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Abstract

We show fully polynomial time randomized approximation schemes (FPRAS) for counting matchings
of a given size, or more generally sampling/counting monomer-dimer systems in planar, not-necessarily-
bipartite, graphs. While perfect matchings on planar graphs can be counted exactly in polynomial time,
counting non-perfect matchings was shown by Jerrum [Jer87] to be #P-hard, who also raised the question
of whether efficient approximate counting is possible. We answer this affirmatively by showing that the
multi-site Glauber dynamics on the set of monomers in a monomer-dimer system always mixes rapidly,
and that this dynamics can be implemented efficiently on downward-closed families of graphs where
counting perfect matchings is tractable. As further applications of our results, we show how to sample
efficiently using multi-site Glauber dynamics from partition-constrained strongly Rayleigh distributions,
and nonsymmetric determinantal point processes. In order to analyze mixing properties of the multi-site
Glauber dynamics, we establish two notions for generating polynomials of discrete set-valued distributions:
sector-stability and fractional log-concavity. These notions generalize well-studied properties like real-
stability and log-concavity, but unlike them robustly degrade under useful transformations applied to
the distribution. We relate these notions to pairwise correlations in the underlying distribution and the
notion of spectral independence introduced by Anari, Liu, and Oveis Gharan [ALO20], providing a new
tool for establishing spectral independence based on geometry of polynomials. As a byproduct of our
techniques, we show that polynomials avoiding roots in a sector of the complex plane must satisfy what
we call fractional log-concavity; this extends a classic result established by Gårding [Går59] who showed
homogeneous polynomials that have no roots in a half-plane must be log-concave over the positive orthant.

1 Introduction

Let µ : ([n]k ) → R≥0 be a density function on the family of subsets of size k out of a ground set of n elements,
which defines a probability distribution

P[S] ∝ µ(S).

The goal of this work is to establish properties of µ that translate into efficient algorithms for sampling
from this distribution, and by classical equivalences between approximate counting and sampling [JVV86],
to algorithms for approximately computing the normalizing constant, i.e., the partition function:

∑
S

µ(S).

We study a family of local Markov chains that can be used to approximately sample from such a distribution.

Definition 1 (Down-Up Random Walks). For a density µ : ([n]k ) → R≥0, and an integer ℓ ≤ k, we define
the k ↔ ℓ down-up random walk as the sequence of random sets S0, S1, . . . generated by the following
algorithm:

for t = 0, 1, . . . do
Select Tt uniformly at random from subsets of size ℓ of St.
Select St+1 with probability ∝ µ(St+1) from supersets of size k of Tt.
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Figure 1: A symmetric sector around the positive real axis. Sector-stability of a polynomial means that if all
variables are chosen from the interior of the sector, the polynomial does not vanish.

This random walk is time-reversible, always has µ as its stationary distribution, and moreover has positive
real eigenvalues [see, e.g., ALO20]. The special case of ℓ = k − 1 has received the most attention, especially
in the literature on high-dimensional expanders [see, e.g., LLP17; KO18; DK17; KM16; AL20; ALO20]. Each
step of this random walk can be efficiently implemented as long as k − ℓ = O(1) and we have oracle access
to µ. This is because the number of supersets of Tt is at most nk−ℓ = poly(n), so we can enumerate over all
in polynomial time.

Our main result establishes a formal connection between roots of the generating polynomial of µ, defined
below, and rapid mixing of the k ↔ ℓ down-up walks.

Definition 2 (Generating Polynomial). To a density µ : ([n]k ) → R≥0 we associate a multivariate generating
polynomial gµ, which encodes µ in its coefficients:

gµ(z1, . . . , zn) := ∑
S

µ(S)∏
i∈S

zi.

Note that gµ is a polynomial with nonnegative coefficients, and as such, it has no roots (z1, . . . , zn) ∈ Rn
>0.

We consider polynomials that not only avoid roots on the positive real axis, but also avoid roots in a
neighborhood, that is a sector of the complex plane centered around R>0.

Definition 3 (Sector-Stability). For an open sector Γ ⊆ C centered around the positive real axis in the
complex plane, see Fig. 1, we call a polynomial g(z1, . . . , zn) sector-stable if

z1, . . . , zn ∈ Γ =⇒ g(z1, . . . , zn) ̸= 0.

Our main result shows that sector-stability where the sector Γ has constant aperture, implies rapid mixing
of the k ↔ ℓ down-up random walk for an appropriately chosen ℓ = k − O(1).

Theorem 4. Suppose that the density µ : ([n]k ) → R≥0 has a generating polynomial that is sector-stable with respect
to a sector Γ of aperture Ω(1). Then for an appropriate value of ℓ = k − O(1), the k ↔ ℓ has relaxation time kO(1).

As a reminder, for a time-reversible Markov chain with positive eigenvalues, the relaxation time is the
inverse of the spectral gap [LP17]. A corollary of polynomially-bounded relaxation time is that for starting
points with not-terribly small probability, the mixing time can be polynomially bounded as well.

Corollary 5 ([see, e.g., LP17]). Suppose µ has a sector-stable generating polynomial for a sector of constant aperture,
and let ℓ = k − O(1) be the value promised by Theorem 4. If the k ↔ ℓ down-up random walk is started from S0,
then

tmix(ϵ) ≤ O
(︃

kO(1) · log
(︃

1
ϵ · Pµ[S0]

)︃)︃
where tmix(ϵ) is smallest time t such that St is ϵ-close in total variation distance to the distribution defined by µ.

As our main application, we obtain efficient algorithms to approximately sample/count (weighted) match-
ings and matchings of a given size in planar graphs. We discuss this and other applications in Sections 1.1
to 1.3. We then discuss the techniques we use and related work in Sections 1.4 to 1.6.
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Figure 2: Perfect matchings in
bipartite graphs can be approxi-
mately counted in polynomial time
[JSV04].

Figure 3: Perfect matchings in pla-
nar graphs can be exactly counted
in polynomial time [Kas61; TF61;
Kas67].

Figure 4: Counting matchings of
a specified size can be reduced
to counting perfect matchings by
adding dummy nodes.

Remark 6. Theorem 4 can be directly generalized to µ if the generating polynomial gµ has stability w.r.t.
regions Γ ⊆ C other than a sector. In particular, for Γ = R>0 ∪D(1, ϵ), where D(1, ϵ) = {z ∈ C | |z− 1| < ϵ}
is the disk around 1, our results still imply kO(1) relaxation time for an appropriate k ↔ ℓ down-up walk
with ℓ = k − O(1); see Remark 53. Under this limited assumption, we have spectral independence, but no
longer fractional log-concavity (i.e., spectral independence under arbitrary external fields). For clarity of
exposition we focus on sector-stability.

1.1 Application: Planar Matchings

Matchings in graphs have been a rich source of intriguing algorithmic questions. The celebrated blossom
algorithm of Edmonds [Edm65], which finds a maximum-sized matching in a general graph, has been
partially credited with the creation of the notion of polynomial time algorithm [Koz06]. An entirely different
class of algorithms for finding matchings, based on connections to determinants, was introduced by Lovász
[Lov79] and developed further by Karp, Upfal, and Wigderson [KUW86] and Mulmuley, Vazirani, and
Vazirani [MVV87]; these determinant-based algorithms have played a central role in the study of parallel
algorithms and derandomization [see, e.g., FGT19].

