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Situational Confidence Assistance for Lifelong Shared Autonomy
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Abstract— Shared autonomy enables robots to infer user
intent and assist in accomplishing it. But when the user wants
to do a new task that the robot does not know about, shared
autonomy will hinder their performance by attempting to assist
them with something that is not their intent. Our key idea
is that the robot can detect when its repertoire of intents is
insufficient to explain the user’s input, and give them back
control. This then enables the robot to observe unhindered
task execution, learn the new intent behind it, and add it to
this repertoire. We demonstrate with both a case study and a
user study that our proposed method maintains good perfor-
mance when the human’s intent is in the robot’s repertoire,
outperforms prior shared autonomy approaches when it isn’t,
and successfully learns new skills, enabling efficient lifelong
learning for confidence-based shared autonomy.

I. INTRODUCTION

In shared autonomy [1]-[11], robots assist human opera-
tors to perform their objectives more effectively. Here, rather
than directly executing the human’s control input, a typical
framework has the robot estimate the human’s intent and
execute controls that help achieve it [2], [3], [12]-[14].

These methods succeed when the robot knows the set of
possible human intents a priori, e.g. the objects the human
might want to reach, or the buttons they might want to
push [2], [12]. But realistically, users of these systems will
inevitably want to perform tasks outside the repertoire of
known intents — they might want to reach for a goal unknown
to the robot, or perform a new task like pouring a cup of
water into a sink. This presents a three-fold challenge for
shared autonomy. First, the robot will be unable to recognize
and help with something unknown. Second, and perhaps
more importantly, it will attempt to assist with whatever
wrong intent it infers, interfering with what the user is trying
to do and hindering their performance. This happens when
the robot plans in expectation [12], and, as our experiments
will demonstrate, it happens even when the robot arbitrates
the amount of assistance based on its confidence in the most
likely goal [2]. Third, the new task remains just as difficult
as the first time even after arbitrarily many attempts.

Our key idea is that the robot should detect that the user
is trying something new and give them control. This then
presents an opportunity for the robot to observe the new
executed trajectory, learn the underlying intent that explains
it, and add it to its repertoire so that it can infer and assist
for this intent in the future.

To achieve this, we need two ingredients: 1) a way for the
robot to detect its repertoire of intents is insufficient, and 2)
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Fig. 1: We propose an approach for lifelong shared autonomy
that enables a robot to detect when its set of known human
intents is insufficient to explain the current human behavior.
Rather than trying to assist for the wrong intent, the robot
learns from novel teleoperations to learn a model of the new
intent, allowing for lifelong confidence-based assistance.

a representation of intents that enables learning new tasks
throughout its lifetime, adding them to its repertoire, and
performing inference over them in a unified way with the
initial known intents. For the latter, we use cost functions
to unify goals and general skills like pouring into the
same representation. This then enables the former: when
the human acts too suboptimally for any of the known cost
functions, it suggests the robot lacks the correct set of costs.

Our approach takes inspiration from recent work on hy-
pothesis misspecification where the robot recognizes when
its cost function features are insufficient to explain human
demonstrations and corrections [15], and updates the cost in
proportion to the situational confidence in these features’
ability to explain input. We extend detecting hypothesis
mispecification to the context of shared autonomy, in which
there are multiple intents, represented as cost functions, and
the robot seeks to recognize whether any of the known intents
explain the human input sufficiently. The robot can then
arbitrate its assistance based on its confidence in the most
likely intent being what the human wanted.

Our approach, which we call Confidence-Aware Shared
Autonomy (CASA), allows the robot to ascertain whether
the human inputs are associated with a known or new task.
By arbitrating the user’s input based on the confidence in the
most likely intent, CASA follows a standard policy blending
assistance approach if the task is known, and otherwise gives
the user full control. Additionally, CASA allows the user to
provide a few demonstrations of the new intent, which the
robot uses to learn a cost function via Inverse Reinforcement



Learning (IRL) [16] and add it to its set of intents. This
enables lifelong shared autonomy, where the robot helps
when it is confident in what the user wants and learns new
intents when it detects that the human is doing something
novel, so that it can assist with that intent in the future.
We test our approach in a expert case study and a user
study with a simulated 7DoF JACO assistive robot arm. Our
results suggest that CASA significantly outperforms prior
approaches when assisting for unknown intents, maintains
high performance in the case of known ones, and successfully
learns new intents for better lifelong shared autonomy.

