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A flexible bivariate distribution for count data expressing
data dispersion
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ABSTRACT
The bivariate Poisson distribution is a natural choice for modeling
bivariate count data. Its constraining assumption, however, limits
model flexibility in some contexts. This work considers the trivariate
reduction method to construct a Bivariate Conway-Maxwell-Poisson
(BCMP) distribution, which accommodates over- and under-dispersed
data. The approach produces marginals that have a flexible form
which includes several special case distributions for certain parame-
ters. Moreover, this BCMP model performs well relative to other
bivariate models for count data, including BCMP models based on
different methods of construction. As a result, the trivariate-reduced
BCMP distribution is a flexible alternative for modeling bivariate
count data containing data dispersion.
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1. Introduction

The trivariate reduction method is a popular approach for constructing dependent ran-
dom variables, whether continuous or discrete (Chesneau, Kachour, and Karlis 2015).
For three random variables, Xi, i¼ 1, 2, 3, the idea behind the trivariate reduction
method is to define new random variables, say X ¼ h1ðX1,X3Þ and Y ¼ h2ðX2,X3Þ for
functions hiðXi,X3Þ, i¼ 1, 2 thus clearly capturing some measure of interdependence
through X3. In order to construct bivariate discrete distributions, a popular choice is to
let hiðXi,X3Þ ¼ Xi þ X3, i¼ 1, 2 define the dependent discrete variables, given three dis-
crete random variables Xi, i¼ 1, 2, 3. Also known as the “variables in common”
method, the trivariate reduction method can be generalized to allow for three or more
random variables that may or may not themselves be independent (Lai 2006). Here, we
consider independent Xi, i¼ 1, 2, 3, and let X ¼ X1 þ X3 and Y ¼ X2 þ X3:
The trivariate reduction method is a particularly appealing means by which to estab-

lish the bivariate Poisson (BP) distribution, which is a popular model for count data
(M’Kendrick 1926; Maritz 1952; Teicher 1954; Holgate 1964; Marshall and Olkin 1985;
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Kocherlakota and Kocherlakota 1992; Johnson, Kotz, and Balakrishnan 1997). Letting
Xi, i¼ 1, 2, 3 be independent Poisson(ki) random variables, the joint probability mass
function (pmf) for the BP distribution is

PðX,YÞ ¼ exp f�ðk1 þ k2 þ k3Þg k
x
1

x!
ky2
y!

Xminðx, yÞ

k¼0

x
k

� �
y
k

� �
k!

k3
k1k2

� �k

(1)

with marginal probability functions for X and Y taking the form of univariate Poisson
pmfs with respective rate parameters, k1 þ k3 and k2 þ k3: Marshall and Olkin (1985)
and Kocherlakota and Kocherlakota (1992) note the following properties of this bivari-
ate distribution:

1. the probability generating function (pgf) is

Pðt1, t2Þ ¼ exp k1ðt1 � 1Þ þ k2ðt2 � 1Þ þ k3ðt1t2 � 1Þ½ �
¼ exp ðk1 þ k3Þðt1 � 1Þ þ ðk2 þ k3Þðt2 � 1Þ þ k3ðt1 � 1Þðt2 � 1Þð Þ; (2)

2. the covariance is CovðX,YÞ ¼ k3;
3. the correlation, CorrðX,YÞ ¼ k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk1þk3Þðk2þk3Þ
p , is non-negative; and

4. the conditional mean, EðXjY ¼ yÞ ¼ k1 þ y k3
k2þk3

� �
, shows the linear regression

of X on Y.

Kokonendji and Puig (2018) introduce a generalized dispersion index (GDI),

GDIðX,YÞ ¼

ffiffiffiffiffiffiffiffiffiffi
EðXÞp ffiffiffiffiffiffiffiffiffiffi

EðYÞp� �
VarðXÞ CovðX,YÞ

CovðX,YÞ VarðYÞ
� � ffiffiffiffiffiffiffiffiffiffi

EðXÞpffiffiffiffiffiffiffiffiffiffi
EðYÞp

 !

EðXÞ EðYÞð Þ EðXÞ
EðYÞ

� � , (3)

which can assess data dispersion relative to the uncorrelated Poisson distribution. The
GDI of a bivariate model is equi-dispersed relative to the uncorrelated BP distribution if
GDI¼ 1; alternately, GDI > ð<Þ1 indicates over-dispersion (under-dispersion) relative
to the uncorrelated BP distribution. For example, the trivariate-reduced BP distribution
has

GDIðX,YÞ ¼ 1þ 2k3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk1 þ k3Þðk2 þ k3Þ

p
ðk1 þ k3Þ2 þ ðk2 þ k3Þ2

� 1 () k3 � 0,

thus the trivariate-reduced BP distribution is over-dispersed (equi-dispersed) relative to
the uncorrelated BP distribution when k3 > ð¼Þ0:
The Poisson distribution is known to be constrained by data equi-dispersion (i.e.,

where the associated mean and variance equal); accordingly, associated limiting charac-
teristics hold true even in the bivariate case. Stein and Juritz (1987) instead utilize the
trivariate reduction method with independent negative binomial random variables1,
Xi � NB(ai, b), i¼ 1, 2, 3, to produce a bivariate negative binomial (BNB) distribution
whose joint pmf is
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pðX ¼ x, y ¼ yÞ ¼ b
1þ b

� �P3
i
ai 1

1þ b

� �xþy

�
Xminðx, yÞ

i¼0

a1 þ x� i� 1

x � i

 !
a3 þ y� i� 1

y� i

 !
a3 þ iþ 1

i

 !
ð1þ bÞi,

with respective NB(a1 þ a3, b) and NB(a2 þ a3, b) marginal distributions for X and Y.
Other properties of this BNB distribution include the conditional probability,

PðX ¼ xjY ¼ yÞ ¼ b
1þ b

� �a1 1
1þ b

� �x� yþ a2 þ a3 � 1

y

 !

�
Xminðx, yÞ

i¼0

a1 þ x� i� 1

x� i

 !
a2 þ y� i� 1

y� i

 !
a3 þ i� 1

i

 !
ð1þ bÞi,

and the conditional mean and correlation, respectively, namely

EðXjY ¼ yÞ ¼ a1
b
þ a3

a2 þ a3

� �
y,

qðX,YÞ ¼ a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1 þ a3Þða2 þ a3Þ
p :

While the BNB can address data over-dispersion (where the variance is greater than
the mean), it is not able to accommodate data under-dispersion. The bivariate general-
ized Poisson (BGP) distribution, introduced by Famoye and Consul (1995), instead
allows for either form of dispersion by using trivariate reduction with independent
GP(hi, ki) random variables Xi, i¼ 1, 2, 3. The resulting distribution has the pmf

PðX ¼ x,Y ¼ yÞ ¼ h1h2h3e
�h1�h2�h3�xk1�yk2 �

Xminðx, yÞ

u¼0

kðuÞ, (4)

where

kðuÞ ¼ h1 þ ðx� uÞk1½ �x�u�1

ðx � uÞ!
h2 þ ðy� uÞk2
� 	y�u�1

ðy� uÞ!
h3 þ uk3½ �u�1

u!
euðk1þk2�k3Þ:

The BGP distribution reduces to the Holgate (1964) BP distribution when ki ¼ 0 for all
i¼ 1, 2, 3, and has the following properties:

EðXÞ ¼ h1ð1� k1Þ�1 þ h3ð1� k3Þ�1,

EðYÞ ¼ h2ð1� k2Þ�1 þ h3ð1� k3Þ�1,

EðX2Þ ¼ h1ð1� k1Þ�3 þ h3ð1� k3Þ�3,

EðY2Þ ¼ h2ð1� k2Þ�3 þ h3ð1� k3Þ�3,

EðXYÞ ¼ h3ð1� k3Þ�3,

qðX,YÞ ¼ h3f h1ð1� k1Þ�3ð1� k3Þ3 þ h3
� 	

h2ð1� k2Þ�3ð1� k3Þ3 þ h3
� 	

g�1=2:

(5)

Equation (5) shows that, for h3 ¼ 0, X and Y are uncorrelated. Meanwhile, for k1 ¼
k2 ¼ k3 ¼ k, the correlation structure provided in Equation (5) simplifies to q ¼
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h3½ðh1 þ h3Þðh2 þ h3Þ��1=2, and the marginal distributions of X and Y are univariate GP
distributions with respective parameters, ðh1 þ h3, kÞ and ðh2 þ h3, kÞ:
The conditional distribution of X given a value for Y is

PðX ¼ xjY ¼ yÞ ¼ h3
h2 þ h3

Xminðx, yÞ

u¼0

y

u

 !
h1½h1 þ kðx � uÞ�x�u�1

ðx � uÞ!

� h2½h2 þ kðy� uÞ�y�u�1

ðy� uÞ!
ðh3 þ kuÞu�1

ðh2 þ h3 þ kyÞy�1 e
�h1�kðx�uÞ,

(6)

from which it can be shown that the conditional expectation of X given Y is

EðXjY ¼ yÞ ¼ h1ð1� kÞ�1 þ h3ðh2 þ h3Þ�1y;

likewise, the conditional mean of Y given X is

EðYjX ¼ xÞ ¼ h2ð1� kÞ�1 þ h3ðh1 þ h3Þ�1x

(Famoye and Consul 1995). While the BGP distribution can accommodate data over- or
under-dispersion, it is limited in the extent to which it can handle data under-disper-
sion (Famoye 1993).
Each of the above bivariate models strives to sufficiently describe correlated count

data, yet each suffers from some limitation in flexibility as it relates to data dispersion.
To summarize, the BP distribution is a natural choice for modeling count data stem-
ming from two correlated random variables; however, this construct is limited by the
underlying model assumption that the data are equi-dispersed. The BNB and the BGP
distributions are welcomed alternatives to the BP; however, they likewise suffer from
their own respective limitations with regard to data dispersion. This work uses the uni-
variate Conway-Maxwell-Poisson (CMP) distribution to construct a bivariate CMP
(BCMP) model that allows for under- or over-dispersion. Section 2 introduces the
reader to this univariate model and related structures that offer flexibility in the face of
data dispersion.
The trivariate reduction approach is one way by which to create a bivariate distribution.

Various other construction techniques can likewise be used where the univariate CMP dis-
tribution serves as motivation. Sellers, Morris, and Balakrishnan (2016) use the compound-
ing method to obtain a BCMP distribution (BCMPC). Ong et al. (2021) use an approach
based on the Sarmanov family of distributions to construct two additional BCMP distribu-
tions (BCMPS1 and BCMPS2, respectively). This work, instead, utilizes the trivariate reduc-
tion approach via sums of independent CMP random variables, thus deriving yet another
BCMP distribution (trivariate-reduced BCMP or BCMPT). Section 3 describes these bivari-
ate models, outlining their associated statistical properties. Section 4 addresses matters of
statistical inference and computation for the trivariate-reduced BCMP, including parameter
estimation and hypothesis testing. Section 5 provides simulated and real data examples
illustrating the flexibility of the trivariate-reduced BCMP distribution for bivariate dispersed
count data. Lastly, Section 6 concludes with remarks and some generalizations.
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2. The Conway-Maxwell-Poisson and related distributions

The CMP distribution (introduced by Conway and Maxwell (1962), and revived by
Shmueli et al. (2005)) is a flexible count distribution whose pmf has the form

PrðW ¼ wjk, �Þ ¼ kw

ðw!Þ�Zðk, �Þ , w ¼ 0, 1, 2, :::

for a random variable W, where k ¼ EðW�Þ > 0 is a location parameter and � � 0 is a
dispersion parameter such that �¼ 1 denotes equi-dispersion, while � > ð<Þ 1 signifies
under-dispersion (over-dispersion) (Shmueli et al. 2005). Meanwhile, Zðk, �Þ ¼P1

s¼0
ks

ðs!Þ�
is the normalizing constant that has been well-studied, particularly with varying sugges-
tions on how to approximate the infinite sum (Minka et al. 2003; Gillispie and Green
2015; Şimşek and Iyengar 2016; Gaunt et al. 2019). The CMP distribution includes three
well-known distributions as special cases: Poisson with rate parameter k (for �¼ 1),
Bernoulli with success probability k

1þk (for � ! 1), and geometric with success prob-
ability 1� k (for � ¼ 0, k < 1).

