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Abstract—This paper presents a system for electrocardiogram
(ECG) delineation and arrhythmia classification. The proposed
system consists of a front-end integrated circuit, a delineation
algorithm implemented on an FPGA board, and an arrhythmia
classification algorithm. The front-end circuit applies a ternary
second-order Delta modulator to measure the slope variation of
the input analog ECG signal. The circuit converts the analog
inputs into a pulse density modulated bitstream, whose pulse
density is proportional to the slope variation of the input analog
signal regardless of the instantaneous amplitude. The front-end
chip can detect the minimum slope variation of 3.2 mV/ms®
within a 3 ms timing error. The front-end integrated circuit was
fabricated with a 180 nm CMOS process occupying a 0.25mm?
area with a 151 nW power consumption at the sampling rate
of 1 kS/s. Based on the slope variation obtained from the front-
end circuit, a delineation algorithm is designed to detect fiducial
points in the ECG waveform. The delineation algorithm was
tested on a Spartan-6 FPGA. The delineation system can detect
the intervals, slopes, and morphology of the QRS/PT waves
and form a feature set that contains 22 features. Based on
these features, a rotate linear kernel support vector machine
(SVM) is applied for patient-specific arrhythmia classification
of the ventricular ectopic beat (VEB), supraventricular ectopic
beat (SVEB), and heartbeats originating in sinus node. The
performance of the proposed system is comparable to the recently
published methods while providing a promising solution for
the low-complexity implementation of future wearable ECG
monitoring systems.

Index Terms—ECG delineation, second-order Delta modulator,
ternary circuits, slope variation, fiducial points, patient-specific,
machine learning, support vector machine.

I. INTRODUCTION

Cardiovascular disease (CVD) has been recognized as the
leading health problem for humans according to the world
health organization’s estimation [[1]]. To alleviate such a chal-
lenge, many resources have been spent on CVD research [2]]
to prevent the death caused by CVD [3]. The risk of CVD can
be reduced by timely diagnosis, which is highly dependent on
the electrocardiogram (ECG) technology. The most important
function of ECG is to detect and classify different types of
arrhythmia, which reflects the health status of the heart. Some
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acute arrhythmic symptoms may cause a high death rate if the
patient does not receive timely treatment, while some chronic
arrhythmia symptoms need to be monitored continuously to
prevent further health deterioration. Thus, continuous monitor-
ing of the ECG signal and the timely detection of arrhythmic
symptoms from the ECG signal is critical for CVD control.
However, most of the current ECG processing still depends
on people, especially nurses who have been trained with basic
skills to identify basic types of arrhythmia, since the number of
cardiologists is limited for the increasing number of patients.

Wearable ECG sensing devices are promising solutions to
provide continuous monitoring and arrhythmia classification
[4]-112] with help from telemedicine. However, the current
wearable solutions of arrhythmia classification from both
academia and industry are still far away from meeting the
same level of skills of a nurse. For example, [13] can detect
12 types of arrhythmia but a nurse needs to know about 30
types of arrhythmia to pass the national certification test. In the
current industrial solutions, Medtronic Reveal LINQ Insertable
Cardiac Monitor (ICM) also relies on telemedicine, which can
provide results but with a considerable amount of delay. Other
solutions, such as Kardia band and Apple Watch 4, both can
only detect one type of arrhythmia of atrial fibrillation, which
only happens 2% in the population under 65 years old. One
common problem of the abovementioned system is that the
raw data transmission occupies a large portion of the power
consumption, which limits the recording time so that most
of those solutions can only monitor a 30-second episode of
ECG. An on-chip ECG processing algorithm may reduce the
communication power of wearable devices. In other words,
autonomous ECG sensing and processing systems that could
perform continuous monitoring and rudimentary arrhythmia
classification are highly expected in the future.

Many algorithms have been proposed to perform arrhythmia
classifications [9]], [11]], [15]-[18]. Some recent arrhythmia
classification systems are directly applying deep learning
algorithms, which usually do not provide an interpretable
process. Interpretable means that the intermediate decision
process of the algorithm is understandable by humans. Since
interpretable arrhythmia classification is important for making
human-machine collaborative medical decisions, in this work
we follow the typical classification procedures. A typical
arrhythmia classification has several steps, including feature
extraction, delineation, and classification. First, important in-
formation of the raw ECG waveform is extracted as features,
such as baseline, slope, and turning points. Second, delineation
is performed based on the features of the ECG to identify the
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Fig. 1. (Top) Wearable heartbeat monitor system, (Middle) The scope of thi

s work focusing on the parallel ternary second-order Delta Modulator based

analog-to-feature converter for delineation and arrhythmia classification, (Bottom) ECG Delineation highlighting the key fiducial points and intervals. Modified

from [14].

fiducial points, including the onset, peak, and end-points of
the key waves including the P wave for atria depolarization,
the QRS complex for ventricular depolarization, and the T
wave for ventricular repolarization. Then the final step is
arrhythmia classification, which is done by analyzing the
wave morphologies and measuring critical timing information.
Usually, the wave morphologies include the P wave deflection,
QRS complex duration, and ST elevation while the critical
timing information of the fiducial points includes the R-R
interval, P-R interval, and the duration of the QRS complex.
This process is also similar to the procedures of how a nurse
is reading the ECG.

One of the biggest challenges in arrhythmia classification
comes from P wave detection. Compared to the QRS complex,
the P wave usually has a much lower amplitude, which
sometimes is even lower than the baseline wandering. Baseline
wandering is another critical challenge in ECG signal pro-
cessing. To overcome these problems, wavelet analysis [[19]-
[22] becomes the most typical algorithm in conventional ECG
processing. Multi-level SVM [23]], Frequency Analysis [24],
and Adaptive Decision [25]] methods were also proposed for
ECG processing based on successive-approximation-register
(SAR) analog to digital converters (ADCs). However, due to
the high computing overhead, wavelet methods are difficult
to be implemented on wearable sensors. One reason causing
these problems is that a typical ECG sensor is based on
the conventional analog-to-digital converter. A regular ADC
generates too much data with a high sampling rate, which

makes it difficult to extract feature information from a large
amount of data. To solve this problem, analog-to-feature
converter [26] is proposed, which can directly extract the
important features such as slope, peaks, and turning points
during the analog-to-digital conversion. Currently, the main
methods for such converter include level crossing ADCs, and
the Delta modulated analog-to-feature converters [27]. They
both convert the input analog waveform into bit-streams and
use the pulse density to measure the slope of the waveform.
They also offer reduced power by avoiding multi-bit analog-
to-digital conversion at each sample.