II. CONFIDENCE-AWARE SHARED AUTONOMY

We consider a human teleoperating a dexterous robotic
manipulator to perform everyday manipulation tasks. The
robot’s goal is to assist the person in accomplishing their
desired skill by augmenting or changing their input. While
the robot possesses a predefined set of possible intents, the
human’s desired motion might not be captured by any of
them. We propose that since the robot might not understand
the person’s intentions, it should reason about how confident
it is in its predictions to avoid assisting for the wrong intent.

A. Preliminaries

Formally, let x € X be the continuous robot state (e.g.
joint angles), and v € U the continuous robot action (e.g.
joint velocity). The user controls their desired robot configu-
ration by providing continuous inputs a € A via an interface
(e.g. GUI, joystick, keyboard commands, etc). These inputs
are mapped to robot actions through a direct teleoperation
function 7 : A — U. Define a person’s trajectory up until
time ¢ as the sequence &y_s; = (20,a", ..., 2!, at).

The robot is equipped with a set of known intents ©, one
of which may represent the user’s desired motion. Each intent
is parameterized by a cost function Cy, which may be hand-
engineered or learned from demonstrations via IRL [17],
[18]. For example, if the intent represents moving to a goal
g, the cost function can be distance to the goal: C,(§) =
> zce llx—g||- If the intent is pouring a cup, the cost can be a
neural network with parameters 1), C',. Our shared autonomy
system does not know the intent a priori, but infers it from
the human’s inputs. Given the user’s trajectory so far, £y_+,
a common strategy is to predict the user’s intent § € O,
compute the optimal action for moving accordingly, then
augment the user’s original input with it [2].

However, what if none of the intents match the human’s
input, i.e., the person is trying to do something the robot does
not know about? We introduce a shared autonomy formalism
where the robot reasons about its confidence in its current
set of intents’ ability to explain the person’s input, and uses
that confidence for robust assistance. This confidence serves
a dual purpose, as the robot can also use it to ask the human
to demonstrate the missing intent.

B. Intent Inference

To assist the person, the robot has to first predict which of
its known tasks the person is trying to carry out, if any. To

do that, the robot needs a model of how people teleoperate
it to achieve a desired motion. We assume the Boltzmann
noisily-rational decision model [19], [20]:

e—BCo(6)
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where the person chooses the trajectory £ proportional to its
exponentiated cost Cy. The parameter 5 € [0,00) controls
how much the robot expects to observe human input con-
sistent with the intent 6. Typically, 8 is fixed, recovering
the Maximum Entropy IRL observation model [17], which
is what most inference-based shared autonomy methods
use [2], [12]. Inspired by work on confidence-aware human-
robot interaction [15], [21], [22], we instead reinterpret 5 as
a measure of the robot’s situational confidence in its ability
to explain human data, given the known intents ©, and we
show how the robot can estimate it in Sec. II-C.

Given Eq. (1), if the cost Cy of intent 6 is additive along
the trajectory &, we have that:
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where 7' is the duration of the episode. In high-dimensional
manipulation spaces, evaluating these integrals is intractable.
We follow [2] and approximate them via Laplace’s method:

P&t | 6,8) = e B(Co(&0—1)+Co (&7, 7)—Co(§5-,7))
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where k is the action dimensionality, and the trajectories
&6_p and &, are optimal with respect to Cyp and can be
computed with any off-the-shelf trajectory optimizer!.
Now, given a tractable way to compute the likelihood of
the human input, the robot can obtain a posterior over intents:

Pt [60,8)
P(G | €O—>t36) 20/69 P(€0—>t|9/aﬂ)’ (4)
assuming P(0 | 8) = P(6) and a uniform prior over intents.
Prior inference-based shared autonomy work [2], [12]
typically assumes 5 = 1. We show that the robot should not
be restricted by such an assumption and it, in fact, benefits
from estimating B and reinterpreting it as a confidence.

