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Abstract— Shared autonomy enables robots to infer user
intent and assist in accomplishing it. But when the user wants
to do a new task that the robot does not know about, shared
autonomy will hinder their performance by attempting to assist
them with something that is not their intent. Our key idea
is that the robot can detect when its repertoire of intents is
insufficient to explain the user’s input, and give them back
control. This then enables the robot to observe unhindered
task execution, learn the new intent behind it, and add it to
this repertoire. We demonstrate with both a case study and a
user study that our proposed method maintains good perfor-
mance when the human’s intent is in the robot’s repertoire,
outperforms prior shared autonomy approaches when it isn’t,
and successfully learns new skills, enabling efficient lifelong
learning for confidence-based shared autonomy.

I. INTRODUCTION

In shared autonomy [1]–[11], robots assist human opera-

tors to perform their objectives more effectively. Here, rather

than directly executing the human’s control input, a typical

framework has the robot estimate the human’s intent and

execute controls that help achieve it [2], [3], [12]–[14].

These methods succeed when the robot knows the set of

possible human intents a priori, e.g. the objects the human

might want to reach, or the buttons they might want to

push [2], [12]. But realistically, users of these systems will

inevitably want to perform tasks outside the repertoire of

known intents – they might want to reach for a goal unknown

to the robot, or perform a new task like pouring a cup of

water into a sink. This presents a three-fold challenge for

shared autonomy. First, the robot will be unable to recognize

and help with something unknown. Second, and perhaps

more importantly, it will attempt to assist with whatever

wrong intent it infers, interfering with what the user is trying

to do and hindering their performance. This happens when

the robot plans in expectation [12], and, as our experiments

will demonstrate, it happens even when the robot arbitrates

the amount of assistance based on its confidence in the most

likely goal [2]. Third, the new task remains just as difficult

as the first time even after arbitrarily many attempts.

Our key idea is that the robot should detect that the user

is trying something new and give them control. This then

presents an opportunity for the robot to observe the new

executed trajectory, learn the underlying intent that explains

it, and add it to its repertoire so that it can infer and assist

for this intent in the future.

To achieve this, we need two ingredients: 1) a way for the

robot to detect its repertoire of intents is insufficient, and 2)
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Fig. 1: We propose an approach for lifelong shared autonomy

that enables a robot to detect when its set of known human

intents is insufficient to explain the current human behavior.

Rather than trying to assist for the wrong intent, the robot

learns from novel teleoperations to learn a model of the new

intent, allowing for lifelong confidence-based assistance.

a representation of intents that enables learning new tasks

throughout its lifetime, adding them to its repertoire, and

performing inference over them in a unified way with the

initial known intents. For the latter, we use cost functions

to unify goals and general skills like pouring into the

same representation. This then enables the former: when

the human acts too suboptimally for any of the known cost

functions, it suggests the robot lacks the correct set of costs.

Our approach takes inspiration from recent work on hy-

pothesis misspecification where the robot recognizes when

its cost function features are insufficient to explain human

demonstrations and corrections [15], and updates the cost in

proportion to the situational confidence in these features’

ability to explain input. We extend detecting hypothesis

mispecification to the context of shared autonomy, in which

there are multiple intents, represented as cost functions, and

the robot seeks to recognize whether any of the known intents

explain the human input sufficiently. The robot can then

arbitrate its assistance based on its confidence in the most

likely intent being what the human wanted.

Our approach, which we call Confidence-Aware Shared

Autonomy (CASA), allows the robot to ascertain whether

the human inputs are associated with a known or new task.

By arbitrating the user’s input based on the confidence in the

most likely intent, CASA follows a standard policy blending

assistance approach if the task is known, and otherwise gives

the user full control. Additionally, CASA allows the user to

provide a few demonstrations of the new intent, which the

robot uses to learn a cost function via Inverse Reinforcement
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Learning (IRL) [16] and add it to its set of intents. This

enables lifelong shared autonomy, where the robot helps

when it is confident in what the user wants and learns new

intents when it detects that the human is doing something

novel, so that it can assist with that intent in the future.

