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Abstract—This paper reports a novel optical localization
method, including both the hardware design and algorithm
design, to track mobile Unmanned Aerial Vehicles (UAVs). The
method relies on a circle-shaped blinking LED marker installed
on the UAV and uses a single Dynamic Vision Sensing (DVS)
camera to sense the temporal difference of the video streams.
A temporal-filtering algorithm processes the video stream and
detects the target marker by filtering out the background image.
The triangulation-based spatial localization algorithm captures
the trace of the target with the help of the prior knowledge
of the physical size of the marker. The proposed system was
evaluated in flight tests and compared with ground truth data
provided by a motion capture system. The proposed system
provides a simple and accurate localization solution for UAV
tracking with a low computing overhead.

Index Terms—Aerial Systems: Perception and Autonomy,
Localization, Visual Tracking, Event-based Camera.

I. INTRODUCTION

Spatial localization is critical in applications involving
Unmanned Aerial Vehicles (UAVs). As UAVs can reach
heights and places where humans could not normally go
without the same safety concerns or cost , UAV tech-
nologies have been advancing at a rapid pace with many
important applications, such as aerial photography, building
safety inspection, precision agriculture, storm tracking, and
weather surveillance [2]—[4]. In particular, UAVs have been
playing important roles in the COVID-19 pandemic due to
the safety and medical concerns of quarantine [5]. In such
applications, identifying the spatial location of UAVs is one
of the inevitable tasks for precise track and control.

Spatial localization is defined as the capability to obtain
the location information of a UAV relative to a reference
point. Such location information could be calculated either
using its onboard sensors to estimate its own location (e.g.,
cameras, RF transceivers, and GPS) or through off-board
sensing technologies installed in surrounding infrastructure,
i.e., a motion capture system. These methods are also referred
to as self-localization and cooperative localization [6]. UAV
localization typically requires the location accuracy of the
UAV in the level of centimeters and the distance between
the UAV and the reference point in the level of tens of
meters [[7]. Novel localization methods are anticipated to be
able to replace or compensate for the shortcomings of the
conventional UAV localization methods that use satellite or
Wi-Fi signals, especially in application scenarios where those
signals are unavailable.

Spatial localization methods can be categorized according
to signal sources and types [8]. Based on the signal source,
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Fig. 1: Experimental environment for real-time 3D localiza-
tion testing, where a flying quadcopter was being tracked
by both a motion-capture system and a single dynamic
vision sensor running the proposed temporal 3D localization
algorithm.

there are active and passive methods. In an active method,
the signal source is generated on a UAV and tracked by
some sensing technologies attached to a base station on
the ground [[6]. For example, the UAV can take images or
videos of the environment to calculate its own location, or
it can transmit the data to the base station to let it calculate
the location of the UAV. In a passive method, none of the
localization tasks are performed by the UAV while the base
station is in charge of tracking the location of the UAV using
various types of signals, such as radio/RADAR signals []g[],
acoustic/sonar signals -, , optical/LiDAR signals [12]],
and a taut tether [13], [14 These methods have different
advantages and hmltatlons in terms of their performance in
UAV spatial localization.

The main design specifications in UAV-localization meth-
ods include accuracy, detection range, computing overhead,
power consumption, reliability, latency for real-time applica-
tions, the dependency of landmarks, and the dependency of
GPS or Wi-Fi signals. For instance, the main consideration in
UAV delivery applications is accuracy, while in aerial photog-
raphy the interest may shift to computing overhead, which
is directly related to battery life. The design specification
determines the system implementation methods. For example,
if the data-collection devices and algorithms for localization
are implemented on a UAV, the communication power can be
saved but the sensing and data processing power increases.
On the other hand, the implementation of a localization
system on a base station allows for more computational
overhead and alleviates extra weight for onboard sensing and
processing, but limits the range of tracking.



