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Abstract—In industrial part kitting, 3D objects are inserted
into cavities for transportation or subsequent assembly. Kitting
is a critical step in industrial transportation and assembly, as
kitting can decrease downstream processing and handling times
and enable lower storage and shipping costs. We present Kit-
Net, a framework for Kkitting previously unseen 3D objects into
cavities given depth images of both the target cavity and an
object held by a gripper in an unknown initial orientation. Kit-
Net uses self-supervised deep learning and data-augmentation
to train a CNN to robustly estimate 3D rotations between
objects and matching concave or convex cavities using a large
dataset of simulated depth images pairs. Kit-Net then uses the
trained CNN to implement a controller to orient and position
novel objects for insertion into novel prismatic and conformal
3D cavities. Experiments in simulation suggest that Kit-Net can
orient objects to have a 98.9 % average intersection volume
between the object mesh and that of the target cavity. Physical
experiments with 3 industrial objects suggest that Kit-Net can
successfully insert objects into cavities with a 63 % success rate
while a baseline which restricts itself to 2D rotations succeeds
only 18 % of the time.

I. INTRODUCTION

Kitting is a critical aspect of industrial automation that
involves organizing and placing 3D parts into complementary
cavities. This process saves time on the manufacturing line
and frees up space to reduce shipping and storage cost.
Automating kitting requires picking and rotating a part to a
desired position and orientation, then inserting it into a cavity
that loosely conforms to the object geometry. However, this
process is a great challenge, and in industry, most Kkitting is
performed manually.

Given a 3D CAD model of the object to be inserted and
the desired object pose, one approach is to directly estimate
the object pose and the transformation to the desired pose [2,
22]. However, CAD models may not be available for all
objects to be kitted and are time consuming to create for
every object, motivating an algorithm that can kit previously
unseen objects without requiring such models. Prior work has
considered kitting objects without models, but has focused
on SE(2) transforms (1D rotation and 2D translation) for
extruded 2D polygonal objects [24, 25].

We formalize the problem of rotating and translating
a novel 3D object to insert it into a novel Kkitting cavity
and present Kit-Net, a framework for inserting previously
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Fig. 1: Physical experiments using the ABB YuMi and a Photoneo depth
camera. (Left) A suction gripper holds the handrail bracket, an object unseen
during training time, near the kitting cavity. Kit-Net orients the handrail
bracket for insertion into the cavity through 5 steps. A) Starting state. B)
Rotate the object by 180° to face the 3D camera and minimize occlusion
from the gripper. C) Iteratively orient the object into a goal configuration.
D) Rotate by 180 degrees and align centroids of the object and cavity to
prepare for insertion. E) Insert and release.

unseen 3D objects with unknown geometry into a novel
target cavity given depth images of the object in its current
orientation and a depth image of either a flipped (convex)
or standard (concave) target cavity. Kit-Net extends prior
work from Devgon et al. [7], which used simulation and
self-supervision to train a deep neural network to directly
estimate 3D transformations between the two depth images.
Given the trained deep neural network, a depth image of a
previously unseen insertion cavity, and a depth image of a
previously unseen object, Kit-Net iteratively estimates the
SE(3) transform to reorient and insert the object, without re-
quiring detailed knowledge of its geometry. Kit-Net improves
on prior work by (a) introducing dataset augmentations that
make the controller more robust, (b) using a suction cup
gripper to minimize object occlusion during rotation, (c)
incorporating 3D translations, and (d) applying the resulting



controller to kit novel objects into novel cavities on a physical
robot. We evaluate Kit-Net both in simulation and in physical
experiments on an ABB YuMi robot with a suction gripper and
overhead depth camera. Experiments in simulation suggest
that Kit-Net can orient objects to have a 98.9,% average
intersection volume between the object mesh and that of the
target cavity. Physical experiments with 3 industrial objects
and cavities suggest that Kit-Net can kit objects at a 63 %
success rate from a diverse set of initial orientations.
This paper makes the following contributions:

1) Formulating the problem of iteratively kitting a novel
3D object into a novel 3D cavity.