We test our approach in a expert case study and a user

study with a simulated 7DoF JACO assistive robot arm. Our

results suggest that CASA significantly outperforms prior

approaches when assisting for unknown intents, maintains

high performance in the case of known ones, and successfully

learns new intents for better lifelong shared autonomy.

II. CONFIDENCE-AWARE SHARED AUTONOMY

We consider a human teleoperating a dexterous robotic

manipulator to perform everyday manipulation tasks. The

robot’s goal is to assist the person in accomplishing their

desired skill by augmenting or changing their input. While

the robot possesses a predefined set of possible intents, the

human’s desired motion might not be captured by any of

them. We propose that since the robot might not understand

the person’s intentions, it should reason about how confident

it is in its predictions to avoid assisting for the wrong intent.

A. Preliminaries

Formally, let x ∈ X be the continuous robot state (e.g.

joint angles), and u ∈ U the continuous robot action (e.g.

joint velocity). The user controls their desired robot configu-

ration by providing continuous inputs a ∈ A via an interface

(e.g. GUI, joystick, keyboard commands, etc). These inputs

are mapped to robot actions through a direct teleoperation

function T : A → U . Define a person’s trajectory up until

time t as the sequence ξ0→t = (x0, a0, . . . , xt, at).
The robot is equipped with a set of known intents Θ, one

of which may represent the user’s desired motion. Each intent

is parameterized by a cost function Cθ, which may be hand-

engineered or learned from demonstrations via IRL [17],

[18]. For example, if the intent represents moving to a goal

g, the cost function can be distance to the goal: Cg(ξ) =
∑

x∈ξ ‖x−g‖. If the intent is pouring a cup, the cost can be a

neural network with parameters ψ, Cψ . Our shared autonomy

system does not know the intent a priori, but infers it from

the human’s inputs. Given the user’s trajectory so far, ξ0→t,

a common strategy is to predict the user’s intent θ ∈ Θ,

compute the optimal action for moving accordingly, then

augment the user’s original input with it [2].

However, what if none of the intents match the human’s

input, i.e., the person is trying to do something the robot does

not know about? We introduce a shared autonomy formalism

where the robot reasons about its confidence in its current

set of intents’ ability to explain the person’s input, and uses

that confidence for robust assistance. This confidence serves

a dual purpose, as the robot can also use it to ask the human

to demonstrate the missing intent.

B. Intent Inference

To assist the person, the robot has to first predict which of

its known tasks the person is trying to carry out, if any. To

do that, the robot needs a model of how people teleoperate

it to achieve a desired motion. We assume the Boltzmann

noisily-rational decision model [19], [20]:

P (ξ | θ, β) =
e−βCθ(ξ)

∫

ξ̄
e−βCθ(ξ̄)dξ̄

, (1)

where the person chooses the trajectory ξ proportional to its

exponentiated cost Cθ. The parameter β ∈ [0,∞) controls

how much the robot expects to observe human input con-

sistent with the intent θ. Typically, β is fixed, recovering

the Maximum Entropy IRL observation model [17], which

is what most inference-based shared autonomy methods

use [2], [12]. Inspired by work on confidence-aware human-

robot interaction [15], [21], [22], we instead reinterpret β as

a measure of the robot’s situational confidence in its ability

to explain human data, given the known intents Θ, and we

show how the robot can estimate it in Sec. II-C.

Given Eq. (1), if the cost Cθ of intent θ is additive along

the trajectory ξ, we have that:

P (ξ0→t | θ, β) = e−βCθ(ξ0→t)

∫

ξ̄t→T
e−βCθ(ξ̄t→T )

∫

ξ̄0→T
e−βCθ(ξ̄0→T )

, (2)

where T is the duration of the episode. In high-dimensional

manipulation spaces, evaluating these integrals is intractable.

