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Abstract— Mechanical search, the finding and extracting of
a known target object from a cluttered environment, is a key
challenge in automating warehouse, home, retail, and industrial
tasks. In this paper, we consider contexts in which occluding
objects are to remain untouched, thus minimizing disruptions
and avoiding toppling. We assume a 6-DOF robot with an
RGBD camera and unicontact suction gripper mounted on its
wrist. With this setup, the robot can move both camera and
gripper in order to identify a suitable approach vector, reach in
to achieve a suction grasp of the target object, and extract it. We
present AVPLUG: Approach Vector PLanning for Unicontact
Grasping, an algorithm that uses an octree occupancy model
and Minkowski sum computation to find a collision-free grasp
approach vector. Experiments in simulation and with a physical
Fetch robot suggest that AVPLUG finds an approach vector up
to 20x faster than a baseline search policy.

I. INTRODUCTION

In many automation tasks, such as extracting a product
from a warehouse shelf, removing an ingredient from a
refrigerator, or retrieving a tool from a cluttered workbench,
desired objects may be hidden behind other objects. This
presents a challenge in both locating the target object and
finding a grasp for it. To automate such tasks, robots
need to first perform visual search, and then robustly grasp
and manipulate target objects once found. Although prior
work [1], [2], [3] proposed methods for grasping objects in
isolation, finding a robust grasp becomes significantly more
challenging [4], [5] in a cluttered environment where the
target object may be partially or fully occluded.

Mechanical search [6] aims to find a target object in
clutter and focuses on clearing a view to the target by
pushing or removing occluding objects [6], [7], [8], [9],
[10]. However, this requires planning and executing multiple
collision-free motions of the arm, adding to the overall
runtime in the form of both motion planning and execution.
Furthermore, the placement of occluding objects is often
structured, for example with objects resting on a kitchen
counter or supermarket shelf [11]. In such environments,
pushing or removing objects may be undesirable. In addition,
when objects are in unstable poses, even glancing contacts
can lead to accidental toppling, which can damage delicate
objects such as glass bottles. In contrast, this work focuses on
servoing a wrist-mounted camera with a unicontact suction
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Fig. 1. AVPLUG searches for an approach vector to grasp the occluded red
target object on the worksurface. AVPLUG moves the wrist-mounted tool
to a view from which it can find an approach vector for unicontact grasping
(successful view shown in green). AVPLUG uses an occupancy map and a
Minkowski sum to track previously explored regions of the scene and to find
and evaluate candidate vectors. Inset: The end effector used by AVPLUG is
comprised of an RGBD camera with its optical axis aligned to a unicontact
suction gripper.

gripper tool (see Fig. 1) to a view from which the target
object is fully visible and thus extractable.

Efficiently searching for a view of a target object is related
to next-view planning, the problem of finding an additional
sensor placement to improve scene reconstruction [12]. This
topic has a rich history in computer vision [13], [14], [15].
Next-view planning requires keeping track of which regions
of the scene have already been explored and which have
not. For the task of unicontact grasp planning, a full scene
reconstruction is computationally expensive and unneces-
sary; thus, we propose the use of an efficient 3D voxel-
based occupancy map (e.g., OctoMap [16]) as it provides
the required information and can be computed rapidly.

We focus on unicontact suction grasping. As opposed to
parallel-jaw grasping, in which the contact points are rarely
visible from the approach vector, unicontact grasp quality
is highly correlated with the visible surface normals [17].
Accordingly, we propose that aligning the suction gripper
contact axis to the camera optical axis can be well-suited for
a unicontact grasp exploration policy, in which finding an
unoccluded view of the graspable target surface corresponds
to finding an approach vector.

We present Approach Vector Planning for Unicontact
Grasping (AVPLUG), an algorithm that leverages an occu-
pancy map based on an octree and Minkowski sum com-



putation to find an approach vector for unicontact grasping
of a partially or fully occluded target object in a structured
clutter scene, without changing the scene. First, AVPLUG
samples potential target object locations from the unknown
regions of the occupancy map. It then efficiently casts rays
outwards from these candidate locations in order to iden-
tify unobstructed candidate vectors. Next, it cross-references
these candidate views with a pre-computed expected grasp
quality distribution (which takes into account individual
grasp quality as well as uncertainty in target object pose).
It moves to the view with the highest expected grasp quality.
AVPLUG repeats this process until it finds a collision-free
approach vector, or reports failure.

