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The success of the multi-messenger astronomy relies on gravitational-wave observatories like LIGO
and Virgo to provide prompt warning of merger events involving neutron stars (including both binary
neutron stars and neutron-star-black-holes), which further depends critically on the low-frequency
sensitivity of LIGO as a typical binary neutron star stays in this band for minutes. However, the
current sub-60 Hz sensitivity of LIGO has not yet reached its design target and the excess noise can
be more than an order of magnitude below 20 Hz. It is limited by nonlinearly coupled noises from
auxiliary control loops which are also nonstationary, posing challenges to realistic early-warning
pipelines. Nevertheless, machine-learning-based neural networks provide ways to simultaneously
improve the low-frequency sensitivity and mitigate its nonstationarity, and detect the real-time
gravitational-wave signal with a very short computational time. We propose to achieve this by
inputting both the main gravitational-wave readout and key auxiliary witnesses to a compound
neural network. Using simulated data with characteristic representing the real LIGO detectors, our
machine-learning-based neural networks can reduce nonlinearly coupled noise by about a factor of
5 and allows a typical binary neutron star (neutron-star-black-hole) to be detected 100 s (10 s)
before the merger at a distance of 40 Mpc (160 Mpc). If one can further reduce the noise to the
fundamental limit, our neural networks can achieve detection out to a distance of 80 Mpc and 240
Mpc for binary neutron stars and neutron-star-black-holes, respectively. It thus demonstrates that
utilizing machine-learning-based neural networks is a promising direction for the timely detection

of the coalescence of electromagnetically bright LIGO/Virgo sources.

I. INTRODUCTION

The current generation of ground-based gravitational-
wave interferometers [1-3] firmly established a new way
to observe our cosmos. Since the first detection of grav-
itational waves (GWs) from a binary black hole (BBH)
merger [4], Advanced LIGO (aLIGO [1]) and Advanced
Virgo (aVirgo [2]) have gone on to document dozens
of gravitational-wave candidates [5, 6] that have been
confirmed and added to by the broader astrophysical
community [7-14]. One of the most spectacular dis-
coveries made by Advanced LIGO and Virgo is the
first observed binary neutron star (BNS) coalescence,
GW170817. GWI170817 was jointly detected in low-
latency in gravitational waves [15] and by Fermi-GBM in
gamma rays [16]. The subsequent discovery and followup
of kilonova AT 2017gfo led to a concerted followup ef-
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fort across the electromagnetic (EM) spectrum [17]. The
resulting multi-messenger observations enabled an abun-
dance of new science: constraints on the maximum NS
mass [18], better understandings of neutron star mode
coupling and equation of state [19-21], as well as tests of
general relativity [22].

Despite the successes surrounding GW170817, there
is still much to be learned about compact binary merg-
ers containing at least one neutron star. In particular,
there are various astrophysical processes that can gen-
erate precursor and/or early-stage signals that are yet
to be detected. For example, tidal interactions might
shatter crusts of neutron stars and lead to short gamma-
ray burst [23]. The property of the final merger product
may be better revealed with prompt X-ray and optical
observations [24]. In the radio band, precursor magneto-
sphere interactions might cause radio emissions [25, 26]
and could be a potential mechanism leading to fast radio
bursts [27, 28]. See, e.g., Ref. [29] for further discus-
sions on potential early-warning signals as well as a nice
summary of the follow-up capacity of various EM obser-
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vatories.

To detect the prompt signatures of these processes,
LIGO and Virgo would need to be able to identify the
existence of a GW event and then determine its sky lo-
cation in a timely manner. This is especially important
for binaries where at least one component is a neutron
star. The GW alert for GW170817 was not sent out un-
til ~ 40 minutes after the merger and the sky location
was not released until another 4 hours later [17]; in prin-
ciple, this information can be obtained minutes prior to
the final merger as a typical BNS event will stay in the
sensitivity band of LIGO and Virgo for minutes at their
designed sensitivities.

There are presently four low-latency, matched-filter
based pipelines that produce near real-time gravitational-
wave alerts for BNS and NSBH mergers: GstLAL [30, 31],
PyCBC [32], MBTA [33], and SPIIR [34, 35]. Several of
these pipelines have already developed analyses capable
of early warning detection [29, 30, 35]. See also Ref. [30]
for a summary of current efforts carried out by the LIGO
and Virgo collaborations during the second observing run
to low-latency warnings. The prospect of pre-merger
detection is ultimately limited by latencies surrounding
data acquisition, handling, and analysis. Ref. [37] re-
cently demonstrated that even at present latencies, the
LIGO-Virgo collaboration is capable of identifying, local-
izing, and broadcasting GW candidates prior to merger.

Machine-learning (ML) based neural networks (NNs)
offers yet another attractive alternative to achieve the
early warning of BNSs/NSBHs. Instead of individually
computing the overlap between a time series of GW read-
out and each waveform template from a large template
bank, a trained NN would only need to do the computa-
tion once to predict the existence and the property of the
source. It can therefore serve as the first step for exist-
ing pipelines and further accelerate their computational
efficiency.

Indeed, various authors have considered the possibility
of detecting GW events using ML-based NNs. Refs. [38—
40] showed that it is possible to input real-time GW read-
out and then use NNs to detect massive black hole bina-
ries (BBHs) and later Refs. [41, 42] considered the possi-
bility of detecting BNSs with longer signal duration. Re-
cently, Ref. [43] further considered detecting BNS events
tens of seconds prior to the final merger.

However, almost all the analyses above assume a sta-
tionary Gaussian noise background and often at the de-
signed sensitivity of aLIGO (one exception is Ref. [39],
yet they focused on short BBH signals only with duration
< 1s long in which the nonstationarity is less critical).
While this is a decent approximation in the f > 100 Hz
frequency band, at lower frequencies which matter most
for the early warning the dector noise not only exceeds
the designed level by orders of magnitude but also ex-
hibits nonstationarity [10, 44, 45]. Therefore, it would
be crucial to take into account these features of realistic
detector noise in order to design a NN to achieve early
warning in practice.

Our work thus extends the field by considering the de-
tection of GW events from a nonstationary noise back-
ground representative of realistic LIGO detectors. In ad-
dition to the main GW readout, we further show that in
principle one can also input to the NN some key auxil-
iary channels witnessing the sources of contamination to
hence enhance the low-frequency sensitivity. As the con-
tamination typically involves nonlinear and nonstation-
ary coupling mechanisms, it cannot be mitigated by stan-
dard signal processing techniques assuming linear and
stationary noise coupling. We demonstrate that with
NNs involving nonlinear activations, one can nonetheless
tackle the challenges of nonlinearity and nonstationar-
ity and achieve simultaneous noise mitigation and signal
detection both in real time.