The probability generating function (pgf) for the CMP distribution is PWðtÞ ¼
Zðkt, �Þ
Zðk, �Þ , and the moment generating function (mgf) is MWðtÞ ¼ Zðket, �Þ

Zðk, �Þ (Sellers, Shmueli,

and Borle 2012), from which the associated moments can be derived. Shmueli et al.
(2005) meanwhile report the CMP moments via the recursion,

EðWrþ1Þ ¼
kfEðW þ 1Þg1�� , r ¼ 0

k
@

@k
EðWrÞ þ EðWÞEðWrÞ, r > 0:

8<
: (7)

In particular, the expected value and variance can be written in the form and approxi-
mated, respectively, as

EðWÞ ¼ @ lnZðk, �Þ
@ ln k

� k1=� � � � 1
2�

and (8)

VarðWÞ ¼ @EðWÞ
@ ln k

� 1
�
k1=� , (9)

where the approximations are especially good for � 	 1 or k > 10� (Shmueli et al.
2005); these results and the associated constraints stem from the aforementioned
approximations to the normalizing constant.
Sellers, Swift, and Weems (2017) introduce the sum-of-CMP (sCMP) as a generaliza-

tion of the CMP distribution. Letting W ¼Ps
i¼1 Wi, where Wi � CMPðk, �Þ, i ¼ 1, :::, s

are independent and identically distributed (iid) random variables, we say that W is an
sCMP(k, �, s) variable, and has the pmf for w ¼ 0, 1, 2, :::, namely

PðW ¼ wÞ ¼ P
Xs
i¼1

Wi ¼ w

 !
¼ kw

ðw!Þ�Zsðk, �Þ
Xw

a1, :::, as ¼ 0
a1 þ :::þ as ¼ w

w
a1, :::, as

� ��

, (10)

where
� w
a1, :::, as

�
¼ w!

a1!���as! is a multinomial coefficient, and Zsðk, �Þ denotes the sth

power of the CMP normalizing constant. The sCMP(k, �, s) distribution contains the
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Poisson distribution with rate parameter sk (for �¼ 1), negative binomial(s, 1� k) dis-
tribution (for �¼ 0 and k < 1), and Binomial(s, p) distribution (as � ! 1 with success
probability p ¼ k

kþ1) as special cases; for s¼ 1, the sCMP(k, �, s ¼ 1) is the CMP(k, �)

distribution (Sellers, Swift, and Weems 2017). The sCMP pgf has the form PWðtÞ ¼�
Zðkt, �Þ
Zðk, �Þ

�s
where this pgf form implies that, while it is easy to interpret the parameter s

assuming a discrete form, s can actually be a continuous parameter. Under appropriate
conditions, the sCMP distribution is closed under addition, i.e., sums of independent
sCMP random variables (with the same k and �) produce sCMP distributed random
variables. These models motivate discussion regarding the bivariate structures discussed
in Section 3.

3. Bivariate CMP distributions

Several bivariate distributions based on the CMP distribution have been constructed.
Sections 3.1 and 3.2 describe some recent developments, while Section 3.3 introduces
the trivariate-reduced BCMP distribution, which is the main focus of this paper.

3.1. Using the compounding method

Sellers, Morris, and Balakrishnan (2016) generalize the compounding approach for the
BP distribution (Kocherlakota and Kocherlakota 1992) by “compounding” a bivariate
binomial with a CMP distribution, i.e., letting the joint conditional distribution of
fðX,YÞjng have a bivariate binomial distribution, where the number of trials n is a
CMP(k, �) random variable. The resulting BCMP model (called BCMPC) for (X, Y) has
the joint pgf

Pðt
1 , t
2Þ ¼
Z k 1þ p1þðt
1 � 1Þ þ pþ1ðt
2 � 1Þ þ p11ðt
1 � 1Þðt
2 � 1Þ� 	

, �

 �

Zðk, �Þ : (11)

This construct for the pgf of (X, Y) yields three special cases that we desire of a BCMP
distribution: for �¼ 1, the BCMPC distribution reduces to the BP described in Section 1
where k1 þ k3 ¼ k0p1þ, k2 þ k3 ¼ k0pþ1, and k3 ¼ k0p11; when �¼ 0, it reduces to the
Marshall and Olkin (1985) bivariate geometric model; and, for � ! 1, we obtain the
bivariate Bernoulli distribution described in Marshall and Olkin (1985) with the form,

Y

0 1

X 0 ~p00¼: 1�
k

kþ 1
p01 þ p10 þ p11ð Þ ~p01¼:

k
kþ 1

p01 ~p0þ¼: 1�
k

kþ 1
p1þ

1 ~p10¼:
k

kþ 1
p10 ~p11¼:

k
kþ 1

p11 ~p1þ¼:
k

kþ 1
p1þ

~pþ0¼: 1�
k

kþ 1
pþ1 ~pþ1¼:

k
kþ 1

pþ1 1

For this special case, GDIðX,YÞ 2 ð0, 1� implies that the bivariate Bernoulli distribution
is under- or equi-dispersed relative to the uncorrelated BP distribution (Kokonendji and
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Puig 2018). Further, the recurring term in the above table, k
kþ1 , is the success probabil-

ity in the univariate CMP case when � ! 1, i.e., the univariate Bernoulli k
kþ1

� �
case.

Equation (11) is used to derive the joint pmf of (X, Y) as

PðX ¼ x, Y ¼ yÞ ¼ 1
Zðk, �Þ

X1
n¼0

kn

ðn!Þ�
Xn

a¼n�x�y

� n
a, n� a� y, n� a� x, x þ yþ a� n

�
�pa00p

n�a�y
10 pn�a�x

01 pxþyþa�n
11 ,

(12)

for some parameters, k, �, and probabilities p00, p10, p01, p11 such that p00 þ p10 þ p01 þ
p11 ¼ 1, piþ ¼ pi0 þ pi1 for i¼ 0, 1, and pþj ¼ p0j þ p1j for j¼ 0, 1. Moments and prod-
uct moments via the joint factorial mgf, as well as the regression of Y on X, and the
conditional pgf are likewise obtained (Sellers, Morris, and Balakrishnan 2016). While
the marginal distributions of X and Y are not themselves CMP distributed, Poisson
marginals serve as a special case.

3.2. Using the Sarmanov family of distributions

A drawback to the compounding approach toward constructing a BCMP distribution is
that its correlation cannot attain the full range; it is constrained to only be greater than
or equal to 0. Ong et al. (2021) instead construct two versions of a BCMP distribution
based on the Sarmanov family of distributions (Sarmanov 1966). For random variables
X and Y and mixing functions /1ðXÞ and /2ðYÞ, such that E½/1ðXÞ� ¼ E½/2ðYÞ� ¼ 0
and 1þ /1ðxÞ/2ðyÞ � 0, the Sarmanov family of distributions is defined as

PðX ¼ x,Y ¼ yÞ ¼ PðX ¼ xÞPðY ¼ yÞ 1þ s/1ðxÞ/2ðyÞ
� 	

, x, y 2 R,

for s 2 ½�1, 1�: This construction is argued as more desirable for a BCMP because the
respective marginals for X and Y are CMP distributed, and the resulting models allow
for a [-1, 1] range in correlation.
The first BCMP distribution (BCMPS1) utilizes weighted Poisson distributions

(Kokonendji, Mizere, and Balakrishnan 2008). For a > 0, let

/1ðxÞ ¼ paðxÞ � EðpaðXÞÞ and /2ðyÞ ¼ paðyÞ � EðpaðYÞÞ, (13)

which yield the joint pmf

PðX ¼ x,Y ¼ yÞ ¼ PðX ¼ xÞPðY ¼ yÞ 1þ s paðxÞ � EðpaðXÞÞ� 	
paðyÞ � EðpaðYÞÞ� 	n o

,

where PðX ¼ xÞ and PðY ¼ yÞ denote marginal pmfs CMP(k1, �1) and CMP(k2, �2),
respectively. Note that

E paðXÞ� 	 ¼ e�k1aZðk21, �1 þ 1Þ
Zðk1, �1Þ

X1
x¼0

kxðaþ1Þ
1

ðx!Þ�1þaZðk21, �1 þ 1Þ 	 1, (14)

and similarly, E½paðYÞ� is defined as in Equation (14) with (k2, �2) replacing (k1, �1).
The correlation coefficient between X and Y is expressed as

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



q ¼ sðk1 � l1Þðk2 � l2Þ
r1r2

, (15)

where (l1, r1) and (l2, r2) denote the marginal mean and standard deviation for X and
Y, respectively.
The second BCMP distribution (BCMPS2) relies on the pgfs of the marginal CMP

distributions. Letting PXðhÞ ¼ Zðk1h, �1Þ
Zðk1, �1Þ and PYðhÞ ¼ Zðk2h, �2Þ

Zðk2, �2Þ denote the respective pgfs

of X and Y, Ong et al. (2021) consider

/1ðxÞ ¼ hx �PXðhÞ and /2ðyÞ ¼ hy �PYðhÞ, (16)

where 0 < h < 1: The joint pmf for this construction is given by

PðX ¼ x,Y ¼ yÞ ¼ PðX ¼ xÞPðY ¼ yÞ 1þ s/1ðxÞ/2ðyÞ
� 	

(17)

with correlation

q ¼
s h @PXðhÞ

@h � l1PXðhÞ
� �

h @PY ðhÞ
@h � l2PYðhÞ

� �
r1r2

: (18)

For �1 ¼ �2 ¼ 1 and h ¼ e�1, the BCMPS2 distribution corresponds to the Lee (1996)
BP distribution.