2) Kit-Net: a self-supervised deep-learning framework for
this problem

3) Simulation experiments suggesting that Kit-Net can
reliably orient novel objects for insertion into prismatic
cavities.

4) Physical experiments suggesting that Kit-Net can sig-
nificantly increase the success rate of 3D kitting into
conformal 3D cavities from 18 % to 63 % over a baseline
inspired by Form2Fit [24] which only considers 2D
transformations when kitting.

II. RELATED WORK

There has been significant prior work on reorienting
objects using geometric algorithms. Goldberg [9] proposes a
geometric algorithm that orients polygonal parts with known
geometry without requiring sensors. Akella et al. [1] extend
the work of Goldberg with sensor-based and sensor-less
algorithms for orienting objects with known geometry and
shape variation. Kumbla et al. [11] propose a method for
estimating object pose via computer vision and then reorient
the object using active probing. Leveroni et al. [12] optimize
robot finger motions to reorient a known convex object while
maintaining grasp stability. In contrast to the above works,
which require prior knowledge of object geometry, Kit-Net
can reorient objects without 3D object models.

Melekhov et al. [16], Suwajanakorn e al. [19], Wen et
al. [21], and Devgon et al. [7] use data-driven approaches
to estimate the relative pose difference between images
of an object in different configurations. Melekhov et al.
[16] use a Siamese network to estimate the relative pose
between two cameras given an RGB image from each
camera. Suwajanakorn et al. [19] propose KeypointNet, a
deep learning approach that learns 3D keypoints by estimating
the relative pose between two different RGB images of an
object of unknown geometry, but known category. Wen et
al. [21] considers an object tracking task by estimating a
change in pose between an RGBD image of the object at the
current timestep and a rendering of the object at the previous
timestep, but require a known 3D object model. We use the
network architecture from Wen et al. [21] to train Kit-Net,
and extend the self-supervised training method and controller
from Devgon et al. [7] to kit novel objects into previously
unseen cavities. We find that by extending Devgon et al. [7]
to be more robust to object translations and using a suction

gripper to reduce occlusions, Kit-Net is able to learn more
accurate reorientation controllers.

There has also been significant interest in leveraging ideas
in pose estimation for core tasks in industrial automation.
Litvak et al. [13] leverage CAD models and assemble gear
like mechanisms using depth images taken from a camera on
a robotic arm’s end effector. Stevic et al. [18] estimate a goal
object’s pose to perform a shape assembly task involving
inserting objects which conform to a specific shape template
into a prismatic cavity. Zachares et al. [23] combines vision
and tactile sensorimotor traces for an object fitting task
involving known holes and object types. Huang ef al. [10]
consider the problem of assembling a 3D shape composed
of several different parts. This method assumes known part
geometry and develops an algorithm to generate the 6-DOF
poses that will rearrange the parts to assemble the desired
3D shape. In contrast to the above work, we focus on the
problem of designing a controller which can reorient and
place a novel object within a previously unseen cavity for
industrial kitting tasks.

Object kitting has also seen recent interest from the
robotics community. Zakka et al. [24] introduce Form2Fit, an
algorithm which learns SE(2) transforms to perform pick-and-
place for kitting planar objects. In contrast, we consider 6DOF
transforms of 3D objects. Zeng et al. [25] propose a network
for selecting suction grasps and grasp-conditioned placement,
which can generalize to multiple robotic manipulation tasks,
including pick-and-place for novel flat objects. Zeng et al.
focuses on SE(2) rotations and translations for pick-and-place
tasks involving novel flat, 2D extruded objects. Zeng et al.
also presents an algorithm for SE(3) pick-and-place tasks,
but only evaluate the algorithm on 2D extruded objects. In
contrast, we use Kit-Net to kit novel 3D objects with a wide
range of complex geometries.

