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Abstract—Existing research work has identified a new class of attacks that can eavesdrop on the keystrokes in a non-invasive way
without infecting the target computer to install malware. The common idea is that pressing a key of a keyboard can cause a unique and
subtle environmental change, which can be captured and analyzed by the eavesdropper to learn the keystrokes. For these attacks,
however, a training phase must be accomplished to establish the relationship between an observed environmental change and the
action of pressing a specific key. This significantly limits the impact and practicality of these attacks. In this paper, we discover that it is
possible to design keystroke eavesdropping attacks without requiring the training phase. We create this attack based on the channel
state information extracted from the wireless signal. To eavesdrop on keystrokes, we establish a mapping between typing each letter
and its respective environmental change by exploiting the correlation among observed changes and known structures of dictionary
words. To defend against this attack, we propose a reactive jamming mechanism that launches the jamming only during the typing
period. Experimental results on software-defined radio platforms validate the impact of the attack and the performance of the defense.

Index Terms—Keystroke eavesdropping, correlation, reactive jamming.

1 INTRODUCTION

ENSITIVE information such as classified documents,
S trade secrets, or private emails are typeset and input into
a computer for storage or transmission almost exclusively
via a keyboard. Emerging research work has identified a
new class of attacks that can eavesdrop on the keystrokes
in a non-invasive way [2]-[13]. These new attacks elimi-
nate the requirement to infect the target computer with a
keylogger or other malware to violate the user’s privacy.
Their common underlying principle is that pressing a key
on a keyboard causes subtle environmental impacts unique
to that key, which can be observed and correlated for all
keys. For example, an eavesdropper can set up a malicious
WiFi router to receive the wireless signal emitted by a target
laptop. A user pressing a key causes a unique disturbance
on the received signal, and the eavesdropper can analyze
these disturbances to learn which key is pressed. In gen-
eral, these non-invasive keystroke eavesdropping attacks
can be classified into three categories, vibration based [5],
[6], acoustic signal based [7]-[9], [13], and wireless signal
based [2]-[4], [14].

These attacks also share a common weakness, i.e., re-
quiring a training phase. This establishes the relationships
between observed environmental disturbances and specific
key presses. During the attack phase, unknown disturbances
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are compared with those recorded in the training phase to
determine which key was most likely pressed. However, the
training significantly limits the impact of these attacks. Most
existing works [2]-[7], [9]-[12], [14] assume the attacker has
some way to perform the training in a practical situation,
but none have provided technical details justifying their
logistical feasibility. [13] proposes a practical way to collect
keystrokes for training by Voice-over-IP (VoIP) software
(e.g., Skype), while this technique targets the scenario when
the attacker is able to talk with the target user via VoIP calls.

Requiring training imposes a large practical hurdle for
the attacker - most users are in full physical control of their
keyboards, whether they are part of a laptop set in arbitrary
locations or on a roll-out keyboard tray (a common feature
of desks). Anytime a laptop is moved or a keyboard tray
is pushed in or pulled out slightly, any previous training
efforts are invalidated. A user may also change typing be-
haviors (heaviness of hand, etc.) during use of the computer.
Hence, training must be conducted frequently to cope with
all these changes. Because training requires knowledge of
what key is pressed to construct a mapping, and therefore
requires access to the system for some time, it is impossible
to retrain once the user has control of the system, and it is
highly difficult to train on systems controlled physically by
the user (which are most).

In this paper, we make non-invasive keystroke eaves-
dropping practical by removing the training requirement
entirely. Not only does this make these attacks actually pos-
sible, but it also makes them far less invasive still, because
physical access to the system is never required.

Intuitively, statistical methods provide a way to remove
the training phase. Frequency analysis [15] is a typical
unsupervised learning method based on the statistical ob-
servation that certain letters normally occur with varying
frequencies in a given language. In English, the letter ‘e’
is the most often used. An input text of sufficiently large
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size will have a distribution of letter frequencies close to the
typical distribution of English letters [16]. Since an environ-
mental disturbance is associated with a key, by analyzing
the frequencies of observed disturbances, the attacker can
possibly determine the associated keys. Intuitively, the most
frequently observed disturbance is likely to be caused by
typing the letter ‘e’.

However, statistical methods determine the typical dis-
tribution of English letters by ingesting a large amount
of text, while the distribution within a small sample text
may not be quite the same. The discrepancy between the
sample and typical distributions is unpredictable, so corre-
lating environmental disturbances and keystrokes requires
collecting statistics over a long period, during which the
environmental disturbances (e.g., wireless signal properties)
for different keystrokes must remain static as well as distinct
from one another. In practice, these disturbances (especially
wireless signals) may change over time due to environ-
mental changes and mobility, preventing the attacker from
collecting sufficient reliable statistics for keystroke inference.

The challenges with using statistical methods moti-
vate us to develop an effective approach for non-invasive
keystroke eavesdropping within a shorter time window. We
analyze the self-contained structures of words, which can
be immediately observed by typing a single word, rather
than probabilistic statistics among words, which require
many words to establish. In particular, we notice that the
repetition or uniqueness of characters in a word shows
through the structure of repeated or unique environmental
disturbances collected in the process of eavesdropping. For
example, assume that a user types “sense”, and accordingly
the attacker observes five environmental disturbances. The
first and fourth observed disturbances are similar to each
other, because they are caused by the action of pressing the
same key “s”. Similarly, the second and last disturbances
appear alike, because they are caused by pressing the same
key “e”. This structural information enables the attacker to
quickly identify the typed word, as only one word “sense”
from the 1,500 most frequently used words [17] matches
this structure, achieving a much faster establishment of
a mapping between disturbances and characters typed.
This observation also requires no prior interaction with the
user’s system and thus facilitates fast and accurate training-
agnostic keystroke eavesdropping.

To exploit this observation, we must compare the corre-
lations among letters of words with those among observed
disturbances. This requires a self-contained feature that can
quantify such correlations and be compared against others.
We identify and describe herein such a feature, having three
necessary characteristics. First, it achieves high uniqueness
to provide fast distinction among differently structured
words. Second, it can be extracted both from words and
sets of observed disturbances, so the two can be com-
pared. Lastly, as more words are typed, their corresponding
structures can be captured and integrated with previous
information to refine and shrink the search space.

Using this feature, we create approaches to compare
sets of observed disturbances to possible candidate words.
Our technique has mechanisms to adapt to and retain high
accuracy in the presence of natural noise and sudden envi-
ronmental changes, which may cause similar disturbances
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to appear different or vice versa. It is similarly able to
continue inferring letters in the presence of non-alphabetical
characters such as punctuation, navigation arrows, delete
and backspace keys, etc.

Our attack analyzes disturbances in a wireless signal,
which can penetrate through obstacles, so it does not require
line-of-sight between the attacker and the victim. External
wireless devices controlled by the attacker are used to collect
the signal disturbances, so there is no need for exploits to
install malware on the target computer. The attack is espe-
cially suitable for the wireless scenario, since the wireless
channel is time-varying and it can quickly determine the
disturbance-key relationship. Within a short time window,
the attacker can apply this relationship to infer the remain-
ing keystrokes, including typed words not in the dictionary.
Except for English, our attack can also be utilized to infer
other languages, such as source code. To defend against
the attack, we propose a reactive jamming scheme called
TypeGuard which prevents the eavesdropper from obtaining
enough CSI information for keystroke inference.

We implement the proposed attack and defense on Uni-
versal Software Radio Peripherals (USRPs) X300 platform.
Experimental results show that for a sample input of 150
words, the proposed attack can recognize an average of
95.3% of these words, whereas frequency analysis can only
recognize less than 2.4%. We also note that the attacker
only needs 1-2 minutes to collect 50 words to identify the
disturbance-key relationship that allows a word recovery
rate of 94.3%. Besides, we verify the feasibility of inferring
Linux kernel source code with the proposed attack. Further-
more, we show that the attacker can effectively decrease the
entropy of a 9-character password from 54.8 bits to as low as
5.4 bits, vastly reducing the maximum brute-force attempts
required for breaking the key from 31.08 quadrillion to just
42. On the other hand, TypeGuard can jam 97% of the user’s
typing duration on average so that the attacker is unable to
infer keystrokes without insufficient CSI waveforms.