In the case of a fully occluded target object, we encounter
an additional challenge, in that there is no clear signal to
guide exploration. In order to narrow the search space, we
propose to efficiently compute the Minkowski sum [18]
between the target object and the region of the occupancy
map that we have explored thus far. This constrains the
potential locations of the target object on the worksurface.

Experiments in simulation and on a physical Fetch robot
suggest that AVPLUG can find an approach vector in up to
20x fewer steps than a baseline policy, even in the presence
of dense occlusions and in tight spaces (see Fig. 6). This
paper makes three contributions:

1) A formulation of the problem of efficiently finding an
approach vector for unicontact grasping a target object
in the presence of partial or full occlusions.

2) AVPLUG, an efficient algorithm that uses an octree-
based occupancy map and Minkowski sum computa-
tion to address the above problem.

3) Experiments in simulation and on a physical robot
comparing AVPLUG with a grid search baseline,
which systematically visits views on a discretized grid.

II. RELATED WORK

A. Target-Driven Grasping in Clutter

There has been significant prior work on searching for
target objects in clutter, however the most common approach
is to move or remove occluding objects. For example,
Danielczuk et al. [6] defined the mechanical search problem
and proposed a pipeline to iteratively search for a partially
occluded object through a series of parallel-jaw grasping,
suction, and pushing actions. Huang et al. [8] and Danielczuk
et al. [7] then extended this work by learning an occupancy
distribution to guide the search process to recover the oc-
cluded target. Xiao et al. [19] formulate the object search
in clutter task as a POMDP and suggest an algorithm that
takes into account the robot’s current belief to evaluate the
success of a manipulation task. Murali et al. [11] leveraged
a variational autoencoder [3] to plan 6-DOF parallel-jaw
grasps on a partially occluded target object in a cluttered
scene, and remove occluding objects if no feasible grasp
is found. Boroushaki et al. [20] identify and locate a fully
occluded target object using RFID tags. In this work, we
instead focus on moving a wrist-mounted camera to find

clear approach vectors. We align the optical axis with these
approach vectors in order to grasp the target object without
affecting the rest of the scene.

B. View Planning for Grasping

In active perception [14], [15], [21], [22], we change the
position of the sensor to reveal more of the scene’s geom-
etry. This is particularly useful for tasks such as 3D scene
reconstruction [23] and mapping [24]. The next-best-view
planning problem refers to computing the optimal next view
with respect to a chosen goal. In the context of manipulation,
a camera mounted on a robot end effector can guide the
motion. Kahn et al. [25] model the occluded regions where
the target object may be located as a mixture of Gaussians,
and encourage exploration during the trajectory optimization
by penalizing for uncertainty. Other works constrain the
action space to top-down (4-DOF) grasps. For example,
Morrison et al. [26] propose a top-down grasp planning
controller that uses active perception to choose the next-
best-view of the camera as it approaches the target object
along the z-axis to reveal more robust grasps. Novokovic
et al. [27] propose a reinforcement learning based active
and interactive perception system from a top-down view to
uncover a hidden target cube in a pile of cubes. In contrast,
in this work we consider approach directions on a sphere
centered on the clutter centroid and consider candidate 5-
DOF grasps (unicontact suction grasps have symmetry about
the approach vector).

C. Occupancy Maps

Occupancy maps are 3D representations of the environ-
ment that store information about which regions have already
been explored and which have not. This information can be
used to guide next-best-view planning. Hornung et al. [16]
presented OctoMap, an efficient implementation of an octree-
based occupancy map. Given a point cloud, OctoMap updates
a 3D voxelized representation of the scene with one of three
labels per voxel: occupied, empty, or unknown. Santos et
al. [28] used an octree alongside a robotic arm and wrist-
mounted camera, however they focused on 3D scene recon-
struction. Octrees have also been used for grasping a target
object in a cluttered scene [9], [10], [29], however in contrast
to moving the camera, these works remove occluding objects
from the scene to expose the target object.

III. PROBLEM STATEMENT

Given:

e An RGBD camera with known intrinsics, mounted in
alignment with a vacuum suction cup gripper on a robot
arm (see Fig. 1 inset).

o A target object of known geometry.

o An environment of unknown objects resting on a pla-
nar worksurface, partially or fully occluding the target
object.

o A target object detector that returns a binary mask of
the target object if it is visible from the RGBD camera.