Matchings have also played a central role in counting complexity. The problem of counting perfect matchings
of a given graph was shown by Valiant [Val79] to be complete for the class #P, yielding strong evidence
that it cannot be solved in polynomial time. This was the first major result of its kind, demonstrating
hardness of counting for a problem whose search version, i.e., the problem of distinguishing zero and
nonzero counts, is polynomial-time solvable.

Given the hardness of exact counting [Val79], the main focus in subsequent work has been on approximate
counting. Unlike combinatorial optimization problems which often admit nontrivial approximation factors,
for a wide range of counting problems, the approximation factor achievable in polynomial time can be
either made as small as 1 + ϵ, in fact for inverse-polynomially small ϵ, or it has to be super-polynomially
large [SJ89]. Therefore, the gold standard for approximate counting is a fully polynomial time random-
ized approximation scheme or FPRAS; this is a randomized algorithm whose output is a (1 + ϵ)-factor
approximation to the count with high probability, running in time poly(n, 1/ϵ).

In a breakthrough, Jerrum and Sinclair [JS89] established an FPRAS for counting matchings of all sizes on
unweighted graphs. It has been a major problem to design an FPRAS for counting matchings of a given size
or perfect matchings. In a celebrated result, Jerrum, Sinclair, and Vigoda [JSV04] designed an FPRAS for these
problems on the important subclass of bipartite graphs. Bipartite graphs are an important subclass because
of their connection to the permanent of matrices. However, designing an FPRAS to count matchings of a
given size on general graphs remains open [see, e.g., VW18].

Besides the class of bipartite graphs, there is another major tractable class for counting perfect matchings.
Motivated by models in statistical mechanics, Temperley and Fisher [TF61] and Kasteleyn [Kas61] related the
number of perfect matchings in 2-dimensional lattices to a specific determinant, obtaining exact formulae
for these counts. Later, Kasteleyn [Kas67] generalized this to all planar graphs, obtaining a polynomial time

3



algorithm for exactly counting perfect matchings in such graphs. At a high-level, this algorithm finds a
suitable signing of the adjacency matrix, a.k.a. the Tutte matrix, ensuring its determinant is the square of
the number of perfect matchings.

While both bipartite and planar graphs form tractable classes for (approximately/excatly) counting perfect
matchings, see Figs. 2 and 3, there is a major difference between the two when it comes to non-perfect
matchings. The problem of counting k-matchings, matchings with exactly k edges, is no harder than
counting perfect matchings in general. In a general graph on n nodes, one can add n − 2k dummy nodes
connected to everything else, see Fig. 4, and count perfect matchings in the modified graph; the result
is (n − 2k)! times the number of k-matchings. This strategy extends to counting k-matchings in bipartite
graphs as well. However, in the case of planar graphs, the dummy nodes destroy planarity. This is not just a
coincidence. Jerrum [Jer87] showed that while perfect matchings can be counted exactly in polynomial time
on planar graphs, counting k-matchings on such graphs is #P-hard, adding to the mystery of determinant-
based counting algorithms. Nevertheless, Jerrum [Jer87] raised the possibility of approximately counting
k-matchings in polynomial time, i.e., designing an FPRAS. As the main application of our results, we
resolve this question affirmatively.

Theorem 7. There is a randomized algorithm that receives a planar graph on n nodes and a number k, and outputs a
(1 + ϵ)-approximation to the number of k-matchings with high probability, running in time poly(n, 1/ϵ).

More generally, our results apply to the setting of weighted graphs, a.k.a. monomer-dimer systems. Suppose
that a given graph G = (V, E) has edge weights w : E → R≥0 and vertex weights λ : V → R≥0. Then
define the weight of a matching M as

weight(M) := ∏
e∈M

w(e) · ∏
v ̸∼M

λ(v),

where e ranges over dimers, i.e., the matching edges, and v ranges over the monomers, i.e., the vertices not
matched in M. Normalizing these weights defines a probability distribution over matchings, and approxi-
mating the normalizing factor, a.k.a. the partition function, is known to be equivalent to approximately
sampling from this distribution [JVV86]. It was shown by Jerrum and Sinclair [JS89] how to approximately
sample/count from monomer-dimer systems in general graphs when edge weights w(e) are polynomially
bounded and there are no vertex weights λ(v); these assumptions on weights are quite strong, despite their
seemingly innocuous appearance. Approximately sampling/counting from the monomer-dimer systems
with no restriction on the weights remains a key challenge.

Computing statistics of monomer-dimer systems on 2-dimensional lattices, and more generally planar
graphs, was originally studied in statistical physics [Kas61; TF61; Kas67]. However, the determinant-based
algorithms found could only solve the case of zero monomer weights: ∀v : λ(v) = 0. Here we remove this
restriction, at the expense of approximation.1

Theorem 8. There is an algorithm that receives a planar graph G = (V, E) on n vertices and weights w : E → R≥0
and λ : V → R≥0, and outputs a random matching M, whose distribution is ϵ-close in total variation distance to the
monomer-dimer distribution induced by w, λ. The running time of this algorithm is poly(n, log(1/ϵ)).

Our results do not rely on planarity strongly. In fact, Theorems 7 and 8 extend to any downward-closed
family of graphs for which perfect matchings can be counted efficiently. Examples that go beyond planar
graphs include certain minor-free graphs [EV19], and small genus graphs [GL99].

The key insight that enables Theorems 7 and 8 is that we show local random walks on the set of monomers,
or terminals of the matching M, mix rapidly on all graphs. Monomer-dimer systems and k-matchings
each induce a distribution on subsets S of vertices of the graph if we only view the unmatched (or dually
matched) vertices, i.e., the monomers. On planar graphs, the weight of each such set S can be computed
efficiently, up to a global normalizing factor.

µ(S) := ∑ {weight(M) | M is a perfect matching on Sc},

where Sc denotes the complement of S.
1We remark that by the results of [Jer87], approximation appears to be necessary, at least for the counting problem.
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We show how to sample a set S with probability approximately following the above, by running a multi-site
Glauber dynamics on S for polynomially many steps. The rapid mixing of this random walk, combined
with known equivalences between approximate sampling and approximate counting [MVV87] imply
Theorems 7 and 8.

We prove Theorems 7 and 8 by showing sector-stability of the corresponding generating polynomials and
then applying Theorem 4. We show sector-stability by starting from results of Heilmann and Lieb [HL72]
who characterized regions of root-freeness for unconstrained non-homogeneous monomer-dimer systems,
and applying a set of tools we build that show sector-stability degrades gracefully under a number of
operations, like conditioning on cardinality or homogenization.

Lemma 9. Suppose that a graph G = (V, E) is given with edge weights w : E → R≥0 and vertex weights
λ : V → R≥0 which together define a weight on matchings

weight(M) = ∏
e∈M

w(e) ∏
v ̸∼M

λ(v).

For any k, the following polynomial, encoding k-matchings, is sector stable for a sector of aperture π/2.

g(z1, . . . , zn) = ∑
M matching of size k

weight(M) ∏
v ̸∼M

zv.

