Log-Concave Polynomials IV: Approximate Exchange, Tight
Mixing Times, and Near-Optimal Sampling of Forests

Nima Anari!, Kuikui Liu?, Shayan Oveis Gharan?, Cynthia Vinzant®, and Thuy-Duong Vuong!

1Stanford University, anari@cs.stanford.edu, tdvuong@stanford.edu
2University of Washington, liukuil7@cs.washington.edu, shayan@cs.washington.edu
3North Carolina State University, clvinzan@ncsu.edu

Abstract

We prove tight mixing time bounds for natural random walks on bases of matroids, determinantal
distributions, and more generally distributions associated with log-concave polynomials. For a matroid
of rank k on a ground set of n elements, or more generally distributions associated with log-concave
polynomials of homogeneous degree k on n variables, we show that the down-up random walk, started
from an arbitrary point in the support, mixes in time O(klogk). Our bound has no dependence on # or
the starting point, unlike the previous analyses of Anari et al. (STOC 2019), Cryan et al. (FOCS 2019), and
is tight up to constant factors. The main new ingredient is a property we call approximate exchange, a
generalization of well-studied exchange properties for matroids and valuated matroids, which may be
of independent interest. In particular, given a distribution p over size-k subsets of [n], our approximate
exchange property implies that a simple local search algorithm gives a ko(k)—approximation of maxg u(S)
when y is generated by a log-concave polynomial, and that greedy gives the same approximation ratio
when p is strongly Rayleigh.

As an application, we show how to leverage down-up random walks to approximately sample random
forests or random spanning trees in a graph with 1 edges in time O(nlog? n). The best known result for
sampling random forest was a FPAUS with high polynomial runtime recently found by Anari et al. (STOC
2019), Cryan et al. (FOCS 2019). For spanning tree, we improve on the almost-linear time algorithm by
Schild (STOC 2018). Our analysis works on weighted graphs too, and is the first to achieve nearly-linear
running time for these problems. Our algorithms can be naturally extended to support approximately
sampling from random forests of size between kj and k; in time O(n log2 n), for fixed parameters kq, k.

1 Introduction

Let u : ([Z]) — R>( be a density function on size k subsets of [n] = {1,...,n}, defining a distribution
IP[S] o u(S). The generating polynomial of y is the multivariate k-homogeneous polynomial defined as

follows:
8;1(211-“/1271) = 2 V(S)HZI
Se([z]) i€eS

We say that g, is log-concave if log(gy) is a concave function over RZ,. The study of log-concave
polynomials has recently enabled breakthroughs on old conjectures about matroids, including the resolution
of a conjecture of Mihail and Vazirani [ ] on the expansion of the bases-exchange graphs [ 1,
and Mason’s ultra-log-concavity conjecture [ ; ]. These results rely on the log-concavity of the
generating polynomial for various distributions associated with matroids, most importantly the uniform
distribution on the set of bases [ 1.

Besides distributions associated with matroids, several other classes of distributions possess a log-concave
generating polynomial. An important subclass consists of strongly Rayleigh distributions [ ] which
includes determinantal point processes, distributions that have found numerous applications in machine
learning [see , for a survey]. A well-studied example belonging to all classes mentioned so far consists



of the uniform distribution over spanning trees of a graph G = (V, E). Here n is the number of edges
|E| in the graph and k is the number of edges in a spanning tree, i.e., |V| — 1. Spanning trees of a graph

form bases of a matroid called the graphic matroid [see, e.g., ] and they can also be viewed as a

determinantal point process because of the matrix-tree theorem [see, e.g., ], and are consequently

strongly Rayleigh.

The motivation behind the conjecture of Mihail and Vazirani [ ] was to solve the problem of approxi-

mately sampling from bases of a matroid. After this conjecture was made, efficient sampling algorithms

were developed for various special classes of matroids [ ; ; ; ; ; ; ;
] until Anari, Liu, Oveis Gharan, and Vinzant [ ] showed an efficient approximate sampling

algorithm for all matroids. This algorithm used a variant of random walks on the so-called “bases-
exchange” graphs of matroids, that is known as the “down-up” random walk studied in the context of

high-dimensional expanders [ ; ; ]. For a distribution defined by y : ([ ]) — RR>, the

down-up random walk P starts from a set Sg € ([ ]) and produces the Markovian sequence Sy, S1,Sz,... as
follows:

Algorithm 1: Down-up Walk

fort=0,1,2,... do
Let T} € (ks_tl) be a subset of S; obtained by dropping one element of S; uniformly at random.
Let S;11 = Ty U {e}, where the element e is chosen with probability o« pu(T; U {e}).

The random walk P has yu as its stationary distribution and can be efficiently implemented by probing
u on at most n different sets each time. Thus assuming oracle access to y, or in the case of matroids,
an independence oracle for the matroid, each step of P takes O(n) time. The challenging part has been
establishing the mixing time of P, i.e., bounds on the time t such that the distribution of S; is e-close in
total variation distance to the one defined by u:

tmix (P, So,€) :=min {t | [[P*(So,-) — pu(-)lrv < €} .

Anari, Liu, Oveis Gharan, and Vinzant [ ] proved that when y has a log-concave generating
polynomial, the spectral gap of the random walk P is at least 1/k. This implied that

1 1
P 50,6) 0 (1 (g 17 +og ) ).
M

Later, Cryan, Guo, and Mousa [ ] proved a Modified Log-Sobolev Inequality (MLSI) for the same
random walk which resulted in a tighter mixing time:

tmix (P, So,€) < O (k- <loglogn)igo] —l—logi)) .
H

These results lead to efficient algorithms assuming that the mass of the starting set, IP,,[So], is not terribly
small; this can often be achieved in practice. For example, for matroids, any starting basis Sy will satisfy
P, [So] > 1/(}) > n~F, because the number of bases is at most (}). Consequently the above bounds
turn into tmix (P, So, €) < O(k(klog(n) +1log(1/€))) and tmix(P, So,€) < O(k(logk + loglogn +log(1/€)))
respectively. However, for other distributions # with a log-concave generating polynomial, even in the very
special case of determinantal point processes, there is no control on min {IP,[So] | So € supp(y)}, so one
has to rely on clever tricks to find a good starting set Sy; even then, the best hope is to find a set Sy with
P,,[So] Z 1/(}), which results in a mixing time mildly depending on 7.