III. PROBLEM STATEMENT

Let 7% € SE(3) be the initial 6D pose of a unknown 3D
rigid object O in the world coordinate frame, consisting of a
rotation R* € SO(3) and a translation #* € R®. Given O with
starting pose T and a kitting cavity K, let G C SE(3) be the
set of goal 6-DOF poses of object O that result in successful
kitting. The goal is to orient object O to T¢ € G, where T¢
consists of rotation R¢ and translation #¢. Figure 2 shows a
simulated example where a 3D object O is successfully kitted
into a concave cavity K.

A. Assumptions

We assume access to depth images of a rigid object O and
a kitting cavity K. The cavity image may be taken with the
cavity either in its standard, concave orientation (i.e., open to
object insertion), or flipped, convex orientation (i.e., mirroring
the shape of the object to be inserted). We also assume that
orienting O to a pose in T¢ € G and releasing the gripper
results in a successful kitting action.

B. Input

Let I* € R¥*W be a depth image observation of the object
in initial pose T°, and I¥ € R?*W be the depth image



Fig. 2: Successful Kitting: Visualization of successfully kitting a 3D object
into a concave cavity.

observation of a kitting cavity, K. See Figure 8 for physical
examples of objects and kitting cavities.

C. Output

The goal is to successfully kit an unknown 3D object O
into a novel 3D cavity K (Fig. 1, Fig. 2). Thus, we aim
to transform the initial pose T° into a goal pose that fits
into the cavity (i.e., T8 € G). For objects with symmetries,
the objective is to estimate and orient objects relative to a
(symmetric) orientation that results in successful insertion
into the cavity K.

IV. KIT-NET FRAMEWORK

We present Kit-Net, a framework that first reorients the
object into a pose that can be successful kit in a desired

cavity, and then translates and inserts the object into the cavity.

We do this by learning to estimate ;7% € SO(3), a relative
transformation consisting of rotation (R¢ and translation 78,
which transforms the object from 7% to T8 for some T% € G.
The overall approach is to (1) compute an estimate of (RS,
denoted (R, given only image observations I* and I¥, (2)
iteratively reorient the object according to (R¢ until RS €
G, and (3) translate the object by (%, an estimate of the
translation between the start and goal object translations,
such that it lies in the kitting cavity.

We first discuss preliminaries (Section IV-A) and then
describe the key new ideas in training Kit-Net (Section IV-B)
which make it possible to design a controller to rotate and
translate an object to fit it in a cavity (Section IV-D).

A. Preliminaries: Estimating Quaternion Rotations in 3D

Devgon et al. [7] presented a self-supervised deep-learning
method to align two 3D objects. The method takes two depth
images as input: I°, an image of the object in its current
orientation R and /%, an image of the same object in its
desired goal orientation R®. It trains a deep neural network fjy :
RIW RHXW _, §0(3) to estimate the rotation (parametrized
by a quaternion) between the pair of images (I°,1¢). Then,
using a proportional controller, it iteratively rotates the object
to minimize the estimated rotational difference. This controller
applies 11,R? until the network predicts that the current object
rotation R® is within 6 = 0.5° of RS, or until the controller
reaches an iteration limit. The tunable constant 7 is the
Spherical-Linear intERPolation (slerp) factor describing the

proportion of R that the controller will apply to O. Devgon
et al. use a small slerp value of 17 =0.2 and a maximum
iteration limit of 50 rotations.

For training, Devgon et al. generate a dataset consisting
200 pairs of synthetic depth images for each of the 698
training objects with random relative rotations, for a total
of 139,600 pairs. To account for parallax effects, each pair
of images were generated from a fixed translation relative
to the camera. Devgon et al. propose three loss functions
to train fp: a cosine loss, a symmetry-resilient loss, and a
hybrid of the two, with the hybrid loss outperforming the first
two. Note that Devgon et al. do not consider cavity insertion
tasks, which is complicated by the need to reason about the
translations and required alignment with a cavity.

Kit-Net improves on Devgon et al. by (1) introducing
dataset augmentations to make the controller more robust,
(2) using a suction cup gripper to minimize object occlusion
during rotation, and (3) incorporating 3D translations into the
controller to enable kitting. We discuss these contributions
in the following sections.