Nevertheless, these bit-stream based ECG sensors have
a common problem of baseline wandering. This makes it
difficult to detect a fiducial point in the waveform if such
a point is “buried” in the baseline slope and does not become
a local peak. For example, in [28] we proposed a Delta
modulation based analog-to-digital converter, which converts
the analog input into a ternary pulse stream. The converted
output pulse stream is a pulse density modulation of the slope
of the input analog waveform. While the system is good at
measuring the slope, it struggles to measure the peak of the
waveform especially the small peaks such as in the P wave.
This makes it difficult to perform delineation especially for
the low amplitude waves such as the P wave and T wave.
Moreover, since baseline wandering may impose additional
slopes on the entire waveform, the detection accuracy may
drop. A similar situation also applies in the level-crossing
based ADCs. Therefore, new analog-to-feature converters are
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expected to find the turning points in the input waveforms even
in the presence of a large baseline wandering.

To solve the abovementioned challenges, we proposed a new
analog-to-digital-converter based on the second-order Delta
modulator [14]. The second-order Delta modulator performs
a pulse density modulation of the slope variation of the
input signal using the oversampling method [29]], [30]. The
turning point of the input waveform can then be identified.
Moreover, the slope variation rate can be measured using a
counting window method. Although other second-derivative
analog feature extraction circuits [31], [32] were reported
before, to the best of our knowledge, this is the first analog-to-
feature conversion circuit that can directly measure the slope
variation of an analog signal using the Second-order Delta
modulator. The second-order Delta modulator circuit is similar
to a regular first-order Delta modulator while it uses a first-
order Delta modulator as the quantizer. To perform an efficient
measurement, a ternary output is applied. The new feature
of slope variation is then directly extracted from the output
ternary bitstreams. With the help of the slope variation feature,
the p-wave delineation can be achieved to help the arrhythmia
classification. We also note that the circuit has good handling
of baseline wandering since it is only sensitive to slope
variation but not sensitive to the slope or the instantaneous
amplitude of the analog signal.

This paper is expanded from our previous work [14] of
the second-order ternary Delta modulator integrated circuit.
In this paper, we extended the scope of [14] by adding
the digital feature extraction algorithm and the arrhythmia
classification algorithm, the overall system is illustrated in
Fig. |I} The main innovation and contribution of this paper
include: (1) designed feature extraction methods based on
the output bitstreams of the second-order Delta modulator;
(2) developed an arrhythmia classifier using a patient-specific
rotation-hyperplane support vector machine based on the new
features; (3) validated the proposed classification method using
the benchmark MIT-BIH database with AAMI standard [33]]
and compared the results with the first-order Delta-modulator-
based feature extractor and classifier from [28]]. The novelty
of the work focuses on the implementation of a Second-
Order Delta Modulator integrated circuit and the proposed
algorithm. The proposed system detects the turning points and
measures the slope variation rate of the analog waveform. To
the best of our knowledge, this is the first reported Second-
Order Delta Modulator circuit on ECG signal processing.
New concepts have also been proposed such as the slope
variation rate of the turning point. The proposed circuit has the
advantages of performing delineation and classification with
baseline wandering resistance, which is promising for future
wearable ECG classification devices. The remaining paper
is organized as follows: Section II presents the circuits and
systems of the second order Delta modulator and the proposed
feature extraction algorithm. Section III introduces the classi-
fication method using the features extracted from the second-
order Delta modulator. Section IV shows the circuit testing
results and the classification results. Section V discusses the
advantages, limitations, and future work. Section VI concludes

this paper.

II. CIRCUITS AND SYSTEMS DESIGN

The overall system block diagram is shown in Fig. [I] The
system consists of the front-end sensing circuit and the back
end digital signal processing block. In this work, we focus on
analog-and-digital processing so we assumed that the front-end
amplifier has obtained the amplified analog ECG waveform.
To obtain accurate processing results, we adapt the parallel
processing method proposed in our previous work [28] to
separate the QRS and PT channels. The QRS channel uses a
lower integration gain to focus on QRS detection while filter-
ing out the small waves and noise. The PT channel relies on the
QRS channel to locate the QRS complex to avoid saturation.
The second-order Delta modulators convert each channel into
two digital bitstreams of pulse density modulation. Then
the digital processing unit performs feature extraction and
classification using the bitstreams from the second-order Delta
modulator. The patient-specific classification method using
the rotation hyperplane [34] is applied to classify arrhythmic
heartbeats over normal heartbeats. The classification result is
then recorded and compared to the benchmark database.

A. Ternary second-order Delta modulator circuits

The second-order Delta modulator performs a pulse density
modulation of the input analog signal, in which the pulse den-
sity is proportional to the input slope variation. Since a ternary
output is applied, the circuit is essentially a 1.5 bit analog-to-
digital converter which calculates the second derivative of the
input signal. The second-order Delta modulator for P/T waves
has an extra preamplifier with a gain of 4 so it is more sensitive
to a lower slope variation compared to the second-order Delta
modulator for QRS detection. The positive or negative output
pulses of the ternary comparator are generated only when
the slope of the input signal has an up or down variation.
Regardless of the initial input slope, an upward-turning point
(UTP) of the analog input results in positive output pulses
(POSONE) while a downward-turning point (DTP) leads to
negative output pulses (NEGONE). The output pulses from
both the second-order Delta modulators are processed digitally
to extract timing information of the fiducial points and analyze
the P wave morphology for arrhythmia classification.