Historically, earlier works on a subclass of matroids, called balanced matroids, followed a similar devel-
opment, where initially a spectral gap result was proved, resulting in a running time' of O(nk(klogn +

INote that the running time is 7 times the mixing time for the down-up walk.



log(1/¢€))) followed by MLSI which resulted in a mixing time of O(k(logk + loglogn +log(1/¢€))) [see

, for a survey]. Noting that the term loglogn seems unnecessary, Montenegro and Tetali [ ]
raised the question of proving a better inequality that would result in a running time of O(nklog(k/€)).
They specifically hoped for the possibility of proving a Nash inequality, an advanced type of functional
inequality used to derive very tight mixing times for some Markov chains [ ]. We believe there are
barriers to using functional inequalities in general to prove O(klog(k/€)) mixing time for the down-up
random walk; we defer an explanation of this to a future version of this paper. However, without proving
new functional inequalities, we manage to sidestep this barrier and improve the running time to the
conjectured O(nklog(k/€)) for not just balanced matroids, but the class of all matroids.

Our first result is a tight analysis of the mixing time, entirely removing the dependence on IP;,[So] and #.

Theorem 1. For any distribution defined by u : ([ ]) — R with a log-concave generating polynomial gy, the
mixing time of the down-up random walk P, starting from any So in the support of y is

tmix (P, So,€) < O(klog(k/€)).

Note that generally we cannot hope for a better mixing time than klog k; each step of the random walk P
replaces one element of the current set, and by a coupon collector argument, at least ~ klogk steps are
needed to replace every element of the starting set Sg. As long as k is not too close to 1, say k < 0.99n,
replacing every starting element is needed for sufficient mixing, even for the simple distribution y which is

uniform over (M)

Our mixing time bound is an asymptotic improvement over prior work for k = O(1), or more generally
when k is smaller than log(n)€ for all € > 0. Another consequence of the new mixing time bound is that it
enables the analysis of the down-up random walk when # is infinitely large; for example, this is the case
for continuous determinantal point processes [see, e.g., ].> To avoid complicating the notation, we do
not consider infinitely large ground sets in this paper, but note that the results do generalize to such cases.

Our next result is the first quasi-linear time algorithm to sample from the uniform distribution over forests
of a graph G = G(V, E). This improves upon the recent result by Anari, Liu, Oveis Gharan, and Vinzant
[ ] which gives a polynomial time algorithm to sample random forest, but the run-time of this
algorithm is far from being linear in the number of edges. Their algorithm samples and counts forests of
fixed-size k for each k < |V| — 1, thus takes at least Q}(|V| |E|) time. Moreover, they employ the approximate
sampling to approximate counting reduction [ ; 1, which introduces large polynomial blow-up
in run-time. For applications of sampling random forests, see e.g. [ I

In addition, we show a similar algorithm that also runs in quasi-linear time and samples from the uniform
distribution over spanning trees of G. Much attention has been paid to the problem of sampling random
spanning trees over the years, starting from the seminal works of Aldous [ ] and Broder [ ] who
proposed a simple routine to extract a random spanning tree from the trace of a random walk on G itself.
Subsequent works introduced improved algorithms [ ; ; ; ; ; ]
until finally Schild [ ] managed to obtain an almost-linear time algorithm running in time nite) on
graphs with n edges. This algorithm and that of several prior works were all based on the original work of
Aldous [ ] and Broder [ |; they achieved an improved running time by employing several clever,
but complicated, tricks to shortcut the trace of a random walk over G. Our algorithms to sample a random
spanning tree or random forest is wholly different, based on the down-up random walk, that achieves a
nearly-linear running time of 1 log?(n), while being arguably much simpler to describe and implement.
Our algorithms can be naturally extended to sample from weighted distributions over forests or spanning
trees as well.

Theorem 2. There is an algorithm that takes a weighted graph G = G(V, E) on n edges with weight function
w : E — R, parameters q > 0 and € > 0 as input and outputs a forest F C E in time O(nlog(n)log(n/€)); the

2We note however that one still needs to be able to implement each step of the random walk efficiently when # is infinitely large.
For examples where this is possible see [ ].



distribution of F is guaranteed to be e-close in total variation distance to the distribution y over forests of G defined by

u(F) o g IFlgf

where k is the rank of the graphic matroid of G, and |F| denotes the number of edges in F.

In particular, when w(e) = 1 for all e, u is the uniform distribution on forests of G if ¢ = 1, and is the uniform
distribution on spanning trees of G if G is connected and q = 0.

In fact, we can extend Theorem 2 to allow sampling from the uniform distribution over forests of size
between kj and k», for any parameters ki, k», in quasi-linear time.

Theorem 3. There is an algorithm that takes a weighted graph G = G(V,E) on n edges with weight function
w : E — Ry, parameters g > 0, ki,ko € IN and € > 0 as input and outputs a forest F C E in time
O(nlog(n)log(n/e€)); the distribution of F is quaranteed to be e-close in total variation distance to the distribution
uk1k2) over forests of G defined by

‘u(klrkZ) (F) & qu_‘F|wP

restricted to forests of size |F| € [kq, k).

Since our algorithms are based on the MCMC method, they can only approximately sample from the
forest or spanning tree distribution. In contrast, some of the prior works, including [ ], can sample
exactly from the spanning tree distribution. This is mostly an inconsequential difference in practice, as no
polynomial-time user of the algorithm can sense a difference between exact sampling and approximate
sampling; one simply needs to set € to be inverse-polynomially small.

We remark that our technique also leads to algorithm(s) that perform the more general task of approximately
sampling from the uniform distribution over the family of independent sets of an arbitrary matroid, given
access to suitable oracles. Specifically, for a matroid M = ([n],Z) of rank k, an algorithm similar to the one
from Theorem 2 samples from a distribution that is e-close to the uniform distribution over the independent
set Z using O(nlog ) calls to a data structure O’ that maintains a set S C [n], guaranteed to contain at
most one circuit and allows for

¢ Addition, and removal of an element from S, provided we maintain the property that S contains at
most one circuit.

* Outputing a uniformly random element from the unique circuit in S if, such a circuit exists.

For graphic matroids, we can implement O’ with amortized quasi-constant query time using link-cut
trees. In general, since the input S is guaranteed to have size at most k + 1, we can implement each call
to O using O(k) calls to the more familiar independence oracle O for M, resulting in a O(knlog 2 )-time
algorithm.

1.1 Techniques

In order to prove Theorem 1, our strategy is to combine a new analysis of the initial steps of the down-up
random walk with the previously known Modified Log-Sobolev Inequality [ ]. Specifically we show
that conditioned on having replaced every element of the starting set Sy at least once by time ¢, the set at
time ¢ can be used as a warm start for the rest of the steps. Specifically, we show that the density of the set
at time t w.r.t. 4, conditioned on this event, is upper-bounded by only a function of k.

In order to prove this, we introduce a new property of functions y : ([Z}) — R that we call a-approximate

exchange. This property says that for every S, T € ([Z]), and i € S, there exists j € T such that

u(S)u(T) <a-p(S—i+j)u(T+i—j).

