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Abstract—Digital predistortion (DPD) is an important tech-
nique that is commonly used in wireless transmitters to reduce the
out-of-band emissions caused by power amplifier (PA) nonlineari-
ties. This frequency-domain goal is generally achieved by learning
a baseband equivalent time-domain inverse transfer function of
the PA and applying it to the transmitted digital baseband signal.
In this work, we take advantage of the frequency-domain nature
of orthogonal frequency-division multiplexing (OFDM) signals
by injecting cancellation tones into the guard-band subcarriers
to perform DPD. We experimentally evaluate our OFDM-based
DPD (ODPD) method using a Doherty PA and show that,
when compared to a standard generalized memory polynomial
solution, the ODPD can achieve better suppression of out-of-band
emissions with lower complexity. Moreover, when combined with
a neural network model of the PA, our proposed ODPD method
only requires oversampling the transmitted signal by a factor of
two, which has important implications for the analog transceiver
front-end.

Index Terms—Digital predistortion (DPD), orthogonal
frequency-division multiplexing (OFDM), neural networks.

I. INTRODUCTION

In wireless communications systems, power amplifiers
(PAs) are essential components that allow us to increase the
range and the signal-to-noise ratio (SNR) of the employed
signals. However, PAs typically introduce nonlinearities which
can cause adjacent channel leakage and can degrade the error
vector magnitude (EVM). The acceptable adjacent channel
leakage, which is measured using the adjacent channel leakage
ratio (ACLR), is strictly defined in most standards, such as 5G
New Radio (NR). Beyond complying with standards, regula-
tory bodies, such as the Federal Communications Commission
(FCC), will also legally enforce certain ACLR requirements.

One way to avoid the PA nonlinearities is to back off
the input power so that the PA operates in its linear region.
However, this is typically undesired because PAs are less
power efficient in this region of operation. Moreover, the high
peak-to-average power ratio (PAPR) of orthogonal frequency-
division multiplexing (OFDM) waveforms that most modern
communications systems use requires extreme amounts of
backoff to account for the worst-case scenario.

A popular alternative solution is to predistort the digital
baseband signal with the inverse of the PA nonlinearities so
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that the cascade of the two systems becomes linear. This
widely used technique is called digital predistortion (DPD),
and it typically involves taking the digital baseband signal
and passing it through some variant of a memory polynomial
(MP) [1] or generalized memory polynomial (GMP) [2]. The
proper DPD coefficients can be learned through a system such
as an indirect learning architecture (ILA) [3]. Neural networks
(NNs) have also been shown throughout the literature to be
suitable for predistortion applications [4], [5].

Even though DPD typically operates in the time domain,
most modern communications systems (such as 5G NR, 4G
Long-Term Evolution (LTE), and Wi-Fi) use OFDM-based
signals, which are constructed in the frequency domain. More-
over, the ACLR, which is the principal figure of merit in the
context of DPD, is, in fact, a frequency-domain metric.

In this work, we introduce ODPD, a novel DPD method
for OFDM waveforms that exploits the guard-band subcar-
riers that are typically present in OFDM-based systems. In
particular, instead of transmitting zeros on the guard-band
subcarriers, we iteratively tune their values in order to reduce
the ACLR on a per-OFDM-symbol basis directly. To determine
the appropriate values of the guard-band subcarriers, one needs
only a forward model of the PA, as opposed to the inverse
model needed in most DPD solutions. Our experimental mea-
surements using a commercial Doherty PA platform, widely
regarded for 5G applications such as massive MIMO [6],
shows that we can achieve linearization that outperforms a
state-of-the-art polynomial model. Moreover, when combined
with a NN-based PA model, our OFDM-based DPD can per-
form DPD with as little as a 2x upsampling/oversampling rate!
as opposed to the 5x upsample rate typically considered in
polynomial-based DPD solutions [2], [7]. The lower sampling
rate translates into lower energy consumption and reduced
system complexity.

Similar ideas can be found in the literature, though not
directly applied for DPD. For example, a similar technique
is used for PAPR reduction in [8]. In [9], the authors also
utilize the guardbands for cancellation carriers, but their
goal is OFDM sidelobe suppression and not correction of
PA nonlinearities. The learning iterations of our method are

"While upsampling refers to the DSP process of interpolating and over-
sampling refers to the relative rate of the ADC sampling rate to a signal’s
Nyquist rate, we will use the terms interchangeably throughout the paper for
brevity.
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Figure 1. Overview of ODPD algorithm. For each symbol, we transmit through a PA model, f, to see the error in the guardband subcarriers in the set Z.
The error is subtracted to form the new frequency domain input. After sufficient iterations, the symbol can be transmitted through the real PA. In this figure,

we omit the DAC and up-converter after the final IFFT for simplicity.

similar to the iterative learning control (ILC) DPD method
used in [10]. However, in our method, we adapt it to operate
directly on the guard band subcarriers in the frequency domain.