The ternary second-order Delta modulator circuit consists of
two integrators, a quantizer, and two subtractors. The simpli-
fied schematic is shown in Fig. 2} Two integrators are applied
in the feedback loop. Each integrator consists of a sampling
capacitor Cs, an integrating capacitor Ci, and an operational
trans-conductance amplifier (OTA). The ternary quantizer uses
two comparators and compares the second integrator output
with two pre-defined thresholds. If the input signal has a
constant slope, the output of the second quantizer is then
between the two thresholds so no output pulse is triggered.
The capacitor Csub is the subtraction capacitor that generates
and holds the voltage difference between the input signal
and the feedback voltages. The OTA circuit is adopted from
[35] which uses the recycling folded cascode architecture to
enhance transconductance, gain, and slew rate. The comparator
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Fig. 2. (Top) Simplified circuit schematic of the ternary second-Order Delta Modulator DM 2 with the truth table of comparator processing (C' M P) logic.
(Bottom) Schematic of the OT' A (left) and the comparator (right) with the timing diagram of the Non-overlap clock (bottom). Modified from [[14].

circuit [36] uses a pseudo-differential topology to avoid static
power consumption. The schematics of the OTA and the
comparator are shown in Fig. 2] The switching phases of
sampling, integration, and comparison are controlled by non-
overlapping clocks as also shown in Fig. 2] In the circuit
operation, the rising edge of ¢cmp should be earlier than the
falling edge of ¢2e so that the sampling capacitor Cs can be
pre-charged with the current ternary state for the coming next
integration.

The determination of the gain and threshold voltage is a
correlated process, since the amplitude of input signal, inte-
gration gain, and reference voltage are mutually affected. The
design process has mainly 3 steps. (1) We decide the size of the
integration capacitor range due to area limits, then the gain of
the second-order delta modulator can be preliminary decided.
(2) We set up a Sinc function in MATLAB with assumed QRS
complex amplitude and to decide the reference voltage that
prevents the second-order delta modulator saturation and make
the modulator respond well to the input signal, and also the
decided reference voltage should tell enough information since
larger reference voltage value means fewer pulses, i.e., less
information. (3) We run parameter analysis simulation with
several channels of data in the MIT-BIH arrhythmia database,
such as record 100 for good signal quality data and record
207 for bad quality data. We then check False-Negative (FN)

and False-Positive (FP), and repeat this step with fine-tuning
of gain and reference voltage until a satisfying result, then we
fix this integration gain and a reference voltage and use it to
test all records in the database and design the circuit.

B. Delineation

The output bit-stream from the ternary second-order Delta
modulator contains positive or negative pulses. These pulses
are generated by the two comparators only when the slope
of the input signal has an up or down variation. The output
pulses are then processed digitally to perform delineation
for locating the fiducial points of the ECG waveform. In
the preliminary validation, the digital processing design was
implemented on an FPGA, which can be converted into mixed-
signal integrated-circuits in future development. The digital
processing contains QRS complex detection and P/T wave
detection. Each fiducial point and interval are calculated and
stored by dedicated digital logic and memory buffers.

The first step of the processing is to locate the QRS
complex, which is the most distinct mark in ECG signals. The
system locates the QRS complex by counting the number of
UTP and DTP in a sliding window. The result is then compared
with predefined thresholds to check if the UTP/DTP pulse den-
sity meets the standard of the R wave. A positive or negative
R wave is detected if a sequence of three consecutive sections
of UTP-DTP-UTP or DTP-UTP-DTP meets the pulse density
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thresholds in each individual section. After the detection of the
R wave, the algorithm searches back to locate the onset point
of the Q wave and the peak of the R wave in data caches.
The data cache is a first-in-first-out shift register that stores
128 ms bit-streams from the output of the second-order Delta
modulator. In the data cache, the search algorithm looks for
the first pulse (FiP), which is defined if there is no pulse in
its prior 10 clock cycles. Then a pulse cluster (PC) is marked
as all the pulses in the next 20 clock cycle window after the
FiP. The FiPs before and after the R peak are identified as the
onset and the endpoint of the QRS complex.

The P wave and T wave detection are performed with help
from the QRS complex detection, which uses similar methods.
In particular, the T wave detection starts after a QRS complex
is detected while the P wave detection is working in parallel
with the R wave detection. This is because in some arrhythmia
like the Second or Third degree Atrioventricular Blocks, there
may be more than one P wave before each R wave. When the
R wave is detected, the P wave detection process is paused and
it would resume once a T wave is recognized. The onset, peak,
and endpoint of the P wave are obtained from the P/T channel
bitstream stored in a data buffer. The P wave morphology is
classified using the UTP and DTP information. During these
processes, we implemented protection mechanisms to avoid
interference from noise or other disturbance. For instance,
any single pulse with no neighboring similar pulse within its
prior or later pulse cluster window would be considered as
a noise pulse in the bit-stream, which is removed. We also
applied the duration constraints of each PQRST wave and the
intervals between each pulse cluster. These constraints filter
out unreasonable pulses in the bitstream. In the last step,
the timing information and key intervals are calculated after
delineation.

A simplified flowchart of the delineation process is illus-
trated in Fig. 3] The system starts with the second-order
Delta modulator for the QRS detection DM?2_grs and keeps
monitoring the downward slope variation SV;. The R peak
is detected once SV, reaches a predefined threshold SVg.
Then the algorithm searches backward and forward in the
bitstream to find the Q peak and the S peak, respectively.
A Q peak candidate is detected when the upward slope
variation SV,, is greater than a predefined threshold SVg
while an S peak candidate is detected when SV,, is greater
than another predefined threshold SVs. Then the algorithm
checks if the QRS duration meets the goal of a predefined
timing T'Hgrs, if not the algorithm searches for other Q and
S candidates until the fiducial points of the QRS complex can
be identified and meet the predefined thresholds of both timing
and slope variation. After the delineation of the QRS complex,
the algorithm starts checking the bitstream from the second-
order Delta modulator for the P and T waves DM?2_pt using
the small-wave delineation algorithm (SW D). The algorithm
searches the bitstream backward to find the P wave and
forward to find the T wave. The SWD searches both SV, and
SV, in the bitstream to find potential fiducial points of the P
waves and T waves using the predefined slope variation of the
P/T waves. Once the fiducial point candidates are identified,
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Fig. 3. Delineation algorithm flowchart with measured and preset timing and
slope variation parameters.

the algorithm checks the timing of those points to make sure
they meet the requirement of the P wave and T wave duration.
If the delineation process is successful, the morphology of the
P wave and T wave are classified. The morphology of the
P waves and T waves include upright, negatively deflected,
biphasic +/-, or biphasic -/+. The delineation process concludes
with identified fiducial points from the bit-stream and the
recorded morphology of the P and T waves.