Additionally the following homogeneous polynomial in 2n variables, encoding all matchings, is sector stable for a
sector of aperture π/2.

g(z1, . . . , zn, z′1, . . . , z′n) = ∑
M matching

weight(M) ∏
v ̸∼M

zv ∏
v∼M

z′v.

Remark 10. Techniques developed by Jerrum and Sinclair [JS89] allow one to tune the weights in monomer-
dimer systems to make the probability mass of k-matchings inverse-polynomially large. In turn combining
these techniques with rejection sampling, Theorem 7 can be derived from Theorem 8. Nevertheless,
our techniques directly solve the sampling problem for k-matchings, monomer-dimer systems, and even
monomer-dimer systems restricted to k-matchings, without the need to resolve to weight-tuning.

1.2 Application: Nonsymmetric Determinantal Point Processes

Determinantal point processes (DPP) are elegant probabilistic models used to capture the relationship
between items within a subset drawn from a large universe of items. A DPP is formally defined with the
help of an n × n positive semidefinite matrix L ⪰ 0, where a subset S ⊆ [n] is chosen with probabilities
given by minors of L:

P[S] ∝ det(LS,S).

Determinantal point processes (DPP) were first studied in 1975 by Macchi [Mac75], who was motivated by
the study of fermion processes in quantum mechanics. Since then, DPPs have been very well-studied and
have found applications in many areas such as physics [CMO19; Sos02], random matrix theory [Joh05],
combinatorics [BBL09] (random spanning trees [BP93], non-intersecting paths [Ste90]) and recently in
machine learning. Within machine learning, DPPs have been used in several applications such as document
summarization [Cha+15; LB12], recommender systems [GPK16], and many others [Aff+14; KT11; KSG08].
Due to broad and practical applications, algorithmic questions occurring in DPP have received lot of
attention and efficient algorithms for DPP learning [Aff+14; Bor09; KT12; LMR15] and sampling [AOR16;
RK15; LJS16; Hou+06] have been provided.

Kulesza and Taskar [KT11; KT12] studied an extension of DPPs where the samples are conditioned on
having a fixed size k. These so called k-DPPs are formally defined with the help of an n × n positive
semidefinite matrix L ⪰ 0 and a cardinality parameter k, where a subset S ∈ ([n]k ) of size k is chosen with
probabilities given by k × k minors of L:

P[S] =
det(LS,S)

∑T∈([n]k )
det(LT,T)

.
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The authors in [KT11; KT12] used k-DPPs to attack problems such as the image search task, where the goal
is to output a diverse set of image results, of desired cardinality, in response to a search query.

Almost all prior work on DPPs assume the underlying matrix L is symmetric and positive semidefinite
(PSD) and the understanding of nonsymmetric DPPs (where L does not have to be symmetric) remains
sparse. For nonsymmetric matrices L that are guaranteed to have nonnegative minors, the nonsymmetric
DPP can still be defined by

P[S] ∝ det(LS,S).

Nonsymmetric DPPs are important as they allow one to model both repulsive and attractive relationships
between items, providing a significantly improved modeling power. For applications of nonsymmetric
DPPs see [Gar+19], where the authors use nonsymmetric DPPs to effectively recover correlation structure
within data, particularly for data that contains large disjoint collections of items where the items within the
same collection have positive correlation while those across different collections are negatively correlated.
Brunel [Bru18] also studied learning certain subclasses of nonsymmetric DPPs. Due to their enhanced
expressivity power and potential new applications, the study of nonsymmetric DPPs has been an active
area of research in the past few years.

The question of sampling from nonsymmetric k-DPPs is known to be polynomial-time tractable. Indeed,
the counting question, that is computing the sum of principal minors can be done exactly, even when
restricted to k × k principal minors. However these naive algorithms are cumbersome to run in practice, as
they require at least n × n matrix multiplication time. A similar barrier existed for symmetric DPPs, but
Markov-chain-based sampling from k-DPPs for symmetric L provided one way to get around this barrier
[AOR16; LJS16], yielding algorithms that run in O(npoly(k)) time.

As an application of our results we provide the first efficient Markov-chain-based algorithm to sample from
a wide class of nonsymmetric k-DPPs. Our algorithm works for any nonsymmetric matrix L satisfying
L + LT ⪰ 0. These matrices are the sum of a skew-symmetric matrix and a symmetric PSD matrix; this
class of matrices L, which are automatically guaranteed to have nonnegative principal minors, defines the
main class of nonsymmetric DPPs studied in the literature [Gar+19].

Theorem 11. For any matrix L ∈ Rn×n satisfying L + L⊺ ⪰ 0 and cardinality k ≥ 0, consider the distribution
µ : ([n]k ) → R≥0 defined by

µ(S) ∝ det(LS,S).

Then the k ↔ (k − 2) random walk for µ has relaxation time poly(k).

Note that each step of this random walk can be implemented using O(n2) computations of k × k principal
minors of L. So this results in a mixing time of O(n2poly(k) · log(1/ P[S0])), which can be much faster
than n × n matrix multiplication time. To the best of our knowledge, our work is the first to establish that
natural Markov chains can be used for the task of sampling from nonsymmetric k-DPPs.

Unsurprisingly, we show this result by proving sector-stability of the corresponding generating polynomial.

Lemma 12. For any matrix L ∈ Rn×n satisfying L + L⊺ ⪰ 0 and number k, the following polynomial is sector-stable
w.r.t. a sector of aperture π/2.

g(z1, . . . , zn) = ∑
S∈([n]k )

det(LS,S)∏
i∈S

zi.

1.3 Application: Partition-Constrained Strongly Rayleigh Distributions

Suppose that µ : ([n]k ) → R≥0 is a density where gµ is stable with respect to a half plane in C, i.e., stable
w.r.t. the sector {z ∈ C | Re(z) > 0}. Distributions with this property are called strongly Rayleigh, and
they have been widely studied in the literature [see, e.g., BBL09]. Strongly Rayleigh distributions include
determinantal point processes, certain classes of matroids, results of the symmetric exchange process, and
more [see, e.g., BBL09]. Motivated by the important problems of computing mixed discriminants, and
counting intersections of matroids, several works [AO17; SV17; Cel+16; KD16] have studied the problem of
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sampling from such µ subject to a partition constraint. That is, given a partition T1 ∪ T2 ∪ · · · ∪ Ts = [n], and
numbers c1, . . . , cs ∈ Z≥0, the question is to sample S ∼ µ conditioned on the constraint

∀i : |S ∩ Ti| = ci.

If we allow arbitrarily large s, this problem becomes as hard as (approximately) computing the mixed
discriminant for which no FPRAS is known. If one defines the same problem for distributions µ that have a
log-concave generating polynomial, then partition-constrained sampling is as hard as sampling from the
intersection of two matroids; this is again an important open problem, which remains unsolved.

Given the importance of partition-constrained distributions mentioned above, a natural question is, are
there assumptions on the partitions that allow for an FPRAS or approximate sampling? Celis, Deshpande,
Kathuria, Straszak, and Vishnoi [Cel+16] obtained such a positive result when the number of partitions s is
a constant and importantly when gµ can be computed exactly (as is the case for determinantal distributions).
They relied on polynomial interpolation to achieve this result. However, for many strongly Rayleigh
distributions µ, we can only approximately compute gµ.