The primary design challenges of UAV localization meth-
ods are limited power consumption and resolution. For in-
stance, the resolution of regular GPS- and Wi-Fi-based lo-
calization methods is at the level of meters, which would not
be accurate enough for many applications. Moreover, there
are scenarios where GPS or Wi-Fi signals become unavail-
able. Image-based localization methods face challenges from
limited power in either communication or processing. These
methods usually have high computing overhead, which can
limit the system battery lifetime. For instance, in the case that
the computing is performed on a base station, transmitting
raw videos from the UAV to the base station would be
expensive in communication power and limits the detection
range. An image-processing algorithm implemented on the
UAV usually consumes considerable power and shortens the
flight time [[15[]. Some image-based methods rely on specific
ground landmarks, which limit the detection range and could
not be applied in new areas.

To address the aforementioned challenges, this paper
presents a novel single-camera-based optical spatial local-
ization system that consists of a circle-shaped blinking LED
ring as the marker on a UAV, an event-based dynamic vision
sensing (DVS) camera for image sensing including video
capturing and pre-processing, a band-pass optical filter for
object detection, and a 3D localization algorithm running
on a base station. The circle-shaped LED blinking at a
predetermined frequency is mounted to the perimeter of the
UAV as the marker. The image stream of blinking events
sensed from the DVS camera is loaded into a buffer in
the base station processor. Then a band-pass filter identifies
the pixels with the target blinking frequency in the image
streams so that the circle-shaped marker from the image can
be detected and filtered out from the background. The 3D
location is finally calculated using the known actual physical
diameter of the circle-shaped marker and the Field of View
(FOV) of the image sensor. The proposed localization system
has been validated in real-time flight tests using a motion
capture system, as shown in Fig.

The main contribution is the development of an accurate
real-time 3D UAV localization system without environmental
knowledge except for the physical parameters of the LED
marker. The system does not spend onboard communication
or computing power of the UAV. All of the sensing and
processing tasks are performed at the base station. The event-
based DVS camera provides a unique approach to identify
the blinking LED marker from the background of the image
stream so that the UAV can be detected to achieve high-
speed localization. This method is based on an assumption
that the background does not contain objects that have the
same blinking pattern as the LED marker. This method has
a higher fidelity compared to other methods that use color
or spectrum of the marker to identify the target, which is
more susceptible to background noise. The detected blinking
LED marker facilitates the tracking of the position of the
UAV relative to the camera, which is described by the
relative distance and the azimuth and elevation angles (i.e.,
the coordinates of the UAV in the spherical frame centered

at the camera). It can also help to estimate the attitude (roll
and pitch) angles of the UAV. The proposed localization
system does not demand extra power from the UAV except
for lighting the blinking LED marker. Thanks to the DVS
output features, the localization algorithm running at the
base station also has a low computing overhead compared
to existing image-based localization methods. This makes it
suitable for implementation on a mobile station in the future.

This paper is organized as follows. Section [[I] introduces
a summary of related work. In Section the hardware
system is presented including the circle-shaped blinking LED
marker, the event-based DVS camera, and the base sta-
tion multi-thread operation. Section [[V| describes the signal-
processing approach and the algorithms applied for object
detection and spatial localization. Section [V] presents the ex-
perimental setup, results, and performance analysis. Section
discusses the advantages, limitations, and future scope of
the proposed work. Finally, Section concludes the paper.

II. RELATED WORK

The proposed system is related to optical UAV localization
methods, high-speed event-based dynamic vision sensors, and
single-camera image processing algorithms. The adoption of
UAVs in the workforce has greatly increased the number of
localization solutions being created. The primary considera-
tions of choosing localization methods depend on the specific
application regarding the localization accuracy, detection
range, and computing overhead. Several UAV localization
methods have recently been proposed based on tracking the
optical markers on a UAV using cameras as the reference
point with image sensing and processing algorithms. These
methods apply the prior knowledge of the markers, such
as shape, color, and size, to obtain the information of
a UAV’s attitude and its location relative to the camera.
Using a constellation of markers, pose-estimation can be
achieved with high accuracy. For example, Walter et al. [16]
implemented a leader-follower system using ultraviolet (UV)
markers with a hexagonal orientation for recognition and
tracking of the leader UAV by the follower UAV. Teixeira et
al. [17]] implemented a UAV localization system with Infrared
(IR) LED markers that were oriented in a pentagonal fashion
around the UAV. The small size of LED markers makes them
easily attachable to UAVs, with markers emitting in certain
sections of the UV/IR spectrum being usable for outdoor
testing. However, the marker constellation increases the com-
puting overhead of image processing. It is also challenging to
correctly identify the markers if the background environment
also contains the same UV/IR light source.