In summary, our contributions are as follows:

e We propose a novel wireless keystroke eavesdrop-
ping attack, which requires no training.

e We develop a dictionary-assisted demodulation algo-
rithm to establish the mapping between typing each
letter and its respective environmental change.

e We design a defense technique to defend against the
proposed attack.

o We implement real-world prototypes of both the pro-
posed attack and defense techniques using USRPs,
evaluating the performance of the attack and the
effectiveness of the defense.

2 PRELIMINARIES

As wireless signals can penetrate through obstacles [18]-
[21], we monitor this environment for our training-agnostic
attack to remove the line-of-sight requirement.

2.1 Channel State Information

Wireless signal disturbances can be quantified by the CSI
measurement, which describes how the wireless channel im-
pacts the radio signal that propagates through the channel
(e.g., amplitude attenuation and phase shift) [22].



IEEE/ACM TRANSACTIONS ON NETWORKING

The orthogonal frequency-division multiplexing
(OFDM) technique is widely used in modern wireless
communication systems (e.g., 802.11a/g/n/ac/ad). OFDM
utilizes multiple subcarrier frequencies to encode a
packet, and the channel frequency responses measured from
the subcarriers form the CSI of OFDM. The channel
frequency response at time ¢ is denoted by H(f,t), where
f represents a particular subcarrier frequency, and it is
usually estimated by using a pseudo-noise sequence that
is publicly known [23]. Specifically, a transmitter sends a
pseudo-noise sequence over the wireless channel, and the
receiver estimates the channel frequency response from the
received, distorted copy and the publicly known original
sequence. Let X(f,t) denote the transmitted pseudo-noise
sequence. Based on the received signal Y (f,t), H(f,t) can
be calculated by H(f,t) = };E’;?) . Existing work utilizes the
amplitude of CSI to extract ke);stroke waveforms [3], [4]. In
this paper, we also explore the amplitude of CSI and refer
to this as just “CSI” in the following.

2.2 Existing Work on CSl-based Keystroke Inference

Researchers have proposed to utilize CSI to recognize subtle
human activities, including mouth movements [24] and
keystrokes [3], [4]. Existing techniques [3], [4] on CSI-based
keystroke inference assume that the attacker typically sets
up a wireless transmitter and receiver in close proximity of
the target keyboard. If the keyboard is part of a computer
like a laptop that can connect to wireless networks, the
computer itself transmits the wireless signal whenever it
needs to exchange information with the WiFi router, and
thus it can play the role of the transmitter for the attacker.
The receiver can then be a malicious 802.11 access point that
provides free WiFi service to attract victim computers to
connect to it. In a general case, the attacker can also create
a custom transmitter and receiver using software-defined
radio platforms such as USRPs. The transmitter transmits
the wireless signal to create a radio environment, and the
receiver receives the signal and computes the CSI.

These techniques normally use three steps to infer
keystrokes, namely, pre-processing, training, and testing.
Pre-processing removes noise from the CSI, reduces compu-
tational complexity, and segments the time series of the CSI
into individual samples that correspond to keystrokes. The
training phase records each keystroke and the correspond-
ing CSI so that a training model for classification can be
built. In the testing phase, an observed CSI for an unknown
keystroke is matched within the training model to deter-
mine which keystroke it corresponds to. Our attack uses the
same pre-processing step as these existing techniques.

3 ATTACK DESIGN
3.1 System Overview

We consider a general attack scenario, where the attacker
uses a customized transmitter and receiver pair to launch
this attack. The attacker constantly transmits the wireless
signal, or just whenever typing activity is detected. In the
latter case, a WiFi packet analyzer can detect when a user
starts to type [4]. We assume the typed content is in English,
though the attack can target other languages just as easily.
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The receiver needs to collect the CSI, so the attacker
implements a channel estimation algorithm such as the
one mentioned in Section 2.1. The estimated CSI stream
is divided by the pre-processing step into individual seg-
ments that correspond to the actions of pressing a key. In
this paper, we refer to a segment as a CSI sample. After
pre-processing, unlike the existing methods, the training-
agnostic attack takes three different important steps to infer
keystrokes, namely CSI word group generation, dictionary
demodulation, and alphabet matching.

CSI word group generation partitions the CSI samples
into groups corresponding to each typed word. The attacker
will explore the correlation among and order of unique
letters in each word to infer keystrokes, and thus needs
to separate the stream into words. This step performs this
task by identifying the CSI samples caused by pressing the
space key, since words are almost always separated by a
space. Dictionary demodulation aligns the correlation of
CSI samples to that of letters in a word, so as to find the
corresponding word for a CSI word group. Based on the
demodulation result, potential mappings are formed be-
tween CSI samples and keystrokes, with which the attacker
can infer the remaining typed words, including those not
appearing in the dictionary.

3.2 CSl word group generation

CSI word group generation involves classification, sorting,
and word segmentation.

3.2.1 Classification

Dynamic Time Warping is a classical technique to measure
the similarity between two temporal sequences [25], and
it has been widely used to identify the spatial similarity
between the signal profiles of two wireless links [3], [4],
[26], [27]. Thus, to quantify the similarity between two CSI
samples, we utilize the Dynamic Time Warping technique
to calculate the distance between them. A small distance
indicates that both CSI samples are similar and accordingly
that they originate from the same key. Conversely, a large
distance indicates that they deviate from each other, and
that they are caused by two different keys. We assume that
the victim user presses a single key at a time, since this is
the common typing behavior for most keyboard users.

3.2.2 Sorting

Since the space character is used to connect consecutive
words, it normally appears more frequently than any other
character in a long text. We thus expect that the CSI sam-
ple caused by the space key also appears more frequently
than other CSI samples. The classification outcome includes
multiple sets, each consisting of similar CSI samples. We
sort the sets according to size and associate the space key
with the largest set, so that all CSI samples in this set
are assumed to be caused by pressing the spacebar. If this
association is incorrect, we will ultimately not be able to
recover meaningful English words. In that case, we continue
on, associating the space key to the second-largest set and
reattempting the same recovery process. We try these sets
from largest to smallest cardinality until we successfully
recover meaningful English words or exhaust all sets.
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3.2.3 Word Segmentation

Once the set of CSI samples associated with the space key
is identified, we can start the word segmentation process to
find the CSI samples comprising each word of the typed
content. Everything between two successive CSI samples
from the space-associated set is grouped together. In the
following, we refer to such a group as a CSI word group,
and this does not include the spaces at either end. CSI
word groups will be used as the input of the dictionary
demodulation method to eventually establish the complete
mapping between the CSI samples and keystrokes.

3.3 Dictionary Demodulation

Dictionary demodulation converts CSI word groups to
corresponding English words. We begin by developing a
feature to apply to these CSI word groups suitable for
narrowing down the search space of possible candidates.

3.3.1 Feature Selection

Ideally, a feature extracted from each CSI word group would
enable us to uniquely determine the corresponding word.
Our strategy is thus to find a feature that can divide all
words in the dictionary into as many sets as possible, to
achieve high distinguishability.