B. Kit-Net Dataset Generation, Augmentation, and Training

Kit-Net trains a neural network fy with a self-supervised
objective by taking as input pairs of depth images (I*,I%)
and estimating (R¢ from image pair (I°,I%). As in Devgon
et al., fy encodes each depth image into a length 1024
embedding, concatenates the embeddings, and passes the
result through two fully connected layers to estimate a
quaternion representation of the rotational difference between
the object poses.

1) Initial Dataset Generation: In contrast to Devgon et
al., we are interested in kitting, rather than just reorienting an
object in the robot gripper. Thus, in this paper we focus on
two types of kitting cavities: prismatic cavities (Fig. 3) and
conformal cavities (Fig. 8). We generate a separate dataset
for each type of cavity and train a separate network for each
dataset. To generate both datasets, we use the set of 698
meshes from Mabhler et al. [15]. For each mesh, we generate
512 depth image pairs, for a total of 357,376 pairs. To do
this we first generate a pair of rotations (R*,R%), where R’
is generated by applying one rotation sampled uniformly at
random from SO(3) to O, and R? is generated by applying
a random rotation with rotation angle less than 30 degrees
onto R®. To generate the conformal cavity dataset, we then
obtain a pair of depth images (I*,18) by rendering the object
in rotations R® and R® from an overhead view. The pair is
labeled with the ground truth rotation difference between the
images. To generate the prismatic cavity dataset we follow the
same process as above, except we fit and render a prismatic
box around the rotated object (Fig. 5) and render the depth
image pairs (Fig. 3). This process results in two datasets,
each containing 357,376 total labeled image pairs (I*,18)
with ground truth rotation labels (RS.

2) Data Augmentation: We found that simply training
a network directly on the datasets described above results
in poor generalization to depth images from the physical
system, which contain sensor noise, object occlusions from



both the object itself and the arm or gripper, and 3D object
translations within the image. To address these three points,
we introduce a set of dataset augmentations to ease network
transfer from simulated to real depth images. To simulate
noise and occlusion in training, we randomly zero out 1 %
of the pixels in each depth image and add rectangular cuts
of width 30 % of zero pixels to the image, respectively. To
simulate translations in training, we translate the object across
a range of 10cm in the x, y, and z axes with respect to the
camera in the simulated images. We also crop the images
at sizes from 5 % to 25 % greater than the object size with
center points offset from the object’s centroid by 5 pixels
to simulate I°,I% pairs generated from objects and cavities
outside the direct overhead view for the kitting task.

3) Training: We adopt the network architecture from Wen
et al. [21], as it is designed to be trained in simulation
and demonstrates state-of-the-art performance on object
tracking [6] by regressing the relative pose between two
images. We use the hybrid quaternion loss proposed by
Devgon et al. [7]. The network is trained with the Adam
optimizer with learning rate 0.002, decaying by a factor of
0.9 every 5 epochs with an L2 regularization penalty of 10~°.

C. Kit-Net Suction Gripper

Kit-Net uses an industrial unicontact suction gripper from
Mabhler et al. [14] to grasp the object for kitting. In contrast,
Devgon et al. used a parallel jaw gripper. We find the suction
gripper to be better suited for kitting because it reduces gripper
occlusions and enables the robot to position the object directly
inside the kitting cavity.

D. Kit-Net Controller

The Kit-Net controller consists of two stages: rotation and
translation.

1) Rotation: Kit-Net first re-orients an object using the
depth image of the current object pose I* and a depth image
of the goal cavity pose /8. In preliminary experiments, we
found the rotation parameters used by Devgon e al. [7]
(Section IV-A) to be overly conservative. Thus, to speed up
the alignment process, we use a larger slerp factor of n =0.8.
If the network predicts a rotation difference of less than
0 = 5°, then we assume that the object is close enough to
the required pose for kitting into the cavity and terminate the
rotation controller. Because of the larger slerp value, Kit-Net
is able to quickly reorient the object, thus we terminate the
rotation controller after a maximum of 8 sequential rotations
(8 iterations).