In our prior work [18] [19], we proposed alternative
solutions of applying circle-shaped markers so that the major
axis of the marker’s ellipse shape in the image can always be
available in the image for measuring the UAV distance while
avoiding the problem of identifying the constellation. We also
proposed and validated localization methods using blinking
LED markers with temporal filters in the image processing
algorithm to remove the background noise pixels. However,



due to the lack of high-speed DVS cameras, these methods
were not implemented on a UAV for flight testing.

High-speed event-based image sensing is crucial to per-
form real-time UAV localization and tracking. In event-based
sensing, the pixel intensity change in an image is directly
linked to calculating the object location [20]]. Using temporal-
difference images to detect moving objects while filtering out
the background can be used as an effective means of track-
ing [21]]. Tracking objects by their moving edges using a fast
event-camera with compensation for motion blur has been
implemented in [22f], where an accumulation of events and
a motion-compensation model are used to greatly improve
performance. In this paper, we applied these methods for
enabling UAV tracking using an event-based dynamic vision
sensor. The event-based image sensor provides high-speed
event sensing, which is critical to accurately identify and
track the location and attitude of a UAV.

Single-camera or monocular-vision-based localization sys-
tems [23[|-[26] have become popular in recently reported lit-
erature compared to multi-camera systems [27]]. For instance,
[28] presents an example of building a 3D model of the
environment and then using convolutional neural networks to
accurately map and navigate a UAV in an arena. The authors
in [29] proposed a method using image masks of an object
with the monocular vision algorithm running on graphic
processing units (GPU) in conjunction with a high frame-
rate color camera for pose-estimation of robots. Similarly,
[30] applies monocular vision along with Radio Frequency
Identification (RFID) and antennas to obtain the 3D position
from a 2D image using triangulated methods. These methods
achieve reliable localization using a single camera combined
with other types of sensors or prior-knowledge of the target
or the environment. The common challenges in the above-
mentioned monocular vision methods come from the com-
puting overhead of image processing algorithms for real-time
tracking, power cost for communication and processing, and
the environmental noise that affects the accuracy of localizing
the color-based markers.

Considering the advantages and shortcomings of the
above-mentioned methods and systems, in this work we
designed a DVS-based single-camera system with blinking
markers and temporal filter algorithms to achieve UAV lo-
calization with low computing overhead. The DVS directly
computes the temporal difference image in the hardware to
save post-processing power and time. The following sections
describe the implementation, verification methods, and re-
sults.

III. HARDWARE DESIGN AND IMPLEMENTATION

The system contains the blinking marker, the DVS camera,
and a base station. In this system, UAV localization is
achieved based on a minimal modification of a UAV by
adding a circle-shaped blinking LED as the marker that
is tracked by a high-speed event-based DVS camera. The
base station runs an image processing algorithm to remove
environment background noise, detect the marker, and cal-
culate the relative location of the UAV in real-time. The
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Fig. 2: (A) Picture of the Celex4 event camera, retrieved from
the Celepixel SDK manual [31]], (B) Picture of 37 millimeter
UV/IR cut filter placed in front of the event-camera.

primary goal of designing the hardware system is to meet
the target latency, detection range, and localization accuracy.
Since the UAV can move fast, the timing resolution is set at
0.1 seconds, with a target range of 30 meters and a resolution
in tens of centimeters.

