


putation to find an approach vector for unicontact grasping

of a partially or fully occluded target object in a structured

clutter scene, without changing the scene. First, AVPLUG

samples potential target object locations from the unknown

regions of the occupancy map. It then efficiently casts rays

outwards from these candidate locations in order to iden-

tify unobstructed candidate vectors. Next, it cross-references

these candidate views with a pre-computed expected grasp

quality distribution (which takes into account individual

grasp quality as well as uncertainty in target object pose).

It moves to the view with the highest expected grasp quality.

AVPLUG repeats this process until it finds a collision-free

approach vector, or reports failure.

In the case of a fully occluded target object, we encounter

an additional challenge, in that there is no clear signal to

guide exploration. In order to narrow the search space, we

propose to efficiently compute the Minkowski sum [18]

between the target object and the region of the occupancy

map that we have explored thus far. This constrains the

potential locations of the target object on the worksurface.

Experiments in simulation and on a physical Fetch robot

suggest that AVPLUG can find an approach vector in up to

20× fewer steps than a baseline policy, even in the presence

of dense occlusions and in tight spaces (see Fig. 6). This

paper makes three contributions:

1) A formulation of the problem of efficiently finding an

approach vector for unicontact grasping a target object

in the presence of partial or full occlusions.

2) AVPLUG, an efficient algorithm that uses an octree-

based occupancy map and Minkowski sum computa-

tion to address the above problem.

3) Experiments in simulation and on a physical robot

comparing AVPLUG with a grid search baseline,

which systematically visits views on a discretized grid.

II. RELATED WORK

A. Target-Driven Grasping in Clutter

There has been significant prior work on searching for

target objects in clutter, however the most common approach

is to move or remove occluding objects. For example,

Danielczuk et al. [6] defined the mechanical search problem

and proposed a pipeline to iteratively search for a partially

occluded object through a series of parallel-jaw grasping,

suction, and pushing actions. Huang et al. [8] and Danielczuk

et al. [7] then extended this work by learning an occupancy

distribution to guide the search process to recover the oc-

cluded target. Xiao et al. [19] formulate the object search

in clutter task as a POMDP and suggest an algorithm that

takes into account the robot’s current belief to evaluate the

success of a manipulation task. Murali et al. [11] leveraged

a variational autoencoder [3] to plan 6-DOF parallel-jaw

grasps on a partially occluded target object in a cluttered

scene, and remove occluding objects if no feasible grasp

is found. Boroushaki et al. [20] identify and locate a fully

occluded target object using RFID tags. In this work, we

instead focus on moving a wrist-mounted camera to find

clear approach vectors. We align the optical axis with these

approach vectors in order to grasp the target object without

affecting the rest of the scene.

B. View Planning for Grasping

In active perception [14], [15], [21], [22], we change the

position of the sensor to reveal more of the scene’s geom-

etry. This is particularly useful for tasks such as 3D scene

reconstruction [23] and mapping [24]. The next-best-view

planning problem refers to computing the optimal next view

with respect to a chosen goal. In the context of manipulation,

a camera mounted on a robot end effector can guide the

motion. Kahn et al. [25] model the occluded regions where

the target object may be located as a mixture of Gaussians,

and encourage exploration during the trajectory optimization

by penalizing for uncertainty. Other works constrain the

action space to top-down (4-DOF) grasps. For example,

Morrison et al. [26] propose a top-down grasp planning

controller that uses active perception to choose the next-

best-view of the camera as it approaches the target object

along the z-axis to reveal more robust grasps. Novokovic

et al. [27] propose a reinforcement learning based active

and interactive perception system from a top-down view to

uncover a hidden target cube in a pile of cubes. In contrast,

in this work we consider approach directions on a sphere

centered on the clutter centroid and consider candidate 5-

DOF grasps (unicontact suction grasps have symmetry about

the approach vector).

C. Occupancy Maps

Occupancy maps are 3D representations of the environ-

ment that store information about which regions have already

been explored and which have not. This information can be

used to guide next-best-view planning. Hornung et al. [16]

presented OctoMap, an efficient implementation of an octree-

based occupancy map. Given a point cloud, OctoMap updates

a 3D voxelized representation of the scene with one of three

labels per voxel: occupied, empty, or unknown. Santos et

al. [28] used an octree alongside a robotic arm and wrist-

mounted camera, however they focused on 3D scene recon-

struction. Octrees have also been used for grasping a target

object in a cluttered scene [9], [10], [29], however in contrast

to moving the camera, these works remove occluding objects

from the scene to expose the target object.

III. PROBLEM STATEMENT

Given:

• An RGBD camera with known intrinsics, mounted in

alignment with a vacuum suction cup gripper on a robot

arm (see Fig. 1 inset).

• A target object of known geometry.

• An environment of unknown objects resting on a pla-

nar worksurface, partially or fully occluding the target

object.

• A target object detector that returns a binary mask of

the target object if it is visible from the RGBD camera.
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Fig. 2. States in AVPLUG consist of a camera location (px, py , pz) on
a sphere V centered on O with radius r, and a focal point (cx, cy) (with
implicit cz = 0) on the worksurface. (cx, cy) represents a potential target
location, at which the camera’s optical axis points.