2) Translation: Once the rotational alignment is computed,
Kit-Net computes a 2D translation to move the object directly
over the target cavity, and then lowers the object and releases
it into the cavity. To calculate the 2D translation, we perform
centroid matching between the final depth image I° of the
object after rotation and the depth image of the cavity /5.

V. SIMULATION EXPERIMENTS

We first discuss metrics to evaluate performance in Sec-
tion V-B. We then introduce a baseline algorithm (Section V-
A) with which to compare Kit-Net and present experimental

results in Section V-C. In experiments, we first evaluate Kit-
Net on re-orienting novel objects with unknown geometry
into a target prismatic box in simulation (Section V-C.1).

A. Baselines

1) Random Baseline: We also compare Kit-Net with a
baseline that applies a randomly sampled rotation but with
the correct rotation angle to evaluate how important precise
reorientation is for successful kitting.

2) 2D Baseline: To evaluate the importance of estimating
3D rotations for successful kitting, we compare Kit-Net to a
baseline inspired by Form2Fit [24], which only considers 2D
rotations when orienting objects for kitting. The baseline (1)
aligns the centroids of the point clouds of the object and the
cavity and (2) searches over all possible z-axis rotations at a
1° discretization to find the rotation that minimizes Chamfer
distance between the centroid-aligned point clouds.

B. Metrics

1) Object Eccentricity: We categorize test objects by their
eccentricity, which provides a measure of kitting difficulty.
This categorization follows the intuition that objects that are
more elongated along certain dimensions than others have
a smaller set of acceptable orientations in which they can
be successfully kit into a cavity. Let the eccentricity € of a
3D object be € =A — 1, where A is the aspect ratio (ratio
of longest side to shortest side) of the minimum volume
bounding box of the object. This definition generalizes the
2D definition of eccentricity from Goldberg et al. [8] to 3D.
Under this definition, a sphere has € = 0, and if one axis
is elongated by a factor p, then the resulting ellipsoid has
eccentricity p — 1. This definition is also consistent with the
intuition provided earlier, as a sphere is entirely rotationally
symmetric, and thus does not require any reorientation for
kitting. By contrast, the ellipsoid will require reorientation
to ensure that its longer side is aligned to a region with
sufficient space in the cavity. Thus, we use objects with high
eccentricity in evaluating both Kit-Net and the baselines,
as these objects pose the greatest challenge for kitting in
practice.

C. Results

When evaluating Kit-Net in simulation, we have access to
ground-truth object and cavity geometry. Thus, we evaluate
kitting performance using the following percent fit metric:

O

Fe B o) = < ;l(p,-el()y (V.1)
where we sample N points within the object volume at
configuration (RéR® (after the target object has been rotated
for insertion) and count the proportion of sampled points that
also lie within cavity. This metric can be efficiently computed
using ray tracing and effectively estimates how much of the
object fits inside the target mesh after the predicted rotation.
In experiments, we use N = 1000 sampled points to evaluate
f. Assuming the true percent fit metric is f, a 95 % confidence
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Fig. 3: Endstop Holder and Target Prismatic Cavity in Simulation:
Given I, an image of an object in some configuration (top left) and /¢, an
image of a target prismatic box to which the object must be aligned (top
right), the objective is to find a 3D rotation (R¢ that would allow the object
to fit within the box. In simulation experiments, R® is a X° rotation from R®,
where X € (0,30). The image in the figure shows a 30°rotation, meaning the
object must be rotated by 30°to perfectly fit it inside the prism. 3D models
corresponding to I° and /% are shown in the bottom row for clarity.

interval for fis f+1. 964/ f (1000) For example, if f=0.99,
then f lies between (0.984,0.996) with 95 % confidence.