A. Event Camera

The event-based camera applied in the system is the Celex4
dynamic vision sensor [31]] from Hillhouse Technology Ltd
as shown in Fig.[2] (A). Unlike a conventional rolling-shutter-
based image sensor, the DVS camera is an address-even-
representation (AER) image sensor that generates a stream
of pixel events. A pixel event is defined as the temporal
difference of the same pixel in the image stream between
two consecutive frames. An event is generated by subtracting
the current pixel value from the previous pixel value. The
returned value reflects either a zero if the difference is below
a predefined threshold, or a one, otherwise. The event image
shows if a large enough change has taken place in a corre-
sponding pixel. This is performed using internal pixel-level
comparison circuits between frames, which also compare the
result with the threshold. Therefore, the sensor can achieve
an event rate of up to 500 frames/second. This feature saves
the post-processing computing overhead for detection and
localization. Since we applied a white LED marker ring, an
optical UV/IR cut filter is placed in front of the camera lens to
eliminate the infrared energy that may create noise, as shown
in Fig. 2] (B). Based on pixel events, temporal filters and
optical localization algorithms are implemented on the base
station. The Celex4 camera is connected to the base station
through a Spartan-6 FPGA board of XEM6301 provided by
Opal Kelly Inc. and a Universal Serial Bus (USB) 3.0 cable.
In our experimental setup, the Celex camera is set in the
event mode with the event frame time of the camera set as
4 ms.

B. Circle-shaped Blinking LED Marker

The optical marker on the UAV composes a blinking LED
ring with a diameter of 2 feet, as illustrated in Fig. 3] The
LED ring is mounted on the outside circle of the UAV. The
optical marker is expected to fulfill two requirements. First,
it should be easily distinguished from the background image



Circle-shaped blinking LED marker

Fig. 3: Picture of UAV with LED marker ring.

for object identification with minimum interference from the
noise source. In our design, this is achieved by the predefined
blinking pattern of the LED. Second, the marker should help
the localization algorithm to obtain the 3D coordinates of
the UAV using the known physical dimension of the marker.
In this design, the system uses the known diameter of the
LED ring and the FOV of the DVS camera. The LED ring
is powered and controlled by an Arduino Nano Board that
can provide a current of 100 mA. The Arduino Nano board is
programmed so that the LED is blinking at a fixed frequency
of 40 Hz. It is difficult for human eyes to sense the blinking
so the ring looks like a solid white light. The LED ring is
powered by a portable USB battery charger.

The main advantages of using a circle-shaped blinking
LED marker include that (1) the event-based sensor can easily
identify the ring by removing the background from the image
by applying a counter-based temporal band-pass filter, and
(2) the diameter of the ring can be easily measured from
the image in terms of the number of pixels regardless of the
attitude of the UAV. The system uses the diameter of the ring
in the image to calculate the distance of the UAV. Compared
with other shapes of markers, such as a hexagon [16] or a
pentagon [[17] constellation, the center and diameter of the
ring are easier to be obtained from the image.

C. Base Station

The base station collects the image data from the DVS
camera, runs the algorithm for object identification and 3D
localization, and plots the real-time trace of the UAV in a
graphical user interface (GUI). The base station is a desktop
running Ubuntu 16 LTS. The base station system application
including the GUI is written in C++. Two threads were
programmed to implement the algorithms. One thread is ded-
icated to perform a temporal band-pass filter for the blinking
LED marker identification and to display the image showing
the LED ring without a background. The other thread runs the
post-processing and optical-localization algorithm, as well
as plots the 3D trace of the UAV on the GUI showing the
3D coordinates, as illustrated in Fig. [[} The measured base
station processing latency, including both identification and

Fig. 4: Binary images obtained from the temporal band-pass
filter with the marked left, right, and center points of the
target. (A) The UAV is about level with the event camera.
(B,C) The UAV is below the event camera and the ring of
LEDs is visible. (D) The UAV is at a slightly higher altitude
above the camera.

localization, is under 100 ms so that the timing resolution of
the system can achieve 10 measurements/second in real-time.

IV. ALGORITHM DESIGN AND IMPLEMENTATION

The objective of the signal-processing algorithms is to
track the markers attached to the UAV. In this section,
a detailed explanation of a temporal band-pass-filter-based
image-processing algorithm and a triangulation-based optical
spatial localization algorithm is presented. The temporal
band-pass filter, elaborated in the first subsection, detects the
object marker from the image and removes the background
and noise from the image. The output of the temporal band-
pass filter is forwarded to the spatial localization algorithm,
which is explained in the second subsection. The spatial
localization algorithm calculates the 3D coordinates of the
UAV relative to the camera. The two algorithms are both
implemented on the base station with separated threads and
work in conjunction with each other to create an accurate
localization method.

