- 1 Running Tittle: HEP/PLL surfaces for hMSCs
- 2 Number of Figures 6 + Graphical Abstract
- **3 Word Count: 6388**
- 4 Crosslinked layered surfaces of heparin and poly(L-lysine) enhance mesenchymal stromal
- 5 cells behavior in the presence of soluble interferon gamma
- 6 Mahsa Haseli¹, Luis Pinzon-Herrera¹, and Jorge Almodovar^{1*}

- 8 ¹Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center,
- 9 Fayetteville, AR 72701, USA
- *Corresponding author: Address correspondence to Jorge Almodovar, Ralph E. Martin Department of Chemical
- 11 Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA. Electronic
- 12 *mail: jlalmodo@uark.edu Phone: +1 479-575-3924, Fax: +1 479-575-7926.*

13 Abstract

- 14 Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for
- the treatment of immune-mediated diseases. Culturing hMSCs on tissue culture plastic reduces
- their therapeutic potential in part due to the lack of extracellular matrix components. The aim of
- this study is to evaluate multilayers of heparin and poly(L-lysine) (HEP/PLL) as a bioactive
- surface for hMSCs stimulated with soluble interferon gamma (IFN-γ). Multilayers were formed,
- 19 via layer-by-layer assembly, with HEP as the final layer and supplemented with IFN-γ in the
- 20 culture medium. Multilayer construction and chemistry were confirmed using Azure A staining,
- 21 quartz crystal microbalance (QCM), and X-ray photoelectron spectroscopy. hMSCs adhesion,
- viability, and differentiation, were assessed. Results showed that (HEP/PLL) multilayer coatings
- 23 were poorly adhesive for hMSCs. However, performing chemical crosslinking using 1-ethyl-3-
- 24 (3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) significantly
- 25 enhanced hMSCs adhesion and viability. The immunosuppressive properties of hMSCs cultured
- on crosslinked (HEP/PLL) multilayers were confirmed by measuring the level of indoleamine
- 27 2,3-dioxygenase (IDO) secretion. Lastly, hMSCs cultured on crosslinked (HEP/PLL) multilayers
- in the presence of soluble IFN- γ successfully differentiated towards the osteogenic and

- 29 adipogenic lineages as confirmed by Alizarin red, and oil-red O staining, as well as alkaline
- 30 phosphatase activity. This study suggests that crosslinked (HEP/PLL) films can modulate hMSCs
- 31 response to soluble factors, which may improve hMSCs-based therapies aimed at treating several
- 32 immune diseases.
- 33 KEYWORDS: Layer-by-layer, Human mesenchymal stromal cells, poly(L-lysine), Heparin,
- 34 Interferon gamma.

Introduction

- Human mesenchymal stromal cells (hMSCs) are of special interest for cellular therapy programs
- 37 (Ramos et al. 2016). This type of cells are pluripotent which are able to differentiate into
- mesodermal lineage cells, including adipocytes, osteoblasts, and chondrocytes [2][3]. HMSCs
- 39 therapeutic behavior is affected by the surrounding microenvironment, including growth factors,
- 40 the extracellular matrix (ECM) and contact with other cells (Watt and Huck 2013)(Hynes 2009).
- 41 The ECM is a highly complex nanostructure that play vital roles in the determination,
- differentiation, proliferation, and survival of cells (Hynes 2009). The ECM structure is filled with
- 43 the matrix containing glycosaminoglycans (Lortat-Jacob 2009) and proteins (Brizzi, Tarone, and
- Defilippi 2012), which are known as proteoglycans (Hynes 2009). The proteoglycans in the ECM
- 45 contribute to the mechanical properties of the matrix and modulate cell behavior (Watt and Huck
- 46 2013)(Hynes 2009). There is a need to learn from cell biology, such as what controls cellular
- 47 differentiation and growth and how ECM components affect cell function (Brizzi, Tarone, and
- 48 Defilippi 2012).
- 49 The layer-by-layer (LbL) deposition of polyelectrolytes has been known as a simple method to
- 50 generate biologically relevant surfaces by creating nanoscale thin films. The LbL method provides
- 51 compositional uniqueness of natural or synthetic polymers, such as stimulating a specific signal to
- 52 cells and enhancing cellular behavior (Gribova, Auzely-Velty, and Picart 2012). LbL involves the
- alternative absorption of polycations and polyanions to produce films with specific and controlled
- 54 physical-chemical characteristics by adapting the experimental parameters, such as pH, ionic
- strength, and polyelectrolyte concentration (Catherine Picart et al. 2005)(Catherine Picart
- 56 2008)(Gentile et al. 2015). Several studies have recently investigated cell interactions with
- 57 multilayers. One study by Growth et al. indicated that (hyaluronic acid (HA)/(poly-L-lysine (PLL)
- 58 multilayers composed of 24 layers are able to control stem cell response after chemical cross-

- linking (Niepel et al. 2018). This response is in part correlated to the increase in stiffness brought upon by the crosslinking process.
- 61 HMSCs interaction with heparin (HEP/PLL) polymeric multilayer composition in the presence or
- absence of soluble interferon gamma (IFN- γ) has not been studied yet. It has been shown that the
- immunosuppressive properties of hMSCs relies on the existence of IFN-γ in the microenvironment
- 64 (Klinker et al. 2017). IFN-γ is a potent pro-inflammatory cytokine that is produced by CD4+
- 65 lymphocytes, natural killer cells (NKT) cells, and macrophages. IFN-γ plays essential and
- complex roles in innate and adaptive immune responses against viral infections, bacteria, protozoa,
- and graft-versus-host disease (GVHD) (Ijzermans and Marquet 1989)(Liu et al. 2011). A study
- showed that IFN-γ has the ability to modulate the immune properties and differentiation potential
- of hMSCs which has a significant anti-proliferative effect (Croitoru-Lamoury et al. 2011).
- 70 Therefore, there is a need to reduce the anti-proliferative effect of IFN-γ on hMSCs.
- 71 Heparin is a highly sulfated glycosaminoglycan that contains negatively charged carboxylate or
- sulfate groups present in the ECM and surface of cells (Douglas et al. 1997)(Sarrazin et al. 2005).
- 73 Due to the electrostatic interactions and binding with amino acids, heparin plays a role in cellular
- 74 functions such as cell adhesion, proliferation, differentiation, migration, and inflammation
- 75 (Paluck, Nguyen, and Maynard 2016)(Dinoro et al. 2019). Furthermore, heparin is well known for
- 76 its anticoagulant properties, but apart from this ability, heparin has the ability to bind ECM
- proteins, such as collagen and thus plays an important role in organizing the structure and
- 78 composition of the ECM. Many studies showed that heparin can prevent proteolytic cleavage of
- 79 IFN- γ and can improve IFN- γ signaling (Douglas et al. 1997)(Lortat-Jacob, Baltzer, and Grimaud
- 80 1996). In addition, PLL is a biocompatible polycation with a large amount of active amino groups.
- PLL can adopt different secondary structures (e.g., random coil, b-sheet, or a-helix) depending on
- 82 the pH of the solution. PLL has been used for many different purposes, such as the study of DNA-
- 83 Protein interactions, drug delivery, and coating materials to improve cell attachment to plastic and
- glass surfaces (Shukla et al. 2012). PLL enhances cell's attachment due to electrostatic interaction
- 85 between negatively-charged ions of the cell membrane and positively-charged surface ions of
- attachment factors on the culture surface (Pachmann and Leibold 1976)(KRUIJFF and CULLIS
- 87 1980).

- 88 This research evaluated (HEP/PLL) multilayer substrates as surfaces for hMSC culture. We
- evaluated the construction and chemistry of the (HEP/PLL) multilayers, as well as their capacity
- 90 to support hMSCs. Finally, we investigated hMSC viability, adhesion, proliferation,
- 91 immunosuppressive properties, and differentiation when cultured on (HEP/PLL) multilayers in the
- 92 presence of soluble IFN-γ.