1) Simulated Kitting into a Prismatic Target: We first
study whether Kit-Net can orient objects into alignment with
a prismatic cavity that loosely conforms to their 3D geometry
in simulation. Precisely, we first generate the prismatic cavity
for the target by creating a mesh with faces corresponding to
its minimum volume bounding box. We then rotate both the
prismatic cavity and target to random orientations within 30
degrees of each other. The objective is to apply a rotation (RS
that will allow the object to fit into the cavity. An example
image pair of an object and an associated prismatic cavity is
shown in Figure 3.

Fig. 4 shows the percent fit across 174 unseen test objects.

We use the eccentricity € of the objects to sort them into
5 bins of increasing difficulty (increasing €). We find that
Kit-Net is able to reliably kit novel objects, significantly
outperforming the 2D rotation baseline. When averaged across
all eccentricities, Kit-Net achieves an average fit of 98.9 %
compared to an average fit of 93.6 % for the 2D baseline
and 83.1 % when applying a random 30° quaternion. These
results demonstrate the need for 3D rotations to solve complex
kitting problems. Figure 4 demonstrates that Kit-Net is robust
to highly eccentric objects which require the most precision
for kitting. Kit-Net achieves an average fit of 89.9 % for
objects with eccentricity greater than 8. The 2D rotation
baseline performs especially poorly for these difficult objects
and achieves an average fit of only 72.7 % while applying a

random 30° quaternion results in an average fit of just 37.4 %.

As described in Section IV-D, Kit-Net iteratively orients
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Fig. 4: Aligning Objects to Prismatic Cavities in Simulation: We evaluate
Kit-Nets ability to align objects with prismatic cavities under the percent
fit metric introduced in Section V-B across 512 depth image pairs for each
of 174 objects not seen during training. Given (I*,1%), the network predicts
4R¢ that will allow it to fit inside the cavity. We bin results by object
eccentricity and observe that the mean percent fit decreases for objects of
higher eccentricity. Kit-Net outperforms both the 2D and random baselines
by a greater amount as object eccentricity increases.
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Shield Part Endstop Holder

Fig. 5: Examples of Novel Objects for Kit-Net Simulation Experiments:
The four test objects are unseen during training and have eccentricity greater
than 2, meaning their minimum volume bounding boxes are narrow and
long. An outline of the corresponding minimum volume bounding box is
shown around each part.

Industrial Part

Raspberry Pi Case

each object using the controller until (R€ < 5° or until we
hit the stopping condition of 8 rotations. Our previous results
in Fig. 4 suggests that Kit-Net can consistently align objects
within 5 controller steps. To better visualize the ability of
Kit-Net to rapidly reorient an object for kitting, we plotted the
per-iteration performance of Kit-Net for 4 test objects unseen
during training time with high eccentricity (¢ > 2). Fig. 5
shows renderings of these objects along with outlines of the
corresponding prismatic kitting cavities. Fig. 6 shows the
average per-iteration percent fit across 100 controller rollouts
of randomly sampled (I°,8) pairs for each object. We find
that Kit-Net is able to consistently align objects with their
target prismatic cavities, and achieves a median fit percentage
of 99.4 % after only 3 successive reorientations. By contrast,
the 2D baseline is not able to surpass an average fit of 90 %
for any of the objects. The results in Fig. 6 validate the
importance of iteratively reorienting parts and demonstrates
that applying multiple iterations of the rotation output by the
trained network can greatly help to reduce the error between
sRER* and R? as compared to a single iteration.

VI. PHYSICAL EXPERIMENTS

Our previous experiments studied the effectiveness of Kit-
Net for insertion tasks involving prismatic cavities. However,
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Fig. 6: Kit-Net Simulation Results: We visualize data from 100 runs on
each of the 4 objects shown in Figure 5. All objects require a 30° rotation
to be in alignment with the prismatic target at iteration O, but their initial
percent fits differ due to different eccentricities. Results suggest that Kit-Net
is able to successfully align all 4 objects with their respective prismatic
cavities while the baseline, which restricts itself to 2D rotations, performs
significantly worse on all 4 objects.

as shown in Fig. 7 and Fig. 8, many physical kitting tasks
involve non-prismatic cavities. In this section, we study how
Kit-Net can be used to kit objects in physical trials using
depth images of the types of cavities shown in Fig. 8. We call
these conformal cavities, as they “conform” to some degree
to the object shape.

