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Synopsis Advances in quantitative biology data collection and analysis across scales (molecular, cellular, organismal, and
ecological) have transformed how we understand, categorize, and predict complex biological systems. This surge of quantita-
tive data creates an opportunity to apply, develop, and evaluate mathematical models of biological systems and explore novel
methods of analysis. Simultaneously, thanks to increased computational power, mathematicians, engineers and physical scien-
tists have developed sophisticated models of biological systems at different scales. Novel modeling schemes can offer deeper
understanding of principles in biology, but there is still a disconnect between modeling and experimental biology that limits
our ability to fully realize the integration of mathematical modeling and biology. In this work, we explore the urgent need to
expand the use of existing mathematical models across biological scales, develop models that are robust to biological hetero-
geneity, harness feedback loops within the iterative modeling process, and nurture a cultural shift towards interdisciplinary and
cross-field interactions. Better integration of biological experimentation and robust mathematical modeling will transform our
ability to understand and predict complex biological systems.

Critical time for biological modeling
Biological systems are staggeringly complex. A critical
goal of biological research is to untangle this complex-
ity and make predictions about biological systems. Ad-
vances in quantitative biology data collection and anal-
ysis across scales (molecular, cellular, organismal, and
ecological) have transformed how we understand, cat-
egorize, and predict complex biological systems. From
ecology to single-cell measurements to single-molecule
imaging, we can now observe fluctuations in biologi-
cal data that are intrinsic to the system, may hold key
information, and may be biologically meaningful. This
surge of quantitative data coincideswith increased com-
putational power, creating a unique opportunity to bet-
ter apply, develop, and evaluate mathematical models
of complex biological systems at different scales. In the

context of this paper, we use “model” to refer to either
mathematical representations or predictions of biological
systems.
All biological sub-disciplines could benefit tremen-

dously from systematic integration of theoretical math-
ematical modeling approaches and biology. For exam-
ple, mathematical models can allow biologists to decou-
ple sources of non-biological noise or experimental er-
ror frommeaningful biological variability, which would
be transformative for uncovering biological roles for
stochasticity and heterogeneity. With more resources
dedicated to integration of biology and mathemati-
cal modeling, we envision a transformational improve-
ment in our ability to both describe and predict com-
plex biology (from molecules to organisms to systems)
(Westerhoff and Palsson 2004). To fully realize the
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integration of mathematical modeling and biological
systems, work in four key areasmust be emphasized and
supported (Fig. 1):

(1) Cross-scales approaches: Mathematical models that
can readily scale to other biological systems would
be transformative in creating common language to
facilitate understanding between fields. Identifying
models and biological systems to develop in depth
as “anchor” models and systems for validation and
characterization is a critical goal.

(2) Increasing complexity: The field needs mathemat-
ical models that are robust to complexity within
representative biological systems and that can pre-
dict accurately how perturbations alter those sys-
tems. This would allow biologists to better identify
new variables affecting biological outcomes, predict
complex biological systems in a rapidly changing
world, and even generate entirely virtual biological
datasets when samples are scarce.

(3) Iterative feedback loops: Not all biological data is
collected in such a way that enables use in model
development or validation. Collecting data with a
mind on where and how it will be used in modeling
is necessary to better integrate biology and math-
ematical modeling. Furthermore, applying predic-
tive models to direct or identify research questions
would be a long-term payoff of investing in devel-
opment of robust iterative feedback loops.

(4) Overcome cultural barriers: The current culture
of science encourages researchers who work in
discipline-specific silos, often to the detriment of re-
search advances. The most effective route to over-
come cultural barriers includes supporting interdis-
ciplinary work with long-timeline funding initia-
tives, providing resources for interdisciplinary cur-
riculum, and providing training initiatives for sci-
entists interested in working at the interdisciplinary
interface between mathematics and biology.

Achieving just a subset of these goals would trans-
form our ability to understand and predict complex bi-
ological systems.Wewill explore examples and ongoing
work needed within each of these goals below.