Materials and Methods

Materials

93

- 95 Heparin sodium (HEP) was purchased from Celsus Laboratories, Inc. (Cat. #PH3005). Poly-L-
- lysine hydrobromide from bovine (Cat. # P2636), poly(ethylenimine) (PEI) (50% solution in
- 97 Water, Mw \approx 750 000) (Cat. #P3143), HEPES (Cat. # H3375), 1-ethyl-3-(3-
- 98 dimethylaminopropyl) carbodiimide hydrochloride (EDC) (Cat. #106627547), and N-
- 99 Hydroxysulfosuccinimide sodium salt (sulfo-NHS) (Cat. #56485) were purchased from Sigma-
- 100 Aldrich. Ultrapure water at 18 MΩ·cm was obtained from a Millipore-SigmaTM Direct-QTM 3
- 101 (Cat. #ZRQSVP3US). Tissue culture-treated plates were purchased from Corning Costar (Cat.
- #07-200- 740). IFN-γ recombinant human protein was purchased from ThermoFisher (Cat.
- #PHC4031). Human bone-marrow derived mesenchymal stromal cells from two donors
- purchased from RoosterBio (Cat. #MSC-003), were used between passages 4–6. Donor#1 is a
- healthy 25-year-old male (Lot. 00174), and donor#2 is a healthy 22-year-old male (Lot. 00178).
- 106 MEM Alpha (1X) (Cat. #12561-056) and fetal bovine serum (Cat. #12662029) were obtained
- from Gibco. Penicillin-streptomycin (Cat. #30002CI), and L-glutamine were purchased from
- 108 Corning (Cat. #25005CI). Azure A was purchased from Thermo Scientific™ (Cat.
- #AAJ6134614). PrestoBlueTM cell viability assay was purchased from Invitrogen (Cat.
- #A13261). Hoechst 33 342 was purchased from Invitrogen (Ref. #H3570). ActinRed 555 Ready
- 111 Probest was purchased from Invitrogen (Ref. #37112). DMEM (Dulbecco's Modified Eagle
- Medium) high glucose (Cat. #11965092), and DMEM (Dulbecco's Modified Eagle Medium) low
- glucose were purchased from ThermoFisher (Cat. #11885084). Ascorbic acid (Cat. #50-81-7), β-
- glycerophosphate from Sigma (Cat. #154804-51-0), Alizarin Red S (Cat. #130-22-3),
- dexamethasone (Cat. #50-02-2), insulin (Cat. # I2643), 3-isobutyl-1-methylxanthine (IBMX)
- 116 (Cat. #28822-58-4, I5879), indomethacin (Cat. #53-86-1) and Oil Red-O (Cat. #00625) were
- purchased from Sigma-Aldrich. Alkaline Phosphatase Colorimetric Assay Kit was purchased

from Abcam (ab83369). Micro BCATM Protein Assay Kit was purchased from Thermofisher 118 (Cat. # 23235). 119 (HEP/PLL) multilayers fabrication 120 121 (HEP/PLL) multilayers were constructed by the layer-by-layer technique. PEI (1 mg/mL), HEP (1 mg/mL), and PLL (0.5 mg/mL) were dissolved in a filtered HEPES-NaCl buffer solution (20 122 123 mM HEPES pH 7.4, 0.15 M NaCl), and ultrapure water at 18 MΩ·cm was used to prepare the 124 polymeric and wash solutions. Sequential polymeric layers and rinsing were done using manual pipetting on sterile tissue culture-treated plates. Briefly, the process consisted of creating a 125 positive initial layer by depositing PEI solution for 15 minutes to each well of a sterile tissue 126 culture-treated plate and followed by a 3 minutes washing step with HEPES-NaCl buffer 127 solution. HEP was added for 5 minutes; then the HEP solution was removed, collected, and 128 rinsed with HEPES-NaCl buffer solution for 3 minutes. Then PLL was added and subsequently 129 130 rinsed following the same process. This process was followed until obtaining a total of 13 polymeric layers of (HEP/PLL) (layers ending with HEP). Multilayers were crosslinked with 131 EDC at 25 mg/mL and NHS at 11 mg/mL dissolved in NaCl (0.15 M, pH 5.5 in deionized water) 132 and mixed immediately before use, similar to the process described by Almodovar et al. 133 (Almodóvar et al. 2014). The multilayers were incubated overnight in a humidified incubator at 134 37 °C. Then the EDC-NHS solution was removed, followed by extensive rinsing with cold 15 M 135 136 NaCl buffer solution to hydrolyze unreacted cross-linkers. A final wash was done using Dulbecco's phosphate-buffered saline (DPBS)1X without Ca²⁺ and Mg²⁺ for 3 minutes. 137 Substrates were sterilized using ultraviolet light (UV) for 10 minutes to reduce contamination 138 before seeding the cells. 139 140 **Experimental design** In this work, the effects on the cellular response of hMSCs of crosslinked multilayers and the 141 presence or absence of IFN-γ in the culture medium were studied. Three surfaces were assessed, 142 these consisted of a control surface of tissue culture plastic labeled as TCP, a bioactive surface of 143 13 non-crosslinked (HEP/PLL) multilayers, and 13 crosslinked (CL) of (HEP/PLL) multilayers. 144 These multilayers arrangements will be noted as (HEP/PLL) and (HEP/PLL) + CL, 145

respectively. IFN-y supplemented in cell medium was evaluated at a concentration of 50 ng/mL,

and conditions with and without IFN-y were designated as +IFN-y and -IFN-y, respectively. A

146

50 ng/mL concentration for soluble IFN-γ was selected based on our previous study (Castilla-148 Casadiego et al. 2019). Time points and the initial number of cells were selected according to the 149 nature of the specific method used. 150 151 152 Qualitative colorimetric determination of heparin deposited within (HEP/PLL) 153 154 The multilayers were deposited on 24-well plates from Corning Costar (Cat. #07-200-740). After multilayers deposition, the plate was dried for 1 day in a laminar flow hood. Once the 155 samples were completely dry, 1 mL of Azure A Blue dye in water (80 µg of Azure A in 1 mL 156 water) was added to each well. The absorbance at 620 nm was read using a BioTek Multi-Mode 157 Microplate Reader (Model SynergytTM 2). 158 In-situ deposition of (HEP/PLL) multilayers 159 Deposition of polycations, polyanions, and crosslinking was measured by quartz crystal 160 microbalance (QCM-D) with dissipation from Biolin Scientific, Sweden. The multilayer buildup 161 process was described in our previous work (Castilla-Casadiego, Timsina, et al. 2020). Briefly, 162 QCM-D measurements were performed on quartz crystal microbalance. The quartz crystal was 163 cleaned following the manufacturer's protocol. The quartz crystal was immersed in a solution 164 containing 10:2:2 (volume parts) of water, 25% ammonia, and 30% hydrogen peroxide at 75 °C. 165 The clean quartz crystal was settled in the QCM-D chamber, and the flow rate was set up at 100 166 mL/min. Then the PEI solution was injected continuously for 15 minutes. Then, the HEPES-167 NaCl buffer was pumped for 3 minutes at the same speed. The HEP solution was injected at the 168 same rate for 5 minutes, followed by the same HEPES-NaCl buffer injection. After that, the PLL 169 170 solution was injected for 5 minutes at the same rate, followed by the same HEPES-NaCl buffer 171 injection. HEP and PLL were then alternately injected into the chamber (followed by the same HEPES-NaCl buffer injection after each injection) for 13 multilayers. Then, the crosslinking 172 173 solution was injected into the chamber for 1 h. The inverse frequency shift ($-\Delta f$) and dissipation 174 (ΔD) vs. time curves were recorded.

X-ray Photoelectron Spectroscopy (XPS).

X-ray Photoelectron Spectroscopy (XPS) (Versaprobe XPS from Physical electronics) was 176 performed at a photoelectron takeoff angle of 458 on a dry glass substrate, and binding energy 177 scales were referenced to the C1s peak (284.7eV). 178 179 180 **Cell culture** 181 182 Human bone-marrow derived mesenchymal stromal cells from two donors were used between passages 4–6. The product specification sheet provided by the vendor shows that these cells 183 demonstrated the ability to undergo adipogenic and osteogenic differentiation and expressed the 184 accepted panel of surface markers (CD45-, CD34-, CD166+, CD90+). hMSCs were grown in 185 186 MEM Alpha (1X) medium (supplemented with L-glutamine, ribonucleosides, and deoxyribonucleosides) containing 20% fetal bovine serum, 1.2% penicillin-streptomycin, and 187 188 1.2% L-glutamine. Cell viability on (HEP/PLL) multilayers 189 The PrestoBlueTM cell viability assay reagent was used to measure hMSCs viability after 3 days. 190 HMSCs (10000 cells/cm²) were seeded on each condition with and without IFN-y (TCP, 191 (HEP/PLL), and (HEP/PLL)+CL) on a 96 well-plate, and cell viability was measured as 192 described in our previous works (Castilla-Casadiego, Reves-Ramos, et al. 2020)(Cifuentes et al. 193 194 2020)(Pinzon-Herrera et al. 2020). Briefly, the cell culture medium was removed after 3 days, and 100 µL per well of fresh culture medium containing 10% PrestoBlue reagent. The plate was 195 kept in a humidified incubator with 5% CO₂ and 37°C for 3 hours (protected from light). The 196 fluorescence intensity measurement was determined using a BioTek Multi-Mode Microplate 197 Reader (Model SynergyTM 2) with excitation/emission of 560/590 nm. Data were summarized 198 199 per culture conditions. 200 Fluorescent staining was performed for the detection of the blue fluorescent dye Hoechst 33 342. 201 This dye stains the nucleic acid because it is permeable to the cell. The red-orange fluorescent dye ActinRedt 555 was detected, which is selective to Actin F (a fundamental component of the 202 cellular cytoskeleton). After three days of culture, the cell medium was removed, and the cells 203