We follow [2] and approximate them via Laplace’s method:

P (ξ0→t | θ, β) ≈ e
−β(Cθ(ξ0→t)+Cθ(ξ

∗

t→T )−Cθ(ξ
∗

0→T ))

×

√

(

β

2π

)tk
|∇2Cθ(ξ∗0→T )|

|∇2Cθ(ξ∗t→T )|
, (3)

where k is the action dimensionality, and the trajectories

ξ∗0→T and ξ∗t→T are optimal with respect to Cθ and can be

computed with any off-the-shelf trajectory optimizer1.

Now, given a tractable way to compute the likelihood of

the human input, the robot can obtain a posterior over intents:

P (θ | ξ0→t, β) =
P (ξ0→t | θ, β)

∑

θ′∈Θ P (ξ0→t|θ′, β)
, (4)

assuming P (θ | β) = P (θ) and a uniform prior over intents.

Prior inference-based shared autonomy work [2], [12]

typically assumes β = 1. We show that the robot should not

be restricted by such an assumption and it, in fact, benefits

from estimating β̂ and reinterpreting it as a confidence.

C. Confidence Estimation

In the Boltzmann model in Eq. (1), we see that β deter-

mines the variance of the distribution over human trajecto-

ries. When β is high, the distribution is peaked around those

trajectories ξ with the lowest cost Cθ; in contrast, a low β
makes all trajectories equally likely. We can, thus, reinterpret

β to take a useful meaning in shared autonomy: given an

intent, β controls how well that intent’s cost explains the

user’s input. A high β for an intent θ indicates that the

intent’s cost explains the input well and is a good candidate

1We use TrajOpt [23], based on sequential quadratic programming.



for assistance. A low β on all intents suggests that the robot’s

intent set is insufficient for explaining the person’s trajectory.

We can thus estimate β and use it for assistance. Using

the likelihood function in Eq. (3), we write the β posterior

P (β | ξ0→t, θ) =
P (ξ0→t | θ, β)P (β)

∫

β̄
P (ξ0→t|θ, β̄)P (β)dβ̄

. (5)

If we assume a uniform prior P (β), we may compute an

estimate of the confidence parameter β per intent θ via a

maximum likelihood estimate:

β̂θ = argmax
β̄

e−β̄(Cθ(ξ0→t)+Cθ(ξ
∗

t→T )−Cθ(ξ
∗

0→T ))

(

β̄

2π

)

tk
2

,

(6)

where we drop the Hessians since they don’t depend on β.

Setting the derivative of the objective in Eq. (6) to zero and

solving for β yields the following estimate:

β̂MLE
θ =

tk

2(Cθ(ξ0→t) + Cθ(ξ∗t→T )− Cθ(ξ
∗
0→T ))

. (7)

Alternatively, we chose to add an exponential prior with

parameter λ, Exp(λ), on β to obtain a MAP estimate

β̂MAP
θ =

tk

2(λ+ Cθ(ξ0→t) + Cθ(ξ∗t→T )− Cθ(ξ
∗
0→T ))

.

(8)

The denominators in equations 7 and 8 can be interpreted

as the “suboptimality” of the observed partial trajectory

ξ0→t compared to the cost of the optimal trajectory for the

particular θ, Cθ(ξ
∗
0→T ). Note that β̂θ is inversely proportional

to the suboptimality divided by the number of time steps t
that have passed. Intuitively, the user has more chances to be

a suboptimal teleoperator as time goes on, so dividing for t
corrects for the natural increase in suboptimality over time.

If this normalized suboptimality is low for an intent θ,

then the person is close to a good trajectory for that intent

and β̂θ will be high. Thus, a high β̂θ means that the person’s

input is well-explained by that intent. On the other hand,

high suboptimality per time means the person is far from

good trajectories, so θ’s cost model Cθ does not explain the

person’s trajectory and β̂θ will be low.

D. Confidence-based Arbitration

Armed with a confidence estimate β̂θ for every θ ∈ Θ, the

robot can predict the most likely one θ∗ = argmaxθ∈Θ P (θ |
ξ0→t, β̂θ) using Eq. (4). From here, one natural style of

assistance is “policy blending” [2]. First the robot computes

an optimal trajectory under the most likely intent, ξ∗ =
argminξ

∑

x∈ξ C
∗
θ (x), the first action of which is u∗. Then

the robot combines u∗ and T (at) using a blending parameter

α ∈ [0, 1], resulting in the robot action ut = αT (at) + (1−
α)u∗. We also refer to α as the human’s control authority.