Note that when yu takes values in {0,1} and a > 1, this property becomes equivalent to the famous strong
basis exchange axiom of matroids [ J; if B = p~1(1) is the family of sets indicated by y, this property
says that for every S,T € Band i € S, there exists j € T such that S—i+j € Band T+i—j € B. This



property can be seen as a quantitative variant of strong basis exchange. Alternatively, it can be viewed as
an approximate and multiplicative form of M*-concavity, a cornerstone of discrete convex analysis [ I
We prove that every y with a log-concave generating polynomial satisfies 2°(X)-approximate exchange.
Crucially, our « does not depend on n. We remark that Brandén and Huh [ ] showed a result that
can be thought of as a partial converse to this. They proved that M%-concavity of log j, equivalent to
l-approximate exchange property, implies that the generating polynomial of y is log-concave.

We show that a similar approximate exchange property implies that a simple local search algorithm gives
a k*-approximation on the problem of maximizing (S) for  : ([Z}) — R>¢ generated by a log-concave
polynomial. If the generating polynomial of y : (['Z]) — RR>( is moreover strongly Rayleigh, then u
satisfies a slightly stronger exchange property (see Lemma 24) that in turn implies greedy gives a k-
approximation of maxg y(S) (see Lemma 25). This is a generalization of Khachiyan [ I’s classical
result that greedy produces a kO()-approximation of the (sub)determinant maximization problem [ ;

; ], as well as [ 5 ]'s more recent result that greedy gives kO)-approximation for the
largest j-dimensional simplex problem. The best result on the largest j-dimensional simplex problem is a
200 _approximation by Nikolov [ ], matching the lower bound given by [ ; 1.

We discuss the high-level ideas for proving Theorem 2. For the sake of simplicity, we consider the
unweighted case, i.e., w(e) =1 for all e € E. It would be illuminating to first discuss the special case where
g =0, G is connected, and p is uniformly distributed over spanning trees of G. We would like to use the
down-up random walk from Theorem 1 to sample from y. Though the down-up walk on the support of
¥ mixes in nearly-linear time, we do not see a way to implement each step of it in polylogarithmic time.
Fortunately, the down-up random walk on an equivalent family of sets, the dual of the graphic matroid of
G, which consists of the complements of spanning trees, also mixes fast, and we can implement each step in
amortized O(logn)-time using the link-cut tree data structure [ ; I

For g # 0, the distribution y over forests of G is not homogeneous, i.e., the support of i contains different-size
subsets of E, so we cannot immediately apply Theorem 1. Let ji be the complement distribution of y i.e.
ft(E\ F) = u(F) if F is a forest, then sampling from y and from 1 are equivalent. We add auxiliary elements
to each F € supp(ji) to obtain a homogeneous distribution. More precisely, we design a homogeneous
distribution p : (EYY) — R~ whose projection to E is fi i.e. Pr_,t[TNE] = p(TNE) where Y is the set of

n
auxiliary elements, such that the generating polynomial of 4! is log-concave. Specifically, in Lemma 26, we
prove, using results of Brandén and Huh [ ], that for any matroid M of rank r over ground set [n], the
polynomial fu((z0,21,+,2Zn) = Lserm) zl)slz[”]\s is strongly log-concave, and then use polarization (see
Proposition 16) to transform f,4 into a multi-affine homogeneous log-concave polynomial

1 n
f,j\\/[(ylr"'/y”/zlr"‘rzn): E ﬁyTz[ NS
ser(m),re(f) 1S

The fact that f is strongly log-concave could be of independent interest.

The distribution u' is generated by f/TM Our algorithm runs the down-up random walk on u', which
mixes rapidly by Theorem 1, and then outputs E \ (T; N E) where T; € supp(u') is the random set we
obtained after t = O(nlog %) down-up steps. Each step of the walk, even in the weighted case, can again
be implemented in amortized O(log n)-time using link-cut trees [ ; 1

If we only consider the effect of the down-up walk on T; g := E \ (T; N E), then each step of the down-up
walk can be viewed as follows:

¢ With probability 1 — Ti.l sample an edge ¢ ¢ T; ¢ uniformly at random and add e to T .

n

o If there is a cycle formed in T} g by the previous operation, remove an edge uniformly at random
from the cycle. Else, with probability 1qTq’ remove an edge uniformly at random from T} g. Note that

this has no effects if T; ¢ is already empty.



Observe that if § = 0, we never remove an edge from Tt,E unless Tt,E contains a cycle, thus if TO,E is a
spanning tree then so is T; g for all . For ¢ = 0, our algorithm (to sample random spanning trees) is the
same as the one proposed by Russo, Teixeira, and Francisco [ ]. Despite not having the tight mixing
time analysis, they empirically observed fast mixing times for the proposed algorithm, and additionally
showed how link-cut trees can be used to implement each step.

To prove Theorem 3, we only need to show that the following polynomial is strongly log-concave:

k S
f_/\l[(ZOIzll"' /Zi’l) = Z Zl) |Z[n]\s
SEL(M),|S|zky

Then, we apply this for the matroid M whose bases are the size-k; forests of graph G. Next, we employ
the polarization trick then running down-up walk framework which we use to prove Theorem 2.

1.2 Structure of the Paper

In Section 2 we provide some background on Markov chains and geometry of polynomials. In Section 3 we
prove Theorem 1. In Section 4 we prove certain approximate exchange properties, and their algorithmic
implications. In Section 5 we prove Theorems 2 and 3, as well as other results on sampling independent
sets of an arbitrary matroid. The results in Section 5 can be read independently of Sections 3 and 4.

2 Preliminaries

We use [n] to denote the set {1,...,n} and ([Z}) to denote the family of size k subsets of [1]. When # is clear
from context, we use 1s € R" to denote the indicator vector of the set S C [n], having a coordinate of 0
everywhere except for elements of S, where the coordinate is 1. We use conv to denote the operator that
maps a set of points to their convex hull.

We use zg as shorthand for {z; | i € S} and z° as shorthand for [;cg z'. For polynomial f = Y csz° €
Clzo, - - - ,zn], we let the support of f be supp(f) := {S: cs # 0}, and write 0, f as shorthand for g—é

We use e (z1,- - - ,zn) to denote the k-th symmetric polynomial in zq, - - -, z,. We sometimes abuse notation
and write ey (1, zg) to denote the k-th symmetric polynomial in variables zg U {u} .

2.1 Matroids

In this paper we use one of the many cryptomorphic definitions of a matroid in terms of the polytope of its
bases. For equivalence to other prominent definitions of a matroid, and more generally references to facts
stated here see [ ].

Definition 4. We say that a family B C ([Z]) is the family of bases of a matroid if the polytope conv {15 |

B € B} has only edges of the minimum possible length, namely /2. We call k the rank of the matroid, and
[n] the ground set of the matroid.

We let the family of independent sets of the matroid be 7 = {I c 2l

aBelegB}

A well-known fact about matroids, that can be easily derived from Definition 4, is that the dual of a matroid,
defined below, is another matroid.