Cross-scales approaches
Siloing of biology means that some mathematical mod-
els that are very well known in certain sub-fields
are often unknown beyond their immediate sphere
of application. There are a few significant exceptions
that demonstrate the broad applicability of mathemat-
ical models across biological scales. Here, we present
examples of foundational models developed at the
organismal- and ecological-scale (Lotka–Volterra com-

petition models and Hardy–Wienberg population ge-
netics models) that have been successfully applied
across biological scales to define, describe, and pre-
dict biological outcomes. Then we will outline a few
examples of underutilized mathematical models, more
common to one biological level than another, and pro-
pose how they may be applied in other biological
contexts.
Ecologists have used mathematics to describe phe-

nomena for decades, including the Lotka–Volterra
competition models (Lotka 1925; Volterra 1926) and
the Hardy–Weinberg equilibrium of population genet-
ics (Hardy 1908; Edwards 2008). Because competition
for resources takes place at all levels of biology, com-
petition models originally used to describe organismal
(predator–prey) competition have been readily adapted
to describe chemotaxis in slime molds (Mizukami and
Winkler 2017), cancer cell competition (Goyal, Bhard-
waj and Prakash 2021), competition for light between
trees (Magal and Zhang 2017), and evolution (Aristide
and Morlon 2019). In addition to being applied across
multiple biological scales, competition models have
also been modified to incorporate biological stochas-
ticity (Zhu and Yin 2009) and adapted to accommo-
date increased biological complexity including interfer-
ence (Hsu 1982), seasonal succession (Hsu and Zhao
2012), and the changing speed of invasive speciesmove-
ment (Hosono 1998). Competition models are actively
used in mathematics to look at the dynamics of the
models themselves (introduced in Baigent (2010), e.g.,
(Nathan Ngoteya 2015)), and even to grapple with the
challenge of evolutionary factors (Zhang and Lam 2013;
Afraimovich et al. 2008).
While othermathematicians and biologists alike have

moved to dynamic systems models, the early Lotka–
Volteramodel is a great example of how biologicalmod-
els can be adapted cross-scales and to model and pre-
dict biological systems with increasing complexity. An-
other classic cross-scales mathematical model adapta-
tion can be found in disease transmission models. For
example, SIR models (susceptible-infected-recovered)
which have been successfully used to predict both hu-
man and animal disease spread (e.g., (Almaraz, Gómez-
Corral and Rodríguez-Bernal 2016)) have also been
adapted to model non-biological systems, such as pre-
dicting the economic implications of the COVID-19
pandemic (Ellison 2020). However, while these exam-
ples demonstrate cross-scales adaptation of some mod-
els, other models can fail when crossing phylogenetic
lineages or are not easily integrated with heterogeneous
genomic, signaling, and environmental data (Le Novère
2015).
Agent-based models (ABMs) are commonly used

in ecology (reviewed in Willem et al. (2017)) and are
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Integrating math modeling and complex biology 3

Fig. 1 Frontiers for integrating mathematical modeling and complex biological systems. In order to fully realize the integration of
mathematical modeling and biological systems, work in four key areas must be emphasized and supported. Cross-scales Integration:
Development and validation of mathematical models that can readily scale to other biological systems. Integrated Feedback Loops:
Leverage not only model refinement and iteration but also model-driven experimental design to obtain sound, parameterized data for
model development. Increasing Complexity: Development of models that are robust to increasingly complex biological systems.
Overcoming Cultural Barriers:We must support the integration of mathematical modeling and biology through integrated research
workforce training, sustained collaborative funding, and curriculum development.

simulation models that offer a way to test our un-
derstanding of latent mechanisms driving visible pat-
terns on many scales. ABMs can have both mobile and
static “agents” whose interactions the programmer con-
trols. This allows simulation of organisms (or cells or
molecules) and their surrounding environments to un-
derstand the drivers of a biological pattern. For exam-
ple, some patterns might include the local abundance
of a species or the way cancerous tumors grow. Since
one of the purposes of ABMs is to model latent proper-

ties of a system resulting in an observable phenomenon,
they can be used at any biological scale, though they
have been most prominently used in ecology (Grimm
1999; DeAngelis and Grimm 2014) and disease dynam-
ics (Reviewed in (Willem et al. 2017)).While still under-
utilized compared to the cross-scales competitionmod-
els described above, ABMs are starting to be applied in
other contexts from modeling cellular membrane for-
mation to evolution (Rangel et al. 2018) and ecosys-
tem processes (Grimm, Ayllón and Railsback 2017). See
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Models Library of built in models in the program Net-
Logo (Wilensky and Resnick 1999).
Since ABMs are a bottom-up approach to scientific