C. Confidence Estimation

In the Boltzmann model in Eq. (1), we see that 5 deter-
mines the variance of the distribution over human trajecto-
ries. When (3 is high, the distribution is peaked around those
trajectories £ with the lowest cost Cl; in contrast, a low 3
makes all trajectories equally likely. We can, thus, reinterpret
[ to take a useful meaning in shared autonomy: given an
intent, 8 controls how well that intent’s cost explains the
user’s input. A high 8 for an intent ¢ indicates that the
intent’s cost explains the input well and is a good candidate

'We use TrajOpt [23], based on sequential quadratic programming.



for assistance. A low 3 on all intents suggests that the robot’s
intent set is insufficient for explaining the person’s trajectory.

We can thus estimate 5 and use it for assistance. Using
the likelihood function in Eq. (3), we write the S posterior

(50—>t|05) ( )_
J3 P(€o—el0, B)P(B)dB’

If we assume a uniform prior P(f), we may compute an
estimate of the confidence parameter § per intent 6 via a
maximum likelihood estimate:

P(B | §ot,0) =
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where we drop the Hessians since they don’t depend on f.
Setting the derivative of the objective in Eq. (6) to zero and
solving for 3 yields the following estimate:

0 2(Co(Eo—t) + Co(& 1) — Col&_ 7))

Alternatively, we chose to add an exponential prior with
parameter A, Exp(\), on 3 to obtain a MAP estimate

BJMAP tk
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The denominators in equations 7 and 8 can be interpreted
as the “suboptimality” of the observed partial trajectory
&o—+ compared to the cost of the optimal trajectory for the
particular 6, Cy(&5_, ). Note that [ is inversely proportional
to the suboptimality divided by the number of time steps ¢
that have passed. Intuitively, the user has more chances to be
a suboptimal teleoperator as time goes on, so dividing for ¢
corrects for the natural increase in suboptimality over time.
If this normalized suboptimality is low for an intent 6,
then the person is close to a good trajectory for that intent
and ﬂg will be high. Thus, a high 69 means that the person’s
input is well-explained by that intent. On the other hand,
high suboptimality per time means the person is far from
good trajectories, so 0’s cost model Cy does not explain the
person’s trajectory and By will be low.

D. Confidence-based Arbitration

Armed with a confidence estimate 3, for every 0 € O, the
robot can predict the most likely one 6* = arg maxgco P (6 |
fo—mBe) using Eq. (4). From here, one natural style of
assistance is “policy blending” [2]. First the robot computes
an optimal trajectory under the most likely intent, £ =
argming » 5., Cp (z ) the first action of which is «*. Then
the robot combines u* and 7 (a') using a blending parameter

€ [0, 1], resulting in the robot action u’ = o7 (a) + (1 —
a)u*. We also refer to o as the human’s control authority.

Prior work proposes different ways to arbitrate between
the robot and human actions by choosing « proportional to
the robot’s distance to the goal or to the probability of the
most likely goal [2]. However, when using the probability
P(6* | €), 0* might look much better than the other intents,

resulting in the robot wrongly assisting for 6*. Distance-
based arbitration ignores the full history of the user’s input
and can only accommodate simple intents.

Instead, we propose that the robot should use its confi-
dence in the most likely intent, Bg*, estimated according to
Sec. II-C, to control the strength of its arbitration:

u' = min(1,1/3-)T (a*) + (1 — min(1,1/34-))u*  (9)

When G- is high, i.e. the robot is confident that the predicted
intent #* can explain the person’s input, « is low, giving the
robot more influence through its action v*. When Bg* is low,
i.e. not even the most likely intent explains the person’s input,
« increases, giving the person’s action a! more authority.