were fixed with 4% formaldehyde solution for 15 minutes. The samples were washed several 204 times with PBS following by adding Triton X100 for 10 minutes, then washed with PBS 3 times. 205 206 ActinRedt 555 was first added and incubated for 30 minutes. Then, Hoechst 33 342 was added for 10 minutes and protected from light by aluminum foil. Both dyes washed 5 times with PBS 207 before and after being added. For cell imaging, a Leica inverted fluorescence microscope was 208 209 used with a standard DAPI filter (excitation/emission of 350/461 nm) for Hoechst 33 342, and a standard TRITC filter (excitation/emission of 540/565 nm) for ActinRedt 55. 210 211 Real-time monitoring of hMSCs behavior on (HEP/PLL) multilayers An xCELLigence Real-Time Cell Analyzer (RTCA S16) instrument from ACEA Biosciences 212 Inc. (Cat. #00380601430) was used to measure real-time cell behavior. (HEP/PLL) multilayers 213 were constructed on the wells of an ACEATM E-Plate L16 (Cat. #00300600890, cell growth area 214 of 0.32 cm² per well), and hMSCs at a concentration of 5000 cells/cm² were seeded on each 215 condition (uncovered sensors, non-crosslinked multilayers, and crosslinked multilayers with and 216 217 without IFN-γ supplemented in the culture medium). The xCELLigence instrument was configured as described in our previous works (Pinzon-Herrera et al. 2020)(Castilla-Casadiego, 218 Timsina, et al. 2020). Briefly, the xCELLigence RTCA S16 was placed inside the incubator to 219 220 allow the device to warm up for at least 2 hours before use. This step is to avoid any condensation on the station after starting the measurement stage. The RTCA S16 was set up to 221 222 perform readings every 10 minutes for a period of 72 hours of cell culture. Immunomodulatory factor expression of hMSCs on (HEP/PLL) multilayers 223 224 The hMSCs immunomodulatory factor expression was investigated by indoleamine 2, 3dioxygenase (IDO) activity. In this regard, hMSCs (5000 cells/cm²) with and without IFN-y 225 supplemented in culture medium were seeded on each condition prepared on a 24 well-plate. 226 The IDO activity was measured after 6 days of culture (changing the cells medium each 2 days) 227 as described in our previous works (Castilla-Casadiego, Reyes-Ramos, et al. 2020)(Cifuentes et 228 229 al. 2020)(Castilla-Casadiego, Timsina, et al. 2020). Briefly, 100 μL of cell supernatant was mixed with 100 uL standard assay mixture consists of (potassium phosphate buffer (50mM, pH 230 231 6.5), ascorbic acid (40 mM, neutralized with NaOH), catalase (200 µg/mL), methylene blue (20 μ M), and L-tryptophan (400 μM)). The mixture was kept at 37°C in a humidified incubator with 232 5% CO₂ for 30 minutes (in a dark environment to protect solutions from light) to allow IDO to 233

convert L-tryptophan to N-formyl-kynurenine. After that, the reaction was stopped by adding 100 μ L trichloroacetic acid 30% (w/vol) and incubated for 30 minutes at 58 °C. Then, 100 μ L of mixed cell supernatant/standard transfer into a well of a 96-well microplate, following by adding 100 μ L per well of 2% (w/v) p dimethylaminobenzaldehyde in acetic acid. Absorbance was read at 490 nm at the endpoint using a BioTek SynergyTM 2 spectrophotometer (Synergy LX Multi-Mode Reader from BioTek® Model SLXFA).

240

241

Cells Differentiation Assay

242	hMSCs differentiation was induced by their culture with differentiation media (Osteogenic and
243	Adipogenic media). Control cultures were grown in regular cell expansion medium. Briefly,
244	hMSCs (10000 cells/cm²) were seeded on each condition prepared on 24 well-plates and grown
245	for 6 days in expansion medium (MEM Alpha (1X) supplemented with L-glutamine,
246	ribonucleosides, and deoxyribonucleosides) containing 20% fetal bovine serum, 1.2% penicillin-
247	streptomycin, and 1.2% L-glutamine) at 37 °C in a humidified incubator with 5% CO ₂ . After the
248	cells reached at least 50% confluency, they were exposed to differentiation medium. For
249	osteogenic differentiation, hMSCs were cultured in the differentiation medium (DMEM low
250	glucose, 10% fetal bovine serum,1% penicillin, 1% L-Glutamin, 50 μM ascorbic acid
251	(50mg/10ml), 10 mM β -glycerophosphate, and 100nM dexamethasone). The medium was
252	replaced every 2-3 days. After 8 days of culture, cells were fixed with 10% formaldehyde. For
253	osteogenic differentiation, Alizarin Red S staining solution was prepared by adding 2g Alizarin
254	Red S in 100 mL water, mixed, and the pH was adjusted to 4.1-4.3 by the addition of
255	Ammonium Hydroxide, as necessary. Alizarin Red S solution was added to the fixed cells, then
256	incubated at room temperature in the dark (cover with aluminum foil) for 15 minutes. The
257	staining solution was removed and rinsed 3 times with PBS. The samples were analyzed
258	immediately under the microscope to detect calcium deposits. For adipogenic differentiation,
259	hMSCs were cultured in the differentiation medium consisting of DMEM high glucose
260	supplemented with 10% fetal bovine serum, 1% penicillin, 1% L-glutamin, 1 μM
261	dexamethasone, 0.01 mg/mL insulin, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), and $100\mu M$
262	indomethacin. The medium was replaced every 2-3 days. After 8 days of culture, cells were fixed
263	with 10% formaldehyde, stained with 0.5% (w/v) Oil Red O in 100% isopropanol, and incubated

at room temperature for 30 minutes and protected from light. The cell monolayer was washed 2 264 times with PBS. The sample was analyzed under a light microscope to detect lipid vesicles that 265 266 appeared in bright red color. Alkaline phosphatase (ALP) Assay 267 To confirm osteogenic differentiation and to determine the level of activity of the differentiated 268 269 hMSCs, two assays were performed: alkaline phosphatase (ALP) activity and total protein 270 content (micro-BCA assay). Alkaline phosphatase activity was assessed using the Alkaline Phosphatase Colorimetric Assay Kit. According to standard protocols, after the exposure of cells 271 to osteogenic differentiation medium for 3 days, the samples were washed twice with PBS. Then, 272 273 50 μL of the cell lysate with assay buffer was added to a 96 well- plate and 50 μL p-nitrophenyl phosphate (pNPP). The samples incubate at 25°C for 60 minutes, protected from light. In the last 274 step, 20 µL stop solution was added to the wells, then; the plate was read at 405 nm in a 275 microplate reader (Synergy LX Multi-Mode Reader from BioTek® (Model SLXFA). ALP 276 activity was normalized by total protein content (micro-BCA assay). The total protein content 277 was determined according to the protocol of the manufacture 150 µL of the sample was placed in 278 a 96 well-plate with 150 μL of working reagent made from a micro-BCA protein assay kit. The 279 well plate was covered with foil and incubated at 37 °C for 2 hours. Absorbance was read at 562 280 nm using a BioTek Multi-Mode Microplate Reader (Model SynergyTM 2). 281 282 **Statistical Analysis** The results were presented as mean \pm standard error of mean. Comparisons among multiple 283 groups were performed by one-way analysis of variance (ANOVA). A p- value < 0.05 was 284 considered statistically significant. The statistical analysis was done using SigmaPlot 14 285 286 software. **Results and Discussion** 287 **Surface characterization** 288 The presence of heparin qualitatively determined by Azure A dye method based on study done 289 by Klein et al. (Michael D. Klein, Robert A. Drongowski, Robert J. Linhardt 1982). Figure 1 290 shows the absorbance values obtained for TCP, (HEP/PLL) multilayers, and (HEP/PLL) + CL 291