questions, one can model physiological or cellular pro-
cesses that could be the drivers of behavior or even ul-
timate drivers of population dynamics (e.g., McEntire
and Maerz 2019; Sears and Angilletta 2015). In addi-
tion to revealing latent properties of a system, the ABM
modeling process also often highlights gaps in our un-
derstanding of a system. When modeling in a bottom-
up approach, one may discover there is a crucial aspect
of the system we do not understand. Variance between
model predictions and experimental observations re-
veal latent processes, factors, or parameters that are
yet to be studied in detail; thus indicating where fu-
ture studies should be initiated, often at a different bi-
ological level. For example, when modeling salaman-
der activity time based on biophysical models and local
weather conditions, the model suggested the salaman-
ders should be active more often and for much longer
than is observed in the field (McEntire andMaerz 2019).
Further studies and field observations may clarify this
discrepancy between the mathematical model and true
salamander behavior. Additional studies on an alterna-
tive physiological function may instead offer a better
mechanism driving salamander activity patterns. Fur-
thermore, we know the model referenced above is not
completely capturing the drivers of plant climbing be-
havior, as field observations recorded climbing outside
themodel rule (unpublished data). ABMs are limited by
known information, but need to be carefully curated to
ensure they are parsimonious.

Not only can thesemodels be applied inmultiple con-
texts, ABMs can be used to simultaneously model mul-
tiple levels of biology. Many ABMs embed mathemat-
ical models or population estimation models as a part
of the modeling process. This offers an opportunity to
simultaneously model systems that we know are inter-
connected. For example, when modeling the usage of
burned habitats by turkeys, we used descriptive mod-
els based on known movement patterns to estimate the
probability of movement into a burned area despite be-
ing unable to exactly understand an individual turkey’s
decision making process (Sullivan et al. 2020). ABMs
can thus be used to ask increasingly complex ques-
tions or include more variation. However, ABMs are
limited by being data demanding, making technolog-
ical advances all the more important. Another limita-
tion to the wide adoption of versatile models (including
ABMs) is that researchers must first know what mod-
els are being used at other systems/scales, andmust also
have the opportunity to collaborate to apply newmodel-
ing approaches to other systems/scales. Such cross-scale
adoption of models could provide insights and alter-

native viewpoints to increase understanding of a wider
range of biological systems.
Cross-scale adoption is challenging because it is dif-

ficult to keep up with techniques from other fields, and
it can be a struggle to understand how to implement a
new modeling type. To aid in cross-scales adoption of
models, we suggest first determining the type of model
needed to answer the research question (such as con-
ceptual, statistical, predictive, and so on), then iden-
tify whether a top-down or a bottom-up approach is
desired. For example, a scientist interested in adopting
ABMs to their question would do well to consider the
pros and cons of ABM for their system. They might
consider that many traditional models commonly used
in ecological studies provide information about a sys-
tem based on collected data while ABMs can use this
data to test their outcomes or as parameters for how the
model behaves. Second, ABMs are limited by the data
available, which sometimes is difficult tomeasure.How-
ever, ABMs do offer the ability to include stochastic fac-
tors and behavior and can also be used to find gaps in
knowledge or to estimate latent properties of a system.
Once an appropriate modeling strategy has been deter-
mined, it is encouraged to consult papers that use the
same strategy (regardless of the application/specialty) to
see what alternative methodologies are used. Inevitably,
applyingmultiple types ofmodels is essential for under-
standing and investigating complex biological systems.

