, for any wi ≥ η

ŵαi ≤ (w1+α
i + ε) · w−1

i ≤ (1 + ε/η1+α)w1+α
i · w−1

i = (1 + ε/η1+α)wαi ,

and
ŵαi ≥ (w1+α

i − ε) · w−1
i ≥ (1− ε/η1+α)w1+α

i · w−1
i = (1− ε/η1+α)wαi .

7Given X,Y � 0, we have Y 1/2XY 1/2 � 0. Then, if Tr(XY ) ≤ 1, we have Tr
(
Y 1/2XY 1/2

)
≤ 1, and combining these with the

previous matrix inequality, we conclude that Y 1/2XY 1/2 � I, which implies that X � Y −1.
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By our choice of ε, for wi ≥ η, we have

(B.4)

(
1− 2ε

αη1+α

)
wi ≤ ŵi ≤

(
1 +

2ε

αη1+α

)
wi.

Further, we have the following inequality:

(B.5) A>Ww>ηA � A>WA.

Hence, we can combine (B.5), (B.4), and (B.3) to see that

A>ŴA = A>Ŵw>ηA+A>Ŵw≤ηA

�
(
1 +

2ε

αη1+α

)
A>Ww>ηA+ 3(1 + α)mη1+αA>WA

� A>WA

(
1 +

2ε

αη1+α
+ 3(1 + α)mη1+α

)
.

Set η1+α =
√
ε for the upper bound.

For the lower bound, we bound A>Ww≤ηA and, therefore, also A>Ww>ηA. Observe that

Tr
(
(A>Ww≤ηA)(A>WA)−1

)
=

∑
wi≤η

wia
>
i (A

>WA)−1ai =
∑
wi≤η

σi(w)

≤
∑
wi≤η

(w1+α
i + ε) ≤ m(η1+α + ε),

where the second step is by ‖σ(w)− w1+α‖∞ ≤ ε, as assumed in the lemma. This implies that

A>Ww≤ηA � m(η1+α + ε)A>WA,

and therefore that
A>Ww>ηA � (1−m(η1+α + ε))A>WA.

Repeating the method for the upper bound then finishes the proof.

B.2 From Approximate Optimality to Approximate Lewis Weights. In this section, we go from the
previous notion of approximation to the one we finally seek in (1.5). Specifically, we show that if σ(w) ≈β w1+α,
then w ≈O((β/α)

√
n) w. To prove this, we first give a technical result. We recall notation stated in Section 1.4:

for any projection matrix P(w) ∈ Rm×m, we have the vector of leverage scores σ(w) = diag(P(w)).

Claim 1. For any projection matrix P(w) ∈ Rm×m, α ≥ 0, and vector x ∈ Rm, we have that∥∥∥∥[P(w)(2) + αΣ(w)
]−1

Σ(w)x

∥∥∥∥
∞
≤ 1

α
‖x‖∞ +

1

α2
‖x‖Σ(w) ≤

(
1 +
√
n/α

α

)
‖x‖∞

Proof. Let y
def
=

[
P(w)(2) + αΣ(w)

]−1
Σ(w)x. Since 0 � P(w)(2) � Σ(w) (Fact 1.1), we have that Σ(w) �

1
α

[
P(w)(2) + αΣ(w)

]
and (P(w)(2) + αΣ(w))−1 � α−1Σ(w)−1. Consequently, taking norms in terms of these

matrices gives

‖y‖Σ(w) =

∥∥∥∥[P(w)(2) + αΣ(w)
]−1

Σ(w)x

∥∥∥∥
Σ(w)

≤ 1√
α
‖Σ(w)x‖[P(w)(2)+αΣ(w)]

−1 ≤ 1

α
‖x‖Σ(w) .(B.6)