C. Feature Extraction and Classification

The delineation results directly provide important features
for arrhythmia classification. In this work, we calculate 22 fea-
tures from the delineation results, which includel?2 intervals, 7
slopes, and 3 morphologies. The 12 intervals are (1) QRSpk:
the interval from the Q peak to the S peak, (2) QpkRpk:
the interval from the Q peak to the R peak, (3) RpkSpk:
the interval from the R peak to the S peak, (4) PpkRpk:
the interval from the P peak to the R peak, (5) PonQpk:
the interval from the P onset to the Q peak, (6) PonQon: the
interval from the P onset to the Q onset, which was also known
as the PR interval, (7) PpkQpk: the interval from the P peak to
the Q peak, (8) RpkT'pk: the interval from the R peak to the T
peak, (9) QonT'pk: the interval from the Q onset to the T peak,
(10) SpkTon: the interval from the S peak to the T onset, (11)
Prior R-R: the interval between the prior R peak to the current
R peak, and (12) Next R-R: the interval between the current
R peak to the next R peak. The slope variations include (1)
the P wave onset, (2) the P wave peak, (3) the Q wave peak,
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Fig. 5. The goal of the classification is to identify (a) Heartbeats originating
in sinus node, (b) SVEB heart beat, and (c) VEB heart beat.

(4) the R wave peak, (5) the S wave peak, (6) the T wave
onset, and (7) the T wave peak. The morphology refers to the
directions of the waves (upward or deflected), which include
(1) P_morph for the P wave morphology, (2) QRS_morph
for the QRS complex morphology, and (3) T_morph for the
T wave morphology. The features are illustrated in Fig. ]
The arrhythmia classification is challenging due to the large
inter-patient and intra-patient morphology variations of the
ECG signal. In this work, we focus on the classification
on heartbeats originating in sinus node (class N beat), the
supraventricular ectopic beat (SVEB), and the ventricular
ectopic beat (VEB). VEB exhibits a bizarre morphology of the
QRS complex since the ectopic focuses on ventricles instead
of the sinoatrial node. On the other hand, SVEB usually has a
normal QRS morphology, in which the QRS complex duration
is between 60 and 100 ms. However, the location of the QRS
complex in SVEB is abnormal, which results in a variation of
the R-R interval. The differences among the normal heartbeat,
VEB, and SVEB are illustrated in Fig [5] Other morphologies
of the ECG signal make it difficult to form the classifier. For
example, the performance of the classifiers is usually evaluated
by the MIT-BIH database, in which nearly half of the 48
recordings have multiform Premature Ventricular Contractions
(PVC). The PVC morphology makes the classifier modeled by
machine learning techniques uneasy to work when the model
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Fig. 6. The flow chart of the classification process.

meets new patients.

A patient-specific classifier becomes a promising method
to address the abovementioned problem and improve the
classification accuracy. In our prior work, we have proposed a
combination of global classification and local classification for
patient-specific training [34]. The global classifier is trained by
the overall data while the local classifier is trained using some
of the data from a specific recording. This combined classi-
fier is validated by cross-validation. Patient-specific classifier
brings another advantage of reducing the hardware and power
cost when it is implemented on wearable sensors. For instance,
although support-vector-machine (SVM) has been widely used
to solve practical problems due to its excellent generalization
ability, the hardware implementation cost is directly related
to its kernel function. It has been shown that a radical basis
function (RBF) kernel costs more than 50000 times power
consumption per classification compared to a linear kernel
[37]]. Though linear kernel SVM has a lower classification
accuracy, the patient-specific method can partially compensate
for the drawback of the linear kernel to improve the accuracy,
and balance both the generalization performance and the
patient feature’s importance enhancement. Therefore, in this
paper, we use a linear kernel SVM which rotates the global
classifier to a certain angle towards the local classifier to obtain
a patient-specific linear SVM classifier.

For patient specific design, the recordings of the MIT-BIH
Arrhythmia database are divided into two groups following
data split method in [38], the training data group (7,): 101,
106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,
203, 205, 207, 208, 209, 215, 220, 223, 230, and the inference
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data group (I,): 100, 103, 105, 111, 113, 117, 121, 123, 200,
202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233,
234. The four paced recordings 102, 104, 107, and 217 are
not included in Ty and .

A detailed classification process is illustrated in Fig. [0
The process starts from the T, data. After a 22-fold cross-
validation and parameter optimization, the global hyperplane
is obtained which is referred to as the global classifier. Then
the local classifier is formed by training with 500 heartbeats
from each record in I,. The global classifier and the local
classifier are then combined to find the inference hyperplane
using the hyperplane rotation method to obtain the patient-
specific classifier. After that, the rest data from each record in
1, are used to test the inference accuracy of the VEB/SVEB
classification. Finally, the classification performance, including
the F1 score, Accuracy, Specificity, Sensitivity, and Precision,
are calculated.

One of the main advantages of the proposed feature ex-
traction and classification method is that it achieved an inter-
pretable arrhythmia classification. Medical decisions are essen-
tially made by humans including nurses and cardiologists, who
are reading the ECG signal by their intervals and morphology.
While humans could make mistakes due to fatigue or lack
of practice, automatic classifications could assist people by
providing suggestions. However, one of the most important
features of the system is to let the human understand how
the algorithm makes a certain decision, especially when the
machine result is different from the decision made by people.
Therefore, an interpretable arrhythmia classification approach
is critical to achieving the human-machine collaborative deci-
sion making [39]. Most of the current arrhythmia classification
systems are based on deep-learning [10], [L16], [40]-[42]
and wavelet transform [[I0], [43]], in which the intermediate
decision process is difficult to be understood by people. Since
the proposed method uses the turning points, intervals, and
morphology of the ECG signal, it is much easier to be
interpretable by people. This makes the proposed system a
promising solution for future human-machine collaborative
medical decision making.