Increasing complexity
A challenge in biology is how to build mathematical
models that maintain efficacy as they are adapted to de-
scribe our increasingly complex understanding of bi-
ology. Here, we would like to make a distinction be-
tween “complexity” and “complicatedness” following
(Sun et al. 2016) who distinguished the two as refer-
ring to model behavior (complexity) and model struc-
ture (complicated-ness). When we continue to use the
word complex in this paper, we are referring to biolog-
ical complexity rather than model complicatedness, as
the latter can be unhelpful when trying to understand
a multifaceted system. Overcomplicated models at any
level are unhelpful, and models need to be just com-
plicated enough to appropriately model biological com-
plexity of the system being studied.
At the molecular scale, computational modeling

approaches are increasingly important for describing
complex cellular function based on physical princi-
ples, especially in the field of microbial metabolism
(Keseler et al. 2013). The same is true for ecological sys-
temswhere physical principles can be incredibly impor-
tant for understanding and making predictions about
species interactions with each other and the rapidly
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changing environment (e.g., Peterman and Gade 2017;
Riddell et al. 2017; McEntire and Maerz 2019). Early
models of microbial function progressed from strain
characterization and phenotyping (Breed, Murray and
Hitchens 1944) to the Central Dogma of molecular bi-
ology (Crick 1970) that related hereditary information
with biochemical function, to genome-scale metabolic
models (Duarte 2004) and network models (Perez-
Garcia, Lear and Singhal 2016) that describe relation-
ships between organisms. In isolation, these models
accurately describe and, in some cases, predict cel-
lular function. For example, the fields of metabolic
engineering and synthetic biology are predicated on
past successes transporting molecular and biochemi-
cal modules from one organism to another with reli-
able outcomes. However, we cannot yet predict micro-
bial metabolism from genomic data without extensive
experimental curation. Furthermore, modeling multi-
species microbial communities is in its infancy, and we
are far from being able to forecast an organism’s evolu-
tionary trajectory in silico. Though it is possible some
of the techniques proposed in the previous section on
adapting cross-scale models may help push this idea
further.
If we could accurately predict species or commu-

nity metabolism from genome information, we could
rapidly accelerate work focused on the design and
growth of natural microbiomes to inhibit pathogens
and increase plant, animal, or humanhealth (Ainsworth
2020), or bacteria to clean the environment of pollutants
(Ojuederie and Babalola 2017), to name a few examples.
Research has shown that microbes interact in complex
ways with host organisms and with each other; they can
be either harmful or helpful to the plant or animal host
depending on environmental and nutritional parame-
ters (Lewin-Epstein and Hadany 2020). Accurately pre-
dicting species or communitymetabolism fromgenome
information could also be critical to conservation ef-
forts when trying to make predictive models about
species that are difficult to find, isolate, and/or cul-
ture. If it were possible to determine metabolism of
any organism from environmental DNA, it could of-
fer better models of habitat and spatial distribution.
One example is the bacterium Escherichia coli (E. coli),
an inhabitant of the gastrointestinal tract that bene-
fits the host by synthesizing vitamin cofactors and by
contributing to a hostile environment for incoming
pathogenic microbes(Cardinale, Joachimiak and Arkin
2013). When sufficient technical prowess and experi-
mental data are available, organisms like E. coli can be
engineered to attack pathogens (Kurtz et al. 2019) or to
deliver drug therapeutics to the host (Claesen and Fis-
chbach 2015). Many microbes are genetically tractable,
and researchers at private, academic, and federal re-

search laboratories are engaged in trying to understand
how to engineer awider variety of organisms andhow to
use cooperative behaviors of microbes for human ben-
efit (Freed et al. 2018). Tremendous resources are being
invested by every US federal research agency as we seek
to improve the health and function of biological systems
at every level.
The challenge in modeling organism function,

whether they be microbial or macroscale, is that the
biological information-environment space is immense.
As foreshadowed in the Central Dogma, accurate de-
scription of cellular function requires integrating mul-
tiple data types. For instance, to predict the function
of a microbe in a community requires knowledge of
the environment (temperature, pH, nutrients, and their
concentrations; Isaac Newton Institute Fellows et al.
2016), the genetic information carried by the cell (Wu
et al. 2009; which may include such things as plasmids,
lysogenized viruses, or transposons, etc.), patterns of
gene expression and co-regulation of suites of genes,
the function of the proteins and enzymes encoded by
the genes (Bergthorsson, Andersson and Roth 2007),
and the probability for genetic exchange (de la Cruz and
Davies 2000; Oren et al. 2014).