E. Using Confidence for Lifelong Learning

Estimating the confidence Bg also lets the robot detect
misspecification in O: if all estimated Bg for 6 € © are
below a threshold e, the robot is missing the person’s intent.

Once the robot has identified that its intent set is misspec-
ified, it should ask the person to teach it. We represent the
missing intent 64 as a neural network cost parameterized by
¢ and learn it via deep maximum entropy IRL [16]. The
gradient of the IRL objective with respect to the cost param-
eters ¢ can be estimated by: V4L~ ﬁ Y e VoCoy(T)—
|D71<H > repeVeCo(T). D* are (noisy) demonstrations of
the person executing the desired missing intent via direct
teleoperation, and D? are trajectories sampled from the Cy
induced near the optimal policy.

Once we have a new intent 64, the robot updates its intent
set © <— © U fy4. The next time the person needs assistance,
the robot can perform confidence estimation, goal inference,
and arbitration as before, using the new library of intents.
While the complexity scales linearly with |©|, planning can
be parallelized across each intent.

Learned rewards fit naturally into our framework, allowing
for a simple way to compare against the known intents. How-
ever, one could imagine adapting our method to the many
other ways to learn an intent, from imitation learning [24],
[25], to dynamic movement primitives [26]. For instance, if
we parameterize intents via policies, we can derive a similar
confidence metric based on probabilities of observed human
actions under a stochastic policy, rather than costs.

III. EXPERT CASE STUDY

In this section, we introduce three manipulation tasks
and use expert data to analyze confidence estimation and
assistance. We later put CASA’s assistive capacity to test
with non-experts in a user study in Sec. IV.

A. Experimental Setting

We conduct our experiments on the simulated 7-DoF
JACO arm shown in Fig. 2. We use the pybullet interface [27]
and teleoperate the robot via keypresses. We map 6 keys
to bi-directional xyz movements of the robot’s end-effector,
and 2 keys for rotating it in both directions. We performed
inference and confidence estimation twice per second.
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Fig. 2: Expert case study results. For each of three manipulation tasks, we compute confidence estimates before learning
and, for the misspecified tasks (middle, bottom), we recompute the confidence estimates after learning. We also plot the
strength of assistance before and after learning and compare to a policy blending baseline [2].
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Fig. 3: Analysis of arbitration methods. After tracking an
optimal trajectory for the Unknown Goal task, we show the
robot’s belief and confidence estimates for each known goal
(left), as well as the « values under the distance, belief, and
confidence-based arbitration schemes (right).

We test CASA on 3 different tasks. In the Known Goal
task, we control for the well-specified setting: the robot must
assist the user to move to the known green goal location in
Fig. 2. In the other tasks, we test CASA’s efficacy in the case
of misspecification, where the user’s desired intent is initially
missing from the robot’s known set ©. In the second task,
Unknown Goal, the person teleoperates the robot to the red
goal which is unknown to the robot. Finally, in the third and
most complicated task, Unknown Skill, the person tries to
pour the cup contents at an unknown goal location.

For the Unknown Goal and Unknown Skill tasks, we first
run CASA before being exposed to the new intent (CASA
before learning). Detecting low confidence, the robot then
asks for demonstrations and learns the missing intents via
deep maximum entropy IRL as discussed in Sec. II-E. We
then run teleoperation with CASA after learning, to assess
the quality of robot assistance after learning the new intent.

B. Arbitration Method Comparison

We compare CASA to a policy blending assistance (PBA)
baseline [2] that assumes 3 = 1 for all intents. PBA
arbitrates with the distance dg- to the predicted goal: o =
min(1, dg« /D), with D some threshold past which the robot
does not assist. More sophisticated arbitration schemes use
P(6* | &) or the full distribution P(é | £), but they are much
less robust to task misspecification. This is because when the
user teleoperates for an unknown intent, P(¢ | ) will be low
for all known 6 € ©; however, forming P(0 | £) requires
normalizing over all known intents, after which P(6* | &)
can still be high unless the user happened to operate in a
way that appears equally unlikely under all known intents.