As a further application of our results, we show how to sample from partition-constrained µ, as long the
number of partitions is O(1); our algorithm only requires having access to an oracle for µ, as opposed to
gµ. We do this by showing that the local random walks on the partition-constrained µ still mix rapidly, by
relying on Theorem 4 and showing sector-stability for the conditioned distribution.

Lemma 13. Suppose that µ has a sector-stable polynomial with respect to the sector {z ∈ C | Re(z) > 0}. Then the
partition-constrained distribution for O(1)-many partitions is sector-stable w.r.t. a sector of Ω(1) aperture.

As a corollary of the ability to approximately compute the partition function for µ subject on partition
constraints, we show how to approximately compute mixed derivatives of real-stable polynomials gµ,
where the number of distinct derivatives is O(1). Note that without this restriction of O(1), this problem
becomes as hard as computing mixed discriminants.

Corollary 14. Let g(z1, · · · , zn) be a homogeneous real-stable polynomial with nonnegative coefficients. Suppose we
are given oracle access to coefficients of g, and we are also given a term with nonzero coefficient. Then there is an
FPRAS that can approximately compute mixed derivatives of g along positive directions, as long as the number of
unique directions is O(1). That is given v1, · · · , vs, x ∈ Rn

≥0 with s = O(1) and tuple (c1, · · · , cs) ∈ Zs
≥0, we can

efficiently approximate
∂c1

v1 · · · ∂cs
vs g
⃓⃓⃓
z=x

.

Here ∂v is simply the operator v1∂z1 + · · ·+ vn∂zn .

1.4 Techniques and Related Work: Pairwise Correlations and Spectral Independence

In order to prove Theorem 4, we build on a recent line of work leveraging high-dimensional expanders for
sampling problems [Ana+19; AL20; ALO20; CLV20b; Fen+20; Che+20; CLV20a]. Specifically, we use the
framework dubbed spectral independence by Anari, Liu, and Oveis Gharan [ALO20]. In this framework,
one views a target distribution µ as a weighted hypergraph or simplicial complex. Establishing a certain
notion of high-dimensional expansion would then imply fast-mixing of natural random walks that converge
to µ [DK17; KM16; LLP17; KO18; AL20]. Reinterpreting the notion of high-dimensional expansion needed
for rapid mixing, Anari, Liu, and Oveis Gharan [ALO20] showed how properties of pairwise correlations
in the distribution µ, and certain distributions derived from µ, can imply rapid mixing of natural local
random walks, see Definition 1.

The spectral independence framework can be applied to the problem of sampling from a distribution on
size k subsets of a ground set of n elements, given up to a global normalizing factor by a function µ:

µ :
(︃
[n]
k

)︃
→ R≥0.

In many cases the domain of µ can be adapted to be of the form ([n]k ) [see, e.g., ALO20]. For concreteness,
let us look at the distribution of monomers in a monomer-dimer system on the graph G = (V, E). Not all

7



monomer sets have the same size, but we can view each set S ⊆ V as a subset of size |V| chosen from
V × {0, 1}:

S ↦→ {(v, 0) | v /∈ S} ∪ {(v, 1) | v ∈ S}.

This gives us a distribution µ : (V×{0,1}
|V| ) → R≥0. Note that in the case of k-matchings, the monomer set is

already of a fixed size, and there is no need for this transformation.

Anari, Liu, and Oveis Gharan [ALO20], based on earlier work of Alev and Lau [AL20], showed that rapid
mixing of natural local random walks converging to µ can be established as long as pairwise correlations of
µ (and certain distributions derived from µ) are spectrally bounded. More precisely, consider the correlation
matrix defined below.

Definition 15 (Correlation Matrix). For a distribution µ over subsets S of a ground set [n], define the
correlation matrix Ψ ∈ Rn×n as the matrix having entries

Ψi,j := PS∼µ[j ∈ S | i ∈ S]− PS∼µ[j ∈ S].

The entries of the matrix Ψ measure pairwise correlations or in other words deviations from pairwise
independence.2 The key behind the spectral independence framework is to show that the maximum
eigenvalue of Ψ is O(1). Note that Ψ is always similar to a symmetric matrix and therefore has real
eigenvalues [ALO20]. More precisely, one needs to show this not just for the distribution µ, but also
conditioned versions of it. We remark that in earlier work, a variant of the correlation matrix has appeared
where the entries are instead given by P[j ∈ S | i ∈ S] − P[j ∈ S | i /∈ S], but these two variants are
intimately connected and for homogeneous distributions one can go from eigenvalue bounds of one to the
other.

Definition 16 (Conditioned Distribution). For a distribution µ defined over subsets of a ground set [n] and
T ⊆ [n], define µT to be the distribution of S ∼ µ conditioned on the event T ⊆ S.

One has to show that the correlation matrix has bounded eigenvalues for every T where µT is well-defined.
The main challenge in all applications of this framework is bounding these eigenvalues. Roughly speaking,
prior work has managed to use three categories of techniques to establish eigenvalue bounds, discussed
below:

Trickle-Down. Oppenheim [Opp18] showed that an eigenvalue bound on Ψ for µ{1}, µ{2}, . . . , µ{n} also
implies an eigenvalue bound for Ψ for the distribution µ, under some mild additional conditions. This
enables an inductive approach to bounding the eigenvalues of Ψ, starting from µT for large sets T (i.e., of
size k − 2). The main challenge here has been that in most cases, the eigenvalue bound deteriorates, and the
induction cannot be completed. A notable exception to this deterioration of the bounds are distributions
related to matroids [Ana+19], but as was observed by Alev and Lau [AL20], for almost any distribution
beyond matroids and matroid-related ones, one has to employ additional tricks to make this induction
useful for sampling.

Negative Correlation. Some distributions have negative entries in Ψ, everywhere except on the diagonal;
this property is known as negative correlation [see, e.g., BBL09]. Most notably, the uniform distribution
on spanning trees, balanced matroids, and determinantal point processes, all have negative correlation
[FM92; BBL09]. When negative correlations exist, the ℓ1 norm of rows of Ψ and consequently its maximum
eigenvalue can be bounded by O(1) [ALO20]. For non-homogeneous distributions that satisfy negative
correlation, related statements hold, as was shown recently by Eldan and Shamir [ES20].

2We remark that in some works using the spectral independence framework, the matrix Ψ is defined slightly differently, with
entries of the form PS∼µ[j ∈ S | i ∈ S]− PS∼µ[j ∈ S | i /∈ S], but these matrices are directly related, and we believe it is more natural
to consider the definition presented here.
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Figure 5: The two vertices are ei-
ther both monomers or neither are.
Therefore they are positively corre-
lated.

Figure 6: Only two matchings, one
with odd edges and one with even
edges, appear in the monomer-
dimer system. The endpoints have
long-range correlation.

Figure 7: Informally, the number
of vertices strongly correlated with
any given vertex is bounded.