3.3. Using trivariate reduction

Here, we introduce a simple BCMP model that extends the flexibility and utility of the
univariate CMP to a bivariate form via trivariate reduction (henceforth, referred to as
trivariate-reduced BCMP or BCMPT) and relates to models described in Section 1. Let
Wi, i¼ 1, 2, 3, be independently distributed CMP(ki, �) random variables such that X ¼
W1 þW3 and Y ¼ W2 þW3: Clearly, X and Y are correlated via W3 and thus have a
joint distribution whose pmf is

PðX ¼ x,Y ¼ yÞ ¼ PðW1 þW3 ¼ x,W2 þW3 ¼ yÞ
¼
X1
w3¼0

PðW1 þW3 ¼ x,W2 þW3 ¼ yjW3 ¼ w3ÞPðW3 ¼ w3Þ

¼
X1
w3¼0

PðW1 ¼ x� w3ÞPðW2 ¼ y � w3ÞPðW3 ¼ w3Þ
by independence of Wi, i ¼ 1, 2, 3

¼
Xminðx, yÞ

w3¼0

kx�w3
1

½ðx � w3Þ!�vZðk1, vÞ
ky�w3
2

½ðy� w3Þ!�vZðk2, vÞ
kw3
3

½ðw3Þ!�vZðk3, vÞ

¼ kx1k
y
2

Zðk1, vÞZðk2, vÞZðk3, vÞ
Xminðx, yÞ

w3¼0

k3
k1k2

� �w3

1
½ðx� w3Þ!ðy� w3Þ!w3!�v

¼ kx1k
v
2

Zðk1, vÞZðk2, vÞZðk3, vÞðx!y!Þv

�
Xminðx, yÞ

w3¼0

k3
k1k2

� �w3�
x
w3

� �
y
w3

� �
w3!


�

(19)
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and joint pgfQðt1, t2Þ ¼ EðtX1 tY2 Þ ¼ EðtW1þW3
1 tW2þW3

2 Þ
¼ EðtW1

1 ÞEðtW2
2 ÞEððt1t2ÞW3Þðby independence of Wi, i ¼ 1, 2, 3Þ

¼ Zðk1t1, vÞ
Zðk1, vÞ

Zðk2t2, vÞ
Zðk2, vÞ

Zðk3t1t2, vÞ
Zðk3, vÞ :

(20)

For the special case where �¼ 1, the BCMPT model reduces to the Holgate (1964) BP
distribution described in Section 1 with joint pgf,
Pðt1, t2; � ¼ 1Þ ¼ exp ðk1ðt1 � 1Þ þ k2ðt2 � 1Þ þ k3ðt1t2 � 1ÞÞ:2 Meanwhile when �¼ 0,

Pðt1, t2; � ¼ 0Þ ¼ ð1� k1Þð1� k2Þð1� k3Þ
ð1� k1t1Þð1� k2t2Þð1� k3t1t2Þ (21)

is the joint pgf of a bivariate geometric distribution of the type obtained via trivariate
reduction for ki < 1, i¼ 1, 2, 3, kjtj < 1, j¼ 1, 2, and k3t1t2 < 1: This is a special case
of the Stein and Juritz (1987) BNB distribution where ai ¼ 1 for i¼ 1, 2, 3 and k1 ¼
k2 ¼ k3 ¼ k ¼ 1

1þb produces

PðX ¼ x,Y ¼ yÞ ¼ b
1þ b

� �3

ð1þ bÞ�x�y
Xminðx, yÞ

w3¼0

ð1þ bÞw3 :

Finally, when � ! 1, the BCMPT distribution reduces to the trivariate-reduced bivari-
ate Bernoulli distribution with joint pgf

Pðt1, t2; � ! 1Þ ¼ ð1þ k1t1Þð1þ k2t2Þð1þ k3t1t2Þ
ð1þ k1Þð1þ k2Þð1þ k3Þ

¼ ðq1 þ p1t1Þðq2 þ p2t2Þðq3 þ p3t1t2Þ,
(22)

where pi ¼ ki
1þki

and qi ¼ 1� pi:

The BCMPT has marginal distributions that are convolutions of CMP distributions;
the marginal pgfs have the form

PXðtÞ ¼ Pðt, 1Þ ¼ Zðk1t, �ÞZðk3t, �Þ
Zðk1, �ÞZðk3, �Þ , and (23)

PYðtÞ ¼ Pð1, tÞ ¼ Zðk2t, �ÞZðk3t, �Þ
Zðk2, �ÞZðk3, �Þ : (24)

For k1 ¼ k2 ¼ k3 ¼ k, the marginal pgfs simplify to PXðtÞ ¼ PYðtÞ ¼
�

Zðkt, �Þ
Zðk, �Þ

�2

, i.e.,

the form of a sCMP(k, �, 2) random variable (see Section 2), which includes the

Poisson(2k), negative binomial(2, 1� k), and binomial 2, p ¼ k
1þk

� �
distributions as spe-

cial cases under certain conditions (Sellers, Swift, and Weems 2017). As such, the mar-
ginals are likewise equi-, over-, or under-dispersed depending on the value of �
ð¼ , < , > 1Þ: The marginal pgfs, along with the analogous mgfs, aid in determining
the following distributional properties, where the approximations hold for � 	 1
or k > 10� :
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1. EðXÞ ¼ EðW1Þ þ EðW3Þ � k1=�1 þ k1=�3 � ��1
� by independence, where EðWiÞ is

determined via Equation (8); similarly, we deter-
mine EðYÞ ¼ EðW2Þ þ EðW3Þ � k1=�2 þ k1=�3 � ��1

� ;
2. VarðXÞ ¼ VarðW1Þ þ VarðW3Þ � ðk1=�1 þ k1=�3 Þ=� by independence, where

VarðWiÞ is determined via Equation (9); similarly, we deter-
mine VarðYÞ ¼ VarðW2Þ þ VarðW3Þ � ðk1=�2 þ k1=�3 Þ=�;

3. EðXYÞ ¼ EfðW1 þW3ÞðW2 þW3Þg ¼ EfðW1W2Þ þ ðW1W3Þ þ ðW2W3Þ þW2
3g,

where EðWiWjÞ ¼ EðWiÞEðWjÞ for i 6¼ j, and EðW2
3Þ ¼ VarðW3Þ þ E2ðW3Þ,

where EðWiÞ and VarðWiÞ can be determined via Equations (8)-(9), respectively;

4. CovðX,YÞ ¼ EðXYÞ � ðEðXÞ � EðYÞÞ � ��1
2� 3 ��1

2�


 �� k1=�1 � k1=�2 � 2k1=�3

h i
þ 1

� k
1=�
3 ;

5. CorrðX,YÞ ¼ CovðX,YÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ � VarðYÞp

, where the covariance and respect-
ive variances are determined above. While it is not immediately obvious given
the approximations presented above, we know that 0 	 q ¼ CorrðX,YÞ 	 1 since
X and Y share a common non-negative component.

The statistical measures associated with the BCMPT do not have a closed form; how-
ever, their approximations aid in determining an approximate GDI. The special case
where �¼ 1 reduces to the GDI for the Holgate (1964) BP distribution, hence we again
find that the distribution is over- or equi-dispersed relative to the uncorrelated BP dis-
tribution when k3 > ð¼Þ 0. For other values of �, the form of the approximate GDI is
not as easily interpreted; therefore, we investigate its behavior computationally. Figure 1
presents approximate GDI plots for certain values of � when k1 ¼ 10:5, k2 ¼ 12, and
k3 ¼ ð0, 5, 10Þ; Figure 1a provides the approximate GDI for � 2 ½0, 2� while Figure 1b
focuses on the reduced range � 2 ½0:5, 1:5� to magnify the different functions of GDI
with respect to k3. These plots illustrate that the BCMPT is over-dispersed relative to
the uncorrelated BP distribution (GDI> 1) when � < 1; this is consistent with our

Figure 1. Plots of GDI versus � for k1 ¼ 10:5, k2 ¼ 12, and k3 ¼ ð0, 5, 10Þ: The line at GDI ¼ 1 indi-
cates equi-dispersion. Figure 1a gives plots when � 2 ½0, 2�; Figure 1b gives a magnified view when
� 2 ½0:5, 1:5� for clarity.
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univariate interpretation of �. At �¼ 1, we confirm that BCMPT is equi- or over-dis-
persed relative to the uncorrelated BP distribution (GDI � 1). Finally, for � > 1, the
GDI reveals over-, under-, or equi-dispersion, depending on the combination of k3 and
� yet, as � increases, we more consistently determine GDI < 1, hence BCMPT becomes
more under-dispersed relative to the uncorrelated BP distribution as � > 1 increases.
Thus, these GDI values provide evidence of the flexibility of the BCMPT distribution
that demonstrates (to a great extent) an analogous interpretation of dispersion to that
regarding the univariate CMP model, modified to account for the dependence inten-
sity k3.

4. Statistical inference

This manuscript focuses on the development and statistical inference tools associated
with the BCMPT model. This section particularly discusses parameter estimation details
via the method of moments (MOM) and maximum likelihood (ML), respectively, to
estimate k1, k2, k3, and � along with hypothesis testing and statistical computing. The
interested reader is referred to Sellers, Morris, and Balakrishnan (2016) or Ong et al.
(2021) which discuss these matters as they relate to the BCMPC, and BCMPS1 and
BCMPS2 distributions, respectively.
Conducting parameter estimation via the MOM method, we consider the true

BCMPT moment equations,

lx ¼ k1
@ lnZðk1, �Þ

@k1
þ k3

@ lnZðk3, �Þ
@k3

, (25)

ly ¼ k2
@ lnZðk2, �Þ

@k2
þ k3

@ lnZðk3, �Þ
@k3

, (26)

lx2 ¼ k1
@ lnZðk1, �Þ

@k1
þ k21
Zðk1, �Þ

@2Zðk1, �Þ
@k21

þ k3
@ lnZðk3, �Þ

@k3
þ k23
Zðk3, �Þ

@2Zðk3, �Þ
@k23

þ k1k3
@ lnZðk1, �Þ

@k1

@ lnZðk3, �Þ
@k3

,

(27)

ly2 ¼ k2
@ln Zðk2;vÞ

@k2
þ k22
Zðk2, vÞ

@2Zðk2, vÞ
@k22

þ k3
@lnZðk3, vÞ

@k3
þ k23
Zðk3, vÞ

@2Zðk3, vÞ
@k23

þk2k3
@lnZðk2, vÞ

@k2

@lnZðk3, vÞ
@k3

,

(28)

lxy ¼ k1k2
@lnZðk1, vÞ

@k1

@lnZðk2, vÞ
@k2

þ k1k3
@lnZðk1, vÞ

@k1

@lnZðk3, vÞ
@k3

þk2k3
@lnZðk2, vÞ

@k2

@lnðk3, vÞ
@k3

þ k3
@lnZðk3, vÞ

@k3
þ k23
Zðk3, vÞ

@2Zðk3, vÞ
@k23

,
(29)

where lgðX,YÞ¼: EðgðX,YÞÞ denotes the generalized expectation for some function g(X, Y),

and compare them with their corresponding sampling estimators, �X , �Y , X2 , Y2 , XY :
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Closed form solutions do not exist when equating the above respective forms; thus, we

instead determine the MOM estimators, ~ki, i¼ 1, 2, 3, and ~� , by minimizing the squared-
error loss function,

lðk1, k2, k3, �; ðx, yÞÞ ¼ lx � �X

 �2 þ ly � �Y

� �2 þ lx2 � X2

 �2 þ ly2 � Y2

� �2
þ lxy � XY
� �2

, (30)

where lx, ly, lx2 , ly2 , lxy are defined in Equations (25)-(29). We meanwhile utilize the

Delta method to obtain standard errors associated with the MOM estimators; see
Appendix A for details. No closed form for the MOM estimates exists; thus, the associ-
ated statistical computations are obtained via the optim function in R. We use optim
to optimally solve the loss function (Equation (30)) in order to obtain the MOM esti-
mates, and we use the Delta method approach detailed in Appendix A to calculate the
standard errors, where the approximation to the Hessian matrix in Equation (36) is pro-
vided in the optim output.
Various approaches have been proposed to evaluate the normalizing constant Z