Proposition 5. If B C ([Z]) is the family of bases of a matroid, then the following is also the family of bases of another
matroid, called the dual matroid:
B* :={[n] —B| B € B}.

In this paper we will use a famous class of matroids constructed from graphs, called graphic matroids.



Proposition 6. Let G = (V, E) be a graph. Then the following is the family of bases of a matroid, called the graphic
matroid of G:
{T C E | T forms a spanning forest}.

Note that the rank of the graphic matroid is < |V| — 1 and the ground set is E. If G is connected, then the
bases are spanning trees of G, and the rank is exactly |V| — 1.

2.2 M-Convex Sets

Definition 7 (M-convex sets). We define a subset ] C IN” to be M-convex if it satisfies any one of the
following equivalent conditions:

* For any a,f € | and any index i satisfying a; > B;, there is an index j satisfying a; < B; and
a—ei+ej€].

e For any a, € ] and any index i satisfying a; > B, , there is an index j satisfying a; < f; and
n—ei+ej Ejand,B—e]-—l—ei eJ.

We note that any M-convex set | must be a subset of
A% = {a € N" | |a|; = d}

for some fixed d. Conversely, for d = 1, any | C A}, is M-convex.

2.3 Stable Polynomials
Definition 8 (Half-plane stable). Consider an open half-plane

Hy = {e*iez ' Im(z) > 0} ccC.
We say a polynomial g(z1,-- - ,zs) € Clzy,- - ,zn] Hg-stable if ¢ does not have root in Hy. In particular, the

zero polynomial is Hy-stable.

We call Hy and H/, the upper-half and right-half plane respectively. We say g is Hurwitz stable if it is
H, /»-stable. We say g is real stable if it is Hp-stable and has real coefficients.

We observe that for homogeneous polynomials, the definition of Hp-stable is equivalent for all angles 6.

A distribution y : 2I") — R~ is strongly Rayleigh if and only if its generating polynomial is real stable [see
]. Real stability is preserved under differentiation, and identification:

Theorem 9 ([ , Lemma 2.4]). If ¢ € Rzy,- - ,zy] is real stable, then the following are also real stable
* g |s=aforaeR
e 0,g forallie€ [n].

We will need the following classical fact [see e.g. , Proposition 3.1 for a proof].

Theorem 10. For k < n, the k-th symmetric polynomial in n variables ex(z1,- - - ,zn) is real stable.

2.4 Log-Concave Polynomials

For a distribution or density function yu : ([']Z]) — R>( we denote by g, the generating polynomial of u

defined as
Su(zi,..ozn) = Y, u(S) ]z
se) e



We call a polynomial ¢ € R|zy, ..., z,] with nonnegative coefficients log-concave when viewed as a function,
it is log-concave over the positive orthant, i.e., for x,y € R, and A € (0,1)

gAx+ (1= A)y) > g(x) *g(y)' .

For a multiaffine polynomial g, its derivatives can be obtained as

alé’zcli%w-

This shows that the derivatives of a multiaffine log-concave polynomial are limits of log-concave polynomi-

als, which themselves are log-concave. It follows that a multiaffine homogeneous log-concave polynomial

satisfies the seemingly stronger notions of strong log-concavity [ ] and complete log-concavity [ ;
; ]. The latter means that such polynomials are also closed under directional derivatives

Lemma 11. Let § € Rizy,...,2,] be a multiaffine homogeneous polynomial with nonnegative coefficients. If
g is log-concave, then it is completely log-concave as well, which means that for any k € Z>o and directions
v1, ..., v € RY, the following polynomial is log-concave:

o, -+ - D0, 8-

We will use an alternative characterization of strongly/completely log-concave homogeneous polynomial
[ ], given under the name of Lorentzian polynomials by Brandén and Huh [ , Definition 2.6].

Definition 12 (Strongly Log-Concave/Lorentzian polynomials). Let g € ]R[21,~ .- ,zn] be a homogeneous
polynomial of degree d with nonnegative coefficients. We say g is Lorentzian, or equivalently strongly
log-concave, if either d < 1, or d > 2, supp(g) is M-convex, and 0*g is real-stable for all « satisfying
‘06‘1 =d-2.

In particular, if g is strongly log-concave then its support supp(g) is M-convex, and all its (directional)
derivatives are strongly log-concave as well. For the equivalence of strongly log-concave, completely
log-concave, and Lorentzian homoegeneous polynomials, see [ I

An important class of polynomials are those associated with uniform distributions over bases of a matroid.

Theorem 13 ([ ] based on [ D. IfBC ([Z]) is the family of bases of a matroid, then the following
polynomial is log-concave:
gz, zn) =Y [z
BeBieB
Theorem 14 ([ ; 1). For any matroid M with family of independent sets I, the polynomial
g./\/l(y/zlr' .o rZ'rl) — Z yﬂ_u| Hzi
IeT i€l

in Ry, z1,- - ,zn] is completely log-concave.
We will use the following simple fact about log-concave polynomials:

Proposition 15 ([see ; D). If g is a log-concave polynomial with nonnegative coefficients, then V2g
evaluated at any point in the positive orthant has at most one positive eigenvalue.

One of the basic operations preserving (complete) log-concavity is composition with a linear map. That is
if T:R™ — R" is an affine linear map for which T(RZ;) € RZ, then g o T is (completely) log-concave as
well. We state other operations that preserve strong log-concavity /Lorentzian property.

Proposition 16 ([ , Polarization]). For an element x of IN" let

Ry [zi]1<i<n
= {polynomials in R[z;]1<;<, of degree at most x; in z;Vi}



The polarization map [T} is a linear map that sends monomial z* = T/, z;' to the product
1
(@)

where ey, ({zij }1<j<x;) is the elementary symmetric polynomial of degree a; in the variables {zj}1<j<x, and () =

n

1 (le) If ¢ € Ri[zi]1<i<y is strongly log-concave then I (g) is also strongly log-concave.

n
[ Tew({zijt1<j<x,)
=T

Proposition 17. The product of two strongly log-concave polynomials is also strongly log-concave.

2.5 Down-Up Random Walk

For two distributions v, 4 we define the Kullback-Leibler divergence, KL-divergence for short, Dkp (v || )

as v(5)
V(S)} '

Di(v || 1) = Esey [#((“3 log yg] —Es., [mg

and the total variation distance between v and y as

v =l = 5 EIv(S) ~ K(S)L

The two are related by Pinsker’s inequality:
Proposition 18 ([see, e.g., 1). KL-divergence and the total variation distance are related by the following
inequality

1
lv—pllrv < EDKL(V | )

Cryan, Guo, and Mousa [ ] proved shrinkage of the KL-divergence under the down-up random
walk. Coupled with Pinsker’s inequality, this resulted in a mixing time bound.