In these experiments we use a quaternion prediction
network trained to predict the quaternion that will rotate
a simulated depth image of an object to another simulated
depth image of the same object in a different pose. We propose
two possible methods for applying this trained network to
kitting. Our first method is designed to work well with the
clamshell cavities shown in Fig. 8. Rather than image the
hole of the cavity, we define a convex conformal cavity to be
the depth image of the inverted cavity. To obtain these depth
images, we flip the cavity so the hole is pointing down and
take a depth image of the positive mass of the cavity. The left
image in Fig. 8 shows examples of these convex conformal
cavities. Our second method works with a concave conformal
cavity, like that shown in Fig. 2 and the right image in Fig. 8,
that are formed as impressions into a surface. These types
of cavities cannot simply be flipped upside down to obtain a
depth image of their shape. Instead, we take a depth image
of the actual cavity (where the cavity has negative mass) and
rotate it 180° about its principal axis.

We discuss the results for applying Kit-Net to novel convex
conformal cavities in Section VI-A and to novel concave
conformal cavities Section VI-B. For the physical kitting
experiments we measure success using a binary success metric
for insertion by visually inspecting whether or not the object
is completely contained in the target cavity.

A. Physical Kitting into Convex Conformal Cavities

We also evaluate Kit-Net in physical kitting trials on an
ABB-YuMi robot with a Photoneo depth camera, shown in
Fig. 1, using 4 packaged objects widely available in hardware
stores and which are unseen during training (Fig. 7). To
prepare objects for kitting, we carefully extract each tool and
kitting shell from its packaging and spray paint the shell to
facilitate depth sensing as shown in Fig. 8. We then place the
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Fig. 7: Objects for Kit-Net Physical Experiments: We use 3 packaged
industrial objects that can be commonly found in a hardware store. These
objects were selected for their complex geometries, making precise orientation
critical for effective kitting.
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Fig. 8: Examples of Physical Kitting Cavities: The handrail bracket
(bottom) and the ornamental handrail bracket (top), next to the corresponding
convex cavity (left) and concave cavity (right).
kitting cavity open end down and image the cavity to generate
I8 before flipping it to expose its opening for the insertion
task. For each trial, we insert the object into the cavity by
hand, grasp it using the robot’s suction gripper, translate it to
be directly under the camera, and apply a random rotation of
either 30° or 60°, uniformly sampled from SO(3) to simulate
grasping the object from a bin in a non-uniform pose. Then,
we flip the object such that the object faces the overhead
depth camera and the suction cup grasp is occluded from the
camera by the object. This process is illustrated in Fig. 1.
Kit-Net then orients the object using the learned controller,
and matches centroids between the object and cavity for
insertion before flipping it again and attempting to kit it.
Table I shows the number of successful kitting trials (out
of 10 per object) of Kit-Net and the 2D baseline across 3
objects. We report a kitting trial as successful if the object is
fully contained within the cavity from visual inspection. We
observe that Kit-Net outperforms the baseline for 30° initial
rotations on 2 of the 3 objects, performing similarly to the
baseline on the sink handle. We find that Kit-Net significantly
outperforms the baseline on all objects for 60° initial rotations.
Kit-Net’s main failure modes are due to errors in the



centroid matching procedure, as illustrated in Fig. 9. On the
30 degree sink handle task, Kit-Net aligned it correctly every
time, but the centroid matching had it about 0.5 cm off, and
there is no slack at the top of the cavity.

Object Angle 2D Baseline  Kit-Net
Handrail bracket 30° 3/10 10/10
Ornamental handrail bracket 30° 8/10 10/10
Sink handle 30° 4/10 3/10
Handrail bracket 60° 1/10 9/10
Ornamental handrail bracket 60° 2/10 7/10
Sink handle 60° 0/10 7/10

TABLE I: Physical Experiments Results for Convex Cavities: We report
the number of successful kitting trials for Kit-Net and the 2D baseline over
10 trials for 3 previously unseen objects with initial rotations of 30°and 60°.
Results suggest that Kit-Net significantly outperforms the 2D baseline for
initial rotations of 60°and outperforms the baseline for two out of three
objects for initial rotations of 30°.