(Sellers and Shmueli 2010; Gillispie and Green 2015; Şimşek and Iyengar 2016; Gaunt
et al. 2019); for our computations, however, we find summing the first 101 terms of the
infinite series to generally be sufficient. To compute the moments of the BCMPT distri-
bution, we need to evaluate @Z

@k
1
Z ; however, Z and @Z

@k become numerically unstable when

k is large or � is close to zero. To handle this, notice that Z and @Z
@k are, respectively, the

sum of sequences xnf gn2N ¼ kn

ðn!Þ�
n o

n2N
and ynf gn2N ¼ nkn�1

ðn!Þ�
n o

n2N
: Therefore, we have

@Z
@k

1
Z
¼
P

ynP
xn

¼
P

e ln ynP
e ln xn

¼
P

e ln yn�CP
e ln xn�C

,

where C is a constant that sufficiently shrinks both the numerator and denominator;
usually, C ¼ maxn2N ln xnf g suffices.3 In practice, we first calculate the sequences,
ln xnf gn2N and ln ynf gn2N; then, we determine C and evaluate @Z

@k
1
Z : Additionally, since

we approximate
P1

n¼1 e
ln xn�C using

PK
n¼1 e

ln xn�C for some large K, it is important to
choose an appropriate K which provides sufficient accuracy to our approximation while
maintaining computational speed. Analysts should bear in mind the follow-
ing situations:

1. for fixed � > 0:01 and k � 0, kn

ðn!Þ� achieves its approximate maximum at n ¼
k1=� and it decreases for n > k1=�: Accordingly, this quantity becomes negligible

for n � k1=� , e.g. n > 2k1=�; K ¼ maxðd2k1=�e, 100Þ is often a reasonable choice.
2. when k < 0:99, we choose K such that kK vanishes. Generally, we find that K 2

½100, 100000� works well.

A similar approach is used to evaluate @2Z
@k2

1
Z :

For � > 0, the BCMPT distribution is defined for all ki � 0, i¼ 1, 2, 3; for �¼ 0,
however, ki < 1, i¼ 1, 2, 3. This constraint introduces potential optimization issues
when trying to determine the MOM estimators; for example, we do not want the
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optimization algorithm to enter the parameter space where ki > 1 and �¼ 0 for any i.
To avoid this, we divide our optimization region into two spaces: (1) � > 0:01, ki � 0,
and (2) 0 	 � < 0:2, 0 	 ki < 1: While the latter constraint is less useful than the for-
mer, we maintain its use for completeness. Accordingly, we first obtain the respective
MOM estimators under the respective constraints, and then compare their respective
loss function values to determine which result is optimal.
To determine the ML estimators (MLEs) of k1, k2, k3, �, we consider the log-likeli-

hood

ln Lðk1, k2, k3, �; ðx, yÞÞ ¼ ln
Yn
i¼1

pðxi, yiÞ ¼
Xn
i¼1

ln pðxi, yiÞ, (31)

where

ln pðxi, yiÞ ¼ xi ln k1 þ yi ln k2 � lnZðk1, �Þ � lnZðk2, �Þ � lnZðk3, �Þ � � ln ðxi!Þ þ ln ðyi!Þ
� 	

þ ln
Xminðxi, yiÞ

w¼0

k3
k1k2

� �w
xi
w

� �
yi
w

� �
w!

� 
�0
@

1
A:

The corresponding normal equations are

@ ln L
@k1

¼
Xn
i¼1

@ ln pðxi, yiÞ
@k1

¼
Xn
i¼1

xi
k1

−
@ lnZðk1, �Þ

@k1

�

−
1Pminðxi, yiÞ

w¼0
k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�� � Xminðxi, yiÞ

w¼0

w
k1

k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�0

@
1
A!

@ ln L
@k2

¼
Xn
i¼1

@ ln pðxi, yiÞ
@k2

¼
Xn
i¼1

yi
k2

−
@ lnZðk2, �Þ

@k2

�

−
1Pminðxi, yiÞ

w¼0
k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�� � Xminðxi, yiÞ

w¼0

w
k2

k3
k1k2

� �wh� xi
w

�� yi
w
Þw!
i�0

@
1
A!

@ ln L
@k3

¼
Xn
i¼1

@ ln pðxi, yiÞ
@k3

¼
Xn
i¼1

−
@ lnZðk3, �Þ

@k3

�

þ 1Pminðxi, yiÞ
w¼0

k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�� � Xminðxi, yiÞ

w¼0

w
k3

k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�0

@
1
A!

@ ln L
@�

¼
Xn
i¼1

@ ln pðxi, yiÞ
@�

¼
Xn
i¼1

−
@ lnZðk1, �Þ

@�
−
@ lnZðk2, �Þ

@�
−
@ lnZðk3, �Þ

@�

�

−½ln ðxi!Þ þ ln ðyi!Þ� þ 1Pminðxi, yiÞ
w¼0

k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�� �
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�
Xminðxi, yiÞ

w¼0

k3
k1k2

� �wh� xi
w

�� yi
w

�
w!
i�

ln
h� xi

w

�� yi
w

�
w!
i0

@
1
A!:

These score equations do not have a closed-form solution, thus we circumvent this issue
by utilizing statistical computing in R. We use the optim function to optimize the
negated log-likelihood, recognizing the constraint that � � 0 and ki > 0 for all i¼ 1, 2,

3. The corresponding standard errors associated with these MLEs ðk̂1, k̂2, k̂3, �̂Þ may be
determined by utilizing the approximate Hessian matrix provided with the optim out-
put. Computational matters discussed above with regard to calculating Z for the MOM
estimates are likewise utilized here to determine the MLEs.

4.1. Hypothesis testing

Two hypotheses tests are of interest, given this distributional development. The first
inquiry regards detecting the existence of statistically significant data dispersion in the
bivariate data set such that an assumed bivariate Poisson distribution would be an
inappropriate model to describe the data. Accordingly, we conduct a hypothesis test where
the null hypothesis assumes data equi-dispersion (H0, � : � ¼ 1) such that the bivariate
Poisson model is reasonable, and the alternative hypothesis (i.e., H1, � : � 6¼ 1) suggests
sufficient data over- or under-dispersion such that the trivariate-reduced BCMP model is
more appropriate. We are not concerned with the direction of the data dispersion because
our model can accommodate both forms. We use the likelihood ratio test (LRT) statistic,

K� ¼
maxX0, �Lðk1, k2, k3, � ¼ 1Þ

maxXLðk1, k2, k3, �Þ ,

to draw inference, where X and X0, � denote the respective parameter spaces in general
and under the null hypothesis, H0, �: Noting that the null hypothesis represents the spe-
cial bivariate Poisson case, we use the bivpois package in R to conduct analyses
(Karlis and Ntzoufras 2005). The second investigation seeks to determine if a statistic-
ally significant amount of dependence exists between the two random variables, X and
Y. Given that X and Y were determined via trivariate reduction with a shared parameter
k3, the question of independence reduces to testing whether H0, k : k3 ¼ 0 or H1, k : k3 >
0: For this test, we have the LRT statistic,

Kk ¼
maxX0, kLðk1, k2, k3 ¼ 0, �Þ

maxXLðk1, k2, k3, �Þ ,

where X0, k denotes the parameter spaces under H0, k:
The maxX0, �Lðk1, k2, k3, � ¼ 1Þ is obtained via bivpois, while maxXLðk1, k2, k3, �Þ is

provided among the optim output. Meanwhile, we obtain maxX0, kLðk1, k2, k3 ¼ 0, �Þ
via an analogous optim computation that optimizes the resulting function under this
constrained space. We utilize the distributional theory result that �2 lnK� converges to
a chi-squared distribution with one degree of freedom and draw inference from the
resulting p-value. Moreover, taking into account the boundary condition for the second
test, the asymptotic null distribution of the LRT statistic �2 lnKk is a mixture of chi-
square distributions (Balakrishnan and Pal 2013).
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5. Examples

5.1. Simulated data examples

We consider three data simulations to illustrate the flexibility of the BCMPT distribution
in its ability to represent three special cases: the bivariate Poisson (BP); and the bivari-
ate Bernoulli and geometric distributions, each obtained via trivariate reduction. In all
cases, we consider the sample sizes n ¼ f100, 250, 500, 1000g to study the parameter
estimate accuracy as n increases, and we consider both the MOM and ML estimation
approaches to compare results with respect to the considered estimation procedures.
For the BP example, we consider two data simulations: (1) k1 ¼ 0:3, k2 ¼ 1:6, k3 ¼

2:6; and (2) k1 ¼ 2:3, k2 ¼ 1:9, k3 ¼ 0:5: In both cases, the generated data further set
�¼ 1 to reflect the BCMPT model constrained to reflect an assumed BP distribution.
Table 1 provides the respective MLE and MOM estimates, along with the respective cor-
responding standard errors provided in parentheses. In both simulation examples, we
see that both the MOM and MLE methods recognize the distributional form as BP (i.e.,
neither ~� nor �̂ is statistically different from 1 based on the respective 95% confidence
intervals). Further, both models reasonably estimate the true ki for all i, obtaining esti-
mates within one standard error of the true parameter. In particular, the amount of
dependence represented via k3 is likewise estimated reasonably. While estimator accur-
acy does not necessarily converge to the true parameter as the sample size increases, we
still see a decreasing trend in the standard errors as n gets large.
For the case of a trivariate-reduced bivariate Bernoulli distribution example, we again

consider two data simulations, where � ! 1 for the trivariate-reduced BCMP model:
(1) k1 ¼ 3, k2 ¼ 4, k3 ¼ 0:5; and (2) k1 ¼ 1, k2 ¼ 0:5, k3 ¼ 3: Table 2 provides the
respective MLE and MOM estimates assuming a BCMPT distribution, along with the
respective corresponding standard errors provided in parentheses. In the first

Table 1. MOM and ML estimates with respective standard errors (in parentheses) associated with
two bivariate Poisson data simulations stemming from generated data sets of size n ¼
f100, 250, 500, 1000g where (1) k1 ¼ 0:3, k2 ¼ 1:6, k3 ¼ 2:6; and (2) k1 ¼ 2:3, k2 ¼ 1:9, k3 ¼ 0:5:
While the data simulated are from a bivariate Poisson model, we recognize that this distribution
equals a trivariate-reduced BCMP model where �¼ 1, thus we compare the estimated dispersion val-
ues to this true value.