multilayers samples. The color changed from blue to dark purple due to existence of heparin in the bottom of the TCP and (HEP/PLL) + CL . These changes indicate that amount of heparin on 293 294 (HEP/PLL) + CL is higher than (HEP/PLL) and TCP (p-value < 0.05). These findings comply with a study done by Richert et al. which showed that PLL and hyaluronic acid (PLL/HA) 295 multilayers have an exponential growth that occurred by PLL diffusion into the layers. However, 296 297 Richert et al. showed that in crosslinked (PLL/HA) multilayers, the diffusion of the PLL was vanished (Richert et al. 2004). The absorbance shows that (HEP/PLL) + CL have two times 298 higher absorbance than (HEP/PLL) which confirms the changing of colors from light purple to 299 dark purple. This result comply with our previous study done by Pinzon-Herrera et al. which 300 showed the increase in absorbance from 1 to 6 bilayers of heparin/collagen multilayers as 301 302 measured using Taylor's Blue dye (Pinzon-Herrera et al. 2020). 303 The formation of the (HEP/PLL) multilayers was monitored by QCM-D. QCM-D detects the 304 resonant frequency shift (Δf) and measures the dissipation factor (ΔD) (Marx 2003). QCM-D 305 was used here to investigate physical structures such as adsorbed mass and viscoelastic properties of multilayers (Marx 2003) (Barrantes et al. 2012). Figure 2 shows the normalized 306 307 frequency shift $(-\Delta f_n/n)$ and dissipation $(\Delta D/n)$ for the 3rd, 4th, and 7th overtones for the (HEP/PLL) and (HEP/PLL) + CL multilayers. The first 15 minutes correspond to a PEI 308 309 absorption, followed by a 3 minutes rinsing step are shown in Figure 2. The increase in $-\Delta f$ and 310 ΔD of every (HEP/PLL) sequential deposition shows that the multilayers slowly deposit onto the quartz crystal (Lin et al. 2011). According to Boulmedais et al. this increase can be considered an 311 exponential increase of thickness for the multilayers (Boulmedais et al. 2006). This indicates that 312 313 at least one of the two components of the multilayers is diffusing within the multilayers as proposed by Picart et al. (C. Picart et al. 2002). It is demonstrated that by increasing of $-\Delta f$ the 314 mass of deposited multilayers enhanced, whereas the increase of ΔD enhances the viscoelastic 315 316 structure of the deposited multilayers (Easton et al. 2014). Therefore, adding a rough layer on quartz crystal has a lower $-\Delta f$, whereas a dense layer has a higher ΔD value. When HEP is 317 318 deposited, $-\Delta f$ and ΔD have a sharp rise with great dispersion between different overtones in both (HEP/PLL) + CL and (HEP/PLL). This indicates that the HEP is a loose and swollen layer. In 319 contrast, the PLL deposited shows not only a slight increase in $-\Delta f$ but also slight decrease in ΔD . 320 321 This may occur because of the PLL diffused within the multilayers. In addition, the frequency 322 shifts do not overlap for the different overtones not only in the rinse steps but also during the

determining the film mass during rinse and adsorption steps, which indicates that the multilayers 324 325 are more viscoelastic. Besides, the ratio of the change during the rinse and the adsorption steps in the dissipation factor to the change in frequency $(\Delta D/(-\Delta f/n))$ remains higher than 4×10^{-7} Hz⁻¹; 326 therefore, the film can be considered soft based on study done by Reviakine et al (Reviakine, 327 328 Johannsmann, and Richter 2011). After adsorption of the crosslinking solution, the frequency shifts no longer overlap. This indicates that adsorbed films are viscoelastic and that the mass 329 does not follow the Sauerbrey relationship anymore, so a more complex model might be used to 330 determine the adsorbed mass from the frequency shift and dissipation data (Boddohi et al. 2010). 331 Figure 2 (A&C) show crosslinking solution absorbed on multilayers by increasing of the 332 frequency shift and dissipation shift. Based on study done by Niepel et al. the increase of the 333 frequency shift and dissipation shift by adding the crosslinking solutions, increase the roughness 334 of the multilayers (Niepel et al. 2018). 335 336 The elemental composition obtained by XPS of (HEP/PLL) and (HEP/PLL) + CL are represented in Figure 3 (A & B). High resolution XPS spectra of C1s (283.4 eV), N1s (398.4 337 338 eV), O1s (529.8 eV), and S2P (168.3 eV) are shown in Figure 3 (B). Na and S were mainly the characteristic elements of HEP polysaccharide structure possessing carbonyls (COO-), sulphate(-339 340 SO4⁻), and hydroxyl group (-OH), while PLL contains a large number of various amino (NH₂) group and carboxyl group (-COOH) (Zhang et al. 2017). The presence of more sulfur was 341 detected on the multilayers revealed the presence of HEP (Ferreira et al. 2016). The increase of 342 sulfur peak due to increasing the number of layers shows a successful deposition of HEP. This 343 344 finding complies with a previous study by Almodovar et al. (Almodóvar et al. 2010). The highresolution C1s and N1s spectrum indicates the presence of several different chemical species 345 such as amide (288.3 eV and 400.6 eV) (Graf et al. 2009). The crosslinking solution reacted with 346 347 carboxylate groups of HEP and the amino groups of PLL and results in the formation of amide bonds (Semenov et al. 2009). Moreover, O1s, S2p, C1s, and N1s intensity content decrease in 348 (HEP/PLL) + CL compared to (HEP/PLL), indicating that the presence of the crosslinked 349 multilayers by interacting the amine groups of PLL with the sulfate groups of HEP (Crouzier and 350

adsorption steps. Consequently, this indicates that the Sauerbrey relation is not valid for

Picart 2009). These findings confirm the results from colorimetric determination of heparin

352 deposited within (HEP/PLL) multilayers.

PrestoBlue Viability Assay

351

353

The PrestoBlue reagent was used for measuring cell viability after 3 days of culturing hMSCs 354 355 cells on TCP, (HEP/PLL), and (HEP/PLL) + CL with and without IFN-γ supplemented in the cell culture medium. In the absence of the IFN-y in culture medium, TCP were selected as the 356 357 positive control, and its fluorescence intensity was normalized to 100%. All other conditions were assessed in relation to the positive control. Figure 4 (A) shows (HEP/PLL) +CL without 358 359 IFN-γ has the same viability of the cells compared to TCP, and (HEP/PLL) + CL with IFN-γ has a higher viability about 125% compared to TCP. However, (HEP/PLL) with and without IFN-y 360 have about 48% (less than half) viability compared to TCP. These findings show that the 361 (HEP/PLL) decrease cell viability. A study done by V. Semenov et al. showed an increase in cell 362 363 adhesion and growth when using high concentration of crosslinker on (PLL/HA) multilayers (Semenov et al. 2009) which may related to an increase in stiffness of the multilayers. However, 364 (HEP/PLL) + CL have a better ability to increase the cell viability. Figure 4 (A) shows 365 significant differences in cell viability on (HEP/PLL) + CL with IFN-γ compared to without 366 IFN- γ (p-value < 0.05) which indicates presence of the IFN- γ supplemented in the culture 367 medium has a considerable impact on the conditions with (HEP/PLL) + CL; suggesting that 368 there is a synergistic action of both components. These findings confirm our previous study done 369 by Cifuentes et al. in which they used collagen instead of PLL as polycation polymer in 370 heparin/collagen multilayers (Cifuentes et al. 2020). 371 We performed a similar study using hMSCs from another donor (donor 2). Regarding the cell 372 viability of donor 2, TCP with IFN-γ has a decrease about 20% compared to the TCP without the 373 IFN-γ (p-value<0.001) (Supplementary Information Figure S1(A)). Also, Figure S1(A) indicates 374 that there are approximately 25% decrease of the cell viability on the surfaces (HEP/PLL) + CL 375 376 with and without the IFN-γ compared to the TCP. However, donor 1 shows a higher viability when cells supplemented with IFN-y which can attribute to the different behavior of donors. 377 Also, the cell viability on the (HEP/PLL) for donor 2 decrease below 50%. 378

Fluorescence microscopy images of hMSCs nuclei labeled with Hoechst of cells attached to the different surfaces after 72 hours validate the findings about cell viability for both donors (Figure 4 (D) and Supplementary Information Figure S1(B)). It is clear that there is less cell attachment on (HEP/PLL) for both donors.

Real-time monitoring of cell behavior and proliferation

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

In this study, we cultured hMSCs at 25000 cells/cm² on TCP, (HEP/PLL), and (HEP/PLL) + CL with and without IFN-γ supplemented in the cell culture medium to evaluate the real-time behavior of the cells during the first 72 hours of culture. The action of presence of the IFNγ in the cell medium was also evaluated. As a control surface, we evaluated growth on uncoated (TCP) biosensors. An xCELLigence RTCA S16 biosensor system was used, which allows the measurement of cell proliferation and growth. This system constantly measures the impedance difference caused by cells attached to microsensors present in culture plates (E-plates 16) and is monitored by microchips attached under the wells. In this way, the impedance difference is translated into a parameter known as the Cell Index (CI). Therefore, the higher the CI, the greater the number of cells adhered to the bottom of the well (Pinzon-Herrera et al. 2020). Based on our previous study, the results indicate two phases in the cell behavior: cells adhesion and cell proliferation phases, after 30 hours and between 30-72 hours of culture, respectively (Pinzon-Herrera et al. 2020). Figure 4 (C) shows the CI values as a function of the first 72 hours of culture for the 6 experimental conditions for donor 1. Donor 1 shows a slow cell adhesion stage in the evaluated period, and it reaches a maximum peak around 18 hours. CI values reached a maximum of 6 CI units. Compared to the uncoated sensor without the IFN-γ, cell adhesion has three times higher CI value on (HEP/PLL) + CL without the IFN-γ. In addition, there is no detectable cell adhesion

on (HEP/PLL) which confirm our results in cell viability. Regarding the anti-proliferative effect

of the IFN-y on hMSCs, (HEP/PLL) + CL with and without the IFN-y show to be efficient

compared to the uncoated surfaces. This finding indicates that the (HEP/PLL) + CL do not

Intracellular IDO Assay

negatively affect hMSCs growth.