Next, since by Lemma 47 of [LS19],
∥∥Σ(w)−1P(w)(2)z

∥∥
∞ ≤ ‖z‖Σ(w) for all z ∈ Rm, we see that

∣∣[P(w)(2)y]i
∣∣ ≤

σi(w)‖y‖Σ(w) for all i ∈ [m], and since by definition of y, we have [(P(w)(2)+αΣ(w))y]i = σi(w)xi for all i ∈ [m],
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we have that

(B.7) ‖y‖∞ = max
i∈[m]

|yi| = max
i∈[m]

∣∣∣∣ 1αxi + 1

ασi(w)

[
P(w)(2)y

]
i

∣∣∣∣ ≤ 1

α
‖x‖∞ +

1

α
‖y‖Σ(w) .

Combining (B.6) and (B.7) and using that
∑
i∈[m] σi(w) ≤ n yields the claim.

Lemma B.2. Let ŵ ∈ Rm>0 be a vector that satisfies approximate optimality of (1.4) in the following sense:

σ(ŵ) = Ŵ1+αv, for exp(−µ)1 ≤ v ≤ exp(µ)1.

Then, ŵ is also coordinate-wise multiplicatively close to w, the true vector of Lewis weights, as formalized below.

exp

(
− 1

α
(1 +

√
n/α)µ

)
w ≤ ŵ ≤ exp

(
1

α
(1 +

√
n/α)µ

)
w .

Proof. For all t ∈ [0, 1], let [vt]i = [vti ] so that v1 = v and v0 = 1. Further, for all t ∈ [0, 1], let wt be the unique
solution to

(B.8) wt = argmin
w∈Rm

>0

ft(w)
def
= − log det

(
A>WA

)
+

1

1 + α

∑
i∈[m]

[vt]iw
1+α
i .

Then we have the following gradients.

∇wft(w) = −W−1σ(w) +Wαvt ,

∇w(
d

dt
ft)(w) = Wα d

dt
vt = Wαvt ln(v)(B.9)

∇2
wwft(w) = W−1

[
P(w)(2) + αW1+αV

]
W−1 .(B.10)

Consequently, by optimality of wt as defined in (B.8), we have 0 = ∇wft(wt) = −W−1
t σ(wt)+Wα

t vt. Rearranging
the terms of this equation yields that

(B.11) σ(wt) = W1+α
t vt,

and therefore w1 = ŵ and w0 = w. To prove the lemma, it therefore suffices to bound

(B.12) ln(ŵ/w) = ln(w1/w0) =

∫ 1

t=0

[
d

dt
ln(wt)

]
dt =

∫ 1

t=0

W−1
t

[
d

dt
wt

]
dt .

To bound (B.12), it remains to compute d
dtwt and apply Claim 1. To do this, note that

0 =
d

dt
∇w [ft(wt)] = ∇w(

d

dt
ft)(wt) +∇2

wwft(wt) ·
d

dt
wt .

Using that P(wt)
(2) +W1+α

t Vt � 0, we have, by rearranging the above equation and applying (B.9) and (B.10)
that

d

dt
wt = −

[
∇2
wwft(wt)

]−1 ·
[
∇w(

d

dt
ft)(wt)

]
= −Wt

[
P(wt)

(2) + αW1+α
t Vt

]−1

W1+α
t vt ln(v) .(B.13)

Applying (B.11) to (B.13), we have that

W−1
t

[
d

dt
wt

]
= −

[
P(wt)

(2) + αΣ(wt)
]−1

Σ(wt) ln(v) .
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Applying Claim 1 to the above equality, substituting in (B.12) and ‖ln(v)‖∞ ≤ µ therefore yields

‖ln(ŵ/w)‖∞ = ‖ln(w1/w0)‖∞ ≤
∫ 1

t=0

∥∥∥∥W−1
t

[
d

dt
wt

]∥∥∥∥
∞
dt ≤

∫ 1

t=0

(
1 +
√
n/α

α

)
µdt .

B.3 From Optimization Problem to Approximate Lewis Weights.