Correlation Decay. When µ is a distribution defined on an underlying graph, e.g., spin systems which
are distributions on random assignments σ : V → [q] of q spins to vertices of a graph, one can define a
class of properties under the umbrella term “correlation decay”. Informally, these properties imply that for
distant vertices u, v, the values of σ(u), σ(v) are almost independent of each other. Naturally this is very
useful for bounding the entries and consequently the eigenvalues of the matrix Ψ. While correlation decay
properties were known to yield efficient sampling/counting algorithms, when combined with the spectral
independence framework, they resulted in algorithms with truly polynomial running times (compared
to prior results which often needed extra assumptions such as boundedness of the degrees in the graph)
for several problems like the hardcore model [ALO20], two-spin systems [CLV20b], and random colorings
[Che+20; FGT19].

Unfortunately, in the case of the monomer distribution in monomer-dimer systems, none of these methods
appear to work.3 As demonstrated in Figs. 5 and 6, we can have both positive and long-range correlations.
Nevertheless, we show that the correlation matrix is still bounded, see Fig. 7.

Theorem 17. Suppose that µ : ([n]k ) → R≥0 is a density whose generating polynomial is sector-stable w.r.t. a sector
of aperture Ω(1). Then the ℓ1 norm of any row in the correlation matrix Ψ is bounded by O(1).

∀i : ∑
j

⃓⃓
PS∼µ[j ∈ S | i ∈ S]− PS∼µ[j ∈ S]

⃓⃓
≤ O(1).

Note that a bound on the ℓ1 norm of rows, is also a bound on the maximum eigenvalue [see, e.g., ALO20].
Combining this with sector-stability of various distributions, e.g., the monomer distribution, results in
specific bounds on the correlation matrix.

Corollary 18. Let µ be the distribution of monomers in uniformly random k-matchings or more generally monomer-
dimer systems with arbitrary weights (possibly restricted to k-matchings). Then the ℓ1 norm of rows of the correlation
matrix Ψ are bounded by a universal constant:

∀i : ∑
j

⃓⃓
PS∼µ[j ∈ S | i ∈ S]− PS∼µ[j ∈ S]

⃓⃓
≤ O(1).

Our main technical contribution is introducing a new technique for establishing spectral independence
based on the roots of the partition function in the complex plane.

3We remark that for the special case of unweighted monomer-dimer systems, a form of correlation decay does exist [Bay+07].
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1.5 Techniques and Related Work: Sector-Stability and Fractional Log-Concavity

The study of roots of polynomials associated with distributions has a very long history, most notably in
statistical physics. In statistical physics, having roots near the positive real axis is recognized as an indicator
of phase transition. This is because roots indicate singularity of log gµ, and many physical observables
are related to log gµ and its derivatives, which can rapidly change near singularities [see, e.g., YL52].
For monomer-dimer systems, Heilmann and Lieb [HL72] established a crucial property for roots of the
polynomial defined below:

∑
M matching

weight(M) ∏
v ̸∼M

zv.

Here for each matching M, we multiply its weight by the variables zv, for v ranging over the monomers.
Heilmann and Lieb [HL72] formally showed that if we plug in z1, . . . , zn ∈ C such that Re(z1), . . . , Re(zn) >
0, then the above expression will not result in zero. This is the crucial property that Lemma 9 and
consequently Theorems 7 and 8 rely on. This property is also known as Hurwitz-stability [see, e.g., BB09].

Note that the polynomial defined by Heilmann and Lieb [HL72] is not homogeneous, i.e., it does not
correspond to a distribution on ([n]k ). Unfortunately, homogenization does not preserve Hurwitz-stability;
similarly we do not get Hurwitz-stability if we only include matchings M of a particular size. We establish
the weaker, but more robust, notion of sector-stability for these polynomials. Instead, we show that
monomer distributions, when homogenized or conditioned on size, cannot have roots in a wide enough
sector in Lemma 9.

A special case of sector-stability, when the sector is the entire right-half-plane, is equivalent to Hurwitz-
stability. For homogeneous polynomials, Hurwitz-stability is the same as another widely studied property
called real stability, or more generally, the so-called half-plane property [BBL09]. Under this special notion
of sector-stability, the distribution µ is known to exhibit negative correlations [BBL09], and rapid mixing
of local random walks for µ had already been established [FM92; AOR16]. Outside of this special case,
negative correlation no longer holds. But we show that correlations are still bounded in Theorem 17.

As mentioned before, real-stability, a special case of sector-stability for homogeneous polynomials, is a
well-studied property of the generating polynomial gµ that already implied efficient sampling or counting
algorithms for µ [see, e.g., AOR16]. However, recent works have shone light on a generalization of real-
stability, that does not involve root locations. Anari, Liu, Oveis Gharan, and Vinzant [Ana+19] established
that if log gµ(z1, . . . , zn) is concave, viewed as a function over Rn

≥0, then k ↔ (k − 1) down-up random
walks for sampling from µ would rapidly mix. This class of log-concave polynomials have been instrumental
in resolving several long-standing questions about matroids [Ana+18; Ana+19; BH19].

In prior work, Michelen and Sahasrabudhe [MS19] established central limit theorems under univariate
sector-stability of the generating polynomial associated with distributions supported on Z, with extra
assumptions on the variance of these distributions. While these results are in the same spirit as bounds
we get on correlations, we do not know of a formal connection. A key difference in this work is that we
deal with high-dimensional distributions and multivariate polynomials, and make no assumptions beyond
sector-stability; in contrast, to get central limit type theorems, one has to at least make the assumption that
the variance grows to infinity.

In other related work, Wagner [Wag09] established generalizations of the result of Heilmann and Lieb [HL72]
on Hurwitz-stability of monomer-dimer distributions, showing that certain polynomials enumerating
spanning subgraphs with degree constraints are sector-stable. We leave the question of deriving algorithmic
applications of this sector-stability to future work.

Log-concave polynomials are a proper superset of real-stable polynomials, at least in the homogeneous
case. This was first shown by [Går59], and this important result has been instrumental in the development
of hyperbolic programming [Gül97]. A natural question that arises is, whether there is an analogous
generalization of log-concavity, that is a superset of sector-stable polynomials.

We define a natural property, that we call fractional log-concavity. We show that in a “local sense”, it is
actually equivalent to spectral independence of the distribution µ, and then show that sector-stability
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implies fractional log-concavity, establishing an extension of the result of Gårding [Går59].

Definition 19 (Fractional Log-Concavity). We call the polynomial gµ(z1, . . . , zn) fractionally log-concave
with parameter α ∈ [0, 1], if log gµ(zα

1 , . . . , zα
n) is concave, viewed as a function over Rn

≥0.

Note that for α = 1, this is the same as log-concavity. We show the following local equivalence between
spectral independence and fractional log-concavity.

Proposition 20. Suppose that µ : ([n]k ) → R≥0 is a distribution, and define the n × n correlation matrix Ψ as

Ψi,j := PS∼µ[j ∈ S | i ∈ S]− PS∼µ[j ∈ S].

Then the maximum eigenvalue of Ψ is bounded by O(1) if and only if the polynomial gµ is fractionally log-concave
around the point z = (1, . . . , 1) for a parameter α > Ω(1).