Fig. 2. States in AVPLUG consist of a camera location (pz,py,p-) on
a sphere V' centered on O with radius r, and a focal point (¢, cy) (With
implicit ¢; = 0) on the worksurface. (cg, cy) represents a potential target
location, at which the camera’s optical axis points.

o A suction grasp planner (Dex-Net 3.0 [17]) that samples
candidate suction points on a depth image and returns
the point with the highest associated grasp quality value.

Output: an approach vector v along which a collision-free
linear motion can achieve a unicontact grasp of the target
object. AVPLUG aims to minimize the number of steps to
find such an approach vector, or reports failure.

A. Definitions

We define the following states, actions and observations:

Worksurface. A worksurface is a planar surface orthog-
onal to the z-axis which is aligned to gravity. The space
reachable by the robot may be bounded from below by the
worksurface and from above by a ceiling plane.

Sphere. Let V' be a sphere with radius r centered on the
origin of the worksurface (see Fig. 2).

States (S). Let s; € S denote a state at timestep ¢
defining the position and orientation of the camera on V. We
restrict the camera focal point to within the bounds of the
worksurface. The camera can rotate about its placement on
V' to look at any point on the planar surface, but does not roll
around its optical axis. The state space is thus S = S2 x S,
which we represent with a pair of Cartesian coordinates
(p,c), where p € R3 is the location on V, and ¢ € R? is
the point on the worksurface that the camera’s optical axis
intersects, thus ¢, = 0 (see Fig. 2). Let v = ¢ — p be the
approach vector, defined as the direction from the camera to
the target.

Actions (A). Let a; = (Apg, Apy, Ap., Acy, Acy) de-
note the change from the state s; to state sy, where s;4
is restricted to remain on V.

Observations (). Let y; = Rf XWx4d pe an H x W
RGBD image taken from state s; at timestep t.

IV. APPROACH VECTOR PLANNING

Given an observation y;, AVPLUG seeks a grasp approach
vector aligned within a tolerance angle ¢ of the camera
optical axis. After detecting and segmenting the target object,
AVPLUG samples and evaluates grasps from its visible
surface using a provided grasp planner, G : Rf Wy
(R3x S%,R). G maps grasps parameterized by a 5-DOF pose
g € R? x S? to the corresponding grasp quality ¢ € [0, 1].
A higher value of ¢ indicates a more robust grasp. If a
termination condition 7 is not reached—i.e., there are no

visible grasps in y; above a certain grasp quality threshold—
AVPLUG finds the next approach vector.

Scenes where the target object is fully occluded (e.g.,
due to inter-object and environmental occlusions) can be
particularly challenging, since AVPLUG does not know the
target object location. Without full knowledge of object
poses and geometries, it is difficult to estimate the location
and orientation of the target object, and more difficult still
to estimate which views will uncover a graspable surface.
We address this with an occupancy map, which we use to
compile knowledge from previous views into an estimate of
the scene state. This allows the policy to efficiently keep
track of unexplored regions of the scene and prioritize them
in subsequent steps. The occupancy map used in AVPLUG
is based on an octree, M : R? — {—1,0,1}, which maps
voxels (minimum-size boxes in the octree) to occupancy
values. In this paradigm, -1 represents unknown occupancy,
0 means known to be empty, and 1 means known to be
occupied. The resolution of the octree is configurable—
higher resolution allows for a more accurate search at the
expense of increased processing time.

A. Updating the Octree

To update AVPLUG’s representation of the occupancy
map, the depth image in observation y; is deprojected to
a point cloud using the known camera intrinsics. It is then
transformed to a global coordinate frame centered at the
center of the worksurface using the known camera extrinsics.
This transformed point cloud is inserted into the occupancy
map M (Fig. 3(a)).