The rest of the paper is organized as follows. In Sec. 11
we briefly overview the LIGO sensitivity during its third
observing run (O3) and discuss the main source of con-
tamination to the low frequency band of interest. In
Sec. ITI we then describe the properties of the GW signal.
This is followed by Sec. IV in which we provide the details
of the construction of training of our early-warning NN.
Specifically, we describe the preparation of our training
datasets in Sec. IVA and then in Secs. IV B-IV D the
procedures we adopt for the network training. The per-
formance of our NN is examined in Sec. V. Lastly, we
conclude and discuss our results in Sec. VI

II. OVERVIEW OF LIGO SENSITIVITY

While LIGO has achieved a great success, its sensitiv-
ity can still be further improved as we demonstrate in
Fig. 1. Here the orange trace is the representative sensi-
tivity at the LIGO Hanford observatory during the third
observing run (O3) [45] and the red trace is its funda-
mental limit set by quantum and thermal fluctuations at
the O3 configuration (which actually closely matches the
designed sensitivity of aLIGO [1]). While the two traces
overlaps at f = 100Hz, at lower frequencies the excess
noise can be significant. At 30 Hz (20 Hz), the fundamen-
tal limit is a factor of 3 (10) below the current sensitivity,
indicating a large room of improvement. Opening up the
sensitivity in the low-frequency band can be especially re-
warding for multi-messenger astronomy and astrophysics,
as it allows a coalescing BNS (whose strain we show in
the purple trace) to be detected at a lower frequency and
hence a much earlier time prior to the merger; see the
discussion in Sec. III.

A major source of contamination to the current low-
frequency sensitivity is the control noises of auxiliary de-
grees of freedom [45] (see also, e.g., Refs. [44, 46]). For
instance, while it is necessary to engage an active angular
control system to maintain the alignment of test masses
at below a few Hz during LIGQO’s observation, the sys-
tem also inevitably feeds back the sensing noise in the
10-30Hz band and causes excess angular perturbation
6(t). The angular perturbation further couples with the
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FIG. 1. Comparison of the strain sensitivities. The orange
trace is the realistic sensitivity of the LIGO Hanford detec-
tor during O3 [45] and the red trace its fundamental limit.
We simulate noise according to the mechanism described in
Eq. (1) and a typical realization is shown in the blue trace.
Note that it is in fact nonstationary and its spectrum can
vary within the blue-shaded band. Because of the nonlinear
nature of the noise coupling, a linear, coherence-based sub-
traction cannot mitigate the noise as shown in the dashed-
brown trace. As a reference, we also show the strain of a
typical coalescing BNS event in the purple trace. The event
can be detected at a much lower frequency (hence a much
earlier time) if the contamination at low frequencies can be
mitigated.

off-pivot beam spot motion and leads to a longitudinal
displacement that contaminates the GW readout as
DC AC

62(t) = Tpox (N0() = [l + o (0] 0). (1)
Such a contamination can be mitigated by both online
feed-forward cancellation and offline signal regressions
(see, e.g., Ref. [47]). However, standard signal process-
ing techniques [such as computing the Wiener filter from

0(t) to dz(t)] assume the coupling is linear and stationary
and therefore can only remove the constant coupling part

x asng(g) but not the fluctuating piece xgﬁ,f? (t). In fact,

it is exactly due to the temporal variability of couplings

like xigoct) (t) that the current LIGO noise background at
low frequencies is nonstationary [44, 45], dramatically
complicating the data analysis process [10].

Furthermore, there are no direct witnesses for the spot
position on the test masses, xgg(g) (t), over the entire fre-
quency band of interests. Instead, it has to be recon-
structed from multiple sensors through complicated geo-
metrical conversions as well as signal filtering and blend-
ing, with each step subject to its own calibration uncer-
tainties.

Nonetheless, neural networks (NNs) using machine
learning (ML) offers an attractive way to tackle this prob-
lem. By inputting sufficient auxiliary witness channels,
a deep convolutional neural network (CNN) [48] would
be able to figure out the correct, frequency-dependent

combinations of the witness that reconstructs the con-
tamination. Moreover, as each layer typically involves a
nonlinear activation function, it would be able to capture
nonlinear couplings like Eq. (1) that classical, linear sig-
nal processing techniques fail (see also Refs. [49-52] for
some recent efforts to mitigate nonlinear noises in the
LIGO detectors). Furthermore, as an NN is trained di-
rectly on time series, it is especially suitable to be imple-
mented in real-time and has the potential to be integrated
into a low-latency detection pipeline.

To demonstrate this point, we simulate excess noise
according to the mechanism described in Eq. (1) and
combine it with the fundamental limit to form the blue
trace in Fig. 1. The z4p0(¢) and 6(¢) as well their wit-
ness channels are simulated with similar characteristics
as in realistic LIGO detectors, with one exception that
we reduce the roll-off of (¢) in the 25-80 Hz band so that
the entire O3 sensitivity can be approximated by this
mechanism (see Sec IV A for more details). In reality,
the noise in the 25-80 Hz are dominated by other noise
sources [45] which we ignore here for simplicity. Note
that we have assumed that the constant coupling piece
is already removed (i.e., xépch) = 0), and linear subtrac-
tion cannot further mitigate the contamination. This is
illustrated by the brown-dashed curve in Fig. 1 where
we compute the multi-input-single-output coherence be-
tween all the auxiliary witness and the gain GW channel
and then subtract out the coherent component in the fre-
quency domain. To further simulate the nonstationarity
on timescales longer than the length of each realization
(2565), we allow the overall root-mean-square (RMS) of
Tspot(t) to be a random variable. Thus the blue trace
in Fig. 1 is just the ASD of a typical realization; the
noises we simulate in fact has their spectra vary within
the shaded blue region (see also Fig. 5).

III. GW SIGNAL

Having described the noise and how we may use ML
techniques to mitigate it, we now turn to the discussion
about detecting the astrophysical GW events. Specifi-
cally, our goal is to detect a GW event minutes before
the final merger and further classify its type (NS vs BH)
to assist the EM follow up strategies.