Prior work proposes different ways to arbitrate between

the robot and human actions by choosing α proportional to

the robot’s distance to the goal or to the probability of the

most likely goal [2]. However, when using the probability

P (θ∗ | ξ), θ∗ might look much better than the other intents,

resulting in the robot wrongly assisting for θ∗. Distance-

based arbitration ignores the full history of the user’s input

and can only accommodate simple intents.

Instead, we propose that the robot should use its confi-

dence in the most likely intent, β̂θ∗ , estimated according to

Sec. II-C, to control the strength of its arbitration:

ut = min(1, 1/β̂θ∗)T (a
t) + (1−min(1, 1/β̂θ∗))u

∗ (9)

When β̂θ∗ is high, i.e. the robot is confident that the predicted

intent θ∗ can explain the person’s input, α is low, giving the

robot more influence through its action u∗. When β̂θ∗ is low,

i.e. not even the most likely intent explains the person’s input,

α increases, giving the person’s action at more authority.

E. Using Confidence for Lifelong Learning

Estimating the confidence β̂θ also lets the robot detect

misspecification in Θ: if all estimated β̂θ for θ ∈ Θ are

below a threshold ε, the robot is missing the person’s intent.

Once the robot has identified that its intent set is misspec-

ified, it should ask the person to teach it. We represent the

missing intent θφ as a neural network cost parameterized by

φ and learn it via deep maximum entropy IRL [16]. The

gradient of the IRL objective with respect to the cost param-

eters φ can be estimated by: ∇φL≈
1

|D∗|

∑

τ∈D∗∇φCφ(τ)−
1

|Dφ|

∑

τ∈Dφ∇φCφ(τ). D
∗ are (noisy) demonstrations of

the person executing the desired missing intent via direct

teleoperation, and Dφ are trajectories sampled from the Cφ
induced near the optimal policy.

Once we have a new intent θφ, the robot updates its intent

set Θ← Θ∪ θφ. The next time the person needs assistance,

the robot can perform confidence estimation, goal inference,

and arbitration as before, using the new library of intents.

While the complexity scales linearly with |Θ|, planning can

be parallelized across each intent.

Learned rewards fit naturally into our framework, allowing

for a simple way to compare against the known intents. How-

ever, one could imagine adapting our method to the many

other ways to learn an intent, from imitation learning [24],

[25], to dynamic movement primitives [26]. For instance, if

we parameterize intents via policies, we can derive a similar

confidence metric based on probabilities of observed human

actions under a stochastic policy, rather than costs.

III. EXPERT CASE STUDY

In this section, we introduce three manipulation tasks

and use expert data to analyze confidence estimation and

assistance. We later put CASA’s assistive capacity to test

with non-experts in a user study in Sec. IV.

A. Experimental Setting

We conduct our experiments on the simulated 7-DoF

JACO arm shown in Fig. 2. We use the pybullet interface [27]

and teleoperate the robot via keypresses. We map 6 keys

to bi-directional xyz movements of the robot’s end-effector,

and 2 keys for rotating it in both directions. We performed

inference and confidence estimation twice per second.
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Fig. 5: Subjective user study results. When there is no misspecification (left), our method is not inferior to PBA, whereas

when there is misspecification (center, right), the participants prefer our method after learning a new intent.

and find the assistance more useful with CASA after learning

than with any other baseline.

B. Analysis

Objective. Fig. 4 summarizes our main findings. For Known

Goal, which is well-specified, CASA does no worse than

PBA and better that NA in terms of relative effort and error.