B. Finding Candidate Target Object Locations

If the target object is partially visible, AVPLUG approx-
imates the translation of the target object as the center-
of-mass of its visible portion. Otherwise, AVPLUG’s first
priority is finding the target object. With the assumption that
all objects rest on a planar worksurface, AVPLUG reduces
the computational complexity of the problem by limiting
the search for candidate target object locations to the 2D
worksurface. We define a 2D occupancy map as the 2D
slice of the octree that corresponds to the worksurface, i.e.,
the portion at z = 0 in the global coordinate frame (see
Fig. 3(b)). We note that AVPLUG does not project the
occupancy map onto the worksurface, as this can result in
missing a target object that is hidden beneath another object
(e.g., a small object hidden below a large bowl). We also
observe that there are only occupied and unknown voxels on
the worksurface. AVPLUG searches for a set of candidate
target object locations U/ in the unknown region of the
worksurface (Fig. 3(b)).

Given the geometry of the target object, and assuming it
has a finite set of feasible stable poses on the worksurface,
we use a Minkowski sum [18] to estimate an occupancy
distribution for the location of the target object. To compute
the Minkowski sum, we first generate polygons from both
the occupied region and the target object. For the former, we
convert the 2D occupancy map to a binary image and find the
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Fig. 3. AVPLUG overview. (a) AVPLUG updates the octree by deprojecting a depth image to a point cloud and inserting it to the octree. (b) AVPLUG
queries the part of the octree corresponding to the worksurface in order to identify candidate target locations in the unknown regions (white is unknown,
black is occupied). In the figure, the location of the target object is gray, although in practice its location is unknown. To reduce the number of candidate
target locations, we compute the Minkowski sum between the convex hull of the known target object and the occupied section of the worksurface.. (c)
AVPLUG casts rays outwards from candidate target locations to find candidate approach vectors. The corresponding camera positions (restricted to a sphere
around the workspace) are marked by blue points. (d) AVPLUG uses a pre-computed expected grasp quality distribution to evaluate each candidate vector.
The distribution is computed by averaging ground-truth grasp quality data from the target object model over stable poses and z-axis rotations. The average
is weighted according to the relative likelihood of each stable pose. The data is then discretized into bins, with each bin represented by a colored dot in
the figure (green represents the highest expected grasp quality, and red represents the lowest). (e) Once the target object is revealed, AVPLUG uses the
provided grasp planner G to find a collision-free approach vector. It then aligns the camera’s optical axis with that approach vector, moves linearly along

the approach vector to grasp the target object, and extracts the grasped target with an upward motion.

contours of the occupied components (see Fig. 3(B)). If the
contours form self-intersecting polygons, we smooth them
using erosion and dilation [30]. To create a polygon of the
target object, we project the vertices of the known mesh to
the worksurface and compute the convex hull of the projected
vertices. We then compute the Minkowski sum between the
occupied region polygons and the target object polygon. This
inflates the occupied region in a way that eliminates unknown
points that are less likely to occupy the target object. Since
the stable pose of the target object and its rotation about the 2
axis are unknown, we discretize the rotations into 8 bins and
compute a Minkowski sum per stable pose and discretized
rotation. We then sum the results and normalize to estimate
a distribution for the location of the target object. We then
use this distribution to uniformly sample a set of points I/
that maximize the likelihood of occupying a portion of the
target object.

C. Finding Candidate Vectors

To find a candidate collision-free approach vector v,
AVPLUG casts rays outwards from the approximated target
locations. This method draws inspiration from Lozano-Perez
et al. [31], who describe an approach to fine motion synthesis
by chaining backwards from a known goal toward the current
position (Fig. 3(c)). If ray ¢ in direction d does not intersect
any occupied voxels, it represents a potentially clear line of
sight, and the intersection point p € R? of the ray with V'
is computed (see the blue points in Fig. 3(c)). There may
be few or many candidate vectors, in correspondence with
the levels of occlusion in the scene. A valid candidate vector

consists of a point on the sphere and the negated ray direction
leading to it: v = (p, —d). To visit such a view, we move
the camera to position p and align its optical axis with —d.

D. Evaluating Candidate Vectors

Given the target object geometry and pose we could use G
to compute grasps and check which approach vector aligns
with a collision-free candidate vector. However, AVPLUG
does not know the target object pose a priori; it only has
access to the object geometry and a probability distribution
of stable poses. Using this information, AVPLUG computes
an expected grasp quality distribution for the target object
before viewing any scenes. To compute this distribution,
AVPLUG performs a weighted average of grasps and their
associated quality, averaging over the known stable poses
and all z-axis rotations. Higher likelihood stable poses are
given more weight in the average. It then discretizes the
data into 5° elevation x 5° azimuth bins (see Fig. 3(d)).
AVPLUG evaluates each candidate vector based on the score
of the bin containing its direction vector —d. This method
prioritizes views that align with a larger number of approach
vectors (generally corresponding to different stable poses).
Such views are more likely to find at least one approach
vector that leads to a successful grasp in the given scene.