This combined with Theorem 17 shows that sector-stable polynomials are fractionally log-concave around
the point (1, . . . , 1). However, sector-stability is preserved under the change of variables zi ↦→ λizi, where
λ1, . . . , λn are positive reals. This is because sectors in the complex plane are preserved under such scalings.
This allows us to map any point in Rn

≥0 to the special point (1, . . . , 1). Using this we establish an extension
of the result of Gårding [Går59].

Theorem 21. Suppose that gµ is sector-stable for a sector of aperture Ω(1). Then gµ is fractionally log-concave for a
parameter α ≥ Ω(1).

As a corollary of this result we prove bounds similar to those obtained by Anari, Oveis Gharan, and Vinzant
[AOV18] relating the entropy of fractionally log-concave, and consequently sector-stable, distributions with
the sum of their marginal entropies. See Section 6.

While fractional log-concavity around the point (1, . . . , 1) is equivalent to a bound on the eigenvalues of the
correlation matrix Ψ, it does not imply a bound for the conditioned distributions µT . However fractional
log-concavity at all points in Rn

≥0 does. This is because the polynomial for conditional distributions µT can
be obtained as the following limit:

gµT ∝ lim
λ→∞

gµ

⎛⎝elements in T⏟ ⏞⏞ ⏟
λz1, λz2, . . . , zn

⎞⎠ /λ|T|.

Scaling the variables or the polynomial, and taking limits all preserve fractional log-concavity.

Corollary 22. If µ : ([n]k ) → R≥0 has a fractionally log-concave generating polynomial with parameter α = Ω(1),
or a sector-stable polynomial with a sector of aperture Ω(1), then for all conditioned distributions µT , the correlation
matrix has maximum eigenvalue O(1).

This work establishes a number of examples of fractionally log-concave polynomials, but all of our
examples are also sector-stable. We leave the question of finding other examples of fractionally log-concave
polynomials that go beyond sector-stability to future work. However, we make the following concrete
conjecture, in line with a conjecture of Mihail and Vazirani [MV89] on the expansion of 0/1 polytopes.

Conjecture 23. Suppose that µ is the uniform distribution on a subset of the hypercube F ⊆ {0, 1}n, such that the
convex hull conv(F) has edges of bounded length O(1). Then we conjecture that the polynomial

∑
S∈F

µ(S)∏
i∈S

zi

is fractionally log-concave for a parameter α > Ω(1).

Matroids are a special case of this conjecture, and their log-concavity has already been established [AOV18].
However this conjecture is widely more general, encompassing combinatorial objects such as delta-matroids,
Coxeter matroids, and more [BGW03].
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Figure 8: The k ↔ (k − 2) random walk on monomers avoids the parity issue. In each round two vertices
can change their membership in the monomer set. This is an instance of the multi-site Glauber dynamics.

1.6 Techniques and Related Work: Multi-Site Glauber Dynamics

All of our sampling algorithms are obtained as instantiations of the k ↔ ℓ down-up random walk for some
ℓ = k − O(1) applied to an appropriate formulation of the target distribution µ, see Definition 1.

Unlike prior applications of spectral independence, we have to consider the k ↔ ℓ random walk when
k − ℓ > 1. For example, consider the distribution of monomers in a monomer-dimer system. As we
have established, we view this distribution on the ground set (V×{0,1}

|V| ), where V is the set of vertices.
The k ↔ (k − 1) random walk then becomes the following procedure, known as the (single-site) Glauber
dynamics:

Start with monomer set S0
for t = 0, 1, . . . do

Select vertex v ∈ V uniformly at random
Select St+1 between St − {v} and St ∪ {v} randomly with probability ∝ µ(resulting set)

It is not hard to see that cardinality of all monomer sets in a graph has a constant parity. This means that
there is no transition possible from a monomer set S to another set S′ that differs in exactly one vertex from
it. Therefore the k ↔ (k − 1) walk produces a constant sequence S0, S1 = S0, . . . and obviously does not
mix. Note, however, that considering a higher value of k − ℓ gets around this parity issue, see Fig. 8.

We show that fractional log-concavity, and consequently, sector-stability, imply rapid mixing of the k ↔ ℓ
random walk for some ℓ = k − O(1). The following is the result of slight modifications of arguments by
Alev and Lau [AL20].

Theorem 24. Suppose that µ : ([n]k ) → R≥0 has a fractionally log-concave polynomial with parameter α = Ω(1).
Then for some ℓ = k − O(1), the k ↔ ℓ random walk started at the set S0, gets ϵ-close in total variation distance to
the distribution µ in time

tmix(ϵ) = O
(︃

kO(1) · log
(︃

1
ϵ · Pµ[S0]

)︃)︃
.

One has to be careful that log(1/ Pµ[S0]) is not too large in applications. This is achieved by making sure
that S0 has at least a 2−poly(n) probability under µ. In all distributions we study in this paper, this can be
achieved easily. For example, in the case of monomer-dimer distributions, by running a maximum-weight
matching algorithm, we can find a matching M having the maximum possible weight under the monomer-
dimer distribution. Because the number of matchings is at most 2poly(n), we can safely use the monomer
set of this matching as the starting point S0.
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2 Preliminaries

We use Z≥0 to denote the set of nonnegative integers {0, 1, . . .}. For a subset S of Rn, we use conv(S) to
denote the convex hull of S.

We use [n] to denote {1, . . . , n}. For a set U we let (U
k ) denote the family of k-element subsets of U. When n

is clear from context, we use 1S ∈ Rn to denote the indicator vector of the set S ⊆ [n], having a coordinate
of 0 everywhere, except for elements of S, where the coordinate is 1.

2.1 Markov Chains

For two measures µ, ν defined on the same state space Ω, we define their total variation distance as

dtv(µ, ν) =
1
2 ∑

ω∈Ω
|µ(ω)− ν(ω)| = max {Pµ[S]− Pν[S] | S ⊆ Ω}.

The total variation distance is a special case of a more general class of “distance measures” called f -
divergences.

Definition 25 ( f -Divergence). For a convex function f : R≥0 → R, define the f -divergence between two
distributions µ and ν on the same state space as follows:

D f (ν ∥ µ) = Eω∼µ

[︃
f
(︃

ν(ω)

µ(ω)

)︃]︃
− f

(︃
Eω∼µ

[︃
ν(ω)

µ(ω)

]︃)︃
.

Note that by Jensen’s inequality this quantity is always nonnegative. Also notice that if µ and ν are
normalized distributions the second term is just f (1). In this work we will mostly deal with the case of
f (x) = x2, where D f (· ∥ ·) is also known as the variance. However, we state some results in full generality
in terms of arbitrary f -divergences, in the hope that they fill find use in future work.

A Markov chain on a state space Ω is defined by a row-stochastic matrix P ∈ RΩ×Ω. We view distributions
µ on Ω as row vectors, and as such µP would be the distribution after one transition according to P, if we
started from a sample of µ. A stationary distribution µ for the Markov chain P is one that satisfies µP = µ.
Under mild assumptions on P (ergodicity), stationary distributions are unique and the distribution νPt

converges to this stationary distribution as t → ∞ [LP17]. We refer the reader to [LP17] for a detailed
treatment of Markov chain analysis.

A popular method for the analysis of Markov chains is via functional inequalities, that are often inequalities
relating f -divergences before and after one transition of the Markov chain. We are specifically interested
in contraction of the f -divergence. We state this contraction for (potentially non-square) row-stochastic
operators for generality.