Population-, community-, or landscape-level mod-
els have similar challenges of complex environments
and interactions. For practical technical reasons, exper-
iments are often carried out by reducing system com-
plexity to the point that researchers (often undergrad-
uate and graduate students) can observe an unequiv-
ocal binary response. For example, in microbial sys-
tems we can reduce the complexity by focusing on sin-
gle homogenous populations of cells under defined cul-
ture conditions over short timescales to avoid the “prob-
lem” of evolution (Großkopf et al. 2016) that is observed
in longer-term experiments. Similarly in ecological sys-
tems, we may reduce questions to a binary of commu-
nity composition in urban or suburban environments.
Through various experimental approaches, we have

made tremendous advances in understanding biologi-
cal systems from molecular and biochemical functions
of discrete metabolic systems to broad scale ecological
patterns. However, it is challenging to integrate mod-
eling data and various types of experimental observa-
tions. For instance, just because a gene is present in a
genome does not mean that it is expressed, and gene ex-
pression does not always correlate with protein expres-
sion level (Gygi et al. 1999; dos Reis 2003; Colin, Libri
and Porrua 2011), resulting in phenotype heterogene-
ity in a population. As a consequence, researchers fa-
miliar with methodologies that produce discrete quan-
tifiable results are sometimes uncomfortable extrapolat-
ing into more complex systems research in which re-
sults are more often expressed as statistical probability
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outcomes. However, in order to understand or predict
biological function we must develop models that in-
tegrate across the information-environment space and
can scale with the complexity of the biological system.

A systematic approach is needed to explore the
vast biological information-environment space and a
community of researchers with organism and system-
specific expertise who can seamlessly collaborate to
develop new software for modeling in a common
platform. The Department of Energy Knowledgebase
(KBase; Arkin et al. 2018) is aiming to serve the
need for a metabolic modeling “playground” where
researchers iteratively explore modeling methods, de-
velop new software applications, refine, and propagate
successes to create a platform from which useful soft-
ware tools can emerge. KBase allows convergence be-
tween biology and computer science researchers, al-
lowing them to experiment with scale and complex-
ity to create application workflows and software sys-
tems that incorporate increasingly sophisticated ma-
chine learning tools grounded in biological and physi-
cal theory (Suthers et al. 2021). For instance, constraint-
basedmetabolicmodeling that takes chemicalmass bal-
ance equations and cellular energetics into account is
being applied to genome scale models to predict mi-
crobial growth and metabolism (Bordbar et al. 2014).
Methods from software testing (Cashman et al. 2017)
can be appliedwith success to statistically sample the bi-
ological information-environment space to reduce ex-
periment time and cost, and concepts from informa-
tion theory (Sakkaff et al. 2017) may yet provide break-
throughs in describing how cells in a community in-
teract with each other (Ji and Nielsen 2015). These ap-
proaches and tools must be translated to a diversity of
organisms and biological systems and iteratively tested
in order to refine them to the point where they are gen-
eralizable (Henry et al. 2010). However, with few excep-
tions, many tools have not yet closed the iterative feed-
back loop that exemplifies a build-test cycle necessary
to accelerate tool development (Carbonell et al. 2016).

Iterative feedback loops
To understand a biological system fully, one must in-
corporate both experiments and theory development.
This iterative feedback loop method is easily seen when
trying to elucidate an atomic-level understanding of the
structural, thermodynamic, and kinetic principles that
control function of dynamic protein complexes, which
is too daunting of a task to accomplish by experiments
alone. Here, we present a case study that demonstrates
the need for development of both experimental and
modeling approaches for understanding complex bio-
logical systems.

Dynamic complexes composed of intrinsically dis-
ordered proteins (IDPs) and multiple folded pro-
teins play a fundamental role in many biological pro-
cesses, from organizing the cell-cycle, tethering cargo
to molecular motors (Fejtova et al. 2009; Gupta et al.
2012; Hammer and Wagner 2013), controlling gene-
regulation (Eastwood et al. 2021), to coordinating
the formation of mesh-like assemblies associated with
phase-separation events (Moutin et al. 2014;Myllykoski
et al. 2018), thus impacting a range of diseases from can-
cer (Becker et al. 2018; He et al. 2018: 11) to neurode-
generative pathologies (Chen, Gerwin and Sheng 2009)
to viral infection (Kirkham et al. 2015). However, de-
spite their prevalence and importance, our mechanistic
understanding of these multivalent assemblies has been
severely stymied by their large size and extreme levels
of structural and compositional heterogeneity.
Compositional heterogeneity is a hallmark of bio-