E. Finding and Evaluating Visible Grasps

Once the target object is revealed, AVPLUG queries the
grasp planner G for visible grasps g € R3 x S2. It then
sorts the grasps by quality and iterates through the grasps in
order to classify them. First, AVPLUG discards any previ-
ously seen grasps (from visible from prior views) known to



collide or be unreachable. Next, AVPLUG casts a ray in the
occupancy map outward from the grasp contact point along
the negated approach vector. If there are any collisions with
voxels known to be occupied, it classifies this grasp as collid-
ing. Otherwise, AVPLUG declares the grasp is collision-free,
then moves to align the camera with the candidate approach
vector and attempt the grasp. It caches all remaining visible
grasps for later consideration if this grasp fails (e.g., by an
undetected collision or obstacles preventing extraction). If
none of the visible grasps is collision-free, AVPLUG finds
the next view following the steps in Sections IV-C, IV-D.

V. EXPERIMENTS

To evaluate AVPLUG, we run experiments in simulated
and physical environments, and compare to a baseline policy.

A. Simulation Experiments

We use R = 0.01 m resolution since it empirically allows
for a sufficiently accurate Minkowski sum in the fully
occluded case and improves grasp collision estimation in
the partially occluded case. To implement the octree for the
occupancy map, we use the open-source OctoMap [16], [32].

We use ground truth segmentation to generate a binary
mask of the target object. Since AVPLUG relies on an
external instance segmentation algorithm, in practice, one
could use an off-the-shelf object segmentation algorithm such
as SD Mask R-CNN [33] with an additional matching phase
for classification.

To decide whether the target object is graspable from
the current state, we use a grasp planner based on Dex-
Net 3.0 [17] as an oracle. Dex-Net 3.0 pre-computes suction
grasps and associates quasi-static wrench-resistance quality
metrics to a target object mesh, then matches these to pre-
computation results at evaluation time.

B. Environments in Simulation

We first evaluate AVPLUG on two simulated scenes: 1)
a tabletop, for which the potential vectors on the sphere V'
range between elevation angle § € [0°,85°] and azimuth
angle ¢ € [—90°,90°], and 2) a counter with a cabinet above
that constrains the possible grasp approach directions to a
slice of V' ranging between elevation angle 6 € [55°,85°]
and azimuth angle ¢ € [—90°,90°]. In both cases, we use a
sphere V' with radius » = 0.6 m. To generate multiple differ-
ent levels of occlusion, we use N = 10 objects of varying
heights. Object models were selected from Thingiverse [34]
and YCB [35]. We sample the locations of the objects
from a uniform distribution in a bounded 0.4m x 0.4m
worksurface, and position each object in a stable pose. We
also randomize the initial camera view. We generate 3 tiers of
scene complexity (Fig. 4) by altering the relative proportions
of larger objects; this affects the level of occlusions in the
scene. Tier 1 consists of 2 flashlights, 2 spray bottles and 5
spiral bulbs; Tier 2 replaces the flashlights from tier 1 with
1.6x higher and 1.7x wider fire extinguishers; and Tier 3
consists of 2 fire extinguishers, 2 flashlights, 2 spray bottles,
and 3 spiral bulbs. For all tiers, the target object is a light
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Fig. 4. Difficulty tiers with varying levels of occlusions. The target is
shown in red on a tabletop environment. The difficulty tiers define scenes
with increasing levels of complexity due to increased occlusions. (a) Tier 1
includes 2 flashlights, 2 spray bottles, and 5 spiral bulbs. (b) Tier 2 includes
2 fire extinguishers, 2 spray bottles, and 5 spiral bulbs. (c) Tier 3 includes
2 fire extinguishers, 2 flashlights, 2 spray bottles, and 3 spiral bulbs.