Without knowing the exact letters in a word, but having
a CSI sample for each letter, we can determine the number
of constituent letters and whether or not any letters in the
word are repeated. These two pieces of information yield
two features to partition words, and we utilize a top 1,500
most frequently used word list [17] as the dictionary to
calculate the number of sets divided by each. To quantify
the distinguishability of a feature, we define a new metric,
called the uniqueness rate, as the ratio T}, /T, where T is the
number of considered words, and 7}, represents the number
of sets obtained by dividing 7' words according to the
selected feature. The uniqueness rate should be maximized
for the best partitioning of the words. We next evaluate the
uniqueness rates for our two features:

Length: We empirically find that all words in this dictio-
nary are 1-14 characters long. If we choose length as the only
feature, we can divide all words into 14 sets, the members
of each set having the same length. On average, each set
has 1,500/14 ~ 107 words. This means that an input CSI
word group will have an average of 107 possible candidate
words based on the length feature. The uniqueness rate is
then 14/1, 500 ~ 0.009.

CSI Sample Repetition: We also count the number of dis-
tinct letters that repeat. We denote the repetition information
of aword as S, and we set S, = 0 if no repetition is found.
Otherwise, we denote S, by (t1,---,t,), where r is the
number of distinct letters that repeat, and ¢; (¢ € {1,--- ,r})
denotes how many times the corresponding letter repeats.
For example, the repetition information for the word “level”
should be (2, 2), because 2 different letters (‘1" and ‘e’) repeat,
and both letters repeat twice respectively. Considering a
word of length L, we can quantify the repetition information
using (L, S;). Using this repetition information, we can then
divide all 1,500 words into a total of 63 sets, such that
members of each set share the same value of (L, S,). On
average, each set has 1,500/63 ~ 24 words, so an input CSI
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of different length.

word group will be mapped to one of 24 words based on
this feature. The uniqueness rate is then 63/1, 500 & 0.042.

The repetition feature has better distinguishability than
the length feature, because its larger uniqueness rate yields
a reduced search space to map an input CSI word group to
a word. The repetition feature only provides the result of
repeated letters in a word, however, and does not consider
the position information of these letters. We expect that the
uniqueness rate can be further increased if we construct a
feature that not only employs the word length and repetition
information, but also distinguishes the positions of repeated
letters from non-repeated letters.

3.3.2 Inter-Element Relationship Matrix

We define a new data structure to represent the structure of
every word/CSI word group. Specifically, we denote a word
or a CSI word group by a vector [z1, ..., %] of n elements,
each of which is a letter (CSI sample). We then define its
inter-element relationship matrix as

T,1 T2 T3 T1,n

21 T22 T2 T2
M:[zq,...,2,] — ' ' 3 o

Tn,1 Tn,2 Tn,3 Tnmn

For a CSI word group, we set r; ;=1 if ; and z; are similar
CSI samples as classified in the CSI word group generation
step (Section 3.2). Otherwise, we set r; ; = 0. The diagonal
elements are always 1 and the matrix is symmetric.

We build the inter-element relationship matrix for each
word and ultimately partition the 1,500 most commonly
used words into 337 sets. The words in a particular set have
the same inter-element relationship matrix. On average,
each set has about 1,500/337 =~ 4 words which are possible
candidates for the CSI word group having that inter-element
relationship matrix. The corresponding uniqueness rate is
337/1,500 =~ 0.225, which is much larger than those of the
previously discussed features.

Empirically, we find the uniqueness rates for words
of different lengths are not evenly distributed, and this
fact actually enables our scheme. Figure 1 presents the
uniqueness rates for the inter-element relationship matrix
as well as the repetition feature for comparison, respective
to word length. The relationship matrix clearly performs
much better than the repetition feature in all cases, but very
evident also is as words become larger, they become more
uniquely structured, leading to high uniqueness rates for the
relationship matrix. For example, the uniqueness rate for a
3-letter word is 0.025, while that for a 10-letter word is 0.940.

Indeed, a phrase comprised of multiple words can be
considered as one “long word” for the purpose of gen-
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erating an inter-element relationship matrix, though the
dictionary must also expand to contain these combinations.
Assuming a phrase formed by N words, the new dictionary
will include 71715 - - - Ty phrases, where T; (1 < ¢ < N)is
the size of the set of candidate words having a length equal
to the ¢-th CSI word group. Figure 2 illustrates how the
uniqueness rate benefits from the combination of each pair
of two words from the dictionary of 1,500 most used words.
The words in each pair range from 2 to 13 characters in
length, for a possible total of 4-26 characters. The uniqueness
rate jumps as the length of these word pairs increases, and
after 18 total characters, the pair of words has a fully unique
structure. This indicates within a few words it should al-
ways be possible to narrow down to the specific content the
victim types, giving rise to our joint demodulation method.

3.3.3 General Joint Demodulation Method

After CSI word group generation, assume that the at-
tacker obtains from the eavesdropped typing m CSI word
groups denoted by S = {51, 52,..., S, }. We further use
Wi, Wa, ..., W, to denote the ¢ words in the dictionary W.
Our goal is to find a phrase of m words that correspond
to the m CSI word groups. Clearly, while each individual
CSI word group could have several candidate dictionary
words with matching structure, each candidate will impose
a mapping of some CSI samples and letters on some suc-
cessive words, and several of these possible mappings will
result in successive words that are not real, so the below
technique works to rule out these impossible mappings.
The full method includes two steps: 1) demodulation of
each single CSI word group; and 2) joint demodulation of
multiple CSI word groups.

Step 1: This step finds initial candidate words for each
CSI word group or determines if a word cannot be im-
mediately demodulated and must be returned to later.
We first create the inter-element relationship matrices for
Wi, Wy, ..., W, in our dictionary W. We next iterate over
each S; € S, creating its inter-element relationship matrix
and considering the subset W’ of W whose entries are of
the same length as S;. We compare the relationship matrix
of S; to that of each W; € W'’ and mark that W; as a
candidate if the two matrices are equal. If no candidates
match, the word must not appear in the collection of English
words comprising our dictionary, so we add S; to the
“undemodulated set” U.

Step 2: This step works to build up a mapping between
CSI samples and letters that works for multiple CSI word
groups simultaneously, successively ruling out the many
candidates established by the first step, until (ideally) only
one candidate remains for each word and the message is
uncovered. Conceptually, we iterate over the word groups
not in the undemodulated set U,

(a) concatenating each with all those previous,

(b) applying each possible mapping thus far constructed,

(c) ruling out all candidates that cannot coexist with any
mappings,

(d) and adding any new CSI sample/character mapping
information from the remaining candidates.

Specifically, we name T the concatenation of the first ¢ — 1
CSI word groups {S1,...,5-1},1 < i < m, excluding

Algorithm 1 Joint Demodulation
1: procedure JOINT_DEMOD(S;, T;, Si., U)

2: T(i-‘rl)c «— 0 (i>0)

3: for T;, in T;. do

4: for S;, in S;, do

5: if M(T;||S;)=M (T3, ||S;,) then
6: Tiitnye < Tave YT,
7: end if

8: end for

9: end for

10: if T(;11), = () then > no candidates, skip S;
11: U«~Uus;

12: T(i-‘rl)c — Tic

13: end if

14: return T; 1), U
15: end procedure

any S, € U. In other words, while considering S;, we
concatenate all the previous CSI word groups which have
candidates into 7T;. Candidates for T;, or groups of valid
words satisfying the structures of the CSI samples compris-
ing Tj, are denoted by T;. = {T,,T},,...,T;,}. Further,
candidates for .S;, as determined by Step 1, are denoted
by Si, = {Si,,Si,,...,S5i,}. With Tj||S; signifying the
concatenation of T; and S;, we calculate the inter-element
relationship matrix for T;||S;, as well as that for every
T;;11Si,, Ti; € Tip,Si, € Si. We note that this is p x ¢
matrices to be compared and that this series of comparisons
happens at each iteration; we analyze the time complexity in
Section 5.3, and our experiments show the number of com-
parisons converges quickly over successive iterations. Then,
if the relationship matrix for one such T;, ||.S;, matches that
for T;||.S;, we know that the CSI sample /character mapping
of the candidate S;, will work in concordance with the
mapping established for T;; while maintaining the structure
stipulated by T;|[S;. Each such Tj,||S;, is therefore a new
candidate for T} ;.