II. DIGITAL PREDISTORTION

Time-domain DPD is widely used to linearize PAs, which
reduces out-of-band (OOB) emissions and improves the
power-added efficiency. While there are various algorithms
and inverse models that can be used, one popular choice is
the GMP [2], which is defined as
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In (1), p indexes polynomial orders, m indexes a memory
depth, and ! indexes a lag/lead cross-term. The highest non-
linearity order is P with a maximum of M memory taps and a
maximum crossterm lag/lead depth of L samples. This model
has remained dominant in industry and academia because it is
linear in terms of the coefficients, ap m,bp,m, and cpm.

To solve for the coefficients, a common technique is the
ILA [1]-[3]. With an ILA, it is assumed that the GMP model
from the PA output, y(n) to the PA input is equivalent to the
system’s inverse. Hence the linearity of the model in terms
of the parameters can be leveraged through a least-squares
fit from y(n)/G to z(n), where G is the gain of the system.
However, there are shortcomings to this approach in that when
sent through the GMP, a signal with noise, y(n), enters an
absolute value function leading to the possibility of bias [11].

As the PA enters deeper levels of saturation, higher-order
polynomials are typically needed. However, the bandwidth of
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a signal expands with the polynomial order leading to aliasing
of the signal if sufficient oversampling is not applied [2]. For
this reason, it is typical to see GMPs deployed with at least
5x oversampling, which can lead to high system complexity
for wide bandwidth signals considered in 5G NR and beyond.

III. OFDM DIGITAL PREDISTORTION

Let X € CW denote a vector of symbols that correspond
to one OFDM symbol. W € N denotes the total number of
subcarriers, which is typically a power of two for efficient
fast Fourier transform (FFT) computations. In OFDM systems,
D € N where D < W subcarriers carry information, and
there are typically K = W — D subcarriers that map to the
edge of the spectrum, which are zero-filled and which form
the guard band. Let the set of zero-filled subcarriers in the
guard band be denoted by Z C {0,..., W —1}. Our proposed
method’s key idea is to replace the zero-filled subcarriers with
tuned values that depend on the remaining D data subcarriers
to reduce the OOB emissions directly.

For simplicity, we restrict our description to a single OFDM
symbol. However, our method can be extended to multiple
symbols by applying ODPD for each symbol and relying on
the windowing technique typically applied in OFDM systems
to improve the spectrum at symbol boundaries [12]. Let f(-)
denote the baseband equivalent of the nonlinear PA transfer
function. Then, the frequency domain output of the PA,
denoted by Y, is 2

Y = FFT (f (IFFT(X)))) . @)

Assuming that an estimate of the PA transfer function, f(-),
is created, we can iteratively estimate for each subcarrier
k € Z the PA output, Y;, and predistort it to cancel out
the tone. By iterating on each subcarrier, we heuristically can

2The cyclic prefix (CP) is also added after the IFFT and removed before
the FFT. We do not model the CP here, though a 4.7 pus CP is used in the
final results.
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think of this as injecting the subcarrier with the energy of
the opposite phase so that there can be a net cancellation.
However, the exact value depends on the intermodulations of
all subcarriers. Hence multiple iterations may be needed to
account for new intermodulations due to previous iterations. At
iteration ¢ € {0,...,I — 1}, in our proposed method, we first
use (2) to calculate Y based on X(%). Then, we calculate the
differences between each }A’k('), k € Z, and the desired output
X’k, k € Z. Finally, we adapt each guard tone X,EHI}, keZ,
as follows

xD = xO _ 90 viez, 3)
where p is a step size and X(® = X. This algorithm is
illustrated in Fig. 1, where a NN is used to model the PA.

The guard band subcarriers’ energy after the PA nonlin-
earities depends on the intermodulation products of the data
subcarriers in each OFDM symbol. As such, this learning algo-
rithm must be executed for each OFDM symbol. However, the
learning by broadcasting through a PA model is conceptually
no different than broadcasting a signal through a trained DPD
block to apply predistortion. The difference here is the addition
of an IFFT and an FFT before and after this PA model, which
can be efficiently implemented in various platforms potentially
through the reuse of existing accelerators already in the ODFM
signal processing chain, and the addition of a subtraction
on each subcarrier. The complexity increases linearly with
the number of iterations, but excellent performance can be
achieved even with a single iteration, as we will show in
Section V.