We analyzed this phenomenon by tracking a reference
trajectory for the Unknown Goal task which moves optimally
towards the unknown goal (see Fig. 2 for the task layout). We
compared the performances of the distance and confidence
arbitration methods, as well as a belief-based method which
sets = (P(6* | £)|©]|—1)/(]©] — 1) (chosen so that &« = 0
when P(6* | §) =1/|©|, « = 1 when P(6* | £) = 1). In
Fig. 3, the confidence in each goal stays low enough that the
robot would have left the user in full control; meanwhile,
the relatively higher likelihood of one goal causes the belief
P(0* | £) to quickly go to 1 and thus set the user’s control
authority to 0 under the belief-based arbitration scheme.

We examined one belief-based arbitration method here,
but since P(6* | £) rapidly goes to 1, any other arbitration
that is a function of the belief P(0 | £) would similarly try
to assist for the wrong goal, motivating our choice of the
simpler but more robust distance-based arbitration baseline.
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Fig. 4: Our user study objective metrics. For every task, we measured error with respect to an intended trajectory (left),
smoothness of the executed trajectory (middle), and effort relative to direct teleoperation (right).

C. Well-specified Tasks

Fig. 2 (top) showcases the results of our experiment for
the Known Goal task. Looking at the confidence plot, we
see that (g increases with time for the correct green goal,
while it remains low for the alternate known purple goal. In
the arbitration plot, as Be* increases, o gradually decreases,
reflecting that the robot takes more control authority only
as it becomes more confident that the person’s intent is
indeed 6*. Similarly, since there is no misspecification, PBA
arbitration steadily decreases the human’s contribution to
the final control. Both methods result in smooth trajectories
which go to the correct goal location.

D. Misspecified Tasks

Our approach distinguishes itself in how it handles mis-
specified tasks. During the Unknown Goal task, in Fig. 2
(middle), CASA before learning estimates low /3’9 for both
goals, since neither goal explains the person’s motion moving
towards the red goal. The estimated /39 is slightly higher
for the green goal than for the purple one because it is
closer to the user’s input; however, neither are high enough to
warrant an arbitration « below 1, and thus the robot receives
no control. In Fig. 2 (bottom), we observe almost identical
behavior before learning for the Unknown Skill task: the
known intents do not match the user’s behavior, and thus the
user is given full control authority and completes the task.

This contrasts PBA, which, for both Unknown Goal and
Unknown Skill, predicts the green goal as the intent. Since
in both cases the user’s desired trajectory passes near the
green goal, PBA erroneously takes control and moves the
user towards it, requiring the human to counteract the robot’s
controls to try to accomplish the task.

In the middle plots for each of the misspecified tasks, we
observe for CASA after learning, the newly-learned intents
receive confidence estimates which increase as the robot is
able to observe the user, and thus CASA contributes more
to the control as it becomes confident.

IV. USER STUDY
We now present the results of our user study, testing how
well our method can assist non-expert users.

A. Experimental Design

Due to the COVID-19 pandemic, we were unable to
perform an in-person user study with a physical robot.