In the event that no T,[|S;, has a relationship matrix
matching that for T;||S;, this means that no CSI sam-
ple/character mappings satisfying the structure of T; result
in valid words within our dictionary when applied to S;.
Such S; are placed in U and execution skips to Siy;.
Pseudocode for this step is shown in Algorithm 1. In this
manner, we iterate over ¢ and gradually build up 7; until
all distinct CSI samples are mapped to characters in the
alphabet. At this time, the mapping can be applied to the
remaining word groups, including those in U, for which no
matches were found in the dictionary used. An example of
this final alphabet matching is visible in Figure 3.

3.3.4 Error tolerance

Wireless channel noise may cause CSI classification errors,
such that a recorded CSI sample for a character might
not appear like others for that character or may appear
like a different character. Otherwise, CSI samples may be
classified correctly but a typo by the user may mean a
word is misspelled and will not appear in the dictionary.
This can cause a concatenated set of CSI word groups to
have an incorrect inter-element relationship matrix, which
may match with invalid words or have no candidates at
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Fig. 3. Assume a simple dictionary of three words “apple”, “hat”, and
“old”, typed in that order by the user. The alphabet of this dictionary con-
sists of 8 letters “a”,“p”,“I",“e”,"h”,"t",“0”, and “d”. Dictionary demodulation
maps each letter in this alphabet to the corresponding CSI sample, and
any further CSI word groups may simply have this mapping applied to
them. After matching, suppose the user then types the word “deed”, the
attacker can directly demodulate the observed CSI word group, which
did not appear in the dictionary. Next, assume instead the second typed
word is “would”. Since “w” and “u” do not appear in the alphabet of this
simple dictionary, the attacker cannot decode them but can continue
decoding the other letters “0”, “I”, and “d”.

all. The latter is the ideal case as the word group having
the CSI sample in question will simply be added to the
undemodulated set and skipped. However, if invalid words
are incorporated into the candidates for joint demodulation,
incorrect relationship matrices will continue to be used as
the joint demodulation progresses, and the content recovery
will fail. We have observed in experiments that even if
a wrong matrix matches other word sequences, cascading
discovery failures inevitably happen for successive words.

The attacker may employ this observation to work
around the presence of typos or CSI classification errors. If a
CSI word group is successfully demodulated but continuous
recovery failures occur thereafter, this word can be added to
the undemodulated set and skipped in favor of proceeding
with the next word. Further word groups are thus less
likely to be processed with an incorrect portion of the
relationship matrix, and a correct mapping is more probable.
Algorithm 2 shows how to check for cascading errors at
each step 7 based on the demodulation result for .S;. Finally,
when the mapping is complete and applied to the CSI
word groups in the undemodulated set, any errors in CSI
classification or typos will persist, but not further damage
the results. The attacker can use some common knowledge
to work out these errors and any other ambiguities.

In the event the cascading errors do not seem to be
avoidable, this is evidence that the wireless channel has
changed, because as previously mentioned the channel is
time-varying. In this case, the dictionary demodulation may
be begun anew, so that the attack can adapt to the changes.

3.3.5 Impact of Non-Alphabetical Characters

Users mostly type alphabetical characters and spaces, but
also occasionally use numbers and punctuation, which ob-
viously cannot be matched by examining word structures.
If these appear during alphabet mapping construction, they
will cause cascading demodulation errors, be added to the
undemodulated set, and be skipped, similar to typos or
CSI classification errors as just discussed. If the mapping
has already been constructed, the CSI samples for these
numbers or punctuation will not appear in the mapping

Algorithm 2 Error Handling

1: [T(i11)e, U] = JOINT_DEMOD(S;, Ti., i, U)
2: if T (1), # Ty, then > demodulation success
3: F' + allowable failure threshold

4 flag < true

5 forje{i+1,---,i+ F}do

6: [T(j+1)c» UJ=JOINT_DEMOD(S}, T}, S}, U)

7: if T(j41).#7T). then > demodulation success
8 flag < false; break > reset failure count
9 end if

10: end for

11: if flag then > reached failure threshold

12: U+~ UUS§s; > Sklp S;
13: T(i-‘rl)c — Tic

14: end if

15: end if

and will be left as unknown. In both cases, the attacker
can use some common knowledge to infer or narrow down
candidates for these characters.

For example, users press the backspace key to re-
move multiple characters before the cursor and then con-
tinue typing. For a CSI word group that is recovered as
“ababx xout”, the attacker may recognize that the uniden-
tified character “x” corresponds to the backspace key and
that the word should be “about”. In another case, a user
may press the left arrow key to move the cursor backward,
insert some text, and then press the right arrow key to
return the cursor to the original position. Hence, the left and
right arrow keys often appear in pairs and are each pressed
multiple times. In this way, an attacker may infer the word
“about” from a CSI word group recovered as “aut<<bor>",
with unidentified samples “<” and “>" corresponding to left
and right arrow keys, respectively.

4 COUNTERMEASURES

The proposed keystroke inference attack explores the inter-
element relationship matrix to eavesdrop typing content via
intercepted wireless signals. Intuitively, to defend against
such an attack, we should disrupt the attacker from obtain-
ing the correct relationship. The user may manually encrypt
the words to be typed by using some traditional substitu-
tion and permutation ciphers. However, this approach is
impractical, because it requires the user to calculate and
type in the ciphertext, an unintelligible string of random
appearance which would take much more time to type and
incur numerous input errors. The encryption also brings an
extreme computational burden to the user.

Instead, we investigate two privacy preservation direc-
tions to protect typing content, i.e., hardware based and fake
input based defenses. We begin by developing TypeGuard,
a hardware based technique that introduces a selective
jamming mechanism to obfuscate the received signals at the
eavesdropper. Then we discuss how to construct fake input
to fail the keystroke inference.

41 TypeGuard

Ideally, a constant jammer is able to make the attacker fail to
obtain accurate CSI, which is required for all wireless-based
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Fig. 4. TypeGuard acts as a reactive jamming device, which first de-
termines starting point of jamming based on the first keystroke event
of each typing event and then emits jamming signals until the channel
becomes stable (i.e., the user stops typing).

keystroke eavesdropping attacks, including the proposed
one. However, it is quite inefficient and expensive to utilize
jamming which never stops. Compared to constant jam-
ming, reactive jamming is not only cost effective, but also
hard to track and compensate against [28]. With TypeGuard,
the legitimate user deploys a wireless reactive jamming
device, which listens to signals from the wireless channel
and also transmits noise signals to the wireless channel to
interfere with the attacker’s transmissions once the typing is
detected. As a result, the attacker will not be able to collect
enough accurate CSI to analyze self-contained structures of
words, leading to the failure of launching the proposed
wireless-based keystroke eavesdropping attack. Figure 4
illustrates the defense mechanism of TypeGuard.

Determination of Jamming Starting Point: A reactive
jammer (i.e., defender) needs to take a reactive time to
detect the typing and initialize the jamming. To detect the
typing (i.e., the event of at least one keystroke), the defender
needs to collect the waveform of the first keystroke in the
typing session. Thus, the ending point of the first keystroke
waveform would trigger the jamming. Each keystroke nor-
mally corresponds to a sharp fall and rise pattern in the CSI
waveform, which in turn facilitates the detection of each
keystroke duration, as described in Section 5.1.

Stop Jamming: To obfuscate received signals at the at-
tacker, TypeGuard transmits high-power noise signals, which
can become dominant at the attacker side. TypeGuard then
needs to return to the inactive mode once it identifies the
end of the typing session.