logical signaling, as many proteins can bind to a dif-
ferent number of interacting partners, all present in
equilibrium (Fig. 2). Importantly, there are no experi-
ments that can currently determine the population of
each of these species (thermodynamics), their rates of
exchange between multiple species (kinetics), and how
they look (structure). Thus, mathematical modeling of
the structures of this biologicalmixture is critical to link
the functional biological outcomes observed in experi-
ments.
To address these key questions in functional struc-

tural biology, a host of innovative methods integrating
multiscale computations with a range of experimental
modalities are necessary. We highlight here one exam-
ple from co-author E. Barbar’s lab that demonstrates the
importance of integration of experiment and compu-
tation. This case study also exemplifies the importance
of predictive models for mechanistic understanding of
highly complex biological systems that cannot be ad-
dressed through experiments alone.
In this example, a heterogeneous assembly of pro-

teins (DNA binding transcription factor called ASCIZ)
with an interacting protein (LC8) regulates transcrip-
tion of ASCIZ and is critical for sensing LC8 concen-
tration in cells, termed the “sensor hypothesis.” In this
model, high LC8 occupancy shuts down ASCIZ tran-
scription and lowLC8occupancy turns on transcription
(Fig. 2A), but a range of dynamic, low-occupancy com-
plexes (Fig. 2B) are the dominant species that function
as a rheostat to tune the biology, rather than an on/off
switch (Jurado et al. 2012; Zaytseva et al. 2014; Clark
et al. 2018). Thus, understanding via predictive model-
ing how these reversibly forming “girders” are generated
by a range of IDPs, through dynamic cross-linking with
the hub protein LC8, could transform aspects of archi-
tectural/mechanical cell biology (Fig. 2).
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Integrating math modeling and complex biology 7

Fig. 2 Combining experimental and modelling approaches to investigate molecular-scale binding systems. (A) Molecular-scale system: A
hub protein dimer (LC8, blue) coordinates with a multidomain protein (ASCIZ) with a DNA binding domain (ZnF, green) and a long
disordered tail with multivalent LC8 binding sites (orange). (B) Cut-in overview of thermodynamic model of LC8-ASCIZ binding, showing
three possible intermediate species. Boxes 1 and 2 show further detail of the equilibria of the overview diagram illustrating the complexity.
This is a relatively simple example in terms of multi-molecular binding complexities observed in biological molecular interactions (C)
Multiple experimental techniques to study protein complexes capture only an overall picture of the thermodynamics of binding and not
the microstates, heterogeneous species, and achieve only very low-throughput analysis of intermediate states. (D) Integration of modelling
with experimental data. Model depends on experimental measurements of macroscopic states to compute thermodynamic parameters for
microscopic states. Uncertainty in model-derived parameters dictate what further experiments on partial systems are necessary. Those
experiments, in turn, can be fed back to the model to improve accuracy and precision of fit parameters.

As with many biological processes, this example il-
lustrates how complex heterogeneity of this system
drives diverse functional roles, includingmodular sens-
ing, responsive feedback regulation, and intermedi-
ate/equilibrium binding states. Characterization of bi-
ological interactions actually requires an ensemble per-
spective at multiple scales—due to heterogeneity across
four distinct biological concepts:

(1) the number and orientation of interactors. In this
example, oneASCIZ protein can interact withmany
LC8 molecules at once.

(2) potential correlations between clusters of connected
interactors. In this example, the ASCIZ/LC8 com-
plex interacting with additional LC8 monomers.

(3) equilibrium interactions between given interactors.
In this example, flux as individual proteins or inter-
actors equilibrate across distinct states in (i) and (ii).

(4) cooperative behavior. In this example, cooperative
allostery where binding of LC8 at one site enhances
rate of LC8 binding at other sites (Fig. 2B).