Instead, as described in Sec. III, we replicated our lab set-up
in a pybullet simulator [27] in which users can teleoperate a
7 DoF JACO robotic arm using keyboard inputs (Fig. 2).
We split the study into four phases: (1) familiarization,
(2) no misspecification, (3) misspecification before learning,
and (4) misspecification after learning. First, we introduce the
user to the simulation interface by asking them to perform a
familiarization task. In the next phase, we tested the Known
Goal task. In the third phase, we tested the two misspecified
tasks, Unknown Goal and Unknown Skill, then asked partic-
ipants to provide 5 demonstrations for each intent. Finally,
in the fourth phase, we retested the misspecified tasks using
cost functions learned from the demonstrations.
Independent Variables: For each experiment, we manip-
ulate the assistance method with three levels: no assistance
(NA), policy blending assistance (PBA) [2], and Confidence-
Aware Shared Autonomy (CASA). For Unknown Goal and
Unknown Skill, we compared our method before and after
learning new intents against the NA and PBA baselines.
Dependent Measures: Before each task, we displayed
an exemplary reference trajectory to help participants under-
stand their objective. As such, for our objective metrics, we
measured Error as the sum of squared differences between
the intended and executed trajectories, Efficiency Cost as the
sum of squared velocities across the executed trajectory, and
Effort as the number of keys pressed. To assess the users’
interaction experience, we administered a subjective 7-point
Likert scale survey, asking the participants three questions:
(1) if they felt the robot understood how they wanted the task
done, (2) if the robot made the interaction more effortless,
and (3) if the assistance provided was useful.
Participants: We used a within-subjects design and counter-
balanced the order of the assistance methods. We recruited
11 users (10 male, aged 20-30) from the campus community,
most of whom had technical background.
Hypotheses:
H1: If there is no misspecification, assisting with CASA is
not inferior to assisting with PBA, and is superior to NA.
H2: If there is misspecification, assisting with CASA before
learning is more accurate, efficient, and effortless than with
PBA and not inferior to NA.
H3: If there is misspecification, assisting with CASA after
learning is more accurate, efficient, and effortless than NA.
H4: If there is misspecification, participants will believe the
robot understood what they want, feel less interaction effort,
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Fig. 5: Subjective user study results. When there is no misspecification (left), our method is not inferior to PBA, whereas
when there is misspecification (center, right), the participants prefer our method after learning a new intent.

and find the assistance more useful with CASA after learning
than with any other baseline.

B. Analysis

Objective. Fig. 4 summarizes our main findings. For Known
Goal, which is well-specified, CASA does no worse than
PBA and better that NA in terms of relative effort and error.
We confirmed this by running an ANOVA, finding a signif-
icant main effect for the method (F(2,30) = 104.93,p <
.0001 for effort; F'(2,30) = 8.93,p = .0009 for error). In
post-hoc testing, a Tukey HSD test revealed that CASA is
significantly better than NA (p < .0001 for effort, p = .0013
for error). We also performed a non-inferiority test [28], and
obtained that CASA is non-inferior to PBA within a margin
of 0.065 for effort, 0.025 for efficiency, and 0.26 for error.
These findings are in line with H1 and were expected, since
the robot should have no problem handling known intents.

For the two misspecified tasks, we first ran an ANOVA
with the method (CASA before learning, NA, and PBA) as
a factor, and the task as a covariate, and found a significant
main effect (F(2,62) = 11.8255,p < .0001 for effort;
F(2,62) = 6.119,p = .0038 for error). A Tukey HSD
revealed that CASA is significantly better than PBA (p =
.0005 for effort, p = .005 for error). We also ran a non-
inferiority test, and obtained that CASA is non-inferior to
NA within a margin of 0.035 for effort, 0.02 for efficiency,
and 1.4 for error for Unknown Goal, and 0.03 for effort,
0.09 for efficiency, and 4.5 for error for Unknown Skill. For
both unknown tasks, CASA before learning is essentially
indistinguishable from NA since a low g~ would make the
robot rely on direct teleoperation. Both the figure and our sta-
tistical tests confirm H2, which speaks for the consequences
of confidently assisting for the wrong intent.

For efficiency cost, we did not find an effect, possibly
because Fig. 4 shows that PBA is more efficient for the
Unknown Skill task than other methods. Anecdotally, PBA
forced users to an incorrect goal thus preventing them from
pouring, which explains the lower efficiency cost. By having
a high arbitration for the wrong intent, PBA can cause a
smooth trajectory, since it lowers the control authority of the
possibly-noisy human inputs. However, this trajectory does
not accomplish the task. When running an ANOVA for each
of the tasks separately, we found a significant main effect for
the method for Unknown Goal (F'(2,30) = 9.66, p = .0006),

and a post-hoc Tukey HSD revealed CASA is significantly
better than PBA (p = .0032), further confirming H2.