A. Temporal Band-Pass Filter

The temporal band-pass filter takes the output stream of
events from the event camera and processes the stream into
an image output that only contains the target markers without
the image background. The temporal band-pass filter uses the
prior knowledge of the blinking rate of markers to identify
the UAV. The output of the temporal band-pass filter is a
binary image where the outline of the markers (white color)
presents as the foreground and the rest of the image (black
color) represents the environment background that has been
removed, as shown in Fig. [

The operation of the temporal band-pass filter begins from
the event camera input. The system requires the camera to
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be fast enough to take images with a much higher frequency
than the blinking rate of the target. This is because the
sampling rate should be at least two times higher than the
blinking rate to guarantee that each on and off phase of the
blinking pixel is captured. Then the events are generated
by subtracting consecutive frames. Therefore, the sampling
rate of the camera should be at least four times higher than
the blinking rate of the marker. Finally, in order to track
the movement of the target, the sampling rate should be
even higher. In our system, the camera sampling rate is 250
frames/second for the 40 Hz blinking rate of the marker.
Therefore, the algorithm should be able to handle a large
amount of data of event images from the high-speed event
camera. The incoming event images during a certain time
period are stored in a fixed-length First-In-First-Out (FIFO)
buffer as an event sampling window. The window size is the
number of frames of the event images stored in the buffer.
All the event images in the buffer are added together pixel
by pixel to generate a combined image to calculate the event
frequency of each pixel. The event frequency is compared
to an upper threshold and a lower threshold values. Only
pixels with an event frequency between the two thresholds
are selected. By doing so only the pixels blinking at the
desired frequency are identified and the background image
is removed. The event sampling window pushes out the old
frames when the buffer is full.

This temporal band-pass filter adopts a sliding-window
operation that uses a window shifting through time and
thresholding the number of events for each pixel in the
current window. The decision of whether a pixel in the image
belongs to the marker or the background image depends on
the frequency thresholds. The event sampling window deter-
mines the number of times that a pixel has changed during
the given window of time. For example, if the sampling rate
is N frames/second and the window size is W frames, a pixel
in the combined image has n events, we can estimate that the
event rate is (N -n)/W per second and the blinking rate of the
pixel is (N -n)/(2W) Hz. Since the camera sampling and the
marker blinking are not synchronized, a fixed event sampling
window is not able to precisely determine the blinking rate
of a pixel. Therefore, two frequency thresholds should be
applied instead of using only one frequency to decide if the
pixel is blinking at the desired frequency. The temporal band-
pass filter eliminates the pixels with an event rate outside
the window between the two thresholds. Only the pixels
with event rates between the upper and lower threshold are
passed and identified as pixels of the markers. A median filter
and a dilation filter are also applied to remove pixel noise.

Fig. ] illustrates a flow diagram of the processing steps of
the temporal band-pass filter.

The design parameters of the temporal band-pass filter
include the size of the event window buffer and the threshold
values, which are tuned for the blinking rate of the target
markers and the latency of the temporal band-pass filter. For
example, a larger size of the event window buffer implies a
higher resolution of detecting event rate but a higher latency
to process the image, which may cause a problem to track a
fast-moving object. On the other side, if the selected event
window size is too small, the lower timing resolution may
cause unwanted pixels in the image and create a problem
for the optical localization algorithm. Another consideration
is the blinking rate of the target. A higher blinking rate
creates more events and helps track the movement of the
target while it may require a higher sampling frequency of the
camera and more computing power. In our implementation,
the blinking rate of the LED marker is set at 40 Hz. The
output of the temporal band-pass filter is forwarded to the
spatial localization algorithm through a data buffer to avoid
data access conflict. A multi-threading process allows for
higher usage of the computing resource for both the temporal
band-pass filter and the spatial localization algorithm to run
concurrently.

B. Spatial Localization

After the event stream is processed by the temporal band-
pass filter, the 3D location of the UAV is calculated relative
to the location of the image sensor. Since the circle-shaped
marker on the UAV is captured as an ellipse in the filtered
image, the diameter of the circle can be measured as the
major-axis of the ellipse in the image, regardless of the UAV’s
position. The circle-shaped marker allows for the UAV’s
position to be estimated from various angles/altitudes with
high accuracy and low computing overhead.