Due to the existence of the reaction time, the attacker
is still able to obtain the first keystroke waveform for
each typing session when TypeGuard is launched. However,
with only one keystroke waveform, the attacker can only
guess the first typed character and is unable to infer the
whole typing content without knowing the inner structure
of the typing content. Therefore, the proposed attack fails.
TypeGuard has hardware demands, however, the jammer
does not need to be a sophisticated high-end device, and
it can be any low-cost wireless device (e.g., BladeRF [29] or
nRF24L.014 [30]) that can perform basic wireless communi-
cation function (e.g., transmitting jamming signals).

4.2 Fake Input based Defense

In a more expedient fashion, based on the target input, the
user may first construct a set of characters that are uncom-

7

monly used, and then disrupt the inter-element relationship
among letters by randomly inserting a large number of
characters in such a set while typing. For common English
sentences, characters such as \, <, >, and & are rarely used.
While if the target input is source code, such characters, as
the basic components of the code, become common. Thus,
inserting them may disrupt the integrity of the input. In that
case, the user may have to find other uncommon characters
based on the category of the source code and the content of
input. Specifically, if the user inserts uncommon characters
before the first word, the matrix of the first observed CSI
word group will either match an incorrect word or not
match with any word in the dictionary, so the demodulation
algorithm will return incorrect or no candidates. In the
former case, the attacker can still correctly demodulate the
following word if it shares no letters with the previous. If
no candidates are returned, the attacker will discard the
first observed CSI word group and start the demodulation
algorithm at the second observed CSI word group. Clearly
in both cases, to confuse subsequent words, the user must
continue inserting uncommon characters in each word.

To further mislead the attacker, the user can also con-
struct sequences of uncommon characters with the same
inter-element relationship matrices as various words in the
dictionary. The user can type several of these “fake words”
before inputting the meaningful content, and continue typ-
ing fake words periodically. The fake words can not only
feed the attacker with wrong mappings but also mislead
the attacker with incorrect eavesdropping results. To pre-
vent the fake words from interfering with the meaningful
content, the user may employ a computer program that
automatically searches for and removes the uncommon
characters or fake words from the input text.

5 EXPERIMENT RESULTS

We implement the training-agnostic keystroke eavesdrop-
ping attack using USRPs. The prototype attack system in-
cludes a wireless transmitter and a receiver. Each node
is a USRP X300 with 40 MHz bandwidth CBX daughter-
boards [31]. The channel estimation algorithm runs at the
receiver to extract the CSI for key inference.

The target user operates a desktop computer with a Dell
SK-8115 USB wired standard keyboard. The transmitter and
the receiver are placed at opposite positions relative to the
keyboard. We place the transmitter at a distance of 3 meters
away from the keyboard, and the receiver under the 2 cm-
thick desk, at a distance of 50 cm away from the keyboard.
Also, there is a 4 cm-thick wooden barrier between the
transmitter and the keyboard. Thus, both the transmitter
and the receiver are not within line-of-sight of the target
user. We also form a dictionary using the top 1,500 most
frequently used English words [17].

5.1 Example Recovery Process

In this section, we will demonstrate the process of recover-
ing a sample user’s typed text.

CSI Sample Extraction: To extract the CSI samples from
the CSI time series, we utilize the same pre-processing
step as these existing techniques [3], [4]. Correspondingly,
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Fig. 5. The CSI word group for the word “sense”.

this step has three phases, i.e., noise removal, Principle
Component Analysis (PCA) [32], and segmentation.

We observe the frequency of the CSI influenced by
keystrokes always lies within a low-frequency range of 2
to 30 Hz. We thus utilize a Butterworth low-pass filter [33] to
mitigate the impact of high-frequency noise. Initially, the
receiver obtains CSI from all subcarriers. We then apply
the PCA technique to decrease computational complexity
by converting the received CSI into a set of orthogonal
components, called principle components [32], which most
represent the effects of the keystrokes. The segmentation
phase separates the full CSI time series into the individual
CSI samples corresponding to single unknown keystrokes.
Looking at the CSI waveform, we can observe a sharp fall
and rise whenever a key is pressed and released. Therefore,
we search over the data for shapes having sharp fall-and-
rise features. We utilize A, to denote the amplitude of the

" extremum of the CSI time series. Suppose the local min-
ima and maxima appear alternately, and the local minima
appear first. We use the following steps for segmentation.

e Find all local minima As; ; and local maxima A;
within the CSI time series, where i € {1,..., N}, and
N denotes the number of local minima or maxima.

. Calculate the fluctuation A; = [A;11—A4;| (j €

N}) and the mean value of the ﬂuctua-
tlon A E 5 Aj/(2N—1). If A; > A, we consider
this a noteworthy fluctuation caused by a keystroke.
Otherwise, it is likely an inconsequential fluctuation
caused by noise.

o When we observe n continuous fluctuations (i.e.,A;,

<, Ajin,mn >2), and they are all larger than A, we

mark Aj and Aj4 41 as the beginning and end of a
keystroke, respectively, and the CSI values between
Aj and Aj4 41 are grouped as a CSI sample.

After the receiver assigns the space character to the
most frequently appearing CSI sample group, the remaining
samples are grouped into CSI word groups. Figure 5 shows
the CSI word group for the word “sense”. The full data
contains five CSI samples caused by pressing the keys ‘s’
‘e’, ‘n’, ’s’, and ‘e’ as visible on the figure. With Dynamic
Time Warpmg, we classify the five samples into three sets,
including the pair of the first and fourth samples, the pair
of the second and fifth samples, and the third sample alone.

Next, we illustrate how the collected CSI word groups
can be narrowed down to the typed content. We choose the
Harvard sentences [34] to be typed in for our experiments;
these are phonetically balanced sentences commonly used

Input: the boy was there when the sun rose
CSIsample: ¢,6,¢; €4C5C5 €164Cy  €1C,C5C10Cs €1C2C5CH C1CaCy CyCipCry C1oC5CoCs

112 112 112 8 249 112 112 249

2 words |3 wordsl4 wordslS wordslﬁ Words|7 words|8 words,

Come * 6944 210963 3304 99 99 61 15

single *

Fig. 6. The evolution of the amount of candidates returned.

Input paragraph: The boy was there when the sun rose. A rod
is used to catch pink salmon. The source of the huge river is
the clear spring. Kick the ball straight and follow through.
Help the woman get back to her feet.

Step 1 Searching results:

The boy/box was there when the sun rose. A *** is used to
catch *#** #**%* The source of the huge river is the clear
spring. **** the ball straight and follow through. Help the
woman get back to her ****,

Step2  Recovering words not in the dictionary:
(1) rod; (2) pink; (3) salmon; (4) Kick; (5) feet.

Fig. 7. Example paragraph recovery.

for testing speech recognition techniques. For this example
recovery, we randomly select five sentences from these
representative English sentences, with a total of 41 words.
We record Cjipgie, which is the number of words that have
the same inter-element relationship matrix as the current
CSI word group under processing, and C'jyint, which is the
number of candidates returned by the joint demodulation
algorithm for each CSI word group.

Figure 6 shows Clipngie and Cjoin¢ during the processing
of this sentence. To facilitate understanding, we also mark
the CSI sample sets on this figure. For example, fi, f2, and
f3 represent the CSI sample sets caused by typing the letters
‘t', ‘h’, ‘e’, respectively. We can see that Cg;pge is 112 for
three letter words, and consequently Cj,in: increases dra-
matically from 112 to 6,944 and then to 210,963 as the second
and third CSI word groups are added, as these word groups
share no common CSI samples. However, as more CSI word
groups are added, the joint demodulation algorithm finds
more common CSI samples, which shrinks the search space.
Cjoint drops sharply from 210,963 to 3,304 after the fourth
CSI word group is processed, and further reduces to 15 as
the remaining CSI word groups are processed.