Indoleamine 2,3-dioxygenase (IDO) is a cytosolic heme protein that is important for immuno-407 regulatory functions (Takikawa et al. 1988)(Mbongue et al. 2015). It can be determined by 408 409 measuring the amino acid kynurenine (pg/cell)), which is known to be a catalyzer to convert Ltryptophan to kynurenine (Takikawa et al. 1988) (Däubener et al. 1994). The ability of IFN-γ to 410 induce IDO expression in hMSCs was compared on TCP, and (HEP/PLL) + CL with and 411 412 without IFN-y supplemented in the cell culture medium after 6 days. The results of (HEP/PLL) are not shown because of the cells adhesion limitation (based on the results from cell viability 413 414 and cells adhesion). Results for IDO activity are summarized in Figure 4 (B), which shows that for donor 1, all surfaces with IFN-γ (including TCP, and (HEP/PLL) + CL) have approximately 415 five times a higher level of the IDO activity among surfaces without IFN-γ. Donor 2 shows that 416 the IDO activity on TCP+ IFN-y increases by adding IFN-y in cell medium compared to TCP 417 418 (Supplementary Information Figure S1(C)). In addition, the IDO activity on (HEP/PLL) + CL with IFN- γ has a higher activity compared to the (HEP/PLL) + CL without IFN- γ . These results 419 420 comply with study done by Kwee et al. indicating the IDO activity corelated with amount of IFN-γ (Brian J. Kwee, Johnny Lam, Adovi Akue, Mark A. KuKuruga, K. Zhang, Luo Gu 2021). 421 422 Regarding the (HEP/PLL) + CL (with and without IFN-γ), donor 1 and donor 2 both show a decrease in amount of IDO activity compared to the TCP and TCP + IFN-y, respectively. 423 These finding may indicate that both donors show that using the (HEP/PLL) +CL does not affect 424 425 the level of the IDO activity in reference to the same amount of the IDO expression for the TCP 426 and (HEP/PLL) + CL without IFN-γ. These in vitro studies indicate that the level of the IDO 427 depends on not only the different donor's response but also IFN-γ and the multilayers influence the IDO expression. This result is in line with the study done by Cifuentes et al. (Cifuentes et al. 428 2020) that showed the IFN-γ is the key regulator of the IDO activity on heparin/collagen 429 430 multilayers. 431 Cells differentiation assav The ability of hMSCs to differentiate into osteogenic and adipogenic lineages cells was induced 432

by supplementing the growth media with differentiation media. The differentiation ability of

days of incubation, cell functions associated with osteoblast differentiation (ALP activity,

hMSCs was evaluated to confirm the multipotentiality of hMSCs culturing on TCP, (HEP/PLL),

and (HEP/PLL) + CL with and without IFN-γ supplemented in the cell culture medium. After 10

433

434

435

characterized from microscope images. The impact of presence of the IFN-y in the cell 438 439 medium was also evaluated. Figure 5 (A) and Figure 6 shows that there are areas visible with red and purple, indicating the 440 441 formation of the calcified regions and adipocyte-like cells, respectively. Figure 5 (A) shows that 442 cells on (HEP/PLL) expressed no staining due to lack of cells adhesion on (HEP/PLL). However, hMSCs cultured on TCP, and (HEP/PLL) + CL shows an increase in the size of calcium deposits 443 444 formed by the clustering of cells due to the strong staining with Alizarin red, which indicates osteogenic differentiation of cells. The same results were found for donor 2, as shown in 445 446 Supplementary Information Figure S2 (A). Also, hMSCs on TCP, and (HEP/PLL) + CL has the ability to differentiate to adipogenic cells, which the cells changed from long spindle-shaped to 447 448 flattened round, or polygonal cells as shown in Figure 6 and Supplementary Information Figure S2 (B). In addition, Figure 5 (A) & Figure 6 show that the treatment with IFN-y had no 449 450 inhibitory effect on both the osteogenic and adipogenic differentiation of hMSCs. No staining was observed on cells cultured in regular expansion medium, as shown in Supplementary 451 452 Information Figure S3. 453 ALP is an enzyme present in bone-related cells and is considered key to mineralization (Zhu et al. 2002). Its activity is related to the level of inorganic phosphate, a component of the bone 454 455 mineral phase (Renata Francielle Bombaldi de Souza, Fernanda Carla Bombaldi de Souza, 456 Andrea Thorpe, Diego Mantovani, Ketul C. Popat 2019). Therefore, ALP activity has been considered as an early indicator of osteoblast differentiation. Results for ALP activity are 457 summarized in Figure 5 (B)Error! Reference source not found.. Also, ALP activity of 458

calcium deposition) and adipogenic differentiation were evaluated. Mineralization was also

437

459

460

461

462

463

464

465

466

and (HEP/PLL) + CL multilayer surfaces with IFN- γ have a higher ALP activity than the surfaces without IFN- γ . Similarly, donor 2 shows that (HEP/PLL) + CL without IFN- γ has a slightly higher ALP activity compared to TCP. However, (HEP/PLL) + CL with IFN- γ shows the same ALP activity compared to TCP, and less activity compared to the (HEP/PLL) + CL without IFN- γ Supplementary Information Figure S2 (C). Also, TCP with IFN- γ supplemented on cells medium shows a higher ALP activity compared to the TCP without IFN- γ . These in

undifferentiation cells is considered as controls. Regarding donor 1, (HEP/PLL) + CL with and

without IFN-y showed enhanced intracellular levels of ALP as compared to TCP. Also, the TCP

vitro studies indicate that IFN-y can improve the intercellular level of ALP activity. Also, the study done by C. Lamoury et al. indicated that IFN-y resulted in affecting osteogenic differentiation of both mouse and human MSCs (Croitoru-Lamoury et al. 2011). As well, the study done by V. Semenov et al. (Semenov et al. 2009) show that crosslinking multilayers improve the cells differentiation compared to the non-crosslinked multilayers. Furthermore, these findings show that the differentiation of hMSCs may affected by donor's behavior, so differentiation of hMSCs need more studies. The undifferentiated hMSCs controls (cultured in hMSCs growth medium) displayed no staining. However, cells show good differentiation on TCP and (HEP/PLL) + CL not only without IFN-y but also with IFN-γ. These can indicate that the appearance of the IFN-γ and crosslinked multilayers do not suppress cells differentiation.

Conclusion

This study demonstrates that polyelectrolyte multilayers made of heparin and poly(L-lysine) were successfully built up using the layer-by-layer assembly method. QCM, XPS, and Azure A results demonstrate the construction of the multilayers, and the changes it undergoes after chemical crosslinking. Also, this study evaluated the effect of crosslinked (HEP/PLL) multilayers on the growth and immunosuppressive properties of hMSCs. It shows that (HEP/PLL) + CL have a better cells growth, adhesion, proliferation, differentiation, and immunomodulatory properties compared to the (HEP/PLL). In addition, the (HEP/PLL) + CL show better cell viability compared to the tissue plastic culture even in presence of IFN-γ. However, (HEP/PLL) + CL show less immunomodulatory properties. In contrast to our previous study, we noticed that heparin/collagen multilayers have great stimulation on the protein expression, immunomodulator factor expression, and adhesion of hMSCs compared to the issue plastic culture. We believe that tissue culture plastic reduces the therapeutic potential of hMSCs due to the lack of extracellular matrix components. Furthermore, ECM components effect the cellular immunomodulator factor, differentiation, and growth. In the future, we will investigate the use of (HEP/PLL) + CL coatings to have a better understanding of the modulatory response

495	of hMSCs to soluble factors, which may improve hMSCs-based therapies aimed at treating
496	several immune diseases and the cell manufacturing process.
497	Acknowledgement
498	The authors greatly appreciate the use of the Arkansas Nano & Biomaterials Characterization
499	Facility for use of the XPS. The authors greatly appreciate Dr. Greenlee and Sergio Ivan Perez
500	Bakovic from the University of Arkansas for equipment access and help during quartz crystal
501	microbalance (QCM) measurements. The authors greatly appreciate Frank Omar Aparicio Solis
502	and Trong Nguyen for help in construct the multilayers via LbL method.
503	Statement of Ethics
504	This work did not need approval from an ethic committee.
505	Conflict of Interest
506	The authors have no conflicts of interest to declare.
507	Funding Sources
508	This work was financially supported in part by the National Science Foundation
509	under grant no. 2051582, by the Arkansas Bioscience Institute.
510	Author Contributions
511	Mahsa Haseli: The LbL multilayers, XPS, QCM-D, Cell Culture, Cells viability Real-time
512	monitoring of hMSCs, Immunomodulatory factor expression, Differentiation, experiments, Data
513	analyses, Data curation and writing-original draft preparation, Figure preparation.
514	Luis Pinzon-Herrera: Qualitative colorimetric determination of heparin and data curation.
515	Jorge Almodovar: Conceptualization, supervision, writing-reviewing and editing, resources,
516	funding acquisition, project administration.
517	Data Availability Statement
518	All data generated or analysed during this study are included in this article. Further enquiries can
519	be directed to the corresponding author.