Truth Method

Sample size

100 250 500 1000

k1 ¼ 0.3 MLE 0.138 (0.083) 0.230 (0.061) 0.307 (0.055) 0.283 (0.037)
MOM 0.216 (0.158) 0.269 (0.095) 0.260 (0.070) 0.344 (0.057)

k2 ¼ 1.6 MLE 1.576 (0.254) 1.346 (0.141) 1.686 (0.142) 1.543 (0.088)
MOM 1.894 (0.312) 1.554 (0.201) 1.653 (0.155) 1.721 (0.117)

k3 ¼ 2.6 MLE 2.598 (0.468) 2.375 (0.273) 2.706 (0.231) 2.586 (0.153)
MOM 2.790 (0.357) 2.712 (0.324) 2.702 (0.221) 2.782 (0.168)

�¼ 1 MLE 0.983 (0.147) 0.923 (0.096) 1.093 (0.075) 0.982 (0.049)
MOM 1.088 (0.097) 1.049 (0.102) 1.082 (0.074) 1.062 (0.052)

k1 ¼ 2.3 MLE 2.204 (0.550) 2.272 (0.367) 2.419 (0.257) 2.209 (0.166)
MOM 2.100 (0.457) 2.268 (0.359) 2.413 (0.245) 2.190 (0.168)

k2 ¼ 1.9 MLE 1.899 (0.476) 1.896 (0.308) 2.003 (0.213) 1.804 (0.136)
MOM 1.826 (0.417) 1.912 (0.288) 1.992 (0.204) 1.794 (0.144)

k3 ¼ 0.5 MLE 0.736 (0.260) 0.716 (0.168) 0.440 (0.117) 0.562 (0.078)
MOM 0.717 (0.235) 0.716 (0.182) 0.436 (0.117) 0.558 (0.079)

�¼ 1 MLE 1.052 (0.171) 1.084 (0.111) 1.035 (0.072) 0.993 (0.051)
MOM 1.004 (0.156) 1.086 (0.104) 1.030 (0.067) 0.984 (0.052)
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simulation, the MOM approach produced heavily biased estimates, while the MLE

method performed reasonably well, producing estimates (k̂i for all i) that are generally
within one standard error of the true parameter. We believe these results occur because
the true likelihood with these parameters has a near plateau or at least an approximate

local minimum near the point f~k1 ¼ 0:25, ~k2 ¼ 0:33, ~k3 ¼ 4:6, ~� ¼ 5g, i.e., the opti-
mization solution may not be unique. This demonstrates the impact that the starting
values for the optimization procedure have on the resulting MOM estimate, and that
the MOM estimate may not be reliable. The discrepancy between the true values and
MOM estimates regarding the first simulation appears to be further due to the depend-
ence parameter, k3. While this true distribution does not assume a strong association
between X and Y, the MOM approach appears to assume that the codependent intensity
term is the major contributor to the distributional form. In contrast, the second simula-
tion assumes a stronger codependent intensity k3 ¼ 3, and the corresponding MOM
estimates now appear more reasonable, capturing the true intensity within 1-2 standard
errors of the associated estimates.
The MLE and MOM estimates for the true dispersion at first appear considerably

small in relation to the theorized infinite value, with the MOM estimator ~� substantially
smaller than its MLE counterpart. The MLE results, however, speak to the computa-
tional impact of the dispersion parameter in the CMP models; these results are consist-
ent with those obtained from conducting parameter estimation with underlying CMP
structures (Sellers and Shmueli 2010; Sellers 2012; Sellers, Morris, and Balakrishnan
2016; Sellers and Raim 2016). As seen in these cases, � at approximately 30 effectively
represents a plateau in the log-likelihood. Meanwhile, the large standard error associated
with �̂ demonstrates the computational effort to estimate infinity. The second example,
however, shows that the MOM and MLE methods both produce reasonable estimates of

Table 2. MOM and ML estimates with respective standard errors (in parentheses) associated with
two trivariate-reduced bivariate Bernoulli data simulations stemming from generated data sets of
size n ¼ f100, 250, 500, 1000g where (1) k1 ¼ 3, k2 ¼ 4, k3 ¼ 0:5; and (2) k1 ¼ 1, k2 ¼ 0:5, k3 ¼ 3:
While the data simulated are from a trivariate-reduced bivariate Bernoulli model, we recognize that
this distribution equals a trivariate-reduced BCMP model where � ! 1, thus we compare the esti-
mated dispersion values to this truth.

Truth Method

Sample size

100 250 500 1000

k1 ¼ 3 MLE 2.661 (0.622) 3.531 (0.571) 2.900 (0.315) 2.959 (0.228)
MOM 0.189 (0.053) 0.275 (0.048) 0.245 (0.030) 0.266 (0.023)

k2 ¼ 4 MLE 5.529 (1.630) 3.225 (0.508) 4.144 (0.503) 4.220 (0.363)
MOM 0.330 (0.093) 0.301 (0.051) 0.335 (0.041) 0.319 (0.028)

k3 ¼ 0.5 MLE 0.415 (0.095) 0.481 (0.068) 0.573 (0.056) 0.574 (0.040)
MOM 4.719 (1.329) 4.065 (0.715) 4.869 (0.647) 4.871 (0.462)

� ¼ 1 MLE 25.880 (723.300) 27.40 (727.400) 27.29 (484.300) 29.510 (730.100)
MOM 6.466 (1.1610) 5.782 (0.556) 5.745 (0.311) 5.719 (0.216)

k1 ¼ 1 MLE 0.889 (0.193) 1.480 (0.231) 1.219 (0.127) 0.947 (0.068)
MOM 0.984 (0.242) 1.345 (0.219) 1.296 (0.181) 0.973 (0.088)

k2 ¼ 0.5 MLE 0.564 (0.128) 0.636 (0.100) 0.551 (0.060) 0.537 (0.041)
MOM 0.616 (0.159) 0.584 (0.110) 0.591 (0.084) 0.560 (0.053)

k3 ¼ 3 MLE 3.746 (1.034) 2.197 (0.369) 3.076 (0.385) 2.839 (0.241)
MOM 3.216 (1.057) 2.267 (0.476) 2.834 (0.473) 2.717 (0.287)

� ¼ 1 MLE 27.850 (1360.800) 26.570 (623.500) 29.510 (1142.000) 28.470 (625.300)
MOM 29.230 (11.900) 7.864 (1.646) 22.680 (6.867) 21.930 (3.483)
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the true parameters, ki, i¼ 1, 2, 3. The difference in performance for the MOM estima-
tors occurs because different sets of parameters can produce similar moments.
Whether or not the estimators reasonably approximate the true corresponding

parameters, we still generally see a decreasing trend in the ki estimator standard errors
as n gets large, while the dispersion estimator standard errors lack robustness due to
the computational implications described above.
Finally, we consider two data simulations regarding a trivariate-reduced geometric

(i.e., �¼ 0) distribution, where (1) k1 ¼ 0:8, k2 ¼ 0:5, k3 ¼ 0:2; and (2)
k1 ¼ 0:2, k2 ¼ 0:1, k3 ¼ 0:7: Table 3 provides the respective MLE and MOM estimates
assuming a BCMPT distribution, along with the respective corresponding standard
errors provided in parentheses. Again, the ML estimation procedure seems to outper-
form the MOM approach; this makes sense because the MOM estimation requires less
information than the MLEs. For instance, we see that, for the first example where

n¼ 1000, the MOM estimates include ~k1 ¼ 0:99 and ~� ¼ 0:1 with standard errors that
are sufficiently small such that these estimators are significantly biased. These results
indicate that the MOM estimators are not robust, even with a large sample size. Both
estimators appear to perform better in the latter example, with the MLE outperforming
the MOM procedure. In particular, the ML estimation more accurately estimates the
dispersion as �̂ ¼ 0:000 while the MOM procedure produces ~� ¼ 0:055 with a standard
error that is too small for �¼ 0 to be considered as a possible value. Nonetheless, the
size of the dependence intensity, k3, does not appear to influence the MLE and MOM
approaches toward proper estimation. Both approaches reasonably estimate ki, i¼ 1, 2,
3 for both simulated exercises.

Table 3. MOM and ML estimates with respective standard errors (in parentheses) associated with
two trivariate-reduced bivariate geometric data simulations stemming from generated data sets of
size n ¼ f100, 250, 500, 1000g where (1) k1 ¼ 0:8, k2 ¼ 0:5, k3 ¼ 0:2; and (2) k1 ¼ 0:2, k2 ¼
0:1, k3 ¼ 0:7: While the data simulated are from a trivariate-reduced bivariate geometric model, we
recognize that this distribution equals a trivariate-reduced BCMP model where �¼ 0, thus we com-
pare the estimated dispersion values to this true value.

Truth Method

Sample size

100 250 500 1000

k1 ¼ 0.8 MLE 0.902 (0.126) 0.886 (0.067) 0.791 (0.036) 0.795 (0.026)
MOM 0.962 (0.132) 0.779 (0.007) 0.790 (0.005) 0.990 (0.047)

k2 ¼ 0.5 MLE 0.506 (0.102) 0.531 (0.049) 0.474 (0.030) 0.486 (0.022)
MOM 0.563 (0.087) 0.430 (0.077) 0.428 (0.071) 0.576 (0.039)

k3 ¼ 0.2 MLE 0.325 (0.118) 0.249 (0.070) 0.272 (0.042) 0.265 (0.033)
MOM 0.210 (0.167) 0.333 (0.100) 0.326 (0.089) 0.183 (0.082)

�¼ 0 MLE 0.079 (0.073) 0.063 (0.039) 0.000 (0.022) 0.000 (0.016)
MOM 0.105 (0.050) 0.000 (0.017) 0.000 (0.011) 0.100 (0.016)

k1 ¼ 0.2 MLE 0.248 (0.043) 0.220 (0.025) 0.195 (0.017) 0.200 (0.012)
MOM 0.281 (0.058) 0.235 (0.039) 0.178 (0.028) 0.120 (0.054)

k2 ¼ 0.1 MLE 0.117 (0.035) 0.124 (0.022) 0.112 (0.015) 0.105 (0.010)
MOM 0.195 (0.045) 0.138 (0.044) 0.094 (0.033) 0.007 (0.061)

k3 ¼ 0.7 MLE 0.837 (0.110) 0.741 (0.057) 0.697 (0.035) 0.703 (0.025)
MOM 0.830 (0.102) 0.781 (0.028) 0.752 (0.041) 0.784 (0.021)

�¼ 0 MLE 0.140 (0.095) 0.050 (0.052) 0.000 (0.032) 0.000 (0.022)
MOM 0.143 (0.083) 0.087 (0.031) 0.044 (0.023) 0.055 (0.010)
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5.2. Real data example: shunter accidents

Several works regarding bivariate discrete data analysis consider this data set that
reports the number of accidents incurred by 122 shunters in two consecutive year peri-
ods (1937–1942 and 1943–1947); X and Y denote the number of shunter accidents
between 1937–1942 and 1943–1947, respectively. This data set is recognized as being
over-dispersed, thus numerous works argue against the use of the bivariate Poisson to
analyze the data (Arbous and Kerrich 1951; Adelstein 1952; Famoye and Consul 1995;
Sellers, Morris, and Balakrishnan 2016; Ong et al. 2021). Arbous and Kerrich (1951)
and Adelstein (1952) use a BNB model to fit the data, while Famoye and Consul (1995)
consider a BGP distribution. Sellers, Morris, and Balakrishnan (2016) utilize the
BCMPC model to analyze the data, while Ong et al. (2021) examine two models moti-
vated by the Sarmanov family, BCMPS1 and BCMPS2: Meanwhile, because the ML esti-
mation outperforms the MOM procedure in simulated examples, we focus our attention
on comparing the MLEs from the aforementioned models and those from the BCMPT

model. Table 4 provides the MLEs for the respective models, along with their respective
log-likelihood, Akaike Information Criterion (AIC), and chi-square goodness-of-fit
(GoF) test statistic values. Adopting the Burnham and Anderson (2002) approach, we
compare model performance via Di ¼ AICi � AICmin, where AICi denotes the AIC asso-
ciated with Model i, and AICmin is the minimum AIC among the considered models.
Table 5 supplies the levels of model support based on recommended Di ranges.
While the BNB model is the optimal model based on AIC (691.2), the BCMPT model

is the optimal BCMP representation based on AIC (692.0) and is the only model found
to offer substantial empirical support in comparison to the BNB model (D ¼ 0:8). This
occurs because the BCMPT distribution likewise only requires four parameters to model
the data, and the resulting log-likelihood stemming from its MLEs is near optimal
(LogLik ¼ �342.009) in comparison with the other resulting log-likelihood values.
Meanwhile, the other considered models (BP, BGP, BCMPC, BCMPS1, BCMPS2) are
found to have (considerably) less to essentially no empirical support in comparison to
the BNB model (D 2 ð3:8, 11:9Þ). This occurs because the other BCMP models require