Lemma 19. [ 1fv,u: ([Z]) — R>q are distributions where y has a log-concave generating polynomial, and
P is the down-up random walk operator whose stationary distribution is y, then

Dxr(VP || uP) = Dxr(vP || u) < (1= 1/k) D (v || p)-

3 Mixing Time Analysis

In this section we prove Theorem 1 by analyzing the down-up random walk for distributions u that have a
log-concave generating polynomial. As a reminder, in each step, the down-up random walk transitions

fromasetS € ([Z}) to S € ([Z}) as follows:
® From S choose a subset T C S of size k — 1 uniformly at random.
e From all supersets S’ D T, choose one with probability o j(S’).

Notice that the first step above simply drops a uniformly random element, and the second step replaces it
with a new one (potentially the same element). Our high-level strategy is to prove that in O(klogk) steps,
every element of the initial set is replaced at least once, and when this happens the distribution becomes a
warm start and converges to y in an additional O(klogk) steps.

Let T be the first time such that every element in our initial set has been replaced at least once. In other
words think of initial elements as unmarked, and every time we replace an element we mark the new
element brought in. Then 7 is the first time that every element is marked.

We will prove the following:



Lemma 20. Let S; be the set at time t in the down-up random walk. Then for any X € ([Z}) and any time t,

P[S; = X | T < ] < 2009 P, [X].

Note that without 20*), the rh.s. is simply the stationary distribution. So this statement can be understood
to say that as long as we have replaced each element at least once, we cannot be too far off from the
stationary distribution.

Before proving Lemma 20, let us finish the proof of Theorem 1 assuming it.
Proof of Theorem 1 assuming Lemma 20. Note that for any fixed time t, we can simply bound P[t > t] by
k(1 —1/k)! < ke~t/k. In particular this probability rapidly converges to 0 after about klog k steps.

Now let t; < t; be two time indices. Let v; denote the distribution of the state of random walk, i.e., S;,
at time t. Our goal is to bound ||v; — p||Tv, where for simplicity of notation, we assume y is properly
normalized to be a probability distribution. Let v{ be the distribution of S; conditioned on T < ¢, and let v}’
be the distribution of S; conditioned on T > t. Then we can write

vy, =Pt <] -vi, + Plt > 1] vy
If P denotes the random walk operator, then note that v;, = v, P71, So we get
v, = Pt < H]vy, P21 + PlT > H]vy P71,
Using the triangle inequality we can bound
[ve, = pllrv < llvi, P71 — pllry + PlT > #].

Here we used the fact that P[t < #;] <1, and [v/ P?~" — p|ry < 1; the latter inequality is because |||y
is always upper bounded by 1.

We can bound the second term in the above inequality by ke~'1/¥ as stated before. For the first term, note
that the KL-divergence between v and y is at most O(k?) by Lemma 20. This is because

/ Vi ()
Dy (vy, || 1) = ]Es~v,’1 log u(S)

<1og(2°)) = O(k?).

So by Lemma 19 in t, — t; steps this KL-divergence decreases to (1 —1/k)2~10(k?) = O(k2e~(2=t)/k), By
Pinsker’s inequality, Proposition 18, we get that

Hvélptzitl — |ty < O(ke™(2=1)/2k)
So in the end we get the following bound
lvt, — |ty < O(ke™(l2=h)/2k  jp=ti /Ky,

In order for this to be at most ¢, it is enough to make sure that min {t;,t, — t;} = Q(klogk + klog %) So
we can simply let t; = /2, and then make sure that t, = Q(klog(k/€)). O

As the main tool we use to prove Lemma 20, we introduce a new inequality for log-concave polynomials,
that we call approximate exchange. We state the inequality below and defer its proof to Section 4.

Lemma 21. Any u : ([Z]) — R with a log-concave generating polynomial satisfies a 20(0)_exchange property.
That is, for every S, T € ([Z]) and i € S there exists j € T such that

u(S)u(T) < 2°0 (S — i+ j)u(T +i— j).
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Armed with Lemma 21, let us prove Lemma 20.

Proof of Lemma 20. Let’s look at the down-up walk process with orders. This means that we start with some
elements e, ..., e, that together form the starting set. In each time step we replace one of the ¢;’s. But we
keep track of the ordering and do not convert these to sets. So we can talk about e! as the i-th element
at time t. In particular S; is simply the unordered collection {e}, ..., e;}. Let’s say that X = {f1,..., fi}.
Then to have S; = X, there must be some permutation of fj,..., f that equals ¢}, .. ., e}. We will show that

(klogk)

for any such permutation the promised bound in Lemma 20 holds. Since there are k! = 2° many

permutations, this extra factor of k! can be absorbed into the factor of 20() without any loss. So we fix an
arbitrary permutation, w.l.o.g. the identity permutation, and try to bound the following

IP[ei :fl,...,e,t(:fk | T <.

Since we are conditioning on T < t, note that there must be some time 7; < ¢, which is the last time before ¢
where the i-th element gets replaced by the down-up random walk. We will bound the above probability,
even conditioned on Ty, ..., Ty having any set of fixed values up to t. Note that the index of the element
that gets replaced in every step is uniformly random and independent of everything else that happens in
the random walk, in particular the identity of the elements that come in as replacements. In the rest of the
proof, we condition on the indices of the elements that get replaced at every step up to time ¢; note that this
also uniquely determines T, ..., Ty, SO we assume Ty, .. ., Ty are some fixed time indices. W.l.o.g. assume
that 7 < » < -+ < 7. We will use induction to prove the following statement for i =0, ..., k:

IP[ell = fl,ezz = fz,. . .,ei’ = fz | replacement indices]
< Zo(ik) P Lf . f c ”]
= U~pul)1s 7)1

Notice that for i = 0, both sides are trivially equal to 1, and for i = k, this inequality is the main statement
we want to prove.

It remains to show the inductive step. We will show that going from i — 1 to i, the Lh.s. gets multiplied by a
smaller quantity compared to the r.h.s. If we have below inequality in hand, then it is not hard to see that
we can complete the induction, since the factors that get multiplied on each side are the two sides of this
inequality.

Ple/’ = file;' :flf---zeinf = fiq
and replacement indices]

<200 Py [fieU] fi,..., fi1 €U ()

Instead of conditioning only on fi, ..., fi_1 being chosen at the appropriate times on the Lh.s., we will
refine the conditioning and condition on the history of the random walk up to time 7; — 1. This means we
can in particular assume that the elements eiTjrl,. ., elf’ are fixed, that ef =f1,..., eiTil = fi_1, and the only
uncertain thing is what the i-th element is being replaced by at time T;.