III. EXPERIMENTAL RESULTS
A. Integrated Circuit Testing Results

The ternary second-order Delta modulator was fabricated
with TSMC 0.18um CMOS process. The microphotograph
of the fabricated chips with the circuit layout is shown in
Fig. The chip occupies 0.248 mm?. The second-order
Delta modulator performs a pulse density modulation of the
input slope variation. Example input and output waveforms
for UTP and DTP with different slope variation rates are
illustrated in Fig. [§] When the input signal has a higher slope
variation, the output pulse cluster has a higher pulse density
regardless of the initial direction of the slope. Since we focus
on ECG delineation and classification, the main task of the
second-order Delta modulator is to identify the location of the
turning point and measure the slope variation rate. Therefore,
the primary performance of the circuit is evaluated by its
response time, timing error, sensitivity, and dynamic range.

N-OCLKGen|

Fig. 7. The microphotograph of the fabricated ternary second-order Delta
modulator chip [14].

The response time and timing error are related to identifying
the turning point while the sensitivity and dynamic range are
related to the capability of measuring the slope variation.

The response time is defined by the timing delay from the
turning point of the analog input to the first pulse of the digital
output. The timing error measures the standard deviation of the
response time. Fig. |9| (Top) presents the delay variation of the
turning point detection. The measured mean (m) and standard
deviation (s) of the response time are 5.014+2.17 ms for UTP
and 5.30+2.40 ms for DTP. The statistics of the delay time
variation as shown in Fig. [9] (Top) depends on both the signal
amplitude, the threshold value, and the integrated circuit itself.
Since the standard deviation is less than 3 ms, it shows that
the sensor circuit meets the medical standard tolerance of ECG
delineation, which is 10 ms for the onset of the P wave and
6.5 ms for the onset of Q wave [32]]. Fig. 0] (Bottom) presents
the measured result of the mean response time for both UTP
and DTP as a function of the input slope variation and the
DC voltage of the turning point. The input slope variation is
measured by the ratio between the slope difference (before
and after the turning point) and the turning time.

The input slope variation is measured by counting the
number of the output pulses in the pulse cluster after the
turning point. Since most of the information in ECG signal is
below 100Hz [44]], based on our prior research experience [28]],
we believe 1 kS/s is enough to cover the signal bandwidth.
Since the sampling rate is 1 kS/s, the turning time of an abrupt
turning point is considered as 1 ms. The slope variation is
measured using the unit mV/ms?. In our experiment, we use a
20 clock cycle window to count the number of pulses. Fig. [I0]
(Top) measures the mean output pulse density versus the input
slope variation at different DC levels of the turning points.
The output pulse density is proportional to the input slope
variation except when the input DC level is close to the power
rails. Fig. [I0] (Bottom) presents the statistical distribution of
the output pulse density with linearity increased input slope
variation when the input DC level is in the middle between
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Fig. 8. Measured waveforms of the analog input turning points and the
output digital bitstream with delays, (Top) Upward turning points (Bottom)
Downward turning points. Modified from [T4].

the power rails.

The minimum and maximum measurable input slope vari-
ation rates depend on the sampling frequency, integration
gain, and the DC level of the turning point. If the slope
variation is too small, the delay time may increase and become
unstable. The minimum measurable slope variation means
the input turning point can stably stimulate an output pulse
within 20 clock cycles after the turning point. The minimum
measurable slope variation is also defined as the sensitivity
of the second-order Delta modulator. In our experiment, the
minimum input slope variation is 3.2 mV/ms?. On the other
side, the second Delta modulator starts overloading when
the maximum input slope generates consecutive pulses in
the 20-clock cycle window. The measured maximum slope
variation in our system is 27.2 mV/ms?. The ratio between the
maximum and minimum input slope variation of the second
Delta modulator is defined as the dynamic range, which is
18.6 dB in our system.
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Fig. 9. (Top) Measured response time (delay) distribution of the second-order
Delta modulator with different slope variations, (Bottom) mean response time
with different slope variations and the DC voltages of the turning points.
Modified from [T4].
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PERFORMANCE SUMMARY AND COMPI?{EI;;(I;:I\E TO STATE-OF-THE-ART ECG SENSORS.
This [45] 132] [28] [4] [46] [23] [24] [25]
work JSSC19 JBHI18 TBCAS18 JSSC16 | JSSC14 | BioCAS19 | ISSCC14 ASSCC18
Function* 1-4 2 1-4 1-4 2 1-3 2-3 2 2
Second Proportional Second First Level Wavelet | SARADC | SAR ADC SAR ADC
Method Order Delta Derivative Derivative | Order Delta | Crossing + Zero Multi-level | Frequency Adaptive
Modulator Control + FIR Filter Modulator ADC Crossing SVM Analysis Decision
Process 180nm 65nm MCU 130nm 130nm 180nm 180nm 65nm 180nm
Fower 1.0V 0.5V 3.7V +£06V 12V 0.5V 1.0V 0.6V 1.0V
Supply
Sampling Asynch-
1 kS/s 2 kS/s 0.25 kS/s 1 kS/s 3 kS/s 1 kS/s 0.5 kS/s 2 kS/s
Rate ronous
Power
(ADC + 151 nW 830 nW 990 nW 360 nW <1 uW 457 nW 910 nW 45 nW 115 nW
Detection)
Timing 5.3+2.4 22.3+14 14.9+15.1
Error N/A N/A N/A N/A N/A N/A
Mt ms ms ms
Area (mm?) 0.62x0.4 1.5x1 N/A 0.52x0.56 0.7x0.9 2x2 0.6x0.3 1.45%2.29 | 0.375x0.375

* Functions: (1) P wave detection; (2) R wave detection; (3) T wave detection; (4) onset/offset detection of P/T wave and QRS complex.
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Fig. 11. The proposed prototype categorizing the morphology of the P waves
by identifying the pattern of UTP and DTP (a) upright (b) negatively deflected
(c) biphasic (+/-) (d) biphasic (-/+). Modified from [[14].