The demodulation phase returns two candidates, as
shown in Figure 7. They differ by only one word; the second
word is either “boy” or “box”. Even for the wrong candi-
date, 97.6% of the words are successfully recovered, and all
characters except one. The example paragraph also contains
five words (“rod”, “pink”, “salmon”, “kick”, and “feet”) that
are not in the dictionary. These are still successfully inferred,
however, because their constituent CSI samples also appear
in other words, and their sample/letter mappings have
already been determined by the matching phase.

5.2 Eavesdropping Accuracy

We define the word recovery ratio as the ratio of successfully
recovered words to the total number of input words. We
employ this metric to ascertain the accuracy of our attack
using 100 online articles randomly selected from CNN, New
York Times, and Voice of America. For comparison, we also
apply the traditional frequency analysis technique to the
segmented CSI samples.
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5.2.1 Single Article Recovery

We first type a piece of CNN news [35] into a computer, and
collect the CSI while typing. Suppose the demodulation al-
gorithm returns N candidates for the typed content. We use
WRR; (i € {1,---,N}) to denote the word recovery ratio
for the i'" candidate. We consider the overall word recovery
ratio WRR of the proposed attack to be calculated as the
average of these word recovery ratios for each candidate:
WRR =y, WA,

Figure 8 shows the overall word recovery ratio as a
function of the number of typed words. We can observe
for the first couple of typed words, the ratio is less than
0.17, because these words are not in the dictionary or the
joint demodulation algorithm returns wrong candidates. As
more words are typed in, the ratio increases significantly
and fluctuates, since newly typed words may or may not
be identified correctly in the various candidates. After a
sufficient number of words are typed, the mapping between
CSI samples and the letters converges to only one candidate.
As aresult, the word recovery ratio stabilizes at a high value.
As shown in Figure 8, when more than 52 words have been
typed, the overall word recovery ratio remains above 0.96.

For meaningful results, we apply the frequency analysis
recovery technique to compare with our method. Figure 9(a)
shows the typical distribution of frequencies of English let-
ters [15], while Figure 9(b) shows the distribution of letters
in the typed text. Because the typed text is short and not
representative of the whole English language, the sample
distribution is not perfectly equal to the typical distribution.
This difference is highlighted in Figure 9(c) and causes the
word recovery ratio for the frequency analysis to be as low
as 0.07. Figure 10 shows parts of the recovery results using
the frequency analysis and our method. The content recov-
ered using the frequency analysis is meaningless, whereas
our new attack successfully recovers the typed words.

Impact of CSI sample classification errors and dictio-

20 40
Number L of typed words

Fig. 12. CDFs of Ly rr>0.8 and Ly rr>0.9-

Total number of words

Fig. 13. Comparison with Frequency analysis.

nary size: As discussed in Section 3.3.4, errors in grouping
CSI samples during pre-processing may occasionally lead
to a failure in demodulating a CSI word group when the
word’s pattern is not correctly detected. To test the impact
of this on the overall word recovery ratio, we artificially
introduce errors into the groupings and attempt the de-
modulation algorithm using the intentionally incorrect data.
Specifically, we vary the number of correctly grouped CSI
samples from 40% to 100% in intervals of 5%, and measure
the resulting overall word recovery ratio. We also examine
the effects of dictionaries of three different sizes, including
the 500, 1000, and 1500 most frequently used words.

We repeat this experiment 10 times and present the aver-
age results in Figure 11. Intuitively, more correctly classified
CSI samples result in higher word recovery ratios, as do
larger dictionaries. Nonetheless, we also note that only 80%
of CSI samples need to be correctly classified for the overall
word recovery ratios to achieve 0.86, 0.81, and 0.7 for the
various dictionary sizes.

5.2.2 Average Article Recovery

We repeat the above experiment for 100 online articles.
Intuitively based on the discussed observations, the pro-
posed attack should achieve a high word recovery ratio for
a long text. Considering a desired overall word recovery
ratio of 0.8 or 0.9, let Lyyrr>0.8 and Ly rr>0.9 denote the
required number of typed words from each article to satisfy
those ratios, respectively. Figure 12 shows the empirical
cumulative distribution functions (CDFs) of Ly rr~o0.s and
Lw rRr>0.9, indicating conclusively longer input text results
in higher word recovery ratios. Specifically, for more than
82.4% of articles, the achieved word recovery ratio is greater
than 0.8 and 0.9 when the number of these words is greater
than 27 and 42, respectively.

Figure 13 compares the efficacy of our attack and the
frequency analysis technique. Our attack can achieve a 0.82
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word recovery ratio after 50 typed words, whereas the fre-
quency analysis requires typing 150 words before any can be
successfully recovered. Indeed, the highest ratio achieved by
the frequency analysis in these online articles is around 0.1,
after 450 words, while in stark contrast our attack stabilizes
around 0.95 after 150 words.

5.3 Time Complexity Analysis

The comparison of inter-element relationship matrices is the
dominant part of the dictionary demodulation phase, so we
count the required comparisons to calculate complexity. We
use three different dictionaries, which contain the top 500,
1000, and 1500 most frequently used words [17].

During the 100 experiments in Section 5.2, we count the
comparisons to generate candidates for the typed content
each time a new CSI word group is added to the dictionary
demodulation process. Figure 14 shows the average compar-
ison number for each newly typed word, on a log scale. This
number greatly increases for the first few typed words but
promptly decreases to a low value below 10 as more words
are typed. This was seen for a single sentence in Figure
6 and holds for these 100 trials as well. The addition of
more unique letters results in a vastly enlarged search space,
while the later inclusion of more repeated letters imposes a
structure to the words and quickly reduces the search space.

Interestingly, the search space for a larger dictionary
shrinks faster than that of a smaller dictionary as more
words are typed, despite being larger after the first few
words. For example, for the 45! word, the average numbers
of required comparisons for the 1500-, 1000-, and 500-word
dictionaries are 20.6, 39.7, and 70.1, respectively. At first, a
larger dictionary will find more matches for the word struc-
tures searched, but this quickly narrows down as repeated
letters are added. Conversely, a smaller dictionary has a
lower probability of finding candidate words for a particular
structure, leading to skipped words, and therefore requiring
more typed words before repeated letters can appear and
reduce the search space.

Figure 15 shows the cumulative average comparison
numbers as more words are typed. The time is clearly spent
mostly on inferring the first couple of words, after which the
total time complexity stabilizes. This trend is the same for all
dictionaries, though larger dictionaries see distinctly more
total comparisons and consequently higher time complexity.
Larger dictionaries also stabilize faster, however; the 1500-,
1000-, and 500-word dictionaries stabilize at 8, 11, and 15
typed words, respectively.

Number of words

Fig. 15. Total comparisons vs. word count.

Number of words

Fig. 16. Recovery of “secrets”.

5.4 An Example of the Attack

We recruited 10 volunteers and asked each to type a para-
graph of “secret” content for us to attempt to infer. For
ethical reasons, we did not ask them to type actual secrets
that they would wish to keep private, but simply to type
comprehensible English content which we did not provide
them. While each volunteer typed, the receiver continuously
collected CSI data and processed them. The eavesdropping
result was presented to the volunteer, who compared the
recovered content with their typed content to quantify the
word recovery rate. Figure 16 shows the resulting average
word recovery ratios as each word is typed and with the
three different dictionary sizes. Our attack achieves a word
recovery ratio of more than 0.8 after 28 words are typed,
regardless of dictionary size. Additionally, a larger dictio-
nary yields a higher word recovery ratio. With more than 40
typed words and a dictionary of 1,500 words, the ratio ex-
ceeds 0.94. This demonstrates our attack can recover typed
secrets effectively and efficiently in a real-world setting.

5.5 Steal Source Code

Except for English, the proposed attack can also target other
languages, e.g., source code. In this section, we demonstrate
how the attack is applied to steal source code. Note that
programs are written exclusively via a keyboard and are of
interest to corporate espionage, etc. Without loss of general-
ity, we utilize Linux kernel source code as an example.