Table 4. Maximum likelihood estimates, along with the corresponding log-likelihood, Akaike
Information Criterion (AIC), and v2 goodness-of-fit values for various bivariate models: bivariate
Poisson (BP); bivariate negative binomial (BNB); bivariate generalized Poisson (BGP); and four bivari-
ate CMP using the compounding, Sarmanov, and trivariate reduction approaches (BCMPC, BCMPS1,
BCMPS2, and BCMPT), respectively on shunter accidents data set.
Model Estimated Parameters LogLik AIC v2 p-value

BP k̂1 ¼ 0:717 k̂2 ¼ 1:012 k̂3 ¼ 0:258 �345.635 697.3 48.05 0.13
BNB m̂ ¼ 0:891 r̂ ¼ 3:876 â1 ¼ 1:331 �341.610 691.2 21.92 0.97

â2 ¼ 0:095
BGP ĥ1 ¼ 0:560 ĥ2 ¼ 0:837 ĥ3 ¼ 0:305 �341.513 695.0 23.59 0.93

k̂1 ¼ 0:151 k̂2 ¼ 0:123 k̂3 ¼ 0:031
BCMPC k̂ ¼ 1:328 �̂ ¼ 0:084 p̂00 ¼ 0:939 �341.704 695.4 22.16 0.95

p̂01 ¼ 0:034 p̂10 ¼ 0:025 p̂11 ¼ 0:002
BCMPS1 k̂1 ¼ 0:92 k̂2 ¼ 0:73 â ¼ 0:58 �345.550 703.1 37.06 0.37

�̂1 ¼ 0:57 �̂2 ¼ 0:53 ŝ ¼ 1:00
BCMPS2 k̂1 ¼ 0:94 k̂2 ¼ 0:75 �̂1 ¼ 0:59 �343.500 697.0 31.46 0.68

�̂2 ¼ 0:56 ŝ ¼ 1:00
BCMPT k̂1 ¼ 0:517 k̂2 ¼ 0:684 k̂3 ¼ 0:270 �342.009 692.0 23.36 0.96

�̂ ¼ 0:438
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more parameters yet still produce log-likelihoods that are no better than the BCMPT

optimal log-likelihood. In particular, the MLEs associated with the BCMP models
derived via the Sarmanov family produce log-likelihood values that align with the BP
model, which has repeatedly been scrutinized for poor performance relative to this data
set. Further, because the BCMP distributions derived via the Sarmanov family require
more estimated parameters, these models produce two of the largest AIC values among
the considered models. Thus, for this example, there does not appear to be any offered
additional benefit to considering a model that allows for the full correlation range.
The BCMPT model detects statistically significant data-overdispersion, estimating the

associated dispersion parameter at �̂ ¼ 0:438 (�2 logK� ¼ 7:25; p-value < 0.01); this
agrees with the results from the other considered models that allow for data dispersion
(Arbous and Kerrich 1951; Adelstein 1952; Famoye and Consul 1995; Sellers, Morris,

and Balakrishnan 2016; Ong et al. 2021). Meanwhile, k̂3 ¼ 0:27 implies a relatively small
level of positive association between the two random variables. The associated LRT stat-
istic �2 logKk ¼ 9:0 produces a small p-value < 0.01 confirming that statistically sig-
nificant dependence exists.
The raw data, along with the estimated frequencies determined from the respective model

MLEs are provided in Tables 6 and 7. The BCMPT model appears to reasonably estimate the
observed number of shunter accidents over the combination of respective time periods, thus
providing comparable marginal distributions as well. In fact, its joint and marginal estimates
appear to be approximately equal to those from the BNB, BCMPC, and BGP models. In
order to better assess GoF, approximate chi-square test statistics are also used to evaluate the
models with degrees of freedom equal to k� c� 1, where k equals the number of bins and
c is the number of estimated parameters. For these GoF tests, we maintain the bin structure
with regard to Y while combining the bins for X � 5 in Tables 6 and 7 in order to account
for small expected frequencies, thus we have k¼ 42. We consider these tests to have approxi-
mate chi-square distributions since, even after rebinning, some of the expected frequencies
remain less than 0.25 (a threshold noted by Koehler and Larntz (1980)). Nevertheless, the
results of these GoF tests are consistent with aforementioned interpretations of model
adequacy based on the AIC; revisiting Table 4, we note that large p-values suggest stronger
support for the associated model. For instance, the GoF tests support the BNB (v2 ¼ 21:92,
p-value ¼ 0.97) as the best fitting model followed closely by the BCMPT (v2 ¼ 23:36, p-
value ¼ 0.96), BCMPC (v2 ¼ 22:16, p-value ¼ 0.95), and BGP models (v2 ¼ 23:59, p-value
¼ 0.93).

5.3. Real data example: NBA data

This section considers an under-dispersed data set to further illustrate the flexibility of
the BCMPT model. This bivariate data set consists of the number of players selected for

Table 5. Levels of model support based on AIC difference values, Di ¼ AICi � AICmin, for Model i
(Burnham and Anderson 2002).
Di Empirical Support Level for Model i

½0, 2� Substantial
½4, 7� Considerably less
ð10,1Þ Essentially none
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the Center (C) and the Forward (F) positions from the All-Star game rosters of the
2000–2016 National Basketball Association (NBA) (National Basketball Association
2020). To conduct model comparisons for these bivariate data, we consider the bivariate
Poisson (BP); bivariate negative binomial (BNB); bivariate generalized Poisson (BGP);
and bivariate CMP models attained via compounding (BCMPC) and trivariate-reduction
(BCMPT), respectively. Table 8 reports the MLEs, log-likelihood, number of parameters,
and AIC values for the aforementioned models.
The BCMPT model produces the largest log-likelihood (-46.262) and smallest AIC,

AICmin ¼ 100:521, making it the optimal model among the considered models based on
AIC. The BGP and BCMPC model estimates meanwhile produce AICs that are close in
value with the BGP slightly outperforming the BCMPC: The respective AICs are

Table 6. Observed accident counts for 122 shunters with associated estimated counts from various
bivariate distributions: bivariate Poisson (BP); bivariate negative binomial (BNB); bivariate generalized
Poisson (BGP); and four bivariate CMP distributions resulting from the compounding, Sarmanov, and
trivariate reduction approaches, respectively (BCMPC, BCMPS1, BCMPS2, and BCMPT). Estimated
counts are determined from MLEs for respective model parameters reported in Table 4.
x y¼ 0 y¼ 1 y¼ 2 y¼ 3 y¼ 4 y¼ 5 y ¼ 6þ
0 OBS 21 18 8 2 1 – – 50

BP 16.72 16.92 8.56 2.89 0.73 0.15 0.02 46.00
BNB 21.90 16.67 7.98 3.07 1.04 0.32 0.13 51.11
BGP 22.21 16.44 7.88 3.12 1.11 0.37 0.17 51.32
BCMPC 22.48 16.10 7.88 3.14 1.09 0.34 0.13 51.16
BCMPS1 18.08 16.60 10.02 4.82 1.99 0.73 0.24 52.47
BCMPS2 21.09 15.44 8.63 4.05 1.65 0.59 0.19 51.65
BCMPT 22.52 15.40 7.77 3.28 1.22 0.41 0.18 50.78

1 OBS 13 14 10 1 4 1 – 43
BP 11.99 16.45 10.51 4.28 1.27 0.29 0.07 44.87
BNB 12.52 13.18 8.06 3.77 1.50 0.53 0.26 39.83
BGP 10.70 14.51 8.67 3.84 1.46 0.51 0.25 39.93
BCMPC 12.11 12.94 8.14 3.90 1.57 0.55 0.25 39.46
BCMPS1 12.98 11.95 7.38 3.62 1.51 0.56 0.18 38.18
BCMPS2 11.56 12.43 8.12 4.05 1.69 0.61 0.20 38.66
BCMPT 11.64 14.04 8.17 3.79 1.52 0.54 0.26 39.96

2 OBS 4 5 4 2 1 0 1 17
BP 4.30 7.45 5.89 2.89 1.01 0.27 0.07 21.88
BNB 4.50 6.06 4.54 2.52 1.16 0.47 0.26 19.52
BGP 3.97 6.11 4.93 2.55 1.06 0.39 0.19 19.20
BCMPC 4.46 6.12 4.68 2.62 1.20 0.47 0.23 19.78
BCMPS1 6.36 5.90 3.82 1.95 0.83 0.31 0.10 19.28
BCMPS2 5.08 6.48 4.43 2.25 0.94 0.34 0.11 19.63
BCMPT 4.44 6.18 4.89 2.56 1.12 0.43 0.22 19.83

3 OBS 2 1 3 2 0 1 0 9
BP 1.03 2.15 2.05 1.20 0.49 0.15 0.05 7.11
BNB 1.30 2.13 1.90 1.23 0.65 0.30 0.19 7.69
BGP 1.35 2.18 1.92 1.19 0.56 0.22 0.12 7.53
BCMPC 1.34 2.21 1.97 1.26 0.64 0.28 0.16 7.85
BCMPS1 2.54 2.37 1.59 0.83 0.36 0.14 0.05 7.87
BCMPS2 1.94 2.65 1.84 0.94 0.39 0.14 0.05 7.95
BCMPT 1.42 2.17 1.93 1.25 0.61 0.25 0.14 7.77

4 OBS 0 0 1 1 – – – 2
BP 0.18 0.45 0.51 0.35 0.17 0.06 0.02 1.73
BNB 0.33 0.64 0.66 0.49 0.29 0.15 0.11 2.66
BGP 0.45 0.73 0.67 0.44 0.23 0.10 0.06 2.67
BCMPC 0.35 0.67 0.68 0.48 0.27 0.13 0.08 2.66
BCMPS1 0.88 0.82 0.56 0.30 0.13 0.05 0.02 2.76
BCMPS2 0.65 0.91 0.64 0.33 0.14 0.05 0.02 2.74
BCMPT 0.40 0.66 0.64 0.46 0.26 0.12 0.08 2.60
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AICBGP ¼ 105:322 and AICBCMPC ¼ 105:972 with respective difference measures DBGP ¼
4:801 and DBCMPC ¼ 5:451 in relation to the optimal model with regard to AIC,
BCMPT: The BCMPT model recognizes this data set as being statistically significantly
under-dispersed (�̂T ¼ 3:515 > 1; �2 logK� ¼ 16, p-value < 0.0001). Similarly, the
BCMPC and BGP models likewise detect data under-dispersion (�̂C ¼ 8:370 > 1, and

k̂2, k̂3 < 0). Thus, even though the BGP and BCMPC models have “considerably less”
empirical support than the BCMPT (Burnham and Anderson 2002), they demonstrate
themselves to be more effective than the BP and BNB distributions in modeling these
data. As previously noted, the BP and BNB models cannot address data under-disper-
sion. This example illustrates that, under such circumstances, the (B)NB model can only
perform at best as well as the (B)P model in estimating under-dispersed data because
the (B)NB distribution only allows for data equi- or over-dispersion (Hilbe 2007).
Accordingly, we see r̂ ! 1, and the respective log-likelihood values approximately
equaling each other, while the added parameter for the BNB produces a larger AIC
than that for the BP model. Both the BP and BNB models produce AICs that show
essentially no empirical support relative to the BCMPT (AICBP ¼ 114:790 and AICBNB ¼