For the early warning purpose, we can approximate
the waveform using only the leading-order quadrupole
formula and write (with G = ¢ = 1; see, e.g., [53])

1/4

n = GM (2] elal @
5/8

B(t) = — <5j\’2) + @, (3)

where t,, = t. —t is the time to merger and ¢. and ®. are
time and phase of coalescence. The time t,, is further



related to the GW frequency f according to

‘ Mc —-5/3 f —8/3

MC —5/8 tm —-3/8

In this work, we do not include the detailed antenna re-
sponses (which are encoded in the quantity .4) nor the
joint detection by multiple detectors. Instead, we set
A =1 and simply replace the distance to the source d in
Eq. (2) by deft/v/Ndet, where deg ~ 2.3d is the averaged
effective distance [54, 55] and Nget is the number of de-
tectors observing. For the rest of the work, we will use
Nget = 3 as the default value.

From the above equations we see that the waveform
depends only on one intrinsic parameter of the source,
the chirp mass M., defined as

(M1M2)3/5

Mc = 4(M1 + M2)1/57

(6)

with Mj o the component masses. Therefore, we put a
GW event into three categories according to its chirp
mass.

We define the first category as events with 1 M, <
M < 1.8 and label such an event as a “BNS” event.
Note that a BNS with M; = My = 2Mg (which is
the mass of the heaviest NS observed to date [56]) will
have M, = 1.74 M. Therefore, we would expect that
most astrophysical BNS events will fall into this cate-
gory (including GW170817with M. = 1.19 Mg [15] and
GW190425 with M. = 1.44 M, [57]).

We also define a “BBH” category as sources with
45Ms < M. <10 Mg. The lower boundary is inspired
by noticing a BBH with M; = My = 5 Mg would have
M. = 4.35 Mg. In principle, the upper boundary of
M, < 10 Mg for this category is not necessary (or it
should be set to a much greater value). We nonetheless
put it to 10 Mg for the training simplicity. Moreover,
more massive systems merges in only a few seconds or
even less in duration [Eq. (4) and Fig. 2], and therefore
they are not the main target of our study here.

Lastly, we refer to sources with 1.8 My < M, <
4.5 Mg as the “NSBH” category, as it covers events
with (Ml,MQ) = (8M®,1.4M®), or MC = 27M®
We nonetheless point out that this category may also
contain a binary of NSs both massive than 2 Mg or a
pair of light BHs both in the lower “mass gap” with
M 2 < 5Mg. While it is possible to refine our knowl-
edge of the source if we include dynamics at high post-
Newtonian orders and/or potential tidal interactions,
these effects are encoded at higher GW frequencies and
therefore is beyond the scope of our work targeting the
early warning using only the low-frequency portion of
the signal. Indeed, at the frequency range we are in-
terested in here, the corrections we drop is only on the

order ~ v? ~ 1.1%[(M; + My)/3 Mo)*® (/25 Hz)2/3.

Nonetheless, we may imagine our work here would serve
as a first step of a future, integrated early warning
pipeline, and once an event is detected here, it can then
trigger further analysis on the signal to refine its prop-
erty.

In Fig. 2 we show the merger time t,, for binaries with
different chirp masses M, at three different GW frequen-
cies. The two vertical, dotted lines indicate the bound-
aries between the three categories defined in our study.
From the plot we see that if the event can be detected by
~ 30 Hz, then for the three categories (“BNS”, “NSBH”,
“BBH”), we should in principle be able to detect the sig-
nal [O(100), O(10), O(1)] s prior to the merger.

In reality, the situation may be more challenging be-
cause the current LIGO low-frequency sensitivity is or-
ders of magnitude above its fundamental limit as we have
already seen in Fig. 1. We illustrate this point further in
Fig. 3 where we show the cumulative signal-to-noise ratio
(SNR) p for a BNS with M; = My = 1.4 M, as a function
of ¢y, (bottom x-axis) and f (top x-axis). Specifically, we
define the cumulative SNR, through

/“W B (f)h(f)

) B h(f

df] (7)

where h = [ h(t) exp (27 ft) dt and S,, the detector’s
power spectral den51ty In the plot, we further normalize
the curves by the total SNR assuming the fundamental
O3 sensitivity (the red trace in Fig. 1).

As can be seen from Fig. 3, with the current O3 sen-
sitivity (blue trace), to accumulate to a normalized SNR
of 0.2, we have to integrate the signal to around 40 Hz or
tm =~ 20s. Such a time window might not be sufficient
especially if one wants to catch potential precursor sig-
nals of BNS mergers given various realistic delays in the
information communication and decision making. In con-
trast, if LIGO can reach its fundamental limit, one would
only need to integrate to 15 Hz, which is 300 s prior to the
merger. It thus demonstrates the great scientific reward
of enhancing the low-frequency sensitivity, which we pro-
pose to achieve via ML-based nonlinear noise regression.

IV. NEURAL NETWORK

A cartoon illustrating the proposed NN structure is
shown in Fig. 4. Here we input both the main GW read-
out and a few key auxiliary witness channels to simulta-
neously achieve noise mitigation and signal classification.

To assist the convergence of the network, we adopt a
compound structure. We first use the network “CNN-
noise” to preform noise reconstruction and then subtract
its output from the noisy GW readout to form a cleaned
strain signal. This is then fed to the network “CNN-
class” to achieve signal detection and classification. Both
sub-networks can be first trained individually and then
combined together to preform a global optimization.
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FIG. 2. Merger time as a function of the chirp mass. The
vertical lines correspond the boundaries of the three signal
classes we consider here. Note that the label for each class is
put under quotation marks because here we only loosely de-
fine each class by its chirp mass, the information that is best
constrained at the early inspiral stage. The source’s proper-
ties can be better refined by follow-up analysis utilizing data
at higher GW frequencies.
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FIG. 3. Cumulative SNR as a function of ¢,, (bottom x-axis)
and f (top x-axis) for a BNS with M. = 1.22 Mg. The red
trace is computed using the fundamental sensitivity and the
blue one using the realistic O3 sensitivity. Also shown in
the grey band is the SNR using the residual noises after the
CNN’s cleaning (Sec. IV B). At 100s prior to the merger, one
could in principle integrate about 40% of the total SNR if we
reach the design sensitivity, yet currently only about 1% is
accumulated in this band.

Our ML training is preformed using Keras [58], a
Python-based interface running on top of the ML plat-
form TensorFlow [59]. The details of data generation
and network training is presented below.