Biologists working across scales will read this list of
factors/examples and be able to find connections to key

biological and interaction concepts that match at their
own scale. For example, replace “interactors” above
with “species” and you’ll find a list of biological con-
cepts that would be easily understood among ecologists
(e.g., inter-species interactions, predator/prey segrega-
tion, population gain/loss affecting other species, and
cooperative feedback from environment (food/water
abundance or scarcity, etc.)).
One key benefit of modeling at the molecular/atomic

scale is that quantitative measurements of these tran-
sient equilibria populations are sometimes not possi-
ble using typical binding experiments which yield val-
ues for average stoichiometries (Fig. 2C), with no infor-
mation on individual species nor on the interaction be-
tween species distributions. Thus, what is needed is in-
corporation of a novel, fully end-to-end automated ap-
proach to multi-species modeling that can robustly ac-
count for combinatorial binding equilibria. The ideal
analysis, using multiple experiments, could extract ex-
perimentally invisible species-specific binding parame-
ters, leading to population profiles of dynamic com-
plexes. Also needed is the development of more robust
experimental methods that can better quantify or trap
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transient species to make the unmeasurable measur-
able.

The biological impact of this case study is the elu-
cidation of the mechanism that underlies the regula-
tory/sensing abilities of large dynamic complexes and
their (dis)assembly pathways. Moreover with multi-
ple iterations of experiment and modeling, we hope
to reach a stage where we can predict from the pro-
tein sequence: the number of binding partners, their
individual binding affinities, the length of the disor-
dered linkers separating them, whether a certain IDP
will form a dynamic IDP assembly, phase separate, ag-
gregate, or connect multiple assemblies. These impacts
are described at themolecular scale, but similar integra-
tion of experiment and modeling feedback at the cel-
lular or organismal scale could transform our under-
standing of equilibrium dynamics regulating cooper-
ativity and competition during cancer growth or in a
complex ecosystem.

Overcoming cultural barriers
Traditional practices within science research promote
separatism amongst disciplines. These separate or in-
dependent research processes often lead to inefficien-
cies in the scientific research community (Gray 2008).
Examples of this practice include, but are not limited
to, mathematical science researchers tending to not col-
laborate with biological science researchers, and vice
versa. Increased collaborations amongst these disci-
plines could lead to solving bigger, more complex prob-
lems.

We believe the most effective routes to overcoming
these cultural barriers include programs that train new
generations of scientists and researchers to work at the
transdisciplinary interface between mathematics and
biology. A well-developed platform for networking and
exchange between these fields would provide scientists
and researchers with direct access to a wealth of knowl-
edge that was frequently underutilized by their prede-
cessors. To this end, we propose a four-fold systematic
approach that incorporates sustained funding, research
training, curriculum, and outreach (Fig. 1).

Sustained funding

Dedicated federal and private funds should be identi-
fied and earmarked to expand support for transdisci-
plinary research, and the creation of education centers.
In particular, long-term extramural funding opportu-
nities should be provided to establish and maintain in-
frastructure and research expenses for centers housed
within colleges and universities. Federally, first steps are
being taken with grant mechanisms such as the NSF
Research Coordination Networks that provide funds to

foster the creation of collaborative networks. However,
these grants lack funding for the research itself which
often fails to incentivize forming transdisciplinary re-
search networks. In the private sector, organizations
such as the American Cancer society, Burroughs Well-
come Fund, and the Howard Hughes Medical Institute
all agree that philanthropic giving has to play an impor-
tant role in investigators, building bridges between tra-
ditional and emerging fields of research (see: Training
the Next Generation, https://www.bwfund.org).

Training

Pre-doctoral and postdoctoral fellowship opportuni-
ties should be established to support trainees want-
ing to work at the mathematics/biology interface. The
National Science Foundation Simons MathBioSys Re-
search Center serves as a good example of a model
training program. This programmatches experimental-
ists and mathematician mentors with interdisciplinary
trainees with an emphasis on building interactional
expertise. Another such endeavor is the Institute for
Systems Biology (ISB, https://isbscience.org) created in
2000 as the first ever institute created for systems biol-
ogy. ISB serves as an environment where scientific col-
laboration stretches across disciplines and leverages bi-
ological approaches to understand mechanism.