Table 7. Continued: Observed accident counts for 122 shunters with associated estimated counts
from various bivariate distributions: bivariate Poisson (BP); bivariate negative binomial (BNB); bivari-
ate generalized Poisson (BGP); and four bivariate CMP distributions resulting from the compounding,
Sarmanov, and trivariate reduction approaches, respectively (BCMPC, BCMPS1, BCMPS2, and BCMPT).
Estimated counts are determined from MLEs for respective model parameters reported in Table 4.
x y¼ 0 y¼ 1 y¼ 2 y¼ 3 y¼ 4 y¼ 5 y ¼ 6þ
5 OBS – – – – – – – 0

BP 0.03 0.07 0.10 0.08 0.04 0.02 0.01 0.34
BNB 0.08 0.17 0.20 0.17 0.11 0.06 0.05 0.84
BGP 0.15 0.24 0.22 0.15 0.08 0.04 0.03 0.90
BCMPC 0.08 0.18 0.20 0.16 0.10 0.05 0.03 0.80
BCMPS1 0.27 0.26 0.18 0.09 0.04 0.02 0.01 0.86
BCMPS2 0.20 0.28 0.20 0.10 0.04 0.02 0.01 0.83
BCMPT 0.10 0.18 0.18 0.14 0.09 0.05 0.03 0.78

6 OBS – – – – – – – 0
BP 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.06
BNB 0.02 0.04 0.06 0.05 0.04 0.02 0.02 0.25
BGP 0.05 0.08 0.07 0.05 0.03 0.01 0.01 0.30
BCMPC 0.02 0.04 0.05 0.05 0.03 0.02 0.01 0.22
BCMPS1 0.08 0.07 0.05 0.03 0.01 0.00 0.00 0.24
BCMPS2 0.05 0.08 0.05 0.03 0.01 0.00 0.00 0.23
BCMPT 0.02 0.04 0.05 0.04 0.03 0.02 0.01 0.21

7þ OBS – 1 0 – – – – 1
BP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
BNB 0.00 0.01 0.02 0.02 0.02 0.01 0.02 0.10
BGP 0.02 0.04 0.03 0.02 0.01 0.01 0.00 0.14
BCMPC 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.07
BCMPS1 0.02 0.02 0.01 0.01 0.00 0.00 0.27 0.34
BCMPS2 0.01 0.02 0.01 0.01 0.00 0.00 0.25 0.31
BCMPT 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.07
OBS 40 39 26 8 6 2 1 122
BP 34.24 43.51 27.64 11.70 3.72 0.94 0.24 121.98
BNB 40.65 38.90 23.41 11.32 4.80 1.87 1.02 122.00
BGP 38.90 40.32 24.38 11.36 4.55 1.65 0.83 122.00
BCMPC 40.84 38.27 23.62 11.62 4.91 1.84 0.90 122.00
BCMPS1 41.21 37.99 23.61 11.65 4.87 1.81 0.87 122.01
BCMPS2 40.58 38.29 23.92 11.76 4.86 1.75 0.83 121.99
BCMPT 40.54 38.67 23.66 11.54 4.85 1.82 0.91 121.96
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116:794, respectively; DBP ¼ 14:269 and DBNB ¼ 16:273, respectively). These results fur-
ther demonstrate that the BP and BNB models are inappropriate for under-dispersed
bivariate data because they cannot effectively model such constructs. The BGP and pre-
sented BCMP models, however, offer impressive results where the BCMPT proves itself
to offer a simple yet most effective form.

6. Discussion

The BCMPT distribution is a flexible bivariate model for count data that can accommodate
data dispersion. With the BP distribution as a special case, our proposed model likewise con-
tains marginal forms including the Poisson and particular NB and binomial marginals as spe-
cial cases. Simulated and real data examples demonstrate that this distribution performs at
least comparably with other considered bivariate count models, outperforming the BP model
because of its ability to accommodate data dispersion. We further have parameter estimation
procedures discussed for MOM and ML estimation with hypothesis tests established to detect
statistically significant data dispersion or dependence, respectively. While the BCMPT correl-
ation structure is non-negative, future work seeks to develop a BCMP alternative that allows
for positive and negative correlation while retaining strong model fitting capabilities.
Several BCMP models have already been developed; four of them are discussed in this

paper. Another popular approach for constructing bivariate distributions is through the use
of copulas, given its potential flexibility to allow for positive or negative correlations. This is
one avenue for future study, particularly given the vast number of potential copulas for con-
sideration and the need to better understand their resulting properties. Further research is
also needed to suggest ways in which to circumvent identifiability concerns that surface when
using copulas to create multivariate discrete distributions (Trivedi and Zimmer 2017). Such
models can be further compared to other bivariate discrete models (e.g., the bivariate double
Poisson model (Islam and Chowdhury 2017) which also accommodates over-, under-, and
equi-dispersion).
The BCMPT distribution can be extended to more elaborate models. For instance, covari-

ates can be incorporated (e.g., Jowaheer, Khan, and Sunecher (2018) and Sunecher, Khan,
and Jowaheer (2020)). Here, we have refrained from this generalization as we want to focus
attention on the distribution itself and the interpretation of its parameters; this helps ensure

Table 8. Respective maximum likelihood estimates, log-likelihood values, and Akaike Information
Criterion (AIC) values for various bivariate models, namely the bivariate Poisson (BPD), bivariate
negative binomial (BNB), bivariate generalized Poisson (BGP), and two bivariate COM-Poisson using
the compounding, and trivariate reduction approaches, respectively (BCMPC, and BCMPT) on NBA
data set described in National Basketball Association (2020).
Model Estimated Parameters Log Likelihood No. Param. AIC

BP k̂1 ¼ 2.941 k̂2¼ 2.647 k̂3¼ 0 �54.395 3 114.790
BNB m̂¼ 2.938 r̂¼100000 â1¼ 0.899 �54.397 4 116.794

â2¼ 0
BGP ĥ1¼0.560 ĥ2¼0.605 ĥ3¼4.048 �46.661 6 105.322

k̂1¼ 0.324 k̂2¼ �0.133 k̂3¼-1.000
BCMPC k̂ ¼ 1, 082, 035 �̂ ¼ 8:370 p̂00¼ 0 �47.986 5 105.972

p̂01¼0.158 p̂10 ¼ 0:185 p̂11¼0.658
BCMPT k̂1 ¼ 67:249 k̂2 ¼ 48:573 k̂3 ¼ 0 �46.262 4 100.521

�̂ ¼ 3:515
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that readers can properly understand, interpret, and gain inference regarding parameter dis-
cussions (e.g., dispersion). Accordingly, while our model has allowed for varying location
parameters, we have assumed a common � for computational ease, which is consistent with
the discussion in Section 2.4.2 of Shmueli et al. (2005). Varying dispersion levels, however,
may also be considered.
The real data analyses provide the MLEs but not the corresponding standard errors;

this work demonstrates that the issue of standard error computation remains an area of
further study. For both examples, the approximated Hessian matrix for the BCMPT
model was not positive definite; investigations of these statistical computations showed
that some of the eigenvalues were negative. This phenomenon is not unique to BCMPT;
similar issues can occur with BCMPC, BCMPS1, and BCMPS2 (Sellers, Morris, and
Balakrishnan 2016; Ong et al. 2021). Future work will consider alternative procedures
for approximating the Hessian matrix in order to ensure a positive definite structure,
thus allowing for standard errors to be determined.
While this work focuses on the trivariate reduction method as a tool to develop a

bivariate distribution, this approach can be generalized to higher dimensions thus estab-
lishing a multivariate analog. For i ¼ 1, 2, :::,m, let

Xi ¼ Wi þW, (32)

where Wi are CMP(ki, �) distributed and W is a CMP(k, �) random variable such that
all of these random variables are mutually independent with a common dispersion par-
ameter, �. Considering the case when �¼ 1, the resulting marginal distributions are
Poisson with location parameters, ki þ k, i ¼ 1, 2, :::,m, respectively. Furthermore, when
k1 ¼ ::: ¼ km ¼ k, each of the random variables X1, :::,Xm has an sCMP(k, �, 2) mar-
ginal distribution as discussed in Section 2. ML and MOM parameter estimation can
likewise be generalized. See Johnson, Kotz, and Balakrishnan (1997) for additional dis-
cussion regarding the trivariate reduction method in a multivariate setting.

Notes
1. The Stein and Juritz (1987) parametrization for a NB(r, b) distributed random variable X has

the pmf PðX ¼ xÞ ¼
�
r þ x� 1

x

�
ð 1
1þbÞxð b

1þbÞr:
2. The trivariate-reduced BP model corresponds to the BP model derived via the compounding

method in that k1 þ k3 ¼ kp1þ, k2 þ k3 ¼ kpþ1, and k3 ¼ kp11 (Kocherlakota and
Kocherlakota 1992).

3. Another option is to set C ¼ maxn2N ln ynf g since the only requirement is for C to be
sufficiently large.

Funding

Support for Kimberly S. Weems was provided by the National Science Foundation (Grant #1700235).

ORCID

Kimberly S. Weems http://orcid.org/0000-0002-2108-9257
Kimberly F. Sellers http://orcid.org/0000-0001-6516-0548

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 23



References

Adelstein, A. M. 1952. Accident proneness: A criticism of the concept based upon an analysis of
shunters’ accidents. Journal of the Royal Statistical Society Series A 115 (3):354–410. doi:10.
2307/2980739.

Arbous, A. G., and J. E. Kerrich. 1951. Accident statistics and the concept of accident proneness.
Biometrics 7 (4):340–432. doi:10.2307/3001656.

Balakrishnan, N., and S. Pal. 2013. Lognormal lifetimes and likelihood-based inference for flexible
cure rate models based on COM-Poisson family. Computational Statistics & Data Analysis 67:
41–67. doi:10.1016/j.csda.2013.04.018.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference. New York:
Springer.

Chesneau, C.,. M. Kachour, and D. Karlis. 2015. On some distributions arising from a generalized
trivariate reduction scheme. Statistical Methodology 25:36–50. doi:10.1016/j.stamet.2015.01.001.

Conway, R. W., and W. L. Maxwell. 1962. A queuing model with state dependent service rates.
Journal of Industrial Engineering 12:132–6.

Famoye, F. 1993. Restricted generalized Poisson regression model. Communications in Statistics -
Theory and Methods 22 (5):1335–54. doi:10.1080/03610929308831089.

Famoye, F., and P. C. Consul. 1995. Bivariate generalized Poisson distribution with some applica-
tions. Metrika 42 (1):127–38. doi:10.1007/BF01894293.