Probability
Noisy GW for:
readout Null

CNN-class:
CNN for signal
detection/
classification

"BNS"

"NSBH"

CNN-noise:
CNN for noise
reconstrction

"BBH"
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FIG. 4. A compound CNN we propose to use to detect GW
events. In the “CNN-noise” CNN model we first reconstruct
the noise that limits the low-frequency sensitivity using auxil-
iary channels. We then subtract its output from the main GW
readout and then pass the residuals to “CNN-class” model
which outputs the probability of the input time-series belong-
ing to each one of the classes we defined. The two CNNs can
be first trained individually and then combined and optimized
globally.

A. Data preparation

We describe in this Section how we generate the data
we used for training the CNN.

We generate the GW signal from Eq. (2) with the dis-
tance d replaced by 2.3desr/v/Nget and Nget = 3. For
training the NN; it is not necessary to sample the masses
following a specific astrophysical distribution. Instead,
we sample M, from a normal distribution with a mean of
1.22 M and standard deviation of 0.3 M and truncate
the distribution at [1,1.8) Mg, the predefined range of
the “BNS” class. For “NSBH” and “BBH”, the masses
are simply sampled from uniform distributions.

To achieve early warning, we do not use the entire
waveform up to the merger, but truncate the high-
frequency end of the waveform at a cutoff frequency feus.
For the “BNS” class, we randomly sample f.,; between
24 Hz and 25 Hz. For typical BNS event with My = My =
1.4 Mg (M, = 1.2 Mg), this corresponds to ty(feut) =
97 — 87s. The starting frequency is chosen such that
the integration time ¢;; of the signal is 256s. Because
more massive systems can evolve to higher frequencies
for a given amount of integration time, we set f.y to
slightly higher values for the “NSBH” and the “BBH”
classes; we sample fo, from [28,32) Hz and [35,40) Hz.
For an NSBH event with (M1, M) = (8 Mg, 1.4 M) this
leads to 17s to 12s of pre-merger warning time, and for
a BBH with M; = My = 5 Mg, it is 4s to 3s prior to
the merger. The integration time tj,¢ is the minimum of
256's and t,,, (10 Hz) — t,,, (feus)- In all cases, the phase at
coalescence @, is always sampled randomly from [0, 27).
Because we consider f.,; < 40Hz, we only need to sam-
ple each waveform at a rate of 256 Hz. Such a relatively
low sampling rate is the key allowing us to integrate the
signal for a duration as long as 256s. In Table I we sum-
marize the key parameters of the three signal classes we
consider.

Once a waveform is generated, we then inject it to a
noise background of 256s long, containing both a sta-



TABLE I. Summary of the three signal categories considered
in our study. The first row is the chirp mass defining each
category. The second row is the frequency at which we cut
off the signal; only signal prior to this cutoff is used for de-
tection. The third row is the typical time to merger at the
cutoff frequency and the last row is the integration time of
each signal. The chirp masses are given in [Mg], times are in
[sec], and frequencies are in [Hz]. All waveforms are sampled
at a rate of 256 Hz.

label “BNS” “NSBH” “BBH”
M. [1, 1.8) (1.8, 4.5) [4.5,10)
feut [24, 25) [28, 32) [35, 40)
t3P)roe 197, 87) (17, 12) [4,3)

tim 256 min[256, tm|10_tm‘fcut] tm|10_tm|fcut

tionary part due to the fundamental noise limit (the red
trace in Fig. 1), and an additional low-frequency contam-
ination represented by the blue stripe in Fig. 1 (see the
description shortly after). As one may imagine continu-
ously passing the strain data to the CNN we trained here
(specifically, “CNN-class” in Fig. 4), we align the signal
so that it reaches f.,t at the end of the time series.

Together with the three signal classes, we also consider
a “null” class containing only the nonstatinary detector
noise. The goal of CNN-class is then to output the prob-
ability of a 256-second data series belonging to one of the
four classes.

To simulate the excess low-frequency contamination
[blue stripe in Fig. 1 and Eq. (1)], we generate noises
with similar characteristics as in realistic LIGO detec-
tors.

Specifically, we simulate four independent time series
of the fast (Z 10Hz) angular motion 6(¢), corresponding
to sensing noises in the four high-bandwidth angular feed-
back loops (for controlling pitch and yaw motions of the
two arm cavities).[60] Instead of using realistic spectral
shapes for 0(t) as in the LIGO system, we design them
so that the contamination has a spectral shape similar to
the full O3 sensitivity [45]. In other words, we give 6(t)
extra power in the > 25 Hz band and ignore other sources
of contamination in this band. This does not affect the
main results of our study though because we choose fcut
between 24 Hz and 25 Hz for the “BNS” class.

Meanwhile, we also simulate eight independent spot-
position motions Zspet(t) for the four test masses and two
angular degrees of freedom (pitch and yaw). Their mo-
tions are mostly induced by the microseismic motion and
peak in the 0.1 — 0.3 Hz band. This is the main source of
nonstationarity on timescale of 10s. At longer timescales,
the overall RMS value of x(¢) drifts and shows seasonal
dependence: during winter times the microseimic motion
is typically higher than in the summer. To simulate this,
on top of a typical value RMS [z(¢)] ~ 0.3mm, we ad-
ditionally sample an overall scale factor uniformly from
[0.7,1.4] and apply it to x(¢) for each realization.

In order to sense the true spot motions, we assume the
information is contained in two sets of witness sensors.

TABLE II. Network structure for noise subtraction. The net-
work includes about 640,000 trainable parameters in total.

layer output dimension kernel size activation
ConvlD 256 64 ELU
Conv1D 32 16 ELU
Dropout - - -
Convl1D 256 8 ELU
BatchNormalization - - —
Dense 256 - ELU
Dropout - - -
Dense 128 - ELU
Dense 128 - ELU
Dense 16 - ELU
BatchNormalization - - —
Dense 1 - Linear

The first set of sensors probe the spot motion by exciting
each mirror in angle and looking for length fluctuations
at the excitation frequency. The angle-to-length conver-
sion factor directly gives us the spot motion at each test
mass [see Eq. (1)]. However, they have very limited SNR
and can only trace the long-term (< 0.1Hz) drift of the
spot motion. The other set of sensors are optical levers
placed locally at each test mass. They senses the angu-
lar motion of each test mass relative to its local ground,
which can then be converted to the spot motion using
the cavity’s geometry. They provide information in the
=2 0.1Hz band but are polluted by seismic and thermal
drifts at lower frequencies and therefore are not coherent
with the true spot motion at < 0.1 Hz. Consequently,
we would need two sensors (one dithering-based sensor
and one optical lever) for the spot motion per test mass
per direction. In total, we thus need 20 auxiliary witness
channels [4 for 6(t) and 16 for xspot(t)] to reconstruct
the low-frequency contamination [61]. Same as the main
GW readout, all of the auxiliary channels are sampled at
a rate of 256 Hz.