Curriculum

At both the undergraduate and graduate levels, math
and biology degree programs should serve to integrate
these fields early in a student’s post-secondary train-
ing. This new transdisciplinary perspective will help ex-
pand teaching through implementing new approaches
to pedagogy. Faculty development efforts should be im-
plemented to help instructional staff develop their own
skills as well. Students at all levels would be encour-
aged to pursue independent research and engage in
laboratory courses, seminar series, and advanced elec-
tive experiences. To support transdisciplinary research,
we must create a database of training modules that in-
clude the datasets, code, and model tutorials. One fan-
tastic example of an accessible and user-friendly model
is PhysiCell (Ghaffarizadeh et al. 2018). PhysiCell is a
computationally powerful modeling approach for cell-
level competition and movement modeling, with both
easy to follow tutorials as well as crowd-sourced cur-
riculum and educational modules using the platform.
Using the success of PhysiCell as a template, a database
of training modules that include datasets, code, and
model tutorials should be developed.
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Outreach

Establishing outreach programs at the middle and high
school levels will build up strong cohorts for pursuing
transdisciplinary undergraduate degrees. The training
module database described above could be easily sim-
plified and adapted for use in middle and high schools
to show students how math has improved our under-
standing of biological questions relevant to society (i.e.,
climate change, human health, etc.).
Transdisciplinary research can be uncomfortable,

difficult, and humbling. Critical to overcoming cultural
barries is emphasizing the creation of a warm and wel-
coming environment of like-minded researchers who
aremotivated to learn collectively fromdiverse perspec-
tives. Special attention needs to be placed on setting
a stage that lowers barriers to building a community
of “learning teachers” rather than experts. At the same
time, creating such an atmosphere would undoubtedly
further encourage people from all backgrounds to con-
tinue at the interface between biology andmath and en-
hance the diverse and creative potential of the field.

Scientific outcomes
All biological sub-disciplines could benefit tremen-
dously from better integrating theoretical modeling ap-
proaches as proposed here. The theoretical modeling
approaches developed in physics and chemistry disci-
plines are powerful tools used to elucidate mechanism
and can be highly predictive under defined or con-
strained biological conditions. However, even mathe-
maticians recognize that these constrained conditions
rarely happen in biological systems. Conversely, the
complexity of biological systems necessitates new ideas
on how to express higher-order model behavior and
how to scale models to higher levels of complexity. Fur-
ther development of models that are applicable and
validated across biological scales is required in order
to fully harness the power of mathematical modeling.
Unifying biology with physics, chemistry, and math-
ematics/statistics through the use of common model
methodologies that apply across scales has the poten-
tial to revolutionize our fundamental understanding of
biology and biological systems. Finally, building a foun-
dation of integrated feedback loops between model and
experiment will serve the goals of both cross-scales ap-
plicability and dealing with increased biological com-
plexity. Feedback loops include model refinement and
iteration to better reflect the biology, which is routinely
accomplished for standard statistical modeling but is
essential for integrated predictive modeling. An addi-
tional underutilized feedback loop of using themodel to
guide experimental design is critical for efficient model
validation, easier application of models across scales,

and for maximizing return on investment for experi-
mental resources.
Accurate models have the power to transform soci-

ety by serving as a foundation for technological inno-
vation. If biological models begin to approach the pre-
dictive accuracy of physical models, we could predict
and design biology with the ease that we can design a
computer. Systematic and iterative refinement of mod-
els that describe biological systems forms the bedrock
conceptual framework needed to understand molecu-
lar, organism, and population behaviors. The develop-
ment of predictive biological models is also necessary
to generate hypotheses, to capture the drivers of biolog-
ical heterogeneity, and to inspire future discovery. In-
tegrated cross-scale models will inevitably be needed
to solve pressing social challenges such as counteract-
ing the effects of climate or habitat change, reducing the
time to harvest food crops to feed a growing world pop-
ulation, curing disease, identifying and preventing the
spread of emerging infections threats, and designing bi-
ological technologies to generate clean renewable en-
ergy. These outcomes cannot be achieved unless we fos-
ter cross-disciplinary collaboration, provide long-term
funding opportunities at this interface, and train the
next generation of scientists to explore a new science
frontier at the interface between biology andmathemat-
ical modeling.
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