Lemma 2.1. (Lewis Weights from Optimization Solution) Let w ∈ Rm>0 be a vector at which the objective

(1.4) is ε̃-suboptimal in the additive sense for ε̃ = α8ε4

(25m(
√
n+α)(α+α−1))4

, i.e., F(w) ≤ F(w) ≤ F(w) + ε̃.

Further assume that w satisfies the rounding condition: ρmax(w) ≤ 1 + α. Then, the vector ŵ defined as
ŵi = (a>i (A

>WA)−1ai)
1/α satisfies ŵi ≈ε wi for all i ∈ [m], thus achieving the goal spelt out in (1.5).

Proof. We are given a vector w ∈ Rm satisfying F(w) ≤ F(w) ≤ F(w) + ε̃. Then by Lemma 2.5, we have

that
(σi(w)−w1+α

i )2

σi(w)+w1+α
i

≤ ε̃ for each i ∈ [m]. This bound implies that wi ≤ 3 for all i because, if not, then

because of σi(w) ∈ [0, 1] and the decreasing nature of (x − a)2/(x + a) over x ∈ [0, 1] for a fixed a ≥ 3, we

obtain
(σi(w)−w1+α

i )2

σi(w)+w1+α
i

≥ (1−w1+α
i )2

1+w1+α
i

≥ 1, a contradiction. Therefore ‖σ(w) − w1+α‖∞ ≤ 2
√
ε̃. Coupled with the

provided guarantee ρmax(w) ≤ 1 + α, we see that the requirements of Lemma B.1 are met with ε = 2
√
ε̃, for

ε̃
def
= ε̂4

(25m(α+α−1))4 , and Algorithm 1 therefore guarantees a ŵ satisfying σ(ŵ) ≈ε̂ ŵ1+α. Therefore, we can now

apply Lemma B.2 with µ = ε̂, and choosing ε̂ = α2

α+
√
n
ε lets us conclude that ŵi ≈ε wi, as claimed.

C A Geometric View of Rounding

At the end of Algorithms 2 and 3, the iterate w satisfies the condition ρmax(w) ≤ 1 + α. We now show the
geometry implied by the preceding condition, thereby provide the reason behind the terminology “rounding.”

Lemma C.1. Given w ∈ Rm>0 such that ρmax(w) ≤ 1 + α. Define the ellipsoid E(w) := {x : x>A>WAx ≤ 1}.
Then, we have that

E(w) ⊂ {x ∈ Rn | ‖W−α/2Ax‖∞ ≤
√
1 + α}.

Proof. Consider any point x ∈ E(w). Then, by Cauchy-Schwarz inequality and ρmax(w) ≤ 1 + α,

‖W−α/2Ax‖∞ = max
i∈[m]

e>i W
−α/2Ax = max

i∈[m]
e>i W

−α/2A(A>WA)−
1
2 (A>WA)

1
2x

≤ max
i∈[m]

√
e>i W

−α/2A(A>WA)−1A>W−α/2ei
√
x>A>WAx

≤ max
i∈[m]

√
e>i W

−α/2A(A>WA)−1A>W−α/2ei = max
i∈[m]

√
σi(w)

w1+α
i

≤
√
1 + α.

D Explanations of Runtimes in Prior Work

The convex program (1.3) formulated by [CP15] has a variable size of n2. Therefore, by [LSW15], the number
of iterations to solve it using the cutting plane method is O(n2 log

(
nε−1

)
, each iteration computing a>i Mai for

i ∈ [m]. This can be computed by multiplying an n×n matrix with an n×m matrix, which costs between O(mn)
(at least the size of the larger input matrix) and O(mn2) (each entry of the resulting m×n matrix obtained by an
inner product of length n vectors). Further, there is at least a total of O(n6) additional work done by the cutting
plane method. This gives us a cost of at least n2(mn+ n4). The runtime of [Lee16] follows from Theorem 5.3.4.
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