520	Reference
521	Almodóvar, Jorge, Samantha Bacon, Jarrod Gogolski, John D. Kisiday, and Matt J. Kipper. 2010.
522	"Polysaccharide-Based Polyelectrolyte Multilayer Surface Coatings Can Enhance Mesenchymal
523	Stem Cell Response to Adsorbed Growth Factors." <i>Biomacromolecules</i> 11 (10): 2629–39.
524	https://doi.org/10.1021/bm1005799.
525	Almodóvar, Jorge, Raphaël Guillot, Claire Monge, Julien Vollaire, Šeila Selimović, Jean Luc Coll, Ali
526	Khademhosseini, and Catherine Picart. 2014. "Spatial Patterning of BMP-2 and BMP-7 on
527	Biopolymeric Films and the Guidance of Muscle Cell Fate." <i>Biomaterials</i> 35 (13): 3975–85.
528	https://doi.org/10.1016/j.biomaterials.2014.01.012.
529	Barrantes, Alejandro, Olga Santos, Javier Sotres, and Thomas Arnebrant. 2012. "Influence of PH on the
530	Build-up of Poly-L-Lysine/Heparin Multilayers." Journal of Colloid and Interface Science 388 (1):
531	191–200. https://doi.org/10.1016/j.jcis.2012.08.008.
532	Boddohi, Soheil, Jorge Almodóvar, Hao Zhang, Patrick A. Johnson, and Matt J. Kipper. 2010. "Layer-by
533	Layer Assembly of Polysaccharide-Based Nanostructured Surfaces Containing Polyelectrolyte
534	Complex Nanoparticles." Colloids and Surfaces B: Biointerfaces 77 (1): 60-68.
535	https://doi.org/10.1016/j.colsurfb.2010.01.006.
536	Boulmedais, Fouzia, Clarence S. Tang, Beat Keller, and János Vörös. 2006. "Controlled
537	Electrodissolution of Polyelectrolyte Multilayers: A Platform Technology towards the Surface-
538	Initiated Delivery of Drugs." Advanced Functional Materials 16 (1): 63-70.
539	https://doi.org/10.1002/adfm.200400406.
540	Brian J. Kwee, Johnny Lam, Adovi Akue, Mark A. KuKuruga, K. Zhang, Luo Gu, Kyung E. Sung. 2021
541	"Functional Heterogeneity of IFN- γ – Licensed Mesenchymal Stromal Cell Immunosuppressive
542	Capacity on Biomaterials," 1–12. https://doi.org/10.1073/pnas.2105972118/-
543	/DCSupplemental.Published.
544	Brizzi, Maria Felice, Guido Tarone, and Paola Defilippi. 2012. "Extracellular Matrix, Integrins, and
545	Growth Factors as Tailors of the Stem Cell Niche." Current Opinion in Cell Biology 24 (5): 645-51
546	https://doi.org/10.1016/j.ceb.2012.07.001.
547	Brooke, Gary, Matthew Cook, Chris Blair, Rachel Han, Celena Heazlewood, Ben Jones, Melinda
548	Kambouris, et al. 2007. "Therapeutic Applications of Mesenchymal Stromal Cells." Seminars in
549	Cell and Developmental Biology 18 (6): 846–58. https://doi.org/10.1016/j.semcdb.2007.09.012.

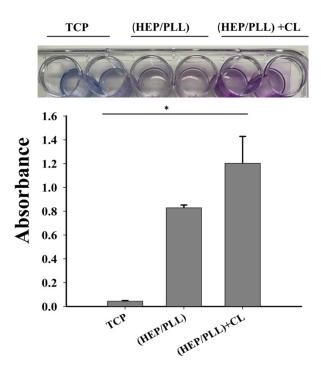
550	Castilla-Casadiego, David A., José R. García, Andrés J. García, and Jorge Almodovar. 2019.
551	"Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon
552	Gamma." ACS Biomaterials Science and Engineering 5 (6): 2793–2803.
553	https://doi.org/10.1021/acsbiomaterials.9b00008.
554	Castilla-Casadiego, David A., Ana M. Reyes-Ramos, Maribella Domenech, and Jorge Almodovar. 2020.
555	"Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional
556	Characteristics." Annals of Biomedical Engineering 48 (2): 519-35. https://doi.org/10.1007/s10439-
557	019-02400-3.
558	Castilla-Casadiego, David A., Hemanta Timsina, Mahsa Haseli, Luis Pinzon-Herrera, Yu Hsuan Chiao, S.
559	Ranil Wickramasinghe, and Jorge Almodovar. 2020. "Methods for the Assembly and
560	Characterization of Polyelectrolyte Multilayers as Microenvironments to Modulate Human
561	Mesenchymal Stromal Cell Response." ACS Biomaterials Science and Engineering 6 (12): 6626-51.
562	https://doi.org/10.1021/acsbiomaterials.0c01397.
563	Cifuentes, Said J., Priyanka Priyadarshani, David A. Castilla-Casadiego, Luke J. Mortensen, Jorge
564	Almodóvar, and Maribella Domenech. 2020. "Heparin/Collagen Surface Coatings Modulate the
565	Growth, Secretome, and Morphology of Human Mesenchymal Stromal Cell Response to Interferon-
566	Gamma." Journal of Biomedical Materials Research - Part A, no. March: 1-15.
567	https://doi.org/10.1002/jbm.a.37085.
568	Croitoru-Lamoury, Juliana, François M.J. Lamoury, Michael Caristo, Kazuo Suzuki, David Walker,
569	Osamu Takikawa, Rosanne Taylor, and Bruce J. Brew. 2011. "Interferon-γ Regulates the
570	Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3
571	Dioxygenase (IDO)." PLoS ONE 6 (2). https://doi.org/10.1371/journal.pone.0014698.
572	Crouzier, Thomas, and Catherine Picart. 2009. "Ion Pairing and Hydration in Polyelectroyte Multilayer
573	Film Containing Polysaccharides." <i>Biomacromolecules</i> , 433–42.
574	Däubener, Walter, Nicole Wanagat, Korinna Pilz, Samira Seghrouchni, Hans Georg Fischer, and Ulrich
575	Hadding. 1994. "A New, Simple, Bioassay for Human IFN-γ." Journal of Immunological Methods
576	168 (1): 39–47. https://doi.org/10.1016/0022-1759(94)90207-0.
577	Dinoro, Jeremy, Malachy Maher, Sepehr Talebian, Mahboubeh Jafarkhani, Mehdi Mehrali, Gorka Orive,
578	Javad Foroughi, Megan S. Lord, and Alireza Dolatshahi-Pirouz. 2019. "Sulfated Polysaccharide-
579	Based Scaffolds for Orthopaedic Tissue Engineering." Biomaterials 214 (December 2018): 119214.
580	https://doi.org/10.1016/j.biomaterials.2019.05.025.