# Steps Distance [m]

Scene Tier Policy Median IQR  Median IQR
| GridSearch 16.0 222 0.8 1.0

AVPLUG 1.0 1.0 0.6 0.4

GridSearch 200 26.0 1.0 1.4

Tabletop 2 \vpLUG 0 10 07 06
3 GridSearch 16.0 16.0 0.8 0.9

AVPLUG 1.0 1.0 0.7 0.8

| GridSearch 14.5 19.0 0.7 0.9

AVPLUG 1.0 1.0 0.7 0.8

Counter 5 GridSearch 155 18.0 0.7 0.9
AVPLUG 2.0 2.0 0.8 1.0

3 GridSearch 180 195 0.9 1.0

AVPLUG 2.0 1.0 0.9 1.2

TABLE I - Simulation Experiments. Median and interquartile range
(IQR) of the number of steps to success and the distance traveled for each
policy over 100 rollouts in 2 simulated environments, for successful
rollouts. The success rate is 100 % for the GridSearch baseline and 94 %
to 100 % for AVPLUG. (See Fig. 8 for description of failure modes)

bulb, which is easily occluded due to its small size compared
to the other objects in the scene. After executing a successful
grasp, the target object is extracted with an upwards motion

(Fig 3(e)).

C. GridSearch Baseline

We compare AVPLUG to a GridSearch baseline. Grid-
Search discretizes the sphere V' into 212 fixed-spaced views
(the distance between neighboring views is [ = 5° in both
elevation and azimuth) and systematically visits each view
until it finds a view from which it can plan a grasp. This
baseline visits all the views to the right of the initial view,
moves up to the next row of views once it reaches the
maximum azimuth angle defined in V-B, continues the search
by moving left until it reaches the next boundary, and so on.
Once it reaches the top-most row and cannot move up, it
continues the search from the bottom-most row. GridSearch
stops when it finds a view from which it can plan a grasp,
or after it has visited all the discretized views.
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Fig. 5. Comparisons of steps to completion of successful rollouts in simulation. The scale on the horizontal axis is 15X larger for the GridSearch policy.

D. Simulation Results

We roll out AVPLUG on 100 scenes, until the policy
reaches a termination condition 7 and it finds a high-quality
grasp (¢ > 0.75) on the target object, or it fails to find a grasp
within a maximal number of steps H and the experiment
fails. We set H = 212 to account for the total number
of grid points in the countertop environment; therefore, if
a successful approach vector exists, the GridSearch base-
line will find it. We benchmark the experiments using the
following metrics: median and interquartile range (IQR) for
number of steps to success, and distance traveled. We use
these metrics since the number of steps to success relates to
the data acquisition and computation time, and the distance
traveled by the robot arm may result in increased travel time
and a potential loss in precision. The results are summarized
in Table V-B and Fig. 5, and show that AVPLUG finds an
approach vector in up to 20x fewer steps (median) than the
baseline. In Fig. 5 we observe that the baseline suffers from
high variance, as it is sensitive to the initial view—if it starts
near a successful approach vector it can terminate quickly,
otherwise it may search the grid exhaustively.

The average computation time of AVPLUG for finding an
approach vector is 1.05 s, benchmarked on a server with an
Intel Xeon CPU @ 2.20 GHz.

E. Physical Experiments

We evaluate AVPLUG on physical scenes in the countertop
setting using a Fetch mobile robot. To find grasps, we
use a planarity-based grasp planner. The grasp planner first
samples candidate suction points from a depth image by
computing surface normals, then selects only those within
10° of the optical axis. Finally, it ranks these candidates by
using a planarity metric: a suction cup-sized ring is projected
around the grasp point, and the grasp is scored based on the
distance from the ring to the surface depth. This distance is
minimized in higher quality grasps [17]. We filter out any

(a) (b) ©

Fig. 6. Unicontact grasping in tight spaces. AVPLUG can find approach
vectors for unicontact grasping even in tight spaces due to the high resolution
of the occupancy map.

grasps that will collide with the scene when approaching or
exiting using collision checking between the gripper mesh
and the observed point cloud. We consider a grasp successful
if it is not in collision and its quality value is above 0.8.