To reduce the complexity of the problem, we first train
the two sub models, “CNN-noise” and “CNN-class”,
individually, which we will describe in Sec. IV B and
Sec. IV C. After each sub-model’s convergence, we then
load their weights into the compound model as the initial
condition and preform a global optimization (Sec. IV D).

B. Noise subtraction

Our first step is to construct a NN that mitigates the
excess low-frequency contamination to the GW readout
in real time. We will refer to this NN specifically as
“CNN-noise”. It takes the 20 auxiliary witness channels
we simulate as the input and estimates their nonlinear
contamination to the main GW readout as the output
(see also Fig. 4). To achieve supervised learning, we use
time series from the noisy GW readout as training targets
for this step.
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FIG. 5. Residual noise after the cleaning by CNN-noise. Each
blue trace corresponds to one realization of our simulated de-
tector noise and the grey ones the residual after noise sub-
traction. The two brown traces correspond to the 5- and
95-percentiles of the residual. With the current network, we
can achieve a factor of 5 broadband subtraction of the noise.

Because for most of the observation time there will
be no GW signal present in the data, the training is thus
preformed on signal-free data series only in this step. We
also do not need to use the full 256 seconds of data for
each training segment for noise mitigation because the
contamination relies only on the instantaneous spot and
angle [Eq. (1)]. The time series only needs to be long
enough to capture the microseismic motion (with a char-
acteristic period of ~ 10s) which is the main cause of
fluctuations in the spot motion. Consequently, we use 64
seconds of data from 21 channels (20 auxiliary witnesses
as the input and 1 noisy GW readout as the target) for
each segment (i.e., “batch” in the ML literatures), and
train “CNN-noise” over 128 segments for each training
epoch.

Moreover, for the convenience of the subsequent signal
classification, we would like the “cleaned” GW readout
to have a nearly white spectral shape. Therefore, we
precondition the noisy GW readout before it is passed for
training. Since the current O3 detector noise is orders
of magnitude greater than the fundamental noise limit
(the ideal output of noise cleaning) at f < 20Hz, the
precondition is done in an iterative way.

In the first iteration, we whiten the GW readout ac-
cording to the fundamental O3 noise limit. The spec-
trum of the residual after noise subtraction is then
used to design the preconditioning filter for whiten-
ing the GW readout in the next iteration. Because of
the nonlinearity involved in the noise coupling, a CNN
trained to estimate dxz(t) from [6(t), Zspot(t)] according
to Eq. (1) does not apply for approximating £ {dz(¢t)}
from [L£{0(t)}, Zspot(t)] with £ denoting a generic linear
operator. Therefore, the weights in “CNN-noise” need
to be updated once the preconditioning filter changes.
Nevertheless, we find the residual are similar for the first

and second iterations, and therefore we do not to iterate
further.

The same preconditioning filter is also applied to the
witness channels for 6(t). While this does not preserve
the exact coupling as we argued above, we nonetheless
find it helps the CNN to converge faster numerically.

As for the witness channels for the spot motion, we
only apply an overall calibration factor so that each chan-
nel’s numerical values are of order unity. Specifically, we
calibrate the dithering-based sensors to output spot mo-
tion in millimeter and the optical levers to output the
low-frequency (< 1Hz) angular motion [62] in microra-
dians. Note that the overall RMS of each channel con-
tains physical meaning [the coupling strength from 6(t) to
dz(t)] and should not be normalized out. Similarly, for
each GW readout we apply a fixed normalization con-
stant.

Once the data are generated and preconditioned, we
then pass them to “CNN-noise” to learn the nonlinear
noise coupling from the auxiliary channels to the main
GW readout. The best performing network structure is
summarized in Table II.

We construct a custom loss function for the training.
Specifically, we compute the loss as

Shigh )
Loss = / wSresH dgf (8)

low

where S,(JCSI) is the power spectral density of the residual
(i.e., target — prediction), and w is a weighting function
defined as

fOt

w= CST(Ltrgt) ’

9)

where Sr(frgt) is the power spectral density of the tar-
get and C is an overall constant so that the initial loss
is of order unity. Empirically, we set (fiow, fnigh) =
(7.5Hz,75Hz) and a = —0.5. In addition, we also sum
a small contribution of the standard mean squared error
(about 0.1 to the total loss) to the custom loss defined in
Eqg. 8 to avoid artificial offsets at DC due to numerical
over-fitting.

We note that the loss function defined above aims to
achieve a broad-band noise mitigation so that the results
of “CNN-noise” can be applied for various purpose (sig-
nal detection, sky localization, etc.). The optimization
for the specific purpose of this work (detecting and clas-
sifying BNS ~ 100s prior to the merger) is left for the
final step where we combine CNN-noise and CNN-class
to preform global training.

The resultant ASDs of CNN-noise are shown in Fig. 5.
In the figure, each blue trace is the amplitude spectral
density of a realization of the simulated O3 sensitivity.
Similar to the real detector noise, it has a nonstationary

nature as the RMS of xéﬁg) various with time (and dif-
ferent from realization to realization). The residual after
removing the contamination predicted by CNN-noise us-

ing the 20 auxiliary channels is shown in the grey trace.



Overall, the contamination can be mitigated by a factor
of ~ 10, which is sufficient to reach the fundamental limit
in the > 30 Hz band. At lower frequencies, f < 20 Hz,
even the residual is still an order of magnitude or more
above the fundamental limit and the it fluctuates as the
spot motion RMS varies, indicating rooms for further im-
provements.

Note that each curve in Fig. 5 is the averaged ASD
estimated using Welch’s method over 256 second of data
in total and 8 second per estimation segment. Therefore
the fluctuations in Fig. 5 is due to the long-term variation
of the RMS of the spot motion. We also show in Fig. 6
directly the time series to compare the original (blue)
and the noise-subtracted (grey) series. In the simulated
03 data, the band-limited RMS in the [20,60] Hz varies
on the timescale of 10s as indicated by the envelopes of
the time series. This is because the spot position on the

(AC) . . .
test masses xg,.,, moves due to the microseismic motion
in the 0.1 — 0.3 Hz band. Such a modulation prohibits
the removal of the noise using standard signal processing
techniques (such as Wiener filter) assuming a stationary
coupling. The “CNN-noise”, nevertheless, successfully
mitigates the 10-second-timescale nonstationariety in the
time series.