B. Delineation System Testing Results

The digital signal processing of the bit-stream for delin-
eation is performed on a Spartan6 XC6SLX9 FPGA board.
The hardware system is tested using integrated circuits of the
second-order Delta modulator. The input signal is an imitative
normal ECG signal. The P wave morphology is classified as
upright, negatively deflected, and biphasic by the order and
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Fig. 12. Delineation testing from an oscilloscope using the second-order Delta
modulator chip. The delineation algorithm is implemented on an FPGA.

types of the pulse clusters in the second-order Delta modulator
output, as illustrated in Fig. [TT} The morphology of the P wave
is more important in common arrhythmia classification such
as Sinus, Atrial, Atrioventricular Block (AVB), Junctional, and
Premature Complex (PVC, PAC, PJC), which are required for
the nurses to pass the national ECG exams. Such common
arrhythmias usually do not involve the timing and morphology
of T waves. The T wave is usually associated with more acute
and severe conditions. To fairly compare the results with other
references, this paper focuses on the classification between
VEB and SVEB, which also excludes T waves. However, the T
wave detection method is also important and has been covered
in this paper. In the future, we are going to test advanced
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Fig. 13. Measured ECG delineation using the second-order Delta modulator
chip and the FPGA. The system is robust to baseline wandering.

software and hardware systems to address more sophisticated
arrhythmia classification which involves the morphology of
the T waves.

Fig. [12] presents the screenshot of the digital oscilloscope
that marks the fiducial points of the input ECG signal. Fig.
[13] shows that the system is robust to baseline wandering even
when the baseline amplitude is the same as the R peak. This is
a unique feature of the proposed system thanks to the property
of the second-order Delta modulator. Table [l summarizes the
performance of the proposed ECG sensor and compares results

from recent related references.

C. Delineation and classification performance

The delineation system is also validated using all the 48
records in the MIT-BIH Arrhythmia Database for the QRS
detection. Following the methods in [28]], the performance of
the QRS detection algorithm is evaluated by three parameters,
which include the sensitivity (Se), the positive prediction
(PPV), and the detection error (Error). In addition, for the
R peak detection, m and s values are simulated, where m
represents the mean errors in the time domain between the
cardiologist annotations and the detection by the proposed
algorithm while s stands for the average of the intra-recording
standard deviations. The simulated results are illustrated in
Table [

The first 500 beats of each recording in I, plus a basis
dataset are selected to train the local classifiers while all data in
T, are selected for training the global classifier. Then the rest
data of each recording in I, are used for inference to evaluate
the proposed classifier and the performance of the system. In
case that a certain heartbeat class may not be included in the
local training set due to the limited data volume (which make
the local classifier invalid), records 209 and 215 are selected to
be added into the local classifier’s training dataset as the basis
dataset, plus the patient dependent training set (500 samples).

The performance of the arrhythmia classification system
is validated by simulation with the features extracted after
delineation using the data in the MIT-BIH arrhythmia database
with AAMI standard. The five parameters that are used for
evaluating the performance include the F1 score (F'1), accu-
racy (ACC), sensitivity (SE), specificity(SP), and positive
predictive value (PPV). They are calculated using the true-
positive (1T'P), true-negative (I'N), false-positive (F'P), and
false-negative (F'N) values. The 22-fold cross-validation is
performed using the method of and applied to Ty, for
assessing the classifier performance and finding the optimum
weights. The folds were split into training data that includes
21 folds with each fold containing one recording, and test
data containing data from the remaining fold (recording).
According to the AAMI standard, the heartbeats in the MIT-
BIH Arrhythmia database are divided into five classes, class
N for heartbeats originating in sinus node, S for SVEB, V
for VEB, F for fusion beats, and Q for unknown beats. The
overall performance of five classes of heartbeats is shown in
Table [Tl