The location of the UAV is calculated from the known
parameters of the system and the measured data during
tracking, as illustrated in the geometry representation of the
spatial localization system shown in Fig.[6] The x-axis and y-
axis are the horizontal and vertical directions while the z-axis
is normal to the x-y plane. The known parameters include the
diameter, D, of the LED ring marker, the horizontal field of
view (HFOV), ®, and the vertical field of view (VFOV), ©,
of the camera. We assume that the resolution of the camera
is L pixels (horizontal) by H pixels (vertical). The measured
data are the most left (X, Y7 ) and most right point (Xg, Yr)
of the ellipse in the image, with respect to the center of the
image. The physical location of the UAV is then obtained.
The physical location of the target refers to the center of the
LED ring marker relative to the camera. The physical location
data include the radial distance, p, the azimuth angle, ¢, and
the elevation angle, 6.

The geometry localization method has been proposed and
implemented in [|18]]. The center of the UAV in the image,
(X0, Y0), can be calculated as

XO:(XL+XR)/2 (1)
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Fig. 6: Geometry for localization algorithm (left), Measure-
ment setup of the target ring (right), retrieved from [18].
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Then the tangent value of azimuth angle ¢ and elevation
angle € are obtained as

tan¢:2-Xo-w 3)
tanazz.xo.% @)

Finally, the radial distance p, which is the distance between
the centroid of the target ring and the lens of the camera is
obtained as

D X 2 1
p2:(7.70> .(1+72) (5)
2 |Xo — Xg| tan® ¢
In the case that the centroid of the target is located at the
middle of the image, X is zero, p is calculated as

D L
2| Xg| 2-tan(2)

Note that tan ¢ in (5) can be obtained from (3). Since P,
O, L, and H are constant parameters, the above equations
can be calculated using multiplication without calculation
of trigonometric functions, which saves the computing over-
head. In the system implementation, the output of the spatial
localization algorithm is sent to a buffer that is accessed by a
mutual exclusion object (MUTEX) to prevent the conflict of
data being accessed at the same time, similar to the data being
sent to the spatial localization algorithm by the temporal
band-pass filter.

The spatial localization implementation includes a post-
processing filtering mechanism, in which the previous lo-
cation of the target is used to deal with flickering noise
that could disrupt the location tracking of the target. For
example, if the pixel passing through the band-pass filter is
too far away from the previous location of the target, which
is determined using a preset threshold, the system would
determine that pixel as a noise pixel, and ignore it as a part
of the target. The system effectively sets the pixel value to
zero in the new image.

This localization algorithm is designed based on the fol-
lowing assumptions. First, the target circle-shaped marker is
assumed to be fully contained within the FOV of the camera,
as shown in Fig. [6] Second, since the image sensor has a
finite resolution, it is assumed that UAV is identifiable in the
images captured by the camera. In other words, the target

p (6)

should not be too far away from the camera, otherwise if the
number of the pixels of the ellipse’s major-axis in the image
is small, the accuracy of localization decreases. Increasing
the detection range requires a higher resolution of the camera
but may increase the system processing time. In summary,
the system design trade-offs are among the resolution of the
camera, the detection range, and the relative error, and the
system processing time.

V. EXPERIMENTAL SETUP AND RESULTS

The system performance is evaluated by comparing the
tracking result from the proposed single DVS system and the
benchmark result from a VICON Mo-Cap system that has 10
infrared cameras tracking reflective markers in a 6 m x 8§ m
flight-testing arena, as shown in Fig. [l An optical band-pass
UV/IR cut filter was placed on the front of the Celex event-
camera to block the strong infrared energy from the VICON
system. During the experiments, the IR reflective markers
were attached to both the UAV and the Celex Camera. The
Mo-Cap system then tracks the reflective markers to calculate
the 3D position of the UAV relative to the Celex Camera. The
experimental environment is presented in Fig.

The relative error of the proposed localization method
is calculated by subtracting the localization results of the
single-camera system from the value of the benchmark Mo-
Cap system, then divided by the benchmark value. The two
relative error metrics calculated are the error over time and
error over distance. The relative error for each axis and
over radial distance are also evaluated. Three experimental
evaluations were carried out to assess the performance of
the optical localization with temporal band-pass filtering.
The Celex event-camera was mounted on a tripod above
the ground, so any Y-axis measurements showing a negative
value means that the target is located below the camera. The
average relative error for each axis was below 6% for each
trial, with the highest error being on the X-axis, which is the
horizontal direction that the target has the most movement.