Furthermore, as we shown in Fig. 3, with the cleaned
sensitivity represented by the grey traces in Figs. 5 and 6,
we can get more than 10% of the total SNR 100 seconds
prior to the merger. This is sufficient for us to detect
nearby BNS events like GW170817 (Sec. V). For future
convenience, we also show the 5- and 95-percentiles at
each frequency bin of the residual in the two brown traces
in Fig. 5. We further define p as the SNR computed
assuming a stationary noise background whose values are
fixed at the 5-percentiles [i.e., using the lower brown trace
for /S, in Eq. (7)]. We will use this as an estimation
of the SNR of the signal at a given distance, though one
should keep in mind that p will in general be greater than
the true SNR of each injection.

C. Signal detection and classification

Once we have trained the CNN-class sub-network, we
then inject GW signal onto the cleaned noise background
and train the CNN-class for signal detection and classi-
fication.

Examples of the input time series to CNN-class is
shown in Fig. 6. It is the sum of a GW signal at most 256
seconds long (or zero for a null event) and a 256-second
residual noise background produced by subtracting the
prediction of CNN-noise and the simulated O3 detector
noise (i.e., it corresponds to the grey trace in Fig. 6).

The training target is the label of each sample: we
use (0, 1, 2, 3) for (“Null”, “BNS”, “NSBH”, “BBH”),
respectively. We further convert the label into the one-
hot representation, so that when we use CNN-class for
prediction, the numerical value at each digit gives the

—— Original GW readout.
—— After noise subtraction.
— GW signal

Whitened strain
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FIG. 6. Sample of the whitened time series. The blue traces
are the original GW readout simulated according to O3 sensi-
tivity whose band-limited RMS in the [20, 60] Hz band varies
on a timescale of 10s due to modulations caused by the mi-
croseismic motion. The grey traces are the GW readout after
noise mitigation by CNN-noise and they are the inputs to
CNN-class. The whitened GW signal contained in each real-
ization is highlighted in the purple trace. From top to bottom,
they correspond respectively to a typical “BNS”, “NSBH”,
and “BBH”. In all the cases we set p(f < feus) = 16.

TABLE III. Network structure for signal classification. The
network includes about 32,000 trainable parameters in total.

layer output dimension kernel or activation
pooling size
Conv1D 64 64 ELU
AveragePooling1 D - 4 -
Conv1D 16 16 ELU
MaxPooling1D - 4 -
Conv1D 32 8 ELU
MaxPooling1D — 8 —
Conv1D 16 8 ELU
MaxPooling1D - 8 -
Conv1D 8 4 ELU
MaxPooling1D - 8 -
Flatten - - -
Dense 16 - ELU
Dense 64 - ELU
Dense 8 - ELU
Dense 4 - Softmax




probability of the input time series belonging to the cor-
responding signal class.

Tabel III shows the structure of the best performing
CNN-class we find empirically. It consists of 5 CNN lay-
ers, each followed by a pooling layer (for the first one we
use average pooling while for the rest maximum pooling
is used). While ReLU activation are used in previous
studies, we nonetheless find ELU activation gives a bet-
ter convergence and therefore we use it for all the CNN
layers. We include 3 Dense layers with ELU activation
afterwards, and lastly, the output is produced by a Dense
layer with the Softmax activation. The sparse categor-
ical crossentropy loss is used together with an Adamax
optimizer.

To help the convergence of the network, we utilize the
“curriculum learning” approach [38, 39]. That is, we first
train CNN-class on very loud GW events with high SNR
to guide the NN to an initial convergence. Then we grad-
ually reduce the SNR of injected GW events in the train-
ing set to cover the more realistic SNR space of potential
astrophysical events.

Specifically, in the first step, we sample GW events
from p(f < foh) € [16,40) and with a probability o
[5(f < f*)] 72, where p(f < f%) is the SNR computed
using the 5-percentile noise residual (the lower brown
trace in Fig. 5) and integrated to foy = (25,32,40) Hz
for (“BNS”, “NSBH”, “BBH”). Note p in general will
be greater than the true SNR of an injected event be-
cause both fouw < foh for each realization of the GW
event and the background noise is typically greater than
5-percentile value. The training set includes ~ 2,000
samples for each signal class, plus ~ 2,000 samples for
null events. Additional 64 samples per class are used as
validation.

Once the first step converges (both the training and
loss plateau), we then reduce the SNR range to p(f <
out) € [10,40) and p(f < foit) € [8,28) in the second
and third training steps. In each step, we use ~ 8,000
samples per class. There exists a trade-off that training
the network to identify low-SNR events would typically
degrade its ability to classify null events (i.e., increasing
the false alarm rate, or FAR). Consequently, we instead
sample events uniformly in SNR in the second and third
steps, and do not further lower the SNR of the training
data.

As a comparison, we also construct a network with
the same structure as CNN-class but train it on GW
time series with stationary noise background generated
according to the fundamental O3 sensitivity (which is
similar to the aLIGO design sensitivity for f < 40Hz of
interest; red trace in Fig. 1). This reference network is
trained with the same curriculum training steps as CNN-
class.
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FIG. 7. TAR (solid traces) or FAR (dotted traces) as a func-
tion of the threshold above which a detection is claimed. The
results are obtained using our compound NN (Fig. 4) with
simulated O3 sensitivity. The blue traces is for a typical BNS
event at deg = 40 Mpc (see Figs. 8 and 9) and the orange
trace is for a NSBH event at deg = 160 Mpc (see Fig. 10).

D. Combined network

While it is sufficient to train CNN-noise and CNN-
class individually as in Secs. IV B and IV C, we may fur-
ther optimize the performance by combining the two net-
works and training globally. This is because CNN-noise
is trained to achieve a broadband noise reduction so that
the residual detector noise could potentially serve as the
input for pipelines of various purposes. By combining it
with CNN-class, the noise subtraction is then optimized
specifically for the early detection and classification of
GW events.