We follow the scope of the recent references that focused
on the VEB and SVEB classification. VEB and SVEB are
chosen since they are the most important types of arrhythmias
to be classified. Thus, two binary classifications are performed,
SVEBs vs non-SVEBs and VEBs vs non-VEBs. The average
classification performance compared with recent references
are presented in Table The detailed evaluation of each
patient in I, is reported in Table M For SVEB classification,
the F1 score, sensitivity, specificity, and positive predictivity
value are 0.82, 88.8%, 98.9%, and 76.1%, respectively, and
for VEB classification, the numbers are 0.95, 95.1%, 99.7%,
and 95.2%, respectively. The accuracy of the SVEB and VEB
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TABLE II
PERFORMANCE OF THE PROPOSED QRS DETECTORS
Total Se PPV Error m s
b Peaks EN FP (%) (%) (%) (ms) (ms)
100 2273 0 0 100.00 100.00 0.00 5.26 1.30
101 1865 3 4 99.84 99.79 0.38 1.59 2.48
102 2187 0 0 100.00 100.00 0.00 -1.19 11.70
103 2084 6 0 99.71 100.00 0.29 5.92 1.23
104 2229 2 0 99.91 100.00 0.09 -6.09 16.02
105 2572 37 8 98.56 99.69 1.75 2.55 2.67
106 2027 60 2 97.04 99.90 3.06 2.16 597
107 2137 8 1 99.63 99.95 0.42 -3.77 2.04
108 1763 118 18 93.31 98.82 7.71 -24.33 23.72
109 2532 24 0 99.04 100.00 0.95 1.12 5.45
111 2124 4 6 99.81 99.72 0.47 -36.52 11.54
112 2539 0 1 100.00 99.96 0.04 4.79 2.24
113 1795 1 0 99.94 100.00 0.06 4.50 1.09
114 1879 4 2 99.79 99.89 0.32 10.19 14.06
115 1953 0 0 100.00 100.00 0.00 6.80 1.14
116 2412 29 3 98.80 99.87 1.33 6.01 3.08
117 1535 0 1 100.00 99.93 0.07 -17.41 7.18
118 2278 3 1 99.87 99.96 0.18 437 7.07
119 1987 1 1 99.95 99.95 0.10 3.95 5.85
121 1863 4 1 99.79 99.95 0.27 -1.39 3.46
122 2476 1 1 99.96 99.96 0.08 0.88 1.68
123 1518 3 0 99.80 100.00 0.20 6.55 1.16
124 1619 11 0 99.32 100.00 0.68 0.72 427
200 2601 15 4 99.42 99.85 0.73 -3.03 17.92
201 1963 76 0 96.13 100.00 3.87 5.68 1.92
202 2136 12 0 99.44 100.00 0.56 5.06 1.44
203 2980 139 37 95.34 98.71 591 -4.32 15.93
205 2656 4 0 99.85 100.00 0.15 2.92 6.20
207 2332 268 75 88.51 96.49 14.71 -28.38 34.30
208 2955 46 18 98.44 99.39 2.17 9.15 13.51
209 3005 8 6 99.73 99.80 0.47 5.69 1.41
210 2650 30 17 98.87 99.36 1.77 0.48 7.64
212 2748 1 3 99.96 99.89 0.15 5.37 1.81
213 3251 2 1 99.94 99.97 0.09 1.59 8.34
214 2262 9 2 99.60 99.91 0.49 4.69 4.49
215 3363 8 1 99.76 99.97 0.27 5.10 3.55
217 2208 9 2 99.59 99.91 0.50 -14.63 11.70
219 2154 0 0 100.00 100.00 0.00 2.55 3.57
220 2048 0 0 100.00 100.00 0.00 6.83 2.38
221 2427 7 2 99.71 99.92 0.37 4.09 3.82
222 2483 6 7 99.76 99.72 0.52 3.39 4.16
223 2605 1 1 99.96 99.96 0.08 3.58 8.71
228 2053 40 29 98.05 98.58 3.36 1.35 7.88
230 2256 0 2 100.00 99.91 0.09 7.76 1.64
231 1571 0 0 100.00 100.00 0.00 2.96 1.16
232 1780 3 1 99.83 99.94 0.22 7.35 1.91
233 3079 10 1 99.68 99.97 0.36 -3.84 15.56
234 2753 3 0 99.89 100.00 0.11 3.44 1.10
Total 109966 1016 259 99.08 99.76 1.16 0.57 12.92
TABLE III

OVERALL FIVE CLASSES OF HEARTBEATS CLASSIFICATION RESULTS

Predicted classes

n s \ f q
Q[ N[32069 | 343 | 124 | 862 | 6
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classification achieved 98.5% and 99.4%, respectively. The
result of this work achieved the highest sensitivity in both
SVEB and VEB classification among the related works. The
global classifiers trained with and without record 209 and 215

TABLE IV
AVERAGE CLASSIFICATION RESULTS COMPARED TO THE STATE OF ART

SVEB VEB
Methods

Fl1 ACC SE SP PPV Fl1 ACC SE SP PPV

Hu et.al [47] 080 955 826 97.1 717 - - - - -
Ince et.al [12] 058 974 635 99.0 537 086 983 846 987 874
Chazal et.al [38] 0.61 959 877 962 470 095 994 943 99.7 96.2
Alexander et.al [11]  0.68 - 862 975 567 094 - 924 996 948
Lietal [9] 0.89 994 855 994 923 090 989 830 989 926

Kiranyaz et.al [16] 0.62 97.6 603 992 635 092 990 939 989 90.6

Tang et.al [34] 083 988 793 99.6 882 092 99.0 928 994 0916
Proposed DM2-22 0.82 985 888 989 761 095 994 951 99.7 952
Proposed DM2-22 * 0.82 985 888 989 759 095 994 951 99.6 949

* Overall performance of the proposed method with global classifier trained without 209 and 215.

(training basis for local classifier) show a slightly difference
of the overall classification performance as shown in Table
and the influence can be ignored.

IV. DISCUSSIONS

This paper presented a novel ternary second-order Delta
modulator for monitoring electrocardiogram signals, including
delineation and arrhythmia classification. The main contri-
bution is proposing the new concept and methods of slope
variation measurement of the analog signal from the bitstream
generated from the second-order Delta modulator. Then the
feature of slope variation is obtained directly after the analog-
to-digital conversion. Based on the proposed circuits, we also
proposed new algorithms to calculate the slope variation,
which is characterized from the fabricated integrated circuits.
New concepts for slope variation measurement, including
sensitivity and dynamic range, are proposed and measured.
Another contribution of the paper is the ECG delineation
and classification algorithms based on the slope variation
measurement. Novel feature sets are proposed for delineation
and the patient-specific classification methods are applied on
the bitstream data from the second-order Delta modulator.
The algorithm is validated using the MIT-BIH database. The
experiment results show that the performance of the system is
better than a first-order Delta modulator based ECG monitor-
ing system, as validated by the classification sensitivity. The
proposed system along with the algorithm is promising for
future wearable arrhythmia monitoring systems.