We confirmed this by running an ANOVA, finding a signif-

icant main effect for the method (F (2, 30) = 104.93, p <
.0001 for effort; F (2, 30) = 8.93, p = .0009 for error). In

post-hoc testing, a Tukey HSD test revealed that CASA is

significantly better than NA (p < .0001 for effort, p = .0013
for error). We also performed a non-inferiority test [28], and

obtained that CASA is non-inferior to PBA within a margin

of 0.065 for effort, 0.025 for efficiency, and 0.26 for error.

These findings are in line with H1 and were expected, since

the robot should have no problem handling known intents.

For the two misspecified tasks, we first ran an ANOVA

with the method (CASA before learning, NA, and PBA) as

a factor, and the task as a covariate, and found a significant

main effect (F (2, 62) = 11.8255, p < .0001 for effort;

F (2, 62) = 6.119, p = .0038 for error). A Tukey HSD

revealed that CASA is significantly better than PBA (p =
.0005 for effort, p = .005 for error). We also ran a non-

inferiority test, and obtained that CASA is non-inferior to

NA within a margin of 0.035 for effort, 0.02 for efficiency,

and 1.4 for error for Unknown Goal, and 0.03 for effort,

0.09 for efficiency, and 4.5 for error for Unknown Skill. For

both unknown tasks, CASA before learning is essentially

indistinguishable from NA since a low β̂θ∗ would make the

robot rely on direct teleoperation. Both the figure and our sta-

tistical tests confirm H2, which speaks for the consequences

of confidently assisting for the wrong intent.

For efficiency cost, we did not find an effect, possibly

because Fig. 4 shows that PBA is more efficient for the

Unknown Skill task than other methods. Anecdotally, PBA

forced users to an incorrect goal thus preventing them from

pouring, which explains the lower efficiency cost. By having

a high arbitration for the wrong intent, PBA can cause a

smooth trajectory, since it lowers the control authority of the

possibly-noisy human inputs. However, this trajectory does

not accomplish the task. When running an ANOVA for each

of the tasks separately, we found a significant main effect for

the method for Unknown Goal (F (2, 30) = 9.66, p = .0006),

and a post-hoc Tukey HSD revealed CASA is significantly

better than PBA (p = .0032), further confirming H2.

Lastly, we looked at the performance with CASA after

learning the new intents. For Unknown Goal, a simple task,

the figure shows that CASA after learning doesn’t improve

efficiency and error, but it does reduce relative effort when

compared to NA. For Unknown Skill, a more complex task,

CASA after learning outperforms NA. This is confirmed by

an ANOVA with the method (NA, CASA after learning)

as the factor, where we found a significant main effect

(F (1, 41) = 53.60, p < .0001 for effort; F (1, 641) =
8.6184, p = .0054 for efficiency cost), supporting H3.

Subjective. We show the average Likert survey scores for

each task in Fig. 5. In line with H1, for the Known Goal

task, users thought the robot under both PBA and CASA

had a good understanding of how they wanted the task to

be done, made the interaction more effortless, and provided

useful assistance. The results are in stark contrast to NA,

which scores low on all those metrics. For Unknown Goal

and Unknown Skill, all methods fare poorly on all questions

except for CASA after learning, supporting H4.

V. CONCLUSION

In this paper, we formalized a confidence-aware shared

autonomy process where the robot can adjust its assistance

based on how confident it is in its prediction of the human

intent. We introduced an approximate solution for estimating

this confidence, and demonstrated its effectiveness in adjust-

ing arbitration when the robot’s intent set is misspecified and

enabling continual learning of new intents.

While our confidence estimates tolerated some degree of

suboptimal user control, an extremely noisy operator attempt-

ing a known intent might instead appear to be performing a

novel intent. Moreover, due to COVID, we ran our experi-

ments in a simulator, which does not replicate the difficulty

inherent in teleoperating a real manipulator via a joystick

interface. Despite these limitations, we are encouraged to

see robots have a more principled and robust way to arbitrate

shared autonomy, as well as decide when they need to learn

more to be better teammates. We look forward to applications

of our confidence-based ideas beyond manipulation robots, to

semi-autonomous vehicles, quadcopter control, or any other

shared autonomy scenarios.
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