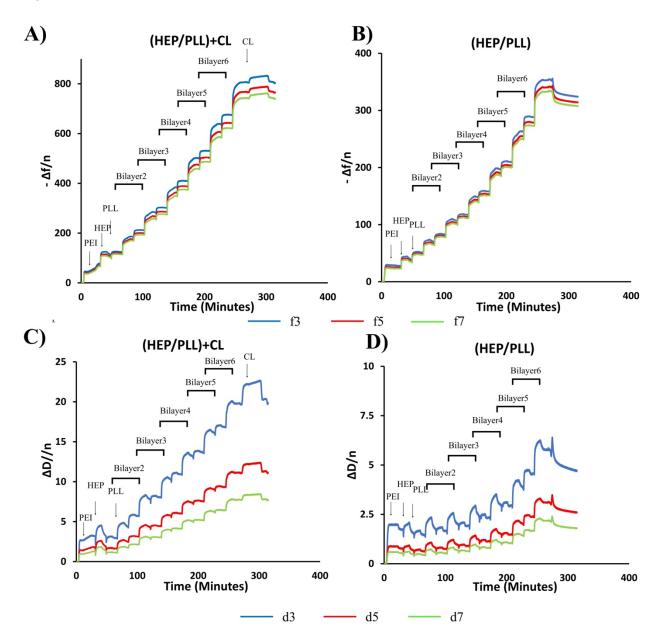
- Douglas, M. S., D. A. Rix, J. H. Dark, D. Talbot, and J. A. Kirby. 1997. "Examination of the Mechanism
- 582 by Which Heparin Antagonizes Activation of a Model Endothelium by Interferon-Gamma (IPN-γ)."
- 583 *Clinical and Experimental Immunology* 107 (3): 578–84. https://doi.org/10.1046/j.1365-
- 584 2249.1997.3141206.x.
- Easton, C. D., A. J. Bullock, G. Gigliobianco, S. L. McArthur, and S. Macneil. 2014. "Application of
- Layer-by-Layer Coatings to Tissue Scaffolds-Development of an Angiogenic Biomaterial." *Journal*
- 587 *of Materials Chemistry B* 2 (34): 5558–68. https://doi.org/10.1039/c4tb00448e.
- Ferreira, Ana M., Piergiorgio Gentile, Sotiria Toumpaniari, Gianluca Ciardelli, and Mark A. Birch. 2016.
- "Impact of Collagen/Heparin Multilayers for Regulating Bone Cellular Functions." ACS Applied
- 590 *Materials and Interfaces* 8 (44): 29923–32. https://doi.org/10.1021/acsami.6b09241.
- 591 Gentile, P., I. Carmagnola, T. Nardo, and V. Chiono. 2015. "Layer-by-Layer Assembly for Biomedical
- 592 Applications in the Last Decade." *Nanotechnology* 26 (42): 422001. https://doi.org/10.1088/0957-
- 593 4484/26/42/422001.
- 594 Graf, Nora, Eda Yegen, Thomas Gross, Andreas Lippitz, Wilfried Weigel, Simone Krakert, Andreas
- 595 Terfort, and Wolfgang E.S. Unger. 2009. "XPS and NEXAFS Studies of Aliphatic and Aromatic
- Amine Species on Functionalized Surfaces." *Surface Science* 603 (18): 2849–60.
- 597 https://doi.org/10.1016/j.susc.2009.07.029.
- 598 Gribova, Varvara, Rachel Auzely-Velty, and Catherine Picart. 2012. "Polyelectrolyte Multilayer
- Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering." *Chemistry of*
- 600 *Materials* 24 (5): 854–69. https://doi.org/10.1021/cm2032459.
- Hynes, Richard O. 2009. "The Extracellular Matrix: Not Just Pretty Fibrils." Science 326 (5957): 1216–
- 602 19. https://doi.org/10.1126/science.1176009.
- 603 Ijzermans, Jan N.M., and Richard L. Marquet. 1989. "Interferon-Gamma: A Review." *Immunobiology*
- 604 179 (4–5): 456–73. https://doi.org/10.1016/S0171-2985(89)80049-X.
- Klinker, Matthew W., Ross A. Marklein, Jessica L. Lo Surdo, Cheng Hong Wei, and Steven R. Bauer.
- 606 2017. "Morphological Features of IFN-γ-Stimulated Mesenchymal Stromal Cells Predict Overall
- Immunosuppressive Capacity." *Proceedings of the National Academy of Sciences of the United*
- 608 States of America 114 (13): E2598–2607. https://doi.org/10.1073/pnas.1617933114.
- 609 KRUIJFF, PB. DE, and and P.R. CULLIS. 1980. "THE INFLUENCE OF POLY(L-LYSINE) ON
- PHOSPHOLIPID POLYMORPHISM EVIDENCE." *Biochimica et Biophysica Acta* 601: 235–40.

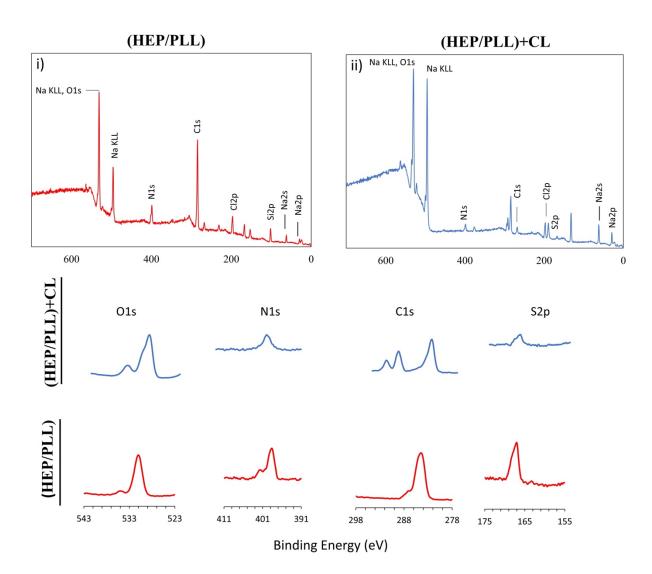
611 https://doi.org/10.1016/0005-2736(80)90528-3. 612 Lin, Quankui, Jiajie Yan, Fuyu Qiu, Xiaoxiao Song, Guosheng Fu, and Jian Ji. 2011. "Heparin/Collagen 613 Multilayer as a Thromboresistant and Endothelial Favorable Coating for Intravascular Stent." Journal of Biomedical Materials Research - Part A 96 A (1): 132-41. 614 https://doi.org/10.1002/jbm.a.32820. 615 Liu, Yi, Lei Wang, Takashi Kikuiri, Kentaro Akiyama, Chider Chen, Xingtian Xu, Ruili Yang, Wan Jun 616 617 Chen, Songlin Wang, and Songtao Shi. 2011. "Mesenchymal Stem Cell-Based Tissue Regeneration Is Governed by Recipient T Lymphocytes via IFN-γ and TNF-α." Nature Medicine 17 (12): 1594– 618 619 1601. https://doi.org/10.1038/nm.2542. 620 Lortat-Jacob, Hugues. 2009. "The Molecular Basis and Functional Implications of Chemokine 621 Interactions with Heparan Sulphate." Current Opinion in Structural Biology 19 (5): 543–48. 622 https://doi.org/10.1016/j.sbi.2009.09.003. 623 Lortat-Jacob, Hugues, Frederic Baltzer, and Jean Alexis Grimaud. 1996. "Heparin Decreases the Blood Clearance of Interferon-y and Increases Its Activity by Limiting the Processing of Its Carboxyl-624 625 Terminal Sequence." Journal of Biological Chemistry 271 (27): 16139–43. https://doi.org/10.1074/jbc.271.27.16139. 626 627 Marx, Kenneth A. 2003. "Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films 628 and Complex Biomolecular Systems at the Solution - Surface Interface." Biomacromolecules 4 (5): 1099–1120. https://doi.org/10.1021/bm020116i. 629 630 Mbongue, Jacques C., Dequina A. Nicholas, Timothy W. Torrez, Nan Sun Kim, Anthony F. Firek, and William H.R. Langridge. 2015. "The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression 631 632 and Autoimmunity." Vaccines 3 (3): 703–29. https://doi.org/10.3390/vaccines3030703. 633 Michael D. Klein, Robert A. Drongowski, Robert J. Linhardt, And Robert S. Langer. 1982. "A 634 Colorimetric Assay for Chemical in Plasma." Analytical Biochemistry 64: 59-64. 635 Niepel, Marcus S., Fadi Almouhanna, Bhavya K. Ekambaram, Matthias Menzel, Andreas Heilmann, and 636 Thomas Groth. 2018. "Cross-Linking Multilayers of Poly-l-Lysine and Hyaluronic Acid: Effect on Mesenchymal Stem Cell Behavior." International Journal of Artificial Organs 41 (4): 223–35. 637 https://doi.org/10.1177/0391398817752598. 638 639 Pachmann, Katharina, and Wolfgang Leibold. 1976. "Insolubilization of Protein Antigens on Polyacrylic Plastic Beads Using Poly-1-Lysine." *Journal of Immunological Methods* 12 (1–2): 81–89. 640