In future work, the second-order Delta modulator circuit
could be further optimized for power reduction. For example,
currently, the threshold is determined by an optimizing process
through parameter analysis. The next generation of the system
would include the front-end amplifier that has a variable gain
with feedback gain control to form an automatic gain control
(AGC) block to make sure that the measured ECG signals
from the analog-front-end have a relatively stable amplitude.
The AGC is based on our QRS detection algorithm and the
slope variation extracted from the output bitstream of the
proposed second order ternary Delta modulator. If the QRS
detection algorithm cannot detect the target for a certain time,
it assumes the signal amplitude is not large enough, so the
AGC can adjust the variable gain amplifier (VGA) to amplify
the input ECG signal, and vice versa. The front-end amplifier
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TABLE V
CLASSIFICATION RESULTS FOR EACH OF THE TEST PATIENTS
Number of Beats Number of Beats Detected SVEB VEB

REQ | N+F+Q N \ N+F+Q S \% FpP F1 ACC SE PPV SP F1 ACC SE PPV Sp
100 1744 28 1 1742 28 1 1 0.59 | 98.59 6429 | 5455 99.14 1 100.00 | 100.00 | 100.00 | 100.00
103 1582 2 0 1574 2 0 0 0 99.87 0.00 100.00 - 100.00 - - 100.00
105 2046 0 26 2015 0 26 | 144 100.00 - 100.00 | 0.75 | 99.17 96.15 60.98 99.21
111 1623 0 1 1623 0 1 7 - 100.00 - - 100.00 0 99.94 0.00 100.00
113 1293 2 0 1290 2 0 0 0.44 | 99.61 100.00 | 28.57 99.61 100.00 - 100.00
117 1034 1 0 1033 1 0 1 1 100.00 | 100.00 | 100.00 | 100.00 - 100.00 - - 100.00
121 1361 1 1 1356 1 1 3 0 99.93 0.00 100.00 1 100.00 | 100.00 | 100.00 | 100.00
123 1016 0 2 1013 0 0 0 - 100.00 - - 100.00 - 100.00 - - 100.00
200 1392 28 681 1391 28 669 | 36 | 0.17 | 97.27 21.43 14.63 98.30 | 0.96 | 97.37 91.78 | 100.00 | 100.00
202 1570 54 12 1568 47 7 0 | 064 | 97.72 | 70.21 58.93 98.54 | 0.35 | 99.32 | 42.86 30.00 | 99.57
210 1968 20 162 1958 19 158 | 4 | 049 | 99.02 52.63 45.45 99.43 | 0.92 | 98.83 90.51 93.46 | 99.49
212 2248 0 0 2248 0 0 4 - 100.00 - - 100.00 - 100.00 - - 100.00
213 2525 27 199 2523 27 198 0 0.63 99.34 55.56 71.43 99.78 0.84 | 97.31 95.96 74.22 97.41
214 1565 0 197 1557 0 196 0 - 100.00 - - 100.00 | 0.97 | 99.32 94.39 99.46 99.94
219 1604 3 47 1602 3 47 0 0 99.82 0.00 100.00 | 0.97 | 99.82 95.75 97.83 99.94
221 1626 0 301 1623 0 297 0 - 100.00 - - 100.00 | 0.99 | 99.69 97.98 100.00 | 100.00
222 1774 209 0 1774 208 0 8 0.47 82.59 72.12 3432 83.82 0 99.24 - 0.00 99.24
228 1300 3 250 1298 3 239 | 50 0 99.81 0.00 100.00 | 0.98 | 99.48 96.65 | 100.00 | 100.00
231 1071 0 0 1069 0 0 0 - 100.00 - - 100.00 - 100.00 - 100.00
232 271 1009 | O 271 1005 | 0O 10 1 99.69 99.90 | 99.70 | 98.89 - 100.00 - - 100.00
233 1879 4 696 1875 4 689 [ O 0 99.84 0.00 - 100.00 | 0.99 | 99.34 | 9826 | 99.27 99.73
234 2200 50 3 2198 50 0 0 0.63 98.49 58.00 69.05 99.41 - 100.00 - - 100.00

also performs noise filtering. The oversampling rate may be
reduced to save system power and computing overhead. Since
the proposed system performs a full delineation of the ECG
signal, it could be applied to the detection of more elaborate
types of arrhythmia, such as distinguishing Atrial Premature
Beat (APB), PVC, Left Bundle Branch Block (LBBB), etc.
The delineation accuracy may be improved by combining other
analog-to-feature-conversion circuits and systems such as the
first-order Delta modulator or Sigma-Delta modulator. Clinical
testing using an ECG signal directly from a physical ECG sen-
sor would be helpful to further evaluate the performance of the
proposed system. In future work, the current 22 features could
also be optimized or reduced to save computing overhead.
This work focuses on ECG signal processing instead of
ECG signal acquisition. So, we assume that the front-end
circuit would have enough gain to ensure the amplitude of
the input signal. In fact, in our experiment we used a signal
generator to provide the input signal. In the real application,
the system should have a front-end circuit to perform sig-
nal amplification and perform noise filtering, which will be
studied in our future work. The ultimate goal is to perform
human subject testing to evaluate the performance of the
proposed system as wearable sensors that can perform on-
chip arrhythmia classification. Although the proposed system
can handle baseline wandering, the system is not designed
for ambulatory monitoring where motion artifacts can be
large. Besides, although hardware-efficient implementation is
emphasized, the patient-specific linear kernel may not provide
high classification performance compared to the RBF kernel.

V. CONCLUSION

An ECG monitoring and arrhythmia classification system
has been presented. The system applies a parallel ternary
second-order Delta modulator to convert the ECG signal to two

channels of ternary bit-streams for QRS complex monitoring
and P/T wave monitoring. The bitstream is a pulse density
modulation of the slope variation of the input analog signal.
The ternary second-order Delta modulator chip is fabricated
and tested for recording slope variation of the input ECG
signal without measuring the instantaneous amplitude. The
sensitivity of the slope variation measurement is 3.2 mV/ms?
and the dynamic range is 18.6 dB. The chip consumes 151 nW
when sampling at 1 kS/s. The measured slope variations are
applied to ECG delineation, which detects the fiducial points
in ECG waves. We proposed a delineation algorithm based on
the second-order Delta modulated bitstream, which detects the
fiducial points of the ECG signals and has been tested in an
FPGA prototype along with the second-order Delta modulator
chip. A feature set including 22 features has been designed for
arrhythmia classification. A rotation linear kernel SVM is ap-
plied for arrhythmia classification. The classification algorithm
is verified through the MIT-BIH Arrhythmia Database. Two
binary classifications are performed and evaluated according to
the AAMI standard including SVEB, VEB, and the heartbeats
originating in sinus node. The sensitivity of the SVEB and
VEB classification achieved 88.8% and 95.1%, respectively.
The proposed system is promising for future wearable ECG
monitoring systems with interpretable machine learning.
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