• A suction grasp planner (Dex-Net 3.0 [17]) that samples

candidate suction points on a depth image and returns

the point with the highest associated grasp quality value.

Output: an approach vector v along which a collision-free

linear motion can achieve a unicontact grasp of the target

object. AVPLUG aims to minimize the number of steps to

find such an approach vector, or reports failure.

A. Definitions

We define the following states, actions and observations:

Worksurface. A worksurface is a planar surface orthog-

onal to the z-axis which is aligned to gravity. The space

reachable by the robot may be bounded from below by the

worksurface and from above by a ceiling plane.

Sphere. Let V be a sphere with radius r centered on the

origin of the worksurface (see Fig. 2).

States (S). Let st ∈ S denote a state at timestep t

defining the position and orientation of the camera on V . We

restrict the camera focal point to within the bounds of the

worksurface. The camera can rotate about its placement on

V to look at any point on the planar surface, but does not roll

around its optical axis. The state space is thus S = S2×S2,

which we represent with a pair of Cartesian coordinates

(p, c), where p ∈ R
3 is the location on V , and c ∈ R

3 is

the point on the worksurface that the camera’s optical axis

intersects, thus cz = 0 (see Fig. 2). Let v = c − p be the

approach vector, defined as the direction from the camera to

the target.

Actions (A). Let at = (∆px,∆py,∆pz,∆cx,∆cy) de-

note the change from the state st to state st+1, where st+1

is restricted to remain on V .

Observations (Ω). Let yt = R
H×W×4
+ be an H × W

RGBD image taken from state st at timestep t.

IV. APPROACH VECTOR PLANNING

Given an observation yt, AVPLUG seeks a grasp approach

vector aligned within a tolerance angle ψ of the camera

optical axis. After detecting and segmenting the target object,

AVPLUG samples and evaluates grasps from its visible

surface using a provided grasp planner, G : R
H×W
+ →

(R3×S2,R). G maps grasps parameterized by a 5-DOF pose

g ∈ R
3 × S2 to the corresponding grasp quality q ∈ [0, 1].

A higher value of q indicates a more robust grasp. If a

termination condition T is not reached—i.e., there are no

visible grasps in yt above a certain grasp quality threshold—

AVPLUG finds the next approach vector.

Scenes where the target object is fully occluded (e.g.,

due to inter-object and environmental occlusions) can be

particularly challenging, since AVPLUG does not know the

target object location. Without full knowledge of object

poses and geometries, it is difficult to estimate the location

and orientation of the target object, and more difficult still

to estimate which views will uncover a graspable surface.

We address this with an occupancy map, which we use to

compile knowledge from previous views into an estimate of

the scene state. This allows the policy to efficiently keep

track of unexplored regions of the scene and prioritize them

in subsequent steps. The occupancy map used in AVPLUG

is based on an octree, M : R3 → {−1, 0, 1}, which maps

voxels (minimum-size boxes in the octree) to occupancy

values. In this paradigm, -1 represents unknown occupancy,

0 means known to be empty, and 1 means known to be

occupied. The resolution of the octree is configurable—

higher resolution allows for a more accurate search at the

expense of increased processing time.

A. Updating the Octree

To update AVPLUG’s representation of the occupancy

map, the depth image in observation yt is deprojected to

a point cloud using the known camera intrinsics. It is then

transformed to a global coordinate frame centered at the

center of the worksurface using the known camera extrinsics.

This transformed point cloud is inserted into the occupancy

map M (Fig. 3(a)).

B. Finding Candidate Target Object Locations

If the target object is partially visible, AVPLUG approx-

imates the translation of the target object as the center-

of-mass of its visible portion. Otherwise, AVPLUG’s first

priority is finding the target object. With the assumption that

all objects rest on a planar worksurface, AVPLUG reduces

the computational complexity of the problem by limiting

the search for candidate target object locations to the 2D

worksurface. We define a 2D occupancy map as the 2D

slice of the octree that corresponds to the worksurface, i.e.,

the portion at z = 0 in the global coordinate frame (see

Fig. 3(b)). We note that AVPLUG does not project the

occupancy map onto the worksurface, as this can result in

missing a target object that is hidden beneath another object

(e.g., a small object hidden below a large bowl). We also

observe that there are only occupied and unknown voxels on

the worksurface. AVPLUG searches for a set of candidate

target object locations U in the unknown region of the

worksurface (Fig. 3(b)).

Given the geometry of the target object, and assuming it

has a finite set of feasible stable poses on the worksurface,

we use a Minkowski sum [18] to estimate an occupancy

distribution for the location of the target object. To compute

the Minkowski sum, we first generate polygons from both

the occupied region and the target object. For the former, we

convert the 2D occupancy map to a binary image and find the











objects without the risk of toppling other objects. Experi-

ments in simulation and on a physical robot suggest that

AVPLUG can find an approach vector in up to 20× fewer

steps compared to a baseline policy, and can extract objects

from tight spaces (see Fig. 6). In future work, we will utilize

shape completion and pose estimation algorithms to reason

about the graspable part of the target object. We will also

extend this work to a tight shelf environment, from which

the object cannot be easily extracted.
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