Definition 26. We say that a row-stochastic matrix P ∈ RΩ×Ω′
contracts f -divergence w.r.t. a background

distribution µ : Ω → R≥0 by a factor of α if for all other distributions ν : Ω → R≥0, we have

D f (νP ∥ µP) ≤ α · D f (ν ∥ µ).

We remark that all row-stochastic operators P have contraction with factor 1, and this property is only
useful for α < 1.
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Proposition 27 (Data Processing Inequality). For all row-stochastic matrices P ∈ RΩ×Ω′
and all distributions

µ, ν : Ω → R≥0, we have
D f (νP ∥ µP) ≤ D f (ν ∥ µ).

For a Markov chain P, we define the mixing time from a starting distribution ν as the first time t such that
νPt gets close to the stationary distribution µ.

tmix(P, ν, ϵ) = min {t | dtv(νPt, µ) ≤ ϵ}.

We drop P and ν if they are clear from context. If ν is the Dirac measure on a single point ω, we write
tmix(P, ω, ϵ) for the mixing time. When mixing time is referenced without mentioning ϵ, we imagine that ϵ
is set to a reasonable small constant (such as 1/4). This is justified by the fact that the growth of the mixing
time in terms of ϵ can be at most logarithmic [LP17].

Contraction inequalities, combined with companion inequalities relating dtv and f -divergences allow one
to bound the mixing time of a Markov chain. In particular for f (x) = x2, one has the relationship

dtv(ν, µ) ≤ O
(︃√︂

Dx2(ν ∥ µ)

)︃
,

and as a result we get

Proposition 28 ([see, e.g., LP17]). Suppose that a Markov chain P with stationary distribution µ has α-factor
contraction in Dx2(· ∥ ·). Then the mixing time of P started from a point ω satisfies

tmix(P, ν, ϵ) ≤ O
(︃

log(1/ϵ Pµ[ω])

log(1/α)

)︃
≤ O

(︃
1

1 − α
· log

(︃
1

ϵ · Pµ[ω]

)︃)︃
.

2.2 Complex Analysis

We use the following classic result from elementary complex analysis [see, e.g., Lan13].

Lemma 29 (Schwarz’s lemma). Let D = {z ∈ C | |z| < 1} be the open unit disk in the complex plane C centered
at the origin and let f : D → C be a holomorphic map such that f (0) = 0 and | f (z)| ≤ 1 on D. Then

| f ′(0)| ≤ 1.

2.3 Linear Algebra

Theorem 30 (Courant-Fischer Theorem). Let A ∈ Rn×n be a Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. Then

λk(A) = min
U

max
v

⟨v, Av⟩,

where the minimum is taken over all (n − k + 1)-dimensional subspaces U ⊆ Rn and the maximum is taken over all
vectors v ∈ U with ⟨v, v⟩ = 1.

Theorem 31. Let A ∈ Rn×m, B ∈ Rm×n where m ≥ n. Then the spectrum of BA (as a multiset) is precisely the
union of the spectrum of AB (as a multiset) with m − n copies of 0.

2.4 Polynomials and Sector-Stability

We use F[z1, . . . , zn] to denote n-variate polynomials with coefficients from F, where we usually take F

to be R or C. We denote the degree of a polynomial g by deg(g). We call a polynomial homogeneous of
degree k if all nonzero terms in it are of degree k. We define a λ-scaling, or an external field of λ ∈ Fn
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applied to a polynomial g, to be the polynomial g(λ1z1, . . . , λnzn). If g was the generating polynomial of a
distribution µ, we denote the same scaling applied to µ by λ ⋆ µ.

The main workhorse behind our main results are polynomials that avoid roots in certain regions of the
complex plane.

Definition 32 (Stability). For an open subset U ⊆ Cn, we call a polynomial g ∈ C[z1, . . . , zn] U-stable iff

(z1, . . . , zn) ∈ U =⇒ g(z1, . . . , zn) ̸= 0.

We also call the identically 0 polynomial U-stable. This ensures that limits of U-stable polynomials are
U-stable. For convenience, when n is clear from context, we abbreviate stability w.r.t. regions of the form
U × U × · · · × U where U ⊆ C simply as U-stability.

Our choice of the region U in this work is the product of open sectors in the complex plane.

Definition 33 (Sectors). We name the open sector of aperture απ centered around the positive real axis Γα:

Γα := {exp(x + iy) | x ∈ R, y ∈ (−απ/2, απ/2)}.

With these definitions Definition 3 is the same as Γα-stability for a suitable parameter α.

Note that Γ1 is the right-half-plane, and Γ1-stability is the same as the classically studied Hurwitz-stability
[see, e.g., Brä07]. Another closely related notion is that of real-stability where the region U is the upper-
half-plane {z | Im(z) > 0} [see, e.g., BBL09]. Note that for homogeneous polynomials, stability w.r.t. U is the
same as stability w.r.t. any rotation/scaling of U; so Hurwitz-stability and real-stability are the same for
homogeneous polynomials.

2.5 Half-Plane Stability

Consider an open half-plane Hθ =
{︁

e−iθz
⃓⃓

Im(z) > 0
}︁
⊆ C. A polynomial g(z1, · · · , zn) ∈ C[z1, · · · , zn] is

Hθ-stable if g does not have roots in Hn
θ . We call H0 and Hπ/2 the upper half-plane and right half-plane

respectively. We say g is Hurwitz-stable if it is Hπ/2-stable. We say g is real-stable if it is H0-stable and has
real coefficients.

We observe that for homogeneous polynomials, the definition of Hθ-stable is equivalent for all angles θ.

Lemma 34 (Theorem 1.6, [BB09]). Suppose that f j ∈ C[z1, · · · , zn] for all j ∈ N is U-stable for an open set
U ⊆ Cn and that f is the limit, uniformly on compact subsets of U, of the sequence

{︁
f j
}︁

j∈N
. Then f is either

U-stable or it is identically equal to 0.

In particular, if f j has bounded degree for all j ∈ N, and the sequence
{︁

f j
}︁

j∈N
converges to f coefficient-wise, then

f j converge to f uniformly on all compact sets in Rn.

Proposition 35 (Polarization, [BBL09]). For an element κ of Nn let

Rκ [z1, · · · , zn] = {polynomials in R[zi]1≤i≤n of degree at most κi in zi for all i}

Ra
κ [zij] =

{︁
multi-affine polynomials in R[zij]1≤i≤n,1≤j≤κi

}︁
The polarization map ∏↑

κ is a linear map that sends monomial zα = ∏n
i=1 zαi

i to the product

1
(κ

α)

n

∏
i=1

(elementary symmetric polynomial of degree αi in the variables {zij}1≤j≤κi )

where (κ
α) = ∏n

i=1 (
κi
αi
).

A polynomial g ∈ Rκ [zi]1≤i≤n with nonnegative coefficients is real-stable if an only if its polarization ∏↑
κ(g) is also

real-stable.
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Taking polarization of zk with κ = n, we obtain the following well-known result.

Corollary 36. For k ≤ n, the k-th symmetric polynomial in n variables ek(z1, · · · , zn) is real-stable/Hurwitz-stable.