LetS={f1,...,fi eirjrl, .. .,e,fi}. Then the conditional probability of choosing f; at time T; is:

Ple' = filet' = fi - 6] = fia
p#(S)

" (2
Yvos—g (V) @

and replacement indices] =

On the other hand
Zuafl,...,f,- ]’l(u)

]Puwy[f,‘EU|f1,...,fi,1 EU]: ZTgf P y(T)
1reerfie1
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So we have to show the following:
pS)| Y w1
T3fifia

We will give an injection from the terms on the Lh.s. to the terms in the expanded form of the r.h.s. Choose
some set T D fi,..., fi_1. Apply Lemma 21 to S and T with the element f; € S. We get that there must be
some element ¢ € T such that

SZO“)( Y u(W)( )y M(U)>- ®)

VDS*fi Uafl,...,f,-

H(S)u(T) < 2°0p(S — fi +e)u(T + fi —e).

Note that V := S — f; + e contains S — f;, and U := T + f; — e contains {f1,..., fi}. So u(U)u(V) appears
on the rh.s. of the desired inequality. So for each T appearing on the Lh.s. of the desired inequality we
produced a pair of U and V. Note that this mapping from T to (X, Y) is injective. This is because given
(X,Y), we can recover T as the xor/symmetric difference of the other three sets, that is T = SAUAV. O

4 Approximate Exchange Property

In this section we prove Lemma 21. In addition, we show other variant(s) of approximate exchange property
(Lemma 24) with implication for the approximation guarantee of local search and greedy on the problem of

maxg #(S) given a log-concave/strongly-Rayleigh distribution  : ([Z]) — R>o.

Definition 22. We say that y : ([Z}) — R>( has an a-approximate exchange property, or a-exchange for
short, if for every S, T € ([Z]) and every i € S, there exists j € T such that

a-p(S—i+u(T+i—j) = u(S)u(T).

Note that if y is the indicator of bases of a matroid, then it has a 1-exchange property, also known as the
strong basis exchange property [ I

Although we do not directly need it, we give another example where approximate exchange can be proven
by elementary means. This is the class of k-determinantal point processes [ ; I

Proposition 23. Suppose that j : ([Z]) — R is defined as

u(S) = det([v]ics)?,

for some vectors vy, ..., v, € RK. Then y has a k*-exchange property.

Proof. It is enough to consider the case where S and T are disjoint; otherwise, the problem can be reduced
to lower values of k by taking out the intersection, and projecting all vectors on the orthogonal complement
of the space spanned by the intersection.

Define the number B; as \/u(S — i+ j)u(T + i — j) and let a be \/p(S)p(T). The Pliicker relations for the

Grassmanian [see, e.g., ] say that a signed sum of « and B; is zero:
o+ Z +B i = 0.
jerT
This means that there is at least one j such that |B;[ > %zx, and this concludes the proof. O
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Next we take steps to prove Lemma 21, namely that if u : ([z]) — R>p has a log-concave generating

polynomial g, then y has a 20(k)__exchange property. We conjecture that a kO(1)-exchange property should
hold, but even if true, this will not improve the mixing time results in this paper beyond constants hidden
in the O(+) notation.

Our strategy is to prove the case of k = 2 of Lemma 21 by using log-concavity of g, (note that k = 1 is
trivial). We will then use an induction to prove the general case. We remark that this type of induction is a
standard procedure used in many other places, such as in the context of proving Pliicker relations and
M”-concavity [ ].

Before delving into the proof, note that we can always assume SN T = @. This is because we can always
condition the distribution y on having any set of elements, and then throwing out those elements; this
operation corresponds to taking partial derivatives of g, which results in a log-concave polynomial by
Lemma 11. In particular, we can condition y on having SN T, and then throwing out SN T from the ground
set.

Proof of Lemma 21 for k = 2. When k = 2, we might as well assume that n = 4, because no element outside of
SUT is important, and we can condition the distribution y on not having those elements. This corresponds
to substituting 0 for variables outside S U T in g, which preserves log-concavity.

So our goal now is to show that for a log-concave quadratic polynomial in four variables
su= ), n{ijhzz,
tire(3)
we have an O(1)-exchange property. W.l.o.g. assume that S = {1,2} and T = {3,4}.

Let us consider V2 gu- This is a constant matrix, which has at most one positive eigenvalue by Proposition 15.
On the other hand it is a matrix with nonnegative entries, so it must have at least one nonnegative eigenvalue
as well. Analyzing the possible signs of the eigenvalues, we see that their product, i.e., the determinant is
nonpositive:

det(Vng,) <0.

This determinant can be written in a special way. Let us define:

A=pu({1,2})u({3,4}),

B:=u({1,3})n({2,4}),
C:=pu({1,4})n({2,3}).
Notice that approximate exchange for S, T any any i € S is equivalent to saying that A < O(1) - max {B, C}.
We can write det(V?2g,) = A% + B? + C2 — 2(AB + AC + BC). So we get the inequality
A? + B? +C? <2(AB+ AC + BC).
This is the same as
(A—B—C)?<4BC.

Taking square-roots we get
A—-B—-C<2VBC,

which is the same as saying
A< (VB+VC)

Taking square-roots again we get

VA<VB++VC

In particular one of v/B and +/C must be at least %\/Z This proves that y satisfies a 22 = 4-approximate
exchange property for S = {1,2} and T = {3,4}. O
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We now complete the proof by inducting on k.

Proof of Lemma 21 for the general case. We can assume that for any S, T such that [SNT| > 1, we have a
20(k=ISNT))_approximate exchange property. This is because by the arguments we had, such nonempty
intersections can be reduced to smaller values of k by conditioning and throwing out SN T.

Now let SNT = @ and let i € S be given. Our goal is to find j such that

u(S)u(T) < 2°0 (S — i+ j)u(T +i—j).

Let i’ # i be another, arbitrary, element of S. We will exchange i’ with an element j' € T and use induction
on S —i'+j" and T. We need to be careful how we choose j' though. Let us choose j’ to be the element of T
that maximizes the expression (T + i — j')u(S — i’ +j"). The reason for this choice will become apparent
in the rest of he proof.

Then the sets S — i’ 4 j' and T have an intersection of one element, so by induction we know an approximate
exchange property for them. Therefore, there must be a j € T such that

(S =1+ () <220 V(s —i =i+ [)p(T +i = ). )
We will apply approximate exchange a second time. The sets S and S — i — i’ + j + j' have a very large
intersection. In particular their exchange property reduces to the case of k = 2 of Lemma 21, which we
have already proven. By this exchange property, we have
pEOMS—i—i'+j+j) <
20 max{u(S — i+ j)u(S —i' +7),
WS =i+ IS =i'+7} 6
If the first term in Eq. (5) achieves the maximum, then we are done, because multiplying Egs. (4) and (5)
yields
pS =+ MpS)S —i—i'+j+7) <
200 (s —i—i'+j+ /(T +i= S —i+j)u(s —i' +]),
which simplifies to
u(S)(T) < 2°0u(S — it u(T +i-j),
showing that i can be exchange for j.
So assume that the second term in Eq. (5) achieves the maximum. We will show that in this case i can be
exchanged for j/. Multiplying Eqgs. (4) and (5) yields
pS =+ IMpS)uS —i—i'+j+]) <
200u(S —i—i' 4 j+ )T +i = p(S =i+ (s =i +J),

which simplifies to

p(S)u(T) <

o o (THi— (S =i +7)
20(0) . (g — it (T i — 1) H
V( 1+])V( +1 ])y(T+i—j’);4(S—i’+j’)

Notice that by our choice of j/, the fraction appearing on the r.h.s. is < 1. So we can conclude that

u(S)u(T) <290 (S —i+ )u(T+i— ).
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If we require the stricter assumption that y is generated by a real-stable polynomial, then we obtain an
exponentially improved k?-exchange. This is a generalization of Proposition 23.