To launch the proposed attack, we first explore the spe-
cific properties that Linux kernel source code has for infer-
ring coding. A programming token (e.g., constant, identifier,
operator, reserved words, separator) is the basic component
of the source code. When typing codes, we often use the
space character to separate tokens in a line, and use the
semicolon character to close an expression and a line. To
begin a new line, the “Enter” key is pressed. Besides, the
parentheses characters are often used to indicate function
calls and function parameters. Based on those properties,
we first try to identify the space, semicolon, “Enter”, and
parentheses characters, and use them as token dividers.

First, we build a token dictionary that includes C lan-
guage keywords in ANSI C, extended keywords which do
not exist in ANSI C, and function names of kernel modules
(e.g., printk, init_module, cleanup_module) [36]. Note that
each language should have its specific dictionary.

We select a piece of source code, as shown in Figure 17,
and let the user type it. The receiver continually collects
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Typed code:

int init_module(void) {
printk(KERN_INFO “Hello World! \n”);
return 0;

}

void cleanup_module(void) {
printk(KERN_INFO “Goodbye world! \n”);
}

Recovered code:

int init_module(void) {
printk(KERN_INFO **ello *orld* *n*);
return *;

}

void cleanup_module(void) {
printk(KERN_INFO **ood**e *orld* *n*);

}

Fig. 17. Source code inference example (' is an unidentified character).

the CSI samples and processes them. Based on the afore-
mentioned rule of source code, we first identify the CSI
samples corresponding with the space, semicolon, “Enter”,
and parentheses characters from the observed CSI samples.
With such token divider mapped CSI samples, we divide the
CSI sample stream into separate CSI token groups. Next,
the dictionary demodulation is launched. The recovered
code is presented in Figure 17. We see that our attack can
successfully recover all tokens that are in the pre-established
dictionary. Meanwhile, for tokens that are not in the dictio-
nary, the proposed may still recover the characters in them
as long as the characters also appear in the identified tokens.

5.6 Password Entropy Reduction

Modern passwords include letters, numbers, and special
characters. The password strength lies in its resistance to
brute-force attacks. Our attack focuses on letters, but it can
still greatly decrease password strength. As users normally
type both passwords and English content during computer
usage, we can apply the alphabet matching afforded by the
latter to infer significant portions of the former.

Typical users usually pick fewer non-letter characters
in their password to make it easy to remember, leaving
the password more vulnerable to these attacks. We did
preliminary experiments to evaluate the entropy reduction
impact using the password list, which contains 342,508
passwords leaked from Yahoo! Voices [37]. Figure 18 shows
the average ratios of letter characters in passwords with
different lengths. We observe that the ratio of letters in a
password with a length ranging from 6 to 12 lies between
0.65 to 0.73, and also with the key length increasing, the ratio
of letters slightly increases. We find that 98.42% of the leaked
passwords are 12 characters or fewer, and people utilize
an average of 8.72 letters for a 12-character password. This
means that the difficulty for guessing a 12-character random
password is reduced to that for guessing an extremely weak
password of 3-4 characters. Furthermore, the attacker knows
these 3-4 characters are not English letters.

We quantify the damage our attack can inflict on pass-
word entropy, the typical measure of password strength.
The entropy of a password X is defined as H(X) =
— > P(z;)logy P(x;), where z; (i € {1,2,--- ,n})is one
of n possible values of X and P(z;) represents the probabil-
ity that X = z; holds. Considering a keyboard housing N
characters, a password with length [ selected at random has
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N! possible values and I-log, N bits of entropy. Suppose this
password has [’ letter characters and | — I’ non-letter char-
acters. The keyboard with IV characters necessarily contains
26 letters and N — 26 non-alphabetical characters. Having
successfully established a full CSI sample/letter mapping
and applying this mapping to the CSI samples comprising
the password, its entropy becomes (I — ") log, (N — 26) bits.
In our experiment, we randomly select 1000 9-character
passwords from the Yahoo! Voices dataset. 32 non-
alphanumerical characters are allowed in passwords, yield-
ing 42 non-alphabetical characters when factoring in num-
bers. However, we find that an average of 6.38 of 9 charac-
ters were letters, meaning their discovery will vastly reduce
entropy. Each of these 1000 passwords was added to the end
of the text typed by volunteers in the previous experiment,
and the resulting CSI sample/letter map was applied to
each. We compare the inferred password information to
the original password, to identify the correctly recovered
characters and calculate the difference in password entropy.
Figure 19 plots the empirical probability mass functions
(PMFs) of the password entropies before and after the
proposed attack is applied. A randomly selected 9-character
password with the assumed keyboard layout provides 54.8
bits of entropy and requires a maximum of 31.08 quadrillion
brute force attempts. With our attack, the password entropy
can be decreased to within a range of 5.4 to 27.0 bits, such
that breaking a 9-character password is reduced to guessing
1-5 non-letter characters. The maximum number of brute-
force attack attempts targeting a password with an entropy
of 5.4 bits is just 42. In fact, 89.0% of the randomly selected
passwords have less than 16.2 bits of entropy after our at-
tack, meaning at most 74,000 brute-force attack attempts are
required for the vast majority of these passwords. Evidently,
the security of these passwords is decreased by several
orders of magnitude courtesy of the proposed attack.

5.7 Evaluation of TypeGuard

To evaluate the effectiveness of TypeGuard against our attack,
we add a third USRP X300 as the jammer, which starts
to transmit noise signals when it detects the type event,
and stops when it detects that the typing session ends. We
consider two scenarios: (1) when the user types without
other moving objects around; and (2) when the user types
with other users moving around from time to time.

Figure 20 presents an example of the pre-processed CSI
waveforms with and without TypeGuard, where the user
types a word “apple”. We can see that at the time of 1.8 sec-
onds, TypeGuard initiates, and the jamming signals success-
fully obscure the keystroke associated patterns in the CSI
waveform, demonstrating the effectiveness of TypeGuard.
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Fig. 20. An example of observed CSI waveforms after pre-processing at
the eavesdropper with and without TypeGuard.
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Besides, to further evaluate effectiveness and efficiency, we
utilize the following two metrics respectively:

o Jamming rate 5: We define § = %, where J. denotes

the duration of the jammed portion of a typing
session, and T' represents the entire duration of the
typing session. A higher § indicates that the eaves-
dropper would observe less useful CSI information.

o Inefficiency rate 5: We define = J}‘f , where J,. is the
duration of the jammed portion of the non-typing
period, and J denotes the whole jamming duration
(ie., J = Jie + Je). Since no jamming is needed for
non-typing periods, a lower 3 then implies that the
jamming scheme is more efficient.

We let the user type an English sentence with N words for
each typing session. N varies from 2 to 10 with increments
of 2. The user types each sentence 10 times. With recorded
durations T', J., and J;. for each typing session, we compute
corresponding jamming rate ¢ and inefficiency rate J.
Figures 21 and 22 present § and /3 across different word
count N in the environment without inference from nearby
movement. We can see that the jamming rate is always
above 0.93, and the average jamming rate is 0.97 for all
typing sessions. Also, the median jamming rate slightly in-
creases with the word count. This is because TypeGuard nor-
mally only leaves the first keystroke waveform unjammed
and thus a longer sentence would lead to a larger jamming
rate. Besides, we can see that the median inefficiency rate
across different word count lies in the range of 0.05 to
0.14. We observe that hand movement not for typing may
also trigger the jamming by accident. Such incidents would
increase the value of 3. Overall, the average inefficiency
rate decreases with the word count. These results show that
TypeGuard can effectively and efficiently disrupt the signal
reception at the eavesdropper, and thus successfully defend
against the proposed wireless keystroke inference attack.
Figures 23 and 24 depict measured § and 3 over differ-
ent N in the environment with interference from nearby
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movement. We can see that the jamming rate is at least
0.95, and the average jamming rate is 0.98 for all typing
sessions, slightly higher than the case without the inference.
This appears because the interference introduced by nearby
movement may trigger TypeGuard to even jam the first
keystroke waveform. Meanwhile, compared with the case
without the interference, the median inefficiency rates for
all N are consistently increased, ranging from 0.16 to 0.25.
These increases are caused by false triggering of TypeGuard
brought by the nearby movement-induced interference.