B. Physical Kitting into Concave Conformal Cavities

Here, we perform the same experiment as in Section VI-A,
but instead generate /¢ directly from an image of the cavity
without flipping. Precisely, we segment out the cavity from an
overhead depth image, deproject the depth image into its point
cloud representation, and rotate the point cloud 180° around
its center of mass. Then, we project the rotated point cloud
to the depth image 5.

Object Angle 2D Baseline  Kit-Net
Handrail bracket 30° 0/10 9/10
Ornamental handrail bracket 30° 0/10 7/10
Sink handle 30° 1/10 3/10
Handrail bracket 60° 0/10 7/10
Ornamental handrail bracket 60° 0/10 0/10
Sink handle 60° 1/10 4/10

TABLE II: Physical Experiments Results for Concave Cavities: We report
the number of successful kitting trials for Kit-Net and the 2D baseline over
10 trials for 3 previously unseen objects with initial rotations of 30°and 60°.
Results suggest that Kit-Net significantly outperforms the baseline in all
settings except for the handrail bracket with an initial rotation of 60°, for
which neither Kit-Net nor the baseline can successfully kit the object.

Table II shows results from experiments with 3 novel
objects from Fig. 7 across 10 controller rollouts. We observe
that Kit-Net outperforms the baseline for initial rotations of
both 30 and 60 degrees on the handrail bracket and sink
handle, and for an initial rotation of 30 °for the ornamental
handrail bracket. For the ornamental handrail bracket, the
depth image from the concave cavity is low quality as shown
in Fig. 9 (center image), causing Kit-Net to fail when the
object is 60 degrees away the correct insertion orientation.
We examined this failure and found that it occurs because
the cavity for the neck of the bracket is very thin, making
it difficult to obtain a good depth image. Kit-Net also has
low performance on the sink handle due to small errors in
centroid matching, as discussed in the prior section. Fig. 9
(bottom left) shows an example failure case where the sink

handle is correctly oriented but the translation is slightly off.

There were also occasional cases (Fig. 9 (top left)) where

Fig. 9: Kit-Net Failure Cases: The top-left image shows a configuration of
the ornamental handrail bracket where the suction gripper occludes the handle
below the base. The bottom-left image shows the sink handle. Although
Kit-Net was able to orient the handle correctly for insertion, the centroid
matching had a small error in estimating translation and the cavity does not
have enough slack to be properly inserted. The center and right images show
depth images for the ornamental handrail bracket for the concave conformal
cavity and convex conformal cavity, respectively. The inside of the concave
cavity is very thin and the angle of the camera makes it hard to perfectly
image it, resulting in a poor depth image (center image). This leads to 0
successes for both the baseline and for Kit-Net when the initial rotation is
60° away from the desired rotation for kitting.

the suction gripper occludes the handle of the ornamental
handrail bracket. In these cases, the robot can only see the

base, resulting in failure.

VII. DISCUSSION AND FUTURE WORK

We present Kit-Net, a framework that uses self-supervised
deep learning in simulation to kit novel 3D objects into novel
3D cavities. Results in simulation experiments suggest that
Kit-Net can kit unseen objects with unknown geometries into
a prismatic target in less than 5 controller steps with a median
percent fit of 99 %. In physical experiments kitting novel 3D
objects into novel 3D cavities, Kit-Net is able to successfully
kit novel objects 63 % of the time while a 2D baseline which
only considers SE(2) transforms only succeeds 18 % of the
time. In future work, we will work to improve performance by
using the predicted error from Kit-Net to regrasp the object
in a new stable pose [3, 5, 20] before reattempting the kitting
task, study Kit-Net’s performance with other depth sensors,
and apply Kit-Net to kit objects that are initially grasped
from a heap [4, 17].
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