Lemma 24. Consider y : ([Z]) — R>q that is generated by a real-stable polynomial. For every S,T € ([’;]) and

ieS\T
VEERT) < X \Ju(S — i+ j)u(T+i- ) (6)
JET\S
Consequently, there exists j € T \ S such that
H(S)U(T) < Ku(S —i+ Hu(T+i—j) @)

Thus u satisfies a k>-exchange property. Moreover, for S € ([Z]) and j ¢ S,

u(S)u() <k Y pu(S+j—eule) 8)

ecsS
where p(t) = ZTE([Z])#ET u(T) fort € {j,e}.
A consequence of Lemma 24 is that natural local search and greedy algorithms for finding the maximum
of u: ([Z]) — Rxg (i.e.,, MAP inference) give a (k!)? ~ kO)-approximation of max {}(S)}, assuming u’s
generating polynomial g, (z1, - -+ ,zn) = L #(S)z° is real-stable/strongly Rayleigh. This generalizes similar

results for determinantal y to the class of strongly Rayleigh distributions [see, e.g., ], giving further
evidence for the efficacy of local search and greedy methods [see also I

For subset T of [n] of size <k, let u(T) = 256([21)252Ty(8).

Algorithm 2: Greedy

Initialize S < @
while |S| < k do

| Picki ¢ S that maximizes (S U {i}), and update S +— S U {i}
end

Lemma 25. If u is strongly Rayleigh, then the output S € ([Z}) of Algorithm 2 is a (k!)?-approximation of
OPT := maXy (i) u(T).

We leave the proof of Lemmas 24 and 25 to the full version. We remark that similar guarantees can
be obtained for a closely related local search algorithm, which moves between sets of size k, each time
replacing one element by another. Note that our improved exchange property for strongly Rayleigh
distributions is crucial in obtaining k©(X)-approximation. For arbitrary log-concave distributions, we can
show the approximate exchange property in Lemma 24 with approximation factor 2°%) instead of k2,
thus proving a ZO(kz)-approximation guarantee for greedy. Furthermore, we show that local search yields
kOk)-approximation. We leave the proof of these statements to the full version.

5 Sampling Forests/Spanning Trees

In this section we prove Theorems 2 and 3.

Let u be the distribution over forests of G defined in Theorem 2. In Lemma 26, we show a homogeneous
multiaffine log-concave polynomial fL g that generates a homogeneous distribution u! : (EL;Y) — R

whose projection to E is the complement distribution of y, i.e, Pr_ 1 [TNE]=u(E\(TNE)).

3We remark that reliance on Theorem 1 in this section is not mandatory and the results of this section would have been possible
even without Theorem 1.
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We then run the down-up random walk on the distribution ' for some ¢ steps, and obtain a random set
T; € supp(u'). We argue that the distribution of E \ (T; N E) is e-close to y for some t = O (|E| log @)
using the mixing time bound proved in Theorem 1. For completeness, we briefly discuss how to implement
each step of the random walk in O(log |E|) time.

Lemma 26. Let M be a matroid of rank r over ground set [n], and I(M) be its family of independent sets. The
following polynomials are completely log-concave.

(a)
fM (ZOIZl/ e ,Zn) = Z Z(‘)S‘Z[n}\s
Sel(M)
(b) For
Frgw(Zoz1, ) = Y SlwSg Pl
Sel(M)

where q > 0 and wy, - -+ ,wy > 0
(c)

fL,q,w(]/lz' Y 21, /Zn)

1 — n
g BlSyT NS (9)
0

where g > 0 and wq,- -+ ,wy >0

Proof. Since
4

f/T\/l,q,w(ylf S YrZ Zn) = H(fM,q,w)

K
with kg = r and x; = 1Vi € [n], Item (b) implies Item (c) by Proposition 16.
We show that Item (a) implies Item (b).

If g > 0 then
Gl S

fM,q,w(ZO/Zl/"'/Zn)ocf/\/l(;/ wll /wn

)

is completely log-concave since composing with a linear map preserves complete log-concavity.

If g = 0 then

Frtguo(zoz - z) = Y w2l
SeEB(M)

cxarfM(ﬂ Zi) (10)

ozy “wy " wy

is completely log-concave since taking derivative preserves complete log-concavity.
Now we show Item (a). Let f := f. We first show that supp(f) is M-convex (see Definition Definition 7).

First, the support of g(y, 21, ,zn) = Lsez(\m) y" 18108 is M-convex. Note that

supp(f) = {0 —@ | @ € supp(g)}

where vg = n and v; = 1Vi € [n]. Thus, supp(f) is also M-convex.
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Indeed, consider any «, 8 € supp(f) and i € {0,--- ,n} s.t. a; < B;. Then ¥ —a, ¥ — B € supp(g) and
(0 —a); > (- B); so there exists js.t. (T —a); < (3—p);, and (D —a) —e; +ejand (T — ) —ej +¢; are in
supp(g)- This implies a; > B; and a —¢; +¢; and B — e; + ¢;j are in supp(f).

We proceed using induction on n. Obviously, for n = 1, f is a linear function in wy, w; with positive
coefficient, which is trivially completely log-concave. Suppose the statement is true for matroids M’ on
ground set [n — 1] with n > 2.

We only need to verify 9" f is log-concave for all « with |a| = n — 2. Note that for i € [n],

af= ¥ s g

Sel(M):i¢S
is completely log-concave by applying induction hypothesis to M \ i. We only need to show 83_2 fis
log-concave. Note that agfzf # 0 only if r = rank(M) > n — 2. Also, for n =2, agfzf is exactly f.

Forr=n-2, )
N2f=m-2)0 Y ZMNS=@m-2pn Y 5
SeB(M) §'eB(MP)

is strongly log-concave (and of degree 2, thus real-stable), since it is the sum over the bases of dual matroid
M* of M (Theorem 13).

For r = n, then B(M) = {[n]} and f = [T;c[y (20 + z;) is real-stable as product of real stable polynomials
20 + z; for i € [n], thus so is 9] 2f.