In Fig. [/} the proposed single-camera temporal filtering
localization 3D traces are plotted in correspondence with the
Mo-Cap traces. The 3D traces from the proposed method
align with the benchmark traces retrieved from the Mo-Cap
system. The proposed system can capture the UAV trajectory
and accurately identify the 3D location in real-time (100 ms
latency) relative to the camera’s position. Fig. [§] presents the
errors over time for the 3 trials. The error appears to be
relatively larger when the UAV was making a sharp turn or
at a higher velocity. This measurement depends on both the
X-axis and Y-axis edge locations of the markers. The scatter
plots in Fig. 0] show the relative error over distance for each
of the three trials. The distance between the UAV and the
camera (p) in three trials ranged between 2 and 5.5 m, which
is limited by the space size that the Mo-Cap system covers.
The maximum range of the localization algorithm is over 30
m, which has been tested in [18], [19].

VI. DISCUSSION

The experimental results show that the proposed localiza-
tion algorithm and system can be applied in UAV localiza-
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tion. The main advantage of the proposed method is that
it only uses a single camera with low computing overhead
for localization, thanks to the circle-shaped blinking marker
and the temporal image filter. Compared to other similar
works [[16]], [17]], our proposed method avoids potential noise
interference from other infrared sources in the background
image. This is because the proposed system applies a tem-
poral image filter to match the blinking rate of the LED
marker. Since the temporal filter is targeting at a specific
blinking frequency, in a natural environment, it would be a
much lower probability to have a noise source with the same
blinking rate of the LED marker, compared to the chance of
having a noise source with a similar spectrum of the color-
based marker such as UV/IR/RGB-based markers. Another
advantage of the system is that the algorithm of localizing

the circle-shaped marker demands lower computing overhead
than a marker constellation. A comparison of the proposed
method with other recently published methods is summarized
in Table I. Compared to other similar technologies, the
proposed blinking marker with the DVS camera achieves
a higher detection range with lower relative errors. It also
brings the advantage of low computing overhead for image
processing thanks to the DVS built-in pixel-level comparison.
The primary limitations of the proposed system include the
finite resolution of the image sensor and the system pro-
cessing time. The resolution of the image sensor determines
the spatial localization error and the detection range. The
system processing time limits the maximum trackable speed
of the UAV, which could be improved with event-based image
processing algorithms.



TABLE I: Comparisons of monocular-based localization
methods tracking a single target.

Method This Work [17) [29] [Bo] |
Application UAV UAV Robot Robot
Range 30m 15m Im 23 m
Sensor Dypgmic 2xIMU + High-speed Camera+
Type Vision PF-MPE RGB-D Antenna
Sensor Camera Cameras Array
Number
of Sensors ! 3 2 2
Marker Blinking RGB RGB RGB
Temporal Particle Filter | Pixel Wise | Coarse-to-
Processing Band-pass + with Pose Posterior Fine
Algorithm Optical Estimation 3D Tag
Localization PFMPE (PWP3D) Position
Processing 100mS 0.629
Time/Rali (10Hz) 20 Hz 400 Hz Second
Range 30m I5m N/A 10m
Average 2-6 cm
Errog (Range 6 m) 2-15 cm 5.45 mm 8 cm

VII. CONCLUSION AND FUTURE SCOPE

We presented a novel method for UAV localization using
a single dynamic vision camera with a temporal band-pass
filter and a circle-shaped blinking LED marker. Compared to
existing optical localization methods, the proposed method
achieves a higher accuracy with a larger detection range.
The proposed method has the advantage of only using one
image sensor with a low computing overhead, which has the
potential in low-power moving target tracking applications.
In future work, we plan to perform outdoor flight testings
under different lighting conditions, study the motion effects
on event noise regarding the temporal band-pass filter using
the optical flow method, develop Kalman filters, increase the
processing speed, and test more frequency bands of the LED
markers.
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