Lastly, we looked at the performance with CASA after
learning the new intents. For Unknown Goal, a simple task,
the figure shows that CASA after learning doesn’t improve
efficiency and error, but it does reduce relative effort when
compared to NA. For Unknown Skill, a more complex task,
CASA after learning outperforms NA. This is confirmed by
an ANOVA with the method (NA, CASA after learning)
as the factor, where we found a significant main effect
(F(1,41) = 53.60,p < .0001 for effort; F(1,641) =
8.6184, p = .0054 for efficiency cost), supporting H3.
Subjective. We show the average Likert survey scores for
each task in Fig. 5. In line with HI, for the Known Goal
task, users thought the robot under both PBA and CASA
had a good understanding of how they wanted the task to
be done, made the interaction more effortless, and provided
useful assistance. The results are in stark contrast to NA,
which scores low on all those metrics. For Unknown Goal
and Unknown Skill, all methods fare poorly on all questions
except for CASA after learning, supporting H4.

V. CONCLUSION

In this paper, we formalized a confidence-aware shared
autonomy process where the robot can adjust its assistance
based on how confident it is in its prediction of the human
intent. We introduced an approximate solution for estimating
this confidence, and demonstrated its effectiveness in adjust-
ing arbitration when the robot’s intent set is misspecified and
enabling continual learning of new intents.

While our confidence estimates tolerated some degree of
suboptimal user control, an extremely noisy operator attempt-
ing a known intent might instead appear to be performing a
novel intent. Moreover, due to COVID, we ran our experi-
ments in a simulator, which does not replicate the difficulty
inherent in teleoperating a real manipulator via a joystick
interface. Despite these limitations, we are encouraged to
see robots have a more principled and robust way to arbitrate
shared autonomy, as well as decide when they need to learn
more to be better teammates. We look forward to applications
of our confidence-based ideas beyond manipulation robots, to
semi-autonomous vehicles, quadcopter control, or any other
shared autonomy scenarios.



[1]

[2]

[3]
[4]

[5]
[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

P. Aigner and B. McCarragher, “Human integration into robot control
utilising potential fields,” in Proceedings of International Conference
on Robotics and Automation, vol. 1. IEEE, 1997, pp. 291-296.

A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790-805, 2013. [Online]. Available: https:
//doi.org/10.1177/0278364913490324

S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via deep
reinforcement learning,” arXiv preprint arXiv:1802.01744, 2018.

D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley, “A
Review of Intent Detection, Arbitration, and Communication Aspects
of Shared Control for Physical Human—Robot Interaction,” Applied
Mechanics Reviews, vol. 70, no. 1, 02 2018, 010804. [Online].
Available: https://doi.org/10.1115/1.4039145

R. C. Goertz, “Manipulators used for handling radioactive materials,”
Human factors in technology, pp. 425-443, 1963.

F. Abi-Farraj, C. Pacchierotti, and P. R. Giordano, “User evaluation
of a haptic-enabled shared-control approach for robotic telemanip-
ulation,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1-9.

D. P. Losey, K. Srinivasan, A. Mandlekar, A. Garg, and D. Sadigh,
“Controlling assistive robots with learned latent actions,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp- 378-384.

Q. Li, W. Chen, and J. Wang, “Dynamic shared control for human-
wheelchair cooperation,” in 2011 IEEE International Conference on
Robotics and Automation. 1EEE, 2011, pp. 4278-4283.

A. Erdogan and B. D. Argall, “The effect of robotic wheelchair control
paradigm and interface on user performance, effort and preference: an
experimental assessment,” Robotics and Autonomous Systems, vol. 94,
pp. 282-297, 2017.

D. S. Brown, S.-Y. Jung, and M. A. Goodrich, “Balancing human and
inter-agent influences for shared control of bio-inspired collectives,”
in 2014 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC). 1EEE, 2014, pp. 4123-4128.