To achieve so, we utilize the structure shown in Fig. 4
and load the network weights obtained from individual
training as the initial condition for the compound net-
work. We generate ~ 10,000 samples for each class with
the SNR p(f < fon) uniformly sampled from [8,28).
Each time series of the main GW channel is input to the
compound network together with 20 auxiliary channels
to internally mitigate the detector noise. The training
target, loss function, and optimizer are the same as de-
scribed in Sec. IV C.

We find the compound network could achieve an en-
hanced performance compared to CNN-class alone (see
the discussions in the following section). We will then
use the compound network as our final NN and examine
its performance of BNS early warning.

V. RESULTS

We access the performance of our NN by examining
the receiver operator characteristic (ROC) curves which
we construct using the Scikit-learn package [63]. This
can be obtained by varying the detection threshold of the
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FIG. 8. The ROC curves for typical BNS events at different
distances. Here we focus on events with My = M, = 1.4 Mg
and feus = 25Hz with varying effective distance (assuming
Nget = 3). The FAR is constructed from “null” events (i.e.,
detector noise) and FAR = 0.01 corresponds to 1 false alarm
every 100 256-second samples (approximately 1 in every 7.1
hours). In the solid traces, we use simulated, non-stationary
detector noise representing the O3 sensitivity and the GW
readout is input to the compound network together with
20 auxiliary witness channels. As a comparison, the dotted
traces use stationary detector noise representing the funda-
mental sensitivity for O3.
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FIG. 9. The CNN'’s detection efficiency of typical BNS events
at fixed values of FAR. As a reference, the top x-axis shows the
SNR computed using the 5-percentile noise residual (the lower
brown trace in Fig. 5; it is typically greater than the true SNR
due to both the short and long timescale nonstationarities).
A GW170817-like event can be detected about 1.5 minutes
prior to the merger if the contamination to the detector’s low-
frequency sensitivity can be mitigated to the level shown in
Figs. 5 and 6. If the design sensitivity is reached, such an early
warning would be possible for sources with deg >~ 80 Mpc.
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predicted true probability and compute both the true
alarm rate (TAR) and FAR at the given threshold, as
demonstrated in Fig. 7.

More conveniently, we can directly consider TAR as
a function of FAR for a particular source, as shown in
Fig. 8. For the GW event, we consider BNSs with M; =
My =1.4Mg and feuy = 25 Hz and vary the sources’ av-
eraged effective distance from 20 Mpc to 100 Mpc (corre-
sponding to traces of different colors). At each distance,
we inject the signal onto 2,000 realizations of the detec-
tor noises. The solid traces are results using simulated
03 sensitivity as the noise background with noise mitiga-
tion preformed by inputting the auxiliary channels to the
compound CNN (Fig. 4). As a comparison, we also show
the performance of the reference network in the dotted
traces. It has the same structure as CNN-class but the
noise background for training and prediction is generated
according to the stationary fundamental O3 sensitivity.
Here the FAR is constructed from ~ 20, 000 realization of
detector noises (“null” events; corresponding to 2 months
of data). Note here the rate is measured per 256-second
data segment, and as a result, FAR = 0.01 would cor-
respond to approximately 1 false alarm every 7.1hr of
detector data.

Alternatively, we can fix the FAR and examine how
the TAR varies as a function of the averaged effective
distance deg. The result is shown in Fig. 9. The as-
trophysical source is still fixed to be BNSs with M; =
My = 1.4 Mg and feu = 25 Hz and the line styles have
the same meaning as in Fig. 8. Different colors now rep-
resent different FAR threshold [FAR = (0.1,0.03,0.01)
corresponds to 1 false alarm every (0.7,2.4,7.1) hr]. We
see that if we could mitigate the noise to a level compa-
rable to the grey stripe in Fig. 5, then a GW170817-like
event at d ~ 40 Mpc can be detected 1.5 minutes prior
to the merger with a decent chance. Because of the non-
stationarity in the background noise, the matched-filter
SNR is not a constant even for a fixed effective distance.
If we nonetheless treat the noise PSD as being stationary
and use the 5 and 95 percentiles in the cleaned spectra
(i.e., the two brown traces in Fig. 5), we estimate the
SNR to be around 12 to 7.3. On the other hand, if the
noise background becomes truly stationary and reaching
the designed aLLIGO sensitivity, then the early detection
can be achieved to deg ~ 80Mpc. The corresponding
matched-filter SNR is 12. The required SNR for detec-
tion of a stationary noise background being similar to
the SNR calculated using the 5-percentile of the nonsta-
tionary background suggests that our final, global train-
ing (Sec. IV D) mitigates the nonstationarity further and
improves the NN’s performance than treating the noise
subtraction and signal detection as two separate, inde-
pendent problems.

In addition to BNS mergers, NSBH mergers are an-
other type of sources for multi-messenger astronomy,
and we access the performance of our CNN for detect-
ing them in Fig. 10. The GW events we inject are
(M1, Ms) = (8,1.4) Mg and feus = 32Hz (t, = 12s).
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FIG. 10. Similar to Fig. 9 but for an NSBH event with

(M1, M) = (8,1.4) Mo and feus = 32Hz, with an early-
warning time of ¢, = 12s. At a given g, our NN preforms
better for detecting NSBHs than BNSs in general.

If we still use the (TAR, FAR)=(0.4, 0.01) as the thresh-
old for detection, we find an NSBH can be detected 12s
before the merger at an averaged effective distance of
degr ~ 160 Mpc using simulated O3 sensitivity with noise
subtraction. The matched-filter SNR is estimated to
be between 10.5 (5-percentile) and 7.0 (95-percentile).
Using the stationary, fundamental O3 sensitivity, we
find the detection range to be around deg ~ 240 Mpc.
The corresponding SNR is 10.5, again similar to the 5-
percentile value when the nonstationary noise is used,
suggesting that the nonstationarity is largely removed
with the internal noise cleaning.

Interestingly, we note that at a given value of g, our
NN typically preforms better for detecting NSBHs than
BNSs. Whereas the CNN’s sensitivity starts to drop
sharply at p ~ 15 and essentially vanishes p ~ 10 for the
“BNS” signal, for “NSBH” we still have a decent sensitiv-
ity at p ~ 10. In part, an NSBH has its signal “concen-
trated” in a shorter duration with a louder time-domain
amplitude than a BNS and therefore it is more easily
recognized by an NN (similarly, Ref. [42] also found that
an NN typically performs better for BBHs than BNSs
with the same matched-filter SNR). Meanwhile, we have
also chosen a higher upper cutoff frequency for NSBHs
(32 Hz) than for BNSs (25 Hz), and the fluctuation in the
PSD of the background noise is less at higher frequencies
between different realizations after the cleaning by CNN-
noise.