Forr=n-1,
ag—2f =(n—-1)zpe1(z7)
+ (1 =2)! (ea(zr) + er(zr)er(zgp ) (D

where T C [n] is such that B(M) = {[n]\i|i € T} are the bases of M, ¢, is elementary symmetric
polynomial of degree k, and zg is shorthand for {z; | i € S}. This is because {S € Z(M) | |S| =n —2} is

exactly
{[n]

Set u := (11 — 1)20 + e (Z[n}\T) then

n—t—F|teT,F¢T}.

ag*2f =n—=2)!(er(zr)u+ex(zr)) = (n —2)!ex(u, z7)

Note that e; is real-stable (Theorem 10), and that u € H whenever (zo, zj,)\ 1) € H 11Tl where H is the
upper half plane. Thus 9} 2f is nonzero for any (z0,2p)) € H"H e, 9y 2 is real stable. O

Remark 27. Observe that s
fm(zozn ) = Yzl

Sel(M)

is the dual or complement of the strongly log-concave polynomial

gm0z ) = Yz
Sel(M)
(see Theorem 14), in the sense that

fim(zoz1, e+ ozn) = zhzMgn(zg 2 -z )

We remark that while the dual of a real-stable polynomial is real-stable, the dual of a strongly log-concave
polynomials is not in general necessarily strongly log-concave.
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We are ready to prove Theorem 2.

Proof of Theorem 2. Let M be the graphic matroid on graph G = G(V,E) on n edges. Let k := rank(M).
W.lo.g., we can label the edges by 1,2 - - - ,n and assume E = [n]. Let u be the distribution over independent

sets of M (i.e. forest of G) where u(F) o gk—IFlwF for F € Z(M). Note that we can remove all edge of
weight 0 from E without changing y. W.l.o.g., we assume this is already done; thus w(e) > 0 for all e € E.
Let Y := {y1, - ,yx},Z := {z1, -+ ,zn} . We identify the variable z; with the edge labeled by i. Let

f = f/TVl g then f is multi-affine, homogeneous, and completely log-concave by Lemma 26. Observe

that f is the generating polynomial for distribution u' : (Yﬁz) — R defined by u(T) « q(k 7‘: m;‘ w?\T if

TAY]
Z\T € Z(M), and 0 otherwise.

We run the down-up walk starting from Ty € supp(u') (for e.g. Ty = (Z\ F) UY for some spanning forest
F). Let v! be the distribution of the set T € sup(u') we obtained after O(nlog(n/¢€)) steps; Theorem 1
implies ||u" —v'|rv < e. We then remove all yj from S i.e. collapse T C YU Z to Tz := Z\ (TN Z). Let

v be the distribution of Tz. Clearly, supp(v) = Z(M), and if v is the same distribution as u', then v is
the same as p. By the data processing inequality, the total variation between v and y is at most € since
[ A A

We show each step of the random walk can be implemented in O(log ) time. In the down step, we keep
track of whether the level (n — 1) set S still satisfies Sz := Z\ S is a forest. Note that if we dropped an
y; in the down step to arrive at S, then Sy is always a forest; if, instead, we dropped a z; (equivalently,
added z; to Syz), then we can check whether Sy stays a forest in O(logn) amortized time using link-cut tree
[ ; |. If Sz is not a forest, then let cycleg be the unique cycle in Sz which contains the edge z; that
was added to Sz. When we perform an up-step from S, if Sz is not a forest, select zf among the edges
in cycleg with probability « 1/w, and add it to S (equivalently, remove z; from Sz). This can be done in
O(logn)-amortized time (see [ D). If Sz is empty, then we can only add y; which is not already in
Sy := SNY with uniform probability. If Sz is a nonempty forest, then we can add any variable y; ¢ Sy or
z; € Sz. In this case, the probability of adding variable can be explicitly computed i.e. uniform among

k(1) g1 /(K
yj & Sy, and P(z]/ ]P[yj] = %
in O(logn) time by ‘

e With probability 1/(1 + T) where

where ( := |Sz| = |Sy| + 1. We can perform these operations

¢ Ties, w1/ (5 _ 9Yies, w; !
gLk [Sy])/(5) ¢

sample y; uniformly at random from Y\ Sy and add y; to Sy. Note that this action will always be
performed if g = 0.

® Maintain an array of cumulative sums s; := 22:1 w;l for t € [¢] where w;,w;, - ,w;, are the
weights corresponding to the edges in Sy; this data structure supports amortized O(logn)-time
insertion and deletion from Sz and binary search in the sorted array [s¢]!_,. This data structure can
be implemented using a splay tree where each node stores the sum of all leaves in its rooted subtree.
With probability /(1 + 7), sample z¢ from Sz with probability & 1/w¢ by: sample uniformly random
p € [0,s/], find minimum ¢ € [¢] where p < s;, and remove z;, from Sz. This removal will split a tree
in the forest Sz, and we update the link-cut tree representation of Sz accordingly in O(logn) time.

See Fig. 1 for a visualization of how one up-then-down step may change the set T, = Z \ T.

For completeness, we briefly summarize how to handle sampling and removing an edge from cycleg, which
was described in [ ]. We represent Sz as a forest of link-cut trees. When we add an edge e = (u,v) that
forms a cycle, splay u to be the root of its tree 7y, then access v (which is also in T;) so that the entire path
Pup from u to v in Ty, is stored in one auxiliary tree. This auxiliary splay tree can be augmented to support
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(weighted) sampling an edge f from P, , as described above with Sz. Remove f (which disconnects 7
into two trees) then add e. Link-cut trees support these operations in amortized O(logn) time, and the
augmentation increases the run-time by only a constant factor. O

We briefly discuss how to sample from the family of independent sets of a matroid M = ([n],Z) of rank
k using the framework developed here. If we are given access to a data structure O’ that maintains a set
S C [n], guaranteed to contain at most one circuit and allows for the operations:

¢ Addition, and removal of an element from S, provided we maintain the property that S contains at
most one circuit.

¢ Outputing a uniformly random element from the unique circuit in S if, such a circuit exists.

then each step of the down-up walk described in Theorem 2 can be implemented with O(1) calls to O’,
resulting in a O(nlog n)-time algorithm to sample uniformly from the family of independent sets of M.

We remark that Theorem 14 and the polarization trick employed in Proof of Theorem 2 already give a
O(knlog %)—time algorithm, given access to the independent set oracle O; for M. Indeed, the down-up walk

on the distribution defined by the polarization of the strongly log-concave polynomial gu(z1,- -+ ,zx) =

Yser(m) zgfls‘zs (see Theorem 14) mixes in O(klog %) steps, and each step can be implemented using O(1)

calls to Oj.

We leave the proof of Theorem 3 to the full version.
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Figure 1: The effect of one step in the down-up random walk on ' on Tz = Z \ T. Four possible ways for
Ty to change.

Figure 2: Down-up random walk.
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