Gaunt, R. E., S. Iyengar, A. B. O. Daalhuis, and B. Simsek. 2019. An asymptotic expansion for
the normalizing constant of the Conway-M axwell-Poisson distribution. Annals of the Institute
of Statistical Mathematics 71 (1):163–80. doi:10.1007/s10463-017-0629-6.

Gillispie, S. B., and C. G. Green. 2015. Approximating the Conway-Maxwell-Poisson distribution
normalization constant. Statistics 49 (5):1062–73. doi:10.1080/02331888.2014.896919.

Hilbe, J. M. 2007. Negative binomial regression. 5th ed. Cambridge: Cambridge University Press.
Holgate, P. 1964. Estimation for the bivariate Poisson distribution. Biometrika 51 (1–2):241–5.

doi:10.1093/biomet/51.1-2.241.
Islam, M., and R. Chowdhury. 2017. Models for bivariate count data: Bivariate Poisson distribu-

tion. In Analysis of repeated measures data, 97–124. Singapore: Springer.
Johnson, N., S. Kotz, and N. Balakrishnan. 1997. Discrete multivariate distributions. New York:

John Wiley & Sons.
Jowaheer, V., N. M. Khan, and Y. Sunecher. 2018. A BINAR(1) time-series model with cross-cor-

related COM-Poisson innovations. Communications in Statistics - Theory and Methods 47 (5):
1133–54. doi:10.1080/03610926.2017.1316400.

Karlis, D., and I. Ntzoufras. 2005. Bivariate Poisson and diagonal inflated bivariate Poisson
regression models in R. Journal of Statistical Software 14 (10):1–36. doi:10.18637/jss.v014.i10.

Kocherlakota, S., and K. Kocherlakota. 1992. Bivariate discrete distributions. New York: Marcel
Dekker.

Koehler, K. J., and K. Larntz. 1980. An empirical investigation of goodness-of-fit statistics for
sparse multinomials. Journal of the American Statistical Association 75 (370):336–44. doi:10.
1080/01621459.1980.10477473.

Kokonendji, C. C., D. Mizere, and N. Balakrishnan. 2008. Connections of the Poisson weight
function to overdispersion and underdispersion. Journal of Statistical Planning and Inference
138 (5):1287–96. doi:10.1016/j.jspi.2007.05.028.

Kokonendji, C. C., and P. Puig. 2018. Fisher dispersion index for multivariate count distributions:
A review and a new proposal. Journal of Multivariate Analysis 165:180–93. doi:10.1016/j.jmva.
2017.12.010.

Lai, C. D. 2006. Constructions of discrete bivariate distributions. In Advances in distribution the-
ory, order statistics, and inference, ed. N. Balakrishnan, J. M. Sarabia, and E. Castillo, 29–58.
Boston, MA: Birkh€auser Boston.

Lee, M.-L T. 1996. Properties and applications of the Sarmanov family of bivariate distributions.
Communications in Statistics - Theory and Methods 25 (6):1207–22.

24 K. S. WEEMS ET AL.

https://doi.org/10.2307/2980739
https://doi.org/10.2307/2980739
https://doi.org/10.2307/3001656
https://doi.org/10.1016/j.csda.2013.04.018
https://doi.org/10.1016/j.stamet.2015.01.001
https://doi.org/10.1080/03610929308831089
https://doi.org/10.1007/BF01894293
https://doi.org/10.1007/s10463-017-0629-6
https://doi.org/10.1080/02331888.2014.896919
https://doi.org/10.1093/biomet/51.1-2.241
https://doi.org/10.1080/03610926.2017.1316400
https://doi.org/10.18637/jss.v014.i10
https://doi.org/10.1080/01621459.1980.10477473
https://doi.org/10.1080/01621459.1980.10477473
https://doi.org/10.1016/j.jspi.2007.05.028
https://doi.org/10.1016/j.jmva.2017.12.010
https://doi.org/10.1016/j.jmva.2017.12.010


M’Kendrick, A. G. 1926. Applications of mathematics to medical problems. Proceedings of the
Edinburgh Mathematical Society, 44:98–130.

Maritz, J. S. 1952. Note on a certain family of discrete distribution. Biometrika 39 (1–2):196–8.
doi:10.1093/biomet/39.1-2.196.

Marshall, A. W., and I. Olkin. 1985. A family of bivariate distributions generated by the bivariate
Bernoulli distribution. Journal of the American Statistical Association 80 (390):332–8. doi:10.
1080/01621459.1985.10478116.

Minka, T. P., G. Shmueli, J. B. Kadane, S. Borle, and P. Boatwright. 2003. Computing with the
COM-Poisson distribution. Technical Report 776, Department of Statistics, Carnegie Mellon
University, Pittsburgh, PA.

National Basketball Association. 2020. NBA All-Star Game, 2000–2016. Accessed April 22, 2020.
https://www.kaggle.com/fmejia21/nba-all-star-game-20002016.

Ong, S. H., R. C. Gupta, T. Ma, and S. Z. Sim. 2021. Bivariate Conway-Maxwell Poisson distribu-
tions with given marginals and correlation. Journal of Statistical Theory and Practice 15 (10):
1–19. doi:10.1007/s42519-020-00141-4.

Sarmanov, O. V. 1966. Generalized normal correlation and two-dimensional Fr�echet classes.
Doklady Akademii Nauk 168 (1):32–5.

Sellers, K. F. 2012. A generalized statistical control chart for over- or under-dispersed data.
Quality and Reliability Engineering International 28 (1):59–65. doi:10.1002/qre.1215.

Sellers, K. F., D. S. Morris, and N. Balakrishnan. 2016. Bivariate Conway-Maxwell-Poisson distri-
bution: Formulation, properties, and inference. Journal of Multivariate Analysis 150:152–68.
doi:10.1016/j.jmva.2016.04.007.

Sellers, K. F., and A. Raim. 2016. A flexible zero-inflated model to address data dispersion.
Computational Statistics & Data Analysis 99:68–80. doi:10.1016/j.csda.2016.01.007.

Sellers, K. F., and G. Shmueli. 2010. A flexible regression model for count data. Annals of
Applied Statistics 4 (2):943–61.

Sellers, K. F., G. Shmueli, and S. Borle. 2012. The COM-Poisson model for count data: A survey
of methods and applications. Applied Stochastic Models in Business and Industry 28 (2):104–16.
doi:10.1002/asmb.918.

Sellers, K. F., A. W. Swift, and K. S. Weems. 2017. A flexible distribution class for count data.
Journal of Statistical Distributions and Applications 4 (1):1–21. doi:10.1186/s40488-017-0077-0.

Shmueli, G., T. P. Minka, J. B. Kadane, S. Borle, and P. Boatwright. 2005. A useful distribution
for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. Journal of the
Royal Statistical Society: Series C (Applied Statistics) 54 (1):127–42. doi:10.1111/j.1467-9876.
2005.00474.x.
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function,
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 �2 þ ly � �Y

� �2 þ lx2 � X2

 �2 þ ly2 � Y2

� �2
þ lxy � XY
� �2

,
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thus, the MOM estimators solve the system of equations,

@l
@k1

¼ f1ðk1, k2, k3, �; �X , �Y ,X2 ,Y2 ,XYÞ ¼ 0

@l
@k2

¼ f2ðk1, k2, k3, �; �X , �Y ,X2 ,Y2 ,XYÞ ¼ 0

@l
@k3

¼ f3ðk1, k2, k3, �; �X , �Y ,X2 ,Y2 ,XYÞ ¼ 0

@l
@�

¼ f4ðk1, k2, k3, �; �X , �Y ,X2 ,Y2 ,XYÞ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

(33)

from which we get implicit relations between the MOM estimators and data moments, namely

~k1 ¼ F1ð�X , �Y ,X2 ,Y2 ,XY Þ
~k2 ¼ F2ð�X , �Y ,X2 ,Y2 ,XY Þ
~k3 ¼ F3ð�X , �Y ,X2 ,Y2 ,XY Þ
~� ¼ F4ð�X , �Y ,X2 ,Y2 ,XY Þ,

8>>><
>>>:

(34)

hence, computing the respective variances of these MOM estimators is equivalent to computing
the variances of the functions, Fi, i ¼ 1, 2, 3, 4:

We use the Delta method to accomplish this goal. Let lx, ly, lx2 , ly2 , lxy denote the respect-
ive BCMPT moments. We know that, as the sample size n increases, the following results hold:ffiffiffi

n
p

�X � lx

 �!d N 0,r2x


 �
ffiffiffi
n

p
�Y � lx

 �!d N 0, r2y

� �
ffiffiffi
n

p
X2 � lx2

 �

!d N 0,r2x2

 �

ffiffiffi
n

p
Y2 � ly2
� �

!d N 0, r2y2
� �

ffiffiffi
n

p
XY � lxy
� �

!d N 0, r2xy
� �

,

8>>>>>>>>>><
>>>>>>>>>>:

(35)

where r2gðX,YÞ denotes the variance of a function g(X, Y) associated with the BCMPT distribution.
Accordingly, a function of those moments Fið�X , �Y ,X2 ,Y2 ,XYÞ can be represented via Taylor
expansion as

Fið�X , �Y ,X2 ,Y2 ,XY Þ ¼ Fiðlx, ly, lx2 , ly2 , lxyÞ þ
@Fi
@lx

� ð�X � lxÞ þ
@Fi
@ly

� ð�Y � lyÞ

þ @Fi
@lx2

� ðX2 � lx2Þ þ
@Fi
@ly2

� ðY2 � ly2Þ þ
@Fi
@lxy

� ðXY � lxyÞ þ R2,

where, as n gets large, the second order remainder of the Taylor expansion R2 converges to 0.
We use @Fi

@�X ,
@Fi
@�Y ,

@Fi
@X2

, @Fi
@Y2

, @Fi
@XY

to approximate @Fi
@lx

, @Fi
@ly

, @Fi
@l2x

, @Fi
@l2y

, @Fi
@lxy

, recognizing the close prox-

imity of the respective values when the sample size is sufficiently large. Thus, applying the Delta
method, we find that

Var
ffiffiffi
n

p � Fi �X , �Y ,X2 ,Y2 ,XY

 �� �

! rFið�X , �Y ,X2 ,Y2 ,XY Þ

 �T

R rFið�X , �Y ,X2 ,Y2 ,XY Þ

 �

where R denotes the variance-covariance matrix of ðX,Y,X2,Y2,XYÞ: Thus, the estimated vari-
ance of the estimators is

Var

~k1
~k2
~k3
~�

0
BBB@

1
CCCA ¼ Var

F1
F2
F3
F4

0
BB@

1
CCA ¼ 1

n
diag rF1 rF2 rF3 rF4


 �T
R rF1 rF2 rF3 rF4

 �� �

, (36)
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where

rF1 rF2 rF3 rF4

 �T ¼ �H�1

@f1
@�X

@f1
@�Y

@f1
@X2

@f1
@Y2

@f1
@XY

@f2
@�X

@f2
@�Y

@f2
@X2

@f2
@Y2

@f2
@XY

@f3
@�X

@f3
@�Y

@f3
@X2

@f3
@Y2

@f3
@XY

@f4
@�X

@f4
@�Y

@f4
@X2

@f4
@Y2

@f4
@XY

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and H is the Hessian matrix of lðk1, k2, k3, �; ðx, yÞÞ over k1, k2, k3, and �. We recognize, however,
that the standard error estimates are reasonable for MOM estimates close to their respective
true values.
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