We construct 3 tiers of scenes with matching difficulty to
those in simulation. For each tier, we evaluate a single scene,
and for each scene we choose 5 random starting views. At
each view, we evaluate the baseline once and AVPLUG 3
times, taking the average to account for inherent stochasticity.
We use the elevation angle 6 € [45°, 75°], azimuth angle ¢ €
[—45°,45°], and radius r = 0.5 m for kinematic feasibility.
The target object is a red light bulb similar to the target
in simulation, and the occluding objects are objects found
around the house and lab. We use an HSV color detector
to get the binary target segmentation mask. Figure 7 shows
the experimental setup. Results in Table V-E suggest that
AVPLUG can consistently find an approach vector in fewer
steps (median 2.0) than the baseline (median between 5.0 and
12.0). While the number of search steps taken by baseline
policy highly depends on the starting view (with a higher
IQR between 3.0 and 10.0), AVPLUG is able to achieve
more consistent high performance among random starting
views (with a lower IQR of 1.0).



Fig. 7. Physical experiments setup. Top: Physical counter setup with
a Fetch mobile manipulator for grasping. Middle: In the first experiment
starting at (a), the visible part of the target object (in red) is not graspable
from the initial position, but is graspable from the next position (b). Bottom:
In the second experiment starting with view (c), although a successful grasp
is found from the second position (d), it leads to a collision between the
gripper and the environment. AVPLUG then finds a collision free approach
vector on the following step (e).

# Steps Distance [m]

Tier Policy Median IQR  Median IQR
1 GridSearch 5.0 100 0.6 0.5
AVPLUG 2.0 1.0 0.7 04

2 GridSearch 6.5 9.2 0.6 0.5
AVPLUG 2.0 1.0 0.6 0.3

3 GridSearch 12.0 3.0 1.1 0.6
AVPLUG 2.0 1.0 0.6 04

TABLE II - Physical Experiments Results. Median and interquartile
range (IQR) of the number of steps to success and the distance traveled
for each policy over 5 rollouts in a physical counter environment. The
metrics are reported for successful rollouts. The success rate is 100% for
both the GridSearch baseline and AVPLUG.

F. Visibility vs Graspability

An visibility version of AVPLUG evaluated candidate
approach vectors according to their information gain, defined
by the number of voxel labels that changed from unknown
to either empty or occupied after aligning the camera optical
axis with the corresponding approach vector. In this method,
AVPLUG chose an approach vector that maximized the
information gain, with the goal of discovering presently
hidden graspable surfaces on the target object. One limitation
of this approach, however, was that it prioritized distant
approach vectors over near and successful ones, since drastic
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Fig. 8. Octree resolution failure case. AVPLUG queries the grasp planner
for available grasps on the target object. The grasp approach axis (green)
passes between the flashlight and the fire extinguisher with enough clearance
for the long and thin end effector in (a) and (b), therefore the grasp planner
declares this to be an accessible grasp. However, when AVPLUG casts this
ray through the octree, it finds a collision with the flashlight at the cyan
point in (c) and (d). This is because the octree’s occupied voxels (denoted
by orange points) extend slightly beyond the bounds of the flashlight due
to the discretization.

view changes would generally reveal more unobserved parts
of the scene. This visibility-based approach is better suited
for the purpose of scene reconstruction and mapping than for
finding a grasp on an occluded target object—this motivated
using known grasp distributions instead.

G. Failure Cases

Since the occupancy map discretizes the scene into cubic
voxels, the occupied section of the octree occasionally ex-
tends beyond the true boundaries of the occluding objects
(see Fig. 8). Furthermore, due to the long and narrow
structure of the end effector, valid grasp approach vectors can
pass very close to occluding objects. As a result, AVPLUG’s
grasp evaluation step (Section IV-D) may detect collisions
when there are none.

VI. CONCLUSION

We present AVPLUG, an algorithm that employs an
octree-based occupancy map and Minkowski sum compu-
tation to find an approach vector for unicontact grasping.
AVPLUG takes advantage of the strong correlation between
visibility and graspability in suction grasping by servoing
a wrist-mounted camera to find graspable views. It is able
to find and extract fully or partially occluded known target



objects without the risk of toppling other objects. Experi-
ments in simulation and on a physical robot suggest that
AVPLUG can find an approach vector in up to 20x fewer
steps compared to a baseline policy, and can extract objects
from tight spaces (see Fig. 6). In future work, we will utilize
shape completion and pose estimation algorithms to reason
about the graspable part of the target object. We will also
extend this work to a tight shelf environment, from which
the object cannot be easily extracted.
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