6 LIMITATIONS

Environmental Movement: Usually, a user is more focused
with less body movement during typing. The movement of
the typist or other movements in the environment may bring
the variation of CSI, and thus introduce interference for CSI
associated with keystrokes. This is a general issue to all
wireless-based keystroke inference attacks. There are several
tolerance methods to reduce the impact of human move-
ments. For example, [3] applies noise reduction algorithms
to improve keystroke recognition accuracy. Also, unlike
omni-directional antennas which have a uniform gain in
each direction, directional antennas have a different antenna
gain in each direction. Thus, [4] adopts directional antennas
to eliminate CSI noises introduced by environmental non-
keystroke-induced movement. Besides, the eavesdropping
device can be placed close to the target keyboard, e.g., under
the victim’s desk, to reduce surrounding impact.

Auto-correction and Auto-complete: Auto-correction
uses a dictionary to spellcheck typed words and correct
misspelled ones; auto-complete predicts the rest of a word
that a user types. In both cases, due to inefficient CSI
information, the attacker is often unable to directly demod-
ulate the incomplete CSI word group via comparing inter-
element relationship matrices. However, as no candidates
match, the formed CSI word group would be added to the
undermodulated set. When the sample/letter mappings are
built, they can be applied to the CSI word groups in the
undemodulated set. With the recovered misspelled word or
partial letters of the word, the attacker can further utilize
the public auto-correction and auto-complete applications
to infer the exact word that the user intends to input.

7 RELATED WORK

Existing non-invasive attacks to infer keystrokes fall into the
following categories:

Vibration based attacks: Typing on a keyboard can cause
vibrations on the surface where the keyboard rests, with
subtle differences depending on keys typed [5], [6]. The
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accelerometer of a nearby phone or tablet on the same
surface can capture the vibrations. With training, an attacker
can establish the relationship between the keystroke and
the acceleration disturbance caused by the vibration. In the
detection phase, the attacker can then recover the typed
content by applying this relationship.

Acoustic signal based attacks: It has been observed typing
on a keyboard can produce sounds unique to each key. Re-
searchers extract features from these sounds and then train
a classifier to reconstruct the keystrokes [7]-[9], [13]. The
requirement for training is relaxed in [8], which uses a statis-
tical unsupervised training method to design a supervised
classifier. However, the proposed method is faster than the
method based on the Hidden Markov Model (HMM) in [8].
The HMM method requires collecting 10 minutes worth of
keystrokes (around 340 words) for a word recovery rate of
87.6%. This minimized training method may not function
for wireless based attacks, as due to the time-varying nature
of the wireless channel, a training time of 10 minutes may
be too long to generate a useful mapping between observed
CSI samples and letters. Unlike [8], frequency analysis, and
all other statistical methods, the proposed method explores
the self-contained structures of words, which can be ob-
served for each word immediately as it is typed, rather than
probabilistic statistics among words, which require many
words to establish. Thus, the proposed attack only needs 50
words within 1-2 minutes for a word recovery rate of 94.3%.

Zhou et al. discovers that the recorded audio signals can
be used to infer the victim’s finger movement and thus
crack Android pattern locks [38]. Such an attack, however,
is invasive as it requires installing malware on the victim’s
smartphone. An adversary may use a triangulation local-
ization technique to localize the sound source and accord-
ingly infer keystrokes [39], [40]. This approach, however,
requires sophisticated equipment to precisely measure the
sound propagation distance, and also requires line-of-sight
between the keyboard and equipment. Both requirements
hinder attack plausibility and application. Also, the atten-
uation of acoustic signals can be used to localize each
keystroke during inputs [41]. However, this method requires
placing a smartphone close (within 60 cm) to the victim’s
keystroke, and the alignment between the devices of the
adversary and the victim affects the accuracy of keystroke
localization. Berger et al. infer keystrokes with the observa-
tion that similar sounds are highly likely to come from keys
positioned close to each other on the keyboard [42]. This
technique aims to reconstruct a single long (7-13 characters)
word in the dictionary, whereas the goal of the proposed
attack is to reconstruct the entire typed content regardless of
whether or not all its constituent words are in the dictionary.

Timing based attacks: Keystroke timing patterns can be an-
other source to infer keystrokes [10]-[12]. For example, [10]
infers keystroke sequences by using the inter-keystroke tim-
ing information collected from the arrival times of the SSH
packets. However, these timing-based attacks all require a
training process to statistically generate the attack models.

Wireless signal based attacks: There are emerging research
efforts performing keystroke eavesdropping attacks using
wireless signals due to the ubiquitous deployment of wire-
less infrastructures, the radio signal nature of invisibility,
and the elimination of the line-of-sight requirement. In

13

particular, [2] infers keystrokes by examining the amplitude
and phase changes of the wireless signal; [3], [4], [14] utilize
the channel condition extracted from the observed wireless
signal to distinguish keystrokes; [43] proposes an LTE-based
keystroke inference attack, which has a longer operational
distance than previous attacks via WiFi signals. All these
works require training to construct the relationship between
the observed signal feature and the typing.

Camera-based attacks: An intuitive method to infer
keystrokes is to use cameras to record the typing process
and then identify keystrokes by analyzing the recorded
video. Researchers have found that video recording of hand
movement [44]-[46], eye movement [47], tablet backside
motion [48], or the shadow around fingertips [49], is also
able to aid the keystroke inference. However, when the
movement of interest does not happen in the presence of
a camera, keystroke activities cannot be detected.

Cryptanalysis based attacks: Cryptanalysis is a technique
of discovering secrets. Cryptanalysis attacks can be in the
form of known-plaintext or ciphertext-only attacks. If we
consider the CSI sample as the ciphertext and the typed
content as the plaintext, the training-based keystroke infer-
ence attacks [3], [4] are indeed known-plaintext attacks, as
the attacker must know some plaintext (i.e., typed content)
and the corresponding ciphertext (i.e., CSI) for training. Our
attack does not require training data. Thus it is a ciphertext-
only attack. Existing ciphertext-only attacks attempting to
decode the ciphertext of natural language are largely based
on the statistical information about the ciphertext [50], [51].
For example, [50] regards the author of an instant mes-
sage conversation as the plaintext and applies character
frequency analysis to instant messages for authorship iden-
tification. [51] recovers the plaintext by using a statistical
language model and a dynamic programming algorithm.

Nevertheless, collecting statistical information implies
acquiring a large amount of ciphertext. This may not be
suitable for the wireless based keystroke inference, because
collecting the wireless statistics does require a long pe-
riod of observation. As mentioned earlier, this can pre-
vent the attacker from collecting sufficient reliable statistics
for keystroke inference. Our method is based on the self-
contained feature of words instead and thus does not re-
quire the long-time observation about wireless statistics.

8 CONCLUSION

We identify a new type of keystroke eavesdropping attack.
Compared with all previously discovered attacks, the attack
can bypass (1) the requirement of the training phase, (2) the
requirement to deceive the user or bypass the user’s anti-
virus and firewall software to install malware on the target
device, and (3) the requirement of line-of-sight between
the attacker’s device and the keyboard. This attack is con-
structed based on the CSI extracted from the wireless signal.
We also propose defense techniques against this attack.
We implement the discovered attack and the developed
defense called TypeGuard on the USRP X300 platform, and
conduct experiments to validate both. Experiment results
demonstrate the feasibility of the proposed attack to infer
English words and source code, as well as the effectiveness
and efficiency of TypeGuard against the attack.
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