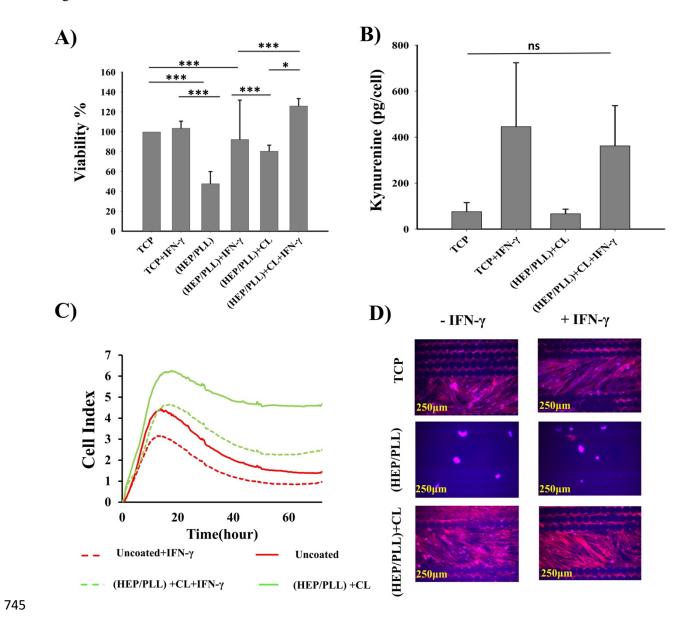
641	https://doi.org/10.1016/0022-1759(76)90098-3.
642	Paluck, Samantha J., Thi H. Nguyen, and Heather D. Maynard. 2016. "Heparin-Mimicking Polymers:
643	Synthesis and Biological Applications." Biomacromolecules 17 (11): 3417–40.
644	https://doi.org/10.1021/acs.biomac.6b01147.
645	Picart, C., J. Mutterer, L. Richert, Y. Luo, G. D. Prestwich, P. Schaaf, J. C. Voegel, and P. Lavalle. 2002.
646	"Molecular Basis for the Explanation of the Exponential Growth of Polyelectrolyte Multilayers."
647	Proceedings of the National Academy of Sciences of the United States of America 99 (20): 12531-
648	35. https://doi.org/10.1073/pnas.202486099.
649	Picart, Catherine. 2008. "Polyelectrolyte Multilayer Films: From Physico-Chemical Properties to the
650	Control of Cellular Processes." Current Medicinal Chemistry 15 (7): 685–97.
651	https://doi.org/10.2174/092986708783885219.
652	Picart, Catherine, René Elkaim, Ludovic Richert, Fabrice Audoin, Youri Arntz, Monica Da Silva
653	Cardoso, Pierre Schaaf, Jean Claude Voegel, and Benoît Frisch. 2005. "Primary Cell Adhesion on
654	RGD-Functionalized and Covalently Crosslinked Thin Polyelectrolyte Multilayer Films." Advanced
655	Functional Materials 15 (1): 83–94. https://doi.org/10.1002/adfm.200400106.
656	Pinzon-Herrera, Luis, Janet Mendez-Vega, Adriana Mulero-Russe, David A. Castilla-Casadiego, and
657	Jorge Almodovar. 2020. "Real-Time Monitoring of Human Schwann Cells on Heparin-Collagen
658	Coatings Reveals Enhanced Adhesion and Growth Factor Response." Journal of Materials
659	Chemistry B 8 (38): 8809–19. https://doi.org/10.1039/d0tb01454k.
660	Pittenger, Mark F., Dennis E. Discher, Bruno M. Péault, Donald G. Phinney, Joshua M. Hare, and Arnold
661	I. Caplan. 2019. "Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress." Npj
662	Regenerative Medicine 4 (1). https://doi.org/10.1038/s41536-019-0083-6.
663	Ramos, Teresa L., Luis Ignacio Sánchez-Abarca, Sandra Muntión, Silvia Preciado, Noemí Puig,
664	Guillermo López-Ruano, Ángel Hernández-Hernández, et al. 2016. "MSC Surface Markers (CD44,
665	CD73, and CD90) Can Identify Human MSC-Derived Extracellular Vesicles by Conventional Flow
666	Cytometry." Cell Communication and Signaling 14 (1): 1-14. https://doi.org/10.1186/s12964-015-
667	0124-8.
668	Renata Francielle Bombaldi de Souza, Fernanda Carla Bombaldi de Souza, Andrea Thorpe, Diego
669	Mantovani, Ketul C. Popat, Aangela Maria Moraes. 2019. "Phosphorylation of Chitosan to Improve
670	Osteoinduction of Chitosan/Xanthan-Based Scaffolds for Periosteal Tissue Engineering."
671	International Journal of Biological Macromolecules.

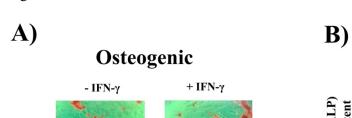
672	https://doi.org/10.1016/j.ijbiomac.2019.12.004.
673	Reviakine, Ilya, Diethelm Johannsmann, and Ralf P. Richter. 2011. "Hearing What You Cannot See and
674	Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated
675	Interfaces." Analytical Chemistry 83 (23): 8838–48. https://doi.org/10.1021/ac201778h.
676	Richert, Ludovic, Fouzia Boulmedais, Philippe Lavalle, Jérome Mutterer, Emmanuelle Ferreux, Gero
677	Decher, Pierre Schaaf, Jean Claude Voegel, and Catherine Picart. 2004. "Improvement of Stability
678	and Cell Adhesion Properties of Polyelectrolyte Multilayer Films by Chemical Cross-Linking."
679	Biomacromolecules 5 (2): 284–94. https://doi.org/10.1021/bm0342281.
680	Sarrazin, Stéphane, David Bonnaffé, André Lubineau, and Hugues Lortat-Jacob. 2005. "Heparan Sulfate
681	Mimicry: A Synthetic Glycoconjugate That Recognizes the Heparin Domain of Interferon-γ Inhibits
682	the Cytokine Activity." Journal of Biological Chemistry 280 (45): 37558–64.
683	https://doi.org/10.1074/jbc.M507729200.
684	Semenov, Oleg V., Antoine Malek, Anne Greet Bittermann, Janos Vörös, and Andreas H. Zisch. 2009.
685	"Engineered Polyelectrolyte Multilayer Substrates for Adhesion, Proliferation, and Differentiation
686	of Human Mesenchymal Stem Cells." <i>Tissue Engineering - Part A</i> 15 (10): 2977–90.
687	https://doi.org/10.1089/ten.tea.2008.0602.
688	Shukla, Swet Chand, Amit Singh, Anand Kumar Pandey, and Abha Mishra. 2012. "Review on Production
689	and Medical Applications of E-Polylysine." Biochemical Engineering Journal 65: 70-81.
690	https://doi.org/10.1016/j.bej.2012.04.001.
691	Takikawa, O., T. Kuroiwa, F. Yamazaki, and R. Kido. 1988. "Mechanism of Interferon-γ Action.
692	Characterization of Indoleamine 2,3-Dioxygenase in Cultured Human Cells Induced by Interferon - γ
693	and Evaluation of the Enzyme-Mediated Tryptophan Degradation in Its Anticellular Activity."
694	Journal of Biological Chemistry 263 (4): 2041–48.
695	Watt, Fiona M., and Wilhelm T.S. Huck. 2013. "Role of the Extracellular Matrix in Regulating Stem Cell
696	Fate." Nature Reviews Molecular Cell Biology 14 (8): 467–73. https://doi.org/10.1038/nrm3620.
697	Zhang, Kuihua, Dianwu Huang, Zhiyong Yan, and Chunyang Wang. 2017. "Heparin/Collagen
698	Encapsulating Nerve Growth Factor Multilayers Coated Aligned PLLA Nanofibrous Scaffolds for
699	Nerve Tissue Engineering." Journal of Biomedical Materials Research - Part A 105 (7): 1900–1910.
700	https://doi.org/10.1002/jbm.a.36053.
701	Zhu, Aiping, Ming Zhang, Jun Wu, and Jian Shen. 2002. "Covalent Immobilization of Chitosan / Heparin


- Complex with a Photosensitive Hetero-Bifunctional Crosslinking Reagent on PLA Surface \$" 23:
- 703 4657–65.


705


Figure Legends


- Figure 1. Absorbance for Azure A dye solution applied to TCP, (HEP/PLL) multilayers, and (HEP/PLL)
- 707 + CL multilayers.
- Figure. 2. QCM-D data showing the normalized frequency shift & dissipation shift as a function of time
- for the 3rd, 5th, and 7th overtones during the construction of the HEP/PLL multilayers with IFN-γ, with
- alternating 3-minute rinse and 5 minutes adsorption intervals. A&B: shows the normalized frequency
- 711 shift. C&D: shows the normalized dissipation shift. Note that we use -Δf for a clear representation of the
- 712 results.
- Figure. 3. Chemical properties of the multilayers of (HEP/PLL) as measured by The XPS broad spectra
- and high-resolution XPS. (A): XPS survey scan spectrum of (HEP/PLL) and (HEP/PLL) + CL
- 715 multilayers. (B): the corresponding specific spectrum of elemental (HEP/PLL) and (HEP/PLL) + CL
- 716 multilayers.
- 717 Figure. 4. (A): PrestoBlue Viability assay for cultured hMSCs donor 1. Cellular behavior in cell cultures
- 718 on TCP, (HEP/PLL), and (HEP/PLL) + CL multilayers with and without IFN-γ. (B): Real-time
- monitoring of hMSCs grown on TCP, (HEP/PLL), and (HEP/PLL) + CL multilayers after 72 hours with
- and without IFN-γ. (C): Cells immunomodulatory potential by IDO activity for hMSCs as a measure of
- 721 picograms of kynurenine produced by cells cultured on TCP, (HEP/PLL), and (HEP/PLL) + CL
- 722 multilayers with and without IFN-γ.(D): Fluorescence microscopy images of hMSCs nuclei and actin
- 723 cytoskeleton, labeled with Hoechst and Actin Red, of cells attached to the TCP, (HEP/PLL), and
- 724 (HEP/PLL) + CL multilayers with and without IFN- γ . Data are presented as the mean \pm standard
- deviation of n = 4 samples. The p-values < 0.05 are represented by *, p-values < 0.01 by **, p-values < 0.05
- 726 0. 001 by *** and p-values < 0.0001 by ****.
- 727 Figure. 5. hMSCs differentiation donor 1. (A): Osteogenic differentiations were stained by Alizarin Red.
- 728 (B): Alkaline phosphatase (ALP) assays were performed after of induced osteogenesis on TCP and
- 729 (HEP/PLL) + CL multilayers. Data are presented as the mean \pm standard deviation of n = 4 samples. The
- p-values < 0.05 are represented by *, p-values < 0.01 by **, p-values < 0.001 by *** and p-values <
- 731 0.0001 by ****.
- Figure. 6. hMSCs differentiation donor 1. Adipogenic differentiation were stained by Oil Red.


Figure 1