Another quantity of interest is the false classification
rate (FCR). Specifically, if there is a BBH event (which
typically does not have an EM counterpart) present in the
GW readout, we want to address the probability of classi-
fying it as a “BNS” or “NSBH” and falsely triggering sub-
sequent EM followup observations. The result is shown
in Fig. 11. The FCR is constructed from 5,000 “BBH”
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FIG. 11. The true classification rate (TCR) as a function of
the false classification rate [FCR; i.e., the rate of falsely clas-
sifying a “BBH” event as a “BNS” (top panel) or an “NSBH”
(bottom panel) event].

injections. The “BBH” events are sampled from a dis-
tribution o [3(f < 40Hz)]”? and 5(f < 40 Hz) € [8,40).
By comparing the top panel of Fig. 11 with Fig. 8, we
see that a “BNS” trigger is much less likely to be con-
fused by a true “BBH” event than by the detector noise.
The “NSBH” class has slightly more false classifications
from the “BBH” class, yet at FCR = 0.01, we still have
TCR > 0.1 for p(f < 32Hz) > 7.

Lastly, we point out that our compound CNN not only
provides a potential way to achieve real-time noise miti-
gation and signal detection, it could also serve as an ef-
ficient first step to existing match-filter-based pipelines.
This is because the computationally expensive part is the
training. Once the network is trained, the prediction time
is typically only 100 ms for doing both noise mitigation
and signal classification, or 30 ms for just preforming
signal classification, as shown in Fig. 12. Indeed, once
a signal is detected and classified by the network, subse-
quent matched-filter analysis would only need to perform
searches over a small sub-bank after the classification pre-
formed by CNN, potentially enhance the efficiency of the
existing pipelines.

VI. CONCLUSION AND DISCUSSION

We showed that it would be possible to detect BNS
(NSBH) signals from the real-time LIGO data series us-
ing a ML NN.

To achieve so, it requires improving the LIGO sen-
sitivity in the < 60Hz band, which currently domi-
nated by nonlinear cross-couplings from the auxiliary
control loops and/or environmental perturbations. We
demonstrated that one potential way to enhance the low-
frequency sensitivity is to input the auxiliary channels
together with the main GW readout to an NN and use
it to simultaneously preform noise cleaning and signal
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FIG. 12. Histogram of the computational time of our CNNs
(using a Tesla P100-PCIE-16GB GPU). In the left is the time
for “CNN-class” takes to classify a 256-second time-series, and
in the right is the time for the compound problem where we
input both the GW readout and 20 auxiliary channels. Once
the training is complete, the prediction takes only ~ 30 ms for
the NN to classify a time series; even including real-time noise
subtraction, the computation time is still less than 100 ms in
most cases.

detection.

With noise mitigation reaching the level shown in
Figs. 5 and 6, we can detect BNS (NSBH) ~ 100s (105s)
prior to merger out to deg ~ 40 Mpc (160 Mpc) with a
TAR 2 0.4 and FAR = 0.01 (i.e., 1 false alarm every
7.1 hours). If we have a stationary, Gaussian noise back-
ground reaching the designed sensitivity, the early warn-
ing can be achieved out to deg ~ 80 Mpc and 240 Mpc
for BNS and NSBH, respectively. The matched-filter
SNR is 12 and 10 for typical BNSs and NSBHs, respec-
tively. Moreover, we find the threshold SNRs for the
Gaussian noise background are similar to the SNRs esti-
mated using the b-percentile of the nonstationary noise
(the bottom brown trace in Fig. 5). This indicates that
our compound network structure (Fig. 4) largely miti-
gates complications due to a nonstationary background,
and the global training (Sec. TV D) enhances the NN’s
performance than treating the noise cleaning and signal
detection as two separate problems.

We note that our current NN has not yet reached a sen-
sitivity comparable to the existing low-latency pipelines.
For example, Ref. [29] considered a similar early-warning
problem using GstLAL and the designed aLIGO sensitiv-
ity. According to the associated data release [64], the
authors of Ref. [29] preformed 1,446 BNS injections with
distance from 80 Mpc to 100 Mpc in total and they were
able to detect 446 (or 31%) out of them at an upper cut-
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off frequency of 29 Hz and a FAR = (30days)~!. From
the dotted traces in Fig. 9, our NN can achieve a similar
TAR=0.3 only at FAR = (7.1hours)™!, a FAR that is
about 100 times higher than the GstLAL results. While
in part the difference in the performance is due to the fact
that we considered a lower cutoff frequency of 25 Hz and
the integration time of the signal is thus ~ 30s shorter,
it nonetheless indicates that the ML NN still has a large
room for future improvement.

Nevertheless, a ML-based NN has a few advantages
over the existing pipelines that warrent it future study-
ing. First of all, as multiple authors have pointed out
(see, e.g., Refs. [38, 39, 42]), an NN is highly efficient in
prediction. Indeed, as we showed in Fig. 12, it takes the
CNN-class only 30 ms to detect and classify a GW signal
from a 256-s data segment. In comparison, the typical
latency is about 6s for GstLAL, indicating the possibility
of accelerating the existing pipelines even further.

More importantly, we can input not only the strain
readout but also auxiliary channels to the NN to enhance
the detection of GW signal. Here we focused specifically
on removing the excess and nonstationary contamination
to the low-frequency band. In addition to help the early
warning of BNSs and NSBHs, mitigating the nonstation-
arity could also help to reduce the false triggers of heavy
BBHs due to the drift of background PSD [10]. Vetoing
and/or mitigating glitches is another thing a NN could
help with inputting also auxiliary witnesses [65, 66]. In
principle, one can combine multiple noise mitigation feed-
forwards and data quality checks with a signal detection
routine into a single NN (potentially with a compound
structure) that efficiently enhances LIGO’s performance.

As a proof of concept, we used simulated data to mimic
the O3 LIGO sensitivity and our auxiliary witnesses are
designed to try to emulate realistic channels in LIGO.
There is also a public data release containing 3-hours of
outputs from all the major LIGO auxiliary channels avail-
able at [67]. We encourage interested readers to utilize
the NN structures we proposed in this work or original
NN structures to help the further improvements of the
LIGO sensitivity.
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