J. W. Crandall, N. Anderson, C. Ashcraft, J. Grosh, J. Henderson,
J. McClellan, A. Neupane, and M. A. Goodrich, “Human-swarm in-
teraction as shared control: Achieving flexible fault-tolerant systems,”
in International Conference on Engineering Psychology and Cognitive
Ergonomics. Springer, 2017, pp. 266-284.

S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy
via hindsight optimization,” Robotics science and systems: online
proceedings, vol. 2015, 2015.

K. Muelling, A. Venkatraman, J.-S. Valois, J. E. Downey, J. Weiss,
S. Javdani, M. Hebert, A. B. Schwartz, J. L. Collinger, and J. A.
Bagnell, “Autonomy infused teleoperation with application to brain
computer interface controlled manipulation,” Autonomous Robots,
vol. 41, no. 6, pp. 1401-1422, 2017.

C. Pérez-D’ Arpino and J. A. Shah, “Fast target prediction of human
reaching motion for cooperative human-robot manipulation tasks using
time series classification,” in 2015 IEEE international conference on
robotics and automation (ICRA). 1EEE, 2015, pp. 6175-6182.

A. Bobu, A. Bajcsy, J. F. Fisac, S. Deglurkar, and A. D. Dra-
gan, “Quantifying hypothesis space misspecification in learning from
human-robot demonstrations and physical corrections,” IEEE Trans-
actions on Robotics, vol. 36, no. 3, pp. 835-854, 2020.

C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in International conference
on machine learning, 2016, pp. 49-58.

B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 3, ser.
AAAT08. AAAI Press, 2008, pp. 1433-1438. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1620270.1620297

A. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” International Conference on Machine Learning (ICML),
vol. 0, pp. 663-670, 2000. [Online]. Available: http://www-cs.
stanford.edu/people/ang/papers/icml00-irl.pdf

C. Baker, J. B Tenenbaum, and R. R Saxe, “Goal inference as inverse
planning,” 01 2007.

J. Von Neumann and O. Morgenstern, Theory of games and economic
behavior. Princeton University Press Princeton, NJ, 1945.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

D. Fridovich-Keil, A. Bajcsy, J. F. Fisac, S. L. Herbert, S. Wang,
A. D. Dragan, and C. J. Tomlin, “Confidence-aware motion prediction
for real-time collision avoidance,” International Journal of Robotics
Research, 2019.

J. FE. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J.
Tomlin, and A. D. Dragan, “Probabilistically safe robot planning with
confidence-based human predictions,” Robotics: Science and Systems
(RSS), 2018.

J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.”

J.. Ho and S. Ermon,
learning,” in Advances in

“Generative  adversarial ~ imitation
Neural  Information  Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 4565-4573. [Online]. Available: http://papers.nips.cc/
paper/6391-generative-adversarial-imitation-learning.pdf
S. Reddy, A. D. Dragan, and S. Levine, “SQIL: imitation learning
via reinforcement learning with sparse rewards,” in 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online].
Available: https://openreview.net/forum?id=S 1xKd24twB
A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann,
“Probabilistic movement primitives,” in Advances in Neural
Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013, pp. 2616-2624. [Online]. Available: http:
/Ipapers.nips.cc/paper/5177-probabilistic-movement-primitives.pdf
E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016-2019.
E. Lesaffre, “Superiority, equivalence, and non-inferiority trials,”
Bulletin of the NYU hospital for joint diseases, vol. 66, no. 2, p.
150—154, 2008. [Online]. Available: http://europepmc.org/abstract/
MED/18537788



	I Introduction
	II Confidence-Aware Shared Autonomy
	II-A Preliminaries
	II-B Intent Inference
	II-C Confidence Estimation
	II-D Confidence-based Arbitration
	II-E Using Confidence for Lifelong Learning

	III Expert Case Study
	III-A Experimental Setting
	III-B Arbitration Method Comparison
	III-C Well-specified Tasks
	III-D Misspecified Tasks

	IV User Study
	IV-A Experimental Design
	IV-B Analysis

	V Conclusion
	References