There are multiple advantages to our method over other
DPD methods. In particular, our ODPD does not require an
inverse model of the PA. Instead, an easily obtained forward
model of the device can be used. Moreover, we eliminate
sensitive ILA systems that may converge to biased DPD
training solutions [11]. When combined with a NN, additional
benefits can be achieved. such as predistortion at a lower
sampling rate than conventional DPD solutions.

IV. FORWARD PA MODELS

The PA model f(-) can be constructed through various
methods. For example, a GMP or a NN [5] may be attractive
solutions. Moreover, in certain time division duplex (TDD)
systems, it could be possible to train symbols using the actual
PA while the radio is listening. While in this work we highlight
the use of an NN-based PA model, we briefly discuss a GMP
implementation in the following subsection.

A. GMP PA Model

The GMP from (1) can be used as a forward model of the
PA, f(n). When using the GMP, a least-squares model can
also be used to learn the set of parameters. However, contrary
to the ILA approach, the forward model is not as susceptible
to noise. A fundamental limit of ODPD performance is the ac-
curacy of, f. Hence, sufficient upsampling would be required
to avoid aliasing of high order terms when using a GMP.
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Figure 2. Photo of the measurement setup. A signal generated in MATLAB is
uploaded to the signal generator, where it is transmitted at 3.5 GHz through
the PA evaluation board into the UXA where the ACLR is measured.

B. Neural Network PA Model

While high-order polynomials suffer from aliasing when
using low sample rates [2], [7], NNs do not necessarily have
the same limitations as they are model-free.

We consider a multilayer feedforward NN with H hidden
layers and N neurons in each hidden layer. M time-domain
inputs are given to the network to account for memory effects
in the PA. For each sample, the real and imaginary components
enter the NN on separate neurons. The general architecture is
shown within the ODPD system in Fig. 1.

Let g denote a nonlinear activation function, and let W, and
b; denote the weights matrices and bias vectors corresponding
to the 7th layer in the NN. The output of the first hidden layer

at time instant n is
R
&

(z(n))
(z(n))

hi(n) =g | Wi | : | by (4)
R(z(n— M +1))
X(z(n— M +1))
The output of hidden layer z > 2 is
h;(n) = g(Wihi_1(n) + b;). (3)

Finally, the output of the network after hidden layer H is

X(n) = Wgihy +bra, (6)

where the first and second elements of X represent the real
and imaginary part of the signal, respectively.

Complexity remains low when considering a ReLU activa-
tion function, which can be implemented with a simple multi-
plexer. To further reduce the computational burden, a designer
could consider options such as pruning and quantization.

C. Computational Complexity

The computational complexity of the ODPD scheme can be
divided into two components, the complexity of the iterative
application of IFFTs and FFTs, and the complexity of the for-
ward model, f. We consider the number of real multiplications
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Figure 3. Measurement result from the Doherty PA for the ODPD with I = 2 iterations and N = 40 neurons. The blue is the 20 MHz associated with the
main carrier while the green on the left and right correspond to the 20 MHz adjacent channels.

Table 1
ACLR MEASUREMENTS FROM PA TESTBED

Case L1 (dBc) Main (dBm) R1 (dBc)
No DPD -30.8 353 -30.6
GMP
=2 -30.5 35.2 -29.6
U=3 -37.8 35.2 -36.4
U=4 -41.3 35.2 -41.0
U=5 -41.3 35.2 -41.3
NN, U =2
N=10,I=1 -37.2 35.2 -36.7
N=10,I=2 -38.0 35.2 -37.8
N=20,I=1 -39.1 353 -38.7
N=201=2 -40.1 35.2 -40.3
N=40,I=1 -41.7 35.2 -41.2
N=40,I=2 -42.7 35.1 -43.1

as a proxy for the complexity of the ODPD and count them
as

Tmults, FFT = 4IW ]032 (W)‘

Tmults, ODPD = Mmults, FFT T Pyies f+

)
(8)

Here, nmus, rr counts the number of multiplications due to
the added FFTs and n,, ; is the forward model complexity.
We assume four real multiplies per complex multiply.

V. RESULTS

In this section, we present experimental results to showcase
the performance of our proposed ODPD method, and we
compare it with a standard polynomial-based DPD method.

A. Measurement Setup

We test our proposed algorithm using a Doherty PA from
NXP [13], transmitting at 3.5 GHz. We use a Keysight MXG
signal generator to drive the PA and a Keysight UXA signal
analyzer to record the 1Q data for DPD learning and ACLR
measurements. A photo of the PA testbed is shown in Fig. 2.
For the ACLR, we measure the integrated power of the 20

MHz band on each side of the primary carrier, corresponding
to the first channel to left and right of the main carrier, denoted
as the L1 and Ul channels, respectively.

We test the algorithm for an input power of 6 dBm on the
signal generator. 1QQ data was collected at oversampling rates
of U = 2,3,4, and 5. This data was used to learn a GMP
predistorter with P=7,M =4, and L = 1.

The U = 2 1Q data was used to build three separate NN-
based forward models, f(-), of the PA. The sampling rate of
the ADC measuring the PA output is set to 61.44 MSps, which
corresponds to a 2x oversampling rate from the modulator’s
30.72 MSps rate. For each NN, weuse M =4and H = 1. We
set N to 10, 20, and 40 to partially explore possible complexity
versus performance trandeoffs in the NN architectures. We
then applied the ODPD using [ =1 and I = 2 with g = 1.
For the transmit signal, we use D = 1200 and W = 4096 for
14 symbols that are distinct from the data used while training.
A cyclic prefix of length 4.6 ps is also applied on each symbol.

B. Measurement Results

An example measurement using the ODPD method with a
N =40 NN is shown in Fig. 3 where I = 1. The input power
for this test was 6 dBm, the in-band PA output power was
35.3 dBm (which corresponds to 29.3 dB gain from the PA).

Table 1 shows the full measurement results for each DPD.
Here, we show that the Doherty PA was highly nonlinear with
a starting ACLR of -30.8 dBc on the left adjacent carrier. At a
low oversampling rate of U = 2, the GMP is unable to resolve
the high-order nonlinearities leading to an overall poor fit that
causes the ACLR to degrade. At U > 3 the ACLR was able
to improve with the GMP.

However, the NN-based ODPD was able to improve the
ACLR for each considered architecture while only using
an oversampling rate of U = 2. Moreover, the N = 40
architecture is able to outperform the best U = 5 case from
the GMP.

The performance of the ODPD depends on the precision
of the forward model. However, there is a tradeoff between
complexity and precision. Therefore, careful tuning of the
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Figure 4. Complexity per symbol versus oversampling rate. Each NN uses
M=4and H=1.The GMPuses P=7,M =4, L = 1.
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Figure 5. ACLR performance for each scheme. The NN-based ODPD is able
to achieve an ACLR improvement with only 2x upsampling.

forward model is necessary. While there are many viable
architectures of NNs that can be tested, we restrict our analysis
to three. We restrict the NN so that M =4 and H = 1 and
vary the number of neurons in the hidden layer to be 10, 20,
40. Using the PA input/output data collected from the testbed,
we train each neural network in MATLAB.

In Fig. 4, we show the complexity in terms of the number
of real multiplications per OFDM symbol of the ODPD
algorithm for the three considered NNs with I = 1 and
I = 2 total iterations. We compare this to the GMP ILA-DPD
application complexity in red which is obtained by summing
the number of multiplications in (1). The ODPD cases include
the complexity of each new FFT and the PA model. The GMP
ILA-DPD case includes the complexity of the GMP as well
as the upsampling complexity. Upsampling is assumed to be
done via filling with zeros and passing through a low-pass-

16

filter with 51 taps.

Fig. 5 shows the performance from Table I for the sake
of comparison to Fig. 4. When trying to get the most perfor-
mance per computation, there are a few takeaways. Firstly, the
performance of the U =5 GMP can be matched by a U =2
NN-based ODPD with 34.8% the number of multiplications.
Secondly, it can be seen in Fig. 4 that for the considered NN
architectures, a larger neural network architecture was often
less computationally intensive than more ODPD iterations on
a less complex NN. It can be seen in Fig. 5 that the more
complex NN with I = 1 gave a better result than the less
complex NN with I = 2. Hence, improving the neural network
(or, more generally, the forward PA model) is more worthwhile
than performing additional ODPD iterations.

VI. CONCLUSIONS

In this work, we introduced an OFDM-based DPD (ODPD)
method that takes advantage of the guard-band subcarriers to
predistort in the frequency domain. Our proposed method of
predistortion does not require the estimation of an inverse PA
model and was able to linearize our test PA as effectively as
state-of-the-art methods. Using an NN-based forward model,
we showed that this performance could be achieved with
34.8% fewer multiplications and a lower oversampling rate
for the DPD application.
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