The following theorems will be useful in the proof of Theorem 11.

Theorem 37. Let g(z1, · · · , zn) ∈ R[z1, · · · , zn] be Hurwitz-stable. Let ge (go) be the even (odd) part of g i.e., the
sum of terms cαzα whose total degree |α|1 is even (odd resp.). Then ge and go are either identically 0 or Hurwitz-stable.

Proof. We have g = ge + go. Replace zj with iyj with yj ∈ H0. Let h({yj}n
j=1) := g({iyj}n

j=1), he({yj}n
j=1) :=

ge({iyj}n
j=1) and ho({yj}n

j=1) := i−1go({iyj}n
j=1) then he, ho are polynomials with real coefficients, and h is

upper half-plane stable.

We have h = he + iho, and this is the unique way to write h as h1 + ih2 where hj are polynomial with real
coefficients, for j ∈ {1, 2} . By [BB09, Lemma 1.8, part (2)], he and ho are real-stable or identically 0. Thus ge,
go are Hurwitz-stable or identically 0.

Theorem 38 ([BBL09], Proposition 3.2). Let A1, · · · , An be (complex) positive semi-definite matrices and let B be
a (complex) Hermitian matrix, all matrices being of the same size m × m.

1. The polynomial
f (z1, · · · , zn) = det(z1 A1 + · · ·+ zn An + B)

is either identically zero or real-stable;

2. If B is also positive semi-definite then f has all non-negative coefficients.

Lemma 39. Consider A ∈ Rn×n satisfying A+ AT is positive semi-definite. Let f (z1, · · · , zn) = ∑S⊆[n] z[n]\S det(AS,S).
Then f has non-negative coefficients, and is either identically 0 or Hurwitz-stable.

Proof. Clearly, A+ AT is positive semi-definite, so A is a P0-matrix (see [Gar+19, Lemma 1]) i.e., all principle
minors of A are nonnegative. The coefficients of f are principle minors of A, and are thus nonnegative.

Let D = (A + AT)/2, X = (A − AT)/2. Note that X is skew-symmetric, thus B := iX is a Hermitian matrix,
and D is positive semi-definite. Apply Theorem 38 with Aj = diagej for j ∈ [n] where ej is the j-th standard
basis vector, An+1 = D and B = iX, we have g(z1, · · · , zn, zn+1) := det(∑n

i=1 zi Ai + zn+1D + iX) is either
identically 0 or real-stable.

Let wj := i−1zj, Z = ∑n
i=1 zi Ai = diagz1, · · · , zn and W = diagw1, · · · , wn. We can rewrite

g(z1, · · · , zn, i) = det(Z + iD + iX) = det(iW + iA) = in det(W + A)

= in ∑
S⊆[n]

w[n]\S det(AS,S) = in f (w1, · · · , wn)

If g ≡ 0 then so is f . Suppose g ̸≡ 0. Fix arbitrary w1, · · · , wn in the right half plane Hπ/2. Observe that
zj = iwj is in the upper half plane H0. Real-stability of g implies f (w1, · · · , wn) = g(z1, · · · , zn, i) ̸= 0,
hence f is Hurwitz-stable.

We also need the following for the proof of Theorem 8.

Theorem 40 ([HL72]). Consider a graph G = G(V, E) on n vertices with edge weight w : E → R≥0 and vertex
weight λ : V → R≥0. For S ⊆ V, let mS := ∑M weight(M) = ∑M(∏e∈M w(e)∏v ̸∈S λ(v)) where the sum is
taken over all perfect matchings M of S. The following polynomial is Hurwitz-stable

f (z1, · · · , zn) = ∑
S⊆V

z[n]\SmS
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2.6 Matroids

A matroid M = (E, I) is a structure consisting of a finite ground set E and a non-empty collection I of
independent subsets of E satisfying:

1. If S ⊆ T and T ∈ I , then S ∈ I .

2. If S, T ∈ I and |T| > |S|, then there exists an element i ∈ T \ S such that S ∪ {i} ∈ I .

The rank of a matroid is the size of the largest independent set of that matroid. If M has rank r, any set
S ∈ I of size r is called a basis of M. Let BM ⊂ I denote the set of bases of M. The set of bases BM of a
matroid unique define M.

We say a matroid M is strongly Rayleigh or satisfies the weak half-plane property if f (z1, · · · , zn) =
∑S∈BM

zS is real-stable.

For partition T1, · · · , Ts of [n], and tuple (c1, · · · , cs) ∈ Ns, the partition matroid M associated with
(T1, · · · , Ts) and (c1, · · · , cs) is defined by BM = {S ⊆ [n] | |S ∩ Ti| = ci∀i} .

3 Down-Up Random Walks and Spectral Independence

Here we establish sufficient conditions for rapid mixing of the k ↔ ℓ down-up random walks as defined in
Definition 1.

Remark 41. Our arguments in this section are small tweaks of the local-to-global contraction analyses
already found in prior work of Alev and Lau [AL20] and Cryan, Guo, and Mousa [CGM19]; the origin
of these types of arguments goes back to the study of high-dimensional expanders [KM16; DK17; KO18],
and more sophisticated variants useful in the context of Markov chain analysis can be found in recent
works of Chen, Liu, and Vigoda [CLV20b; CLV20a] and Guo and Mousa [GM20]. For the mixing time
bounds in this work, the analysis of Alev and Lau [AL20] and the framework built on it by Anari, Liu, and
Oveis Gharan [ALO20] dubbed “spectral independence” suffices; however, we choose to state a general
local-to-global contraction analysis not found explicitly in prior work, in the hope that it will find use in
future applications.

For a distribution µ : ([n]k ) → R≥0, our goal is to analyze the mixing time of the k ↔ ℓ down-up random
walk. We will do this by establishing contraction of f -divergence in these random walks. Similar to
prior results on local-to-global analysis of high-dimensional expanders, our goal is to show that “local”
contraction of f -divergence (where the down-up walks are applied to a “localization” of µ) implies “global”
contraction of f -divergence.

The down-up walks can be written as the composition of two row-stochastic operators known aptly as the
down and up operators.

Definition 42 (Down Operator). For a ground set [n], and cardinalities k ≥ ℓ define the row-stochastic

down operator Dk→ℓ ∈ R([n]k )×(
[n]
ℓ ) as

Dk→ℓ(S, T) =

{︄ 1
(k
ℓ)

if T ⊆ S,

0 otherwise.

This operator applied to a random set S, produces a uniformly random subset T of size ℓ out of it. The
down operators compose in the way one expects, i.e., Dk→ℓDℓ→m = Dk→m. Note that the down operator
has no dependence on µ. In contrast the up operator as defined below depends on µ and is actually
designed to be the time-reversal of the down operator w.r.t. the background measure µ.

Definition 43 (Up Operator). For a ground set [n], cardinalities k ≥ ℓ, and density µ : ([n]k ) → R≥0, define
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the up operator Uℓ→k ∈ R([n]ℓ )×(
[n]
k ) as

Uℓ→k(T, S) =

{︄
µ(S)

∑S′⊇T µ(S′) if T ⊆ S,

0 otherwise.

If we name µk = µ and more generally let µℓ be µkDk→ℓ, then the down and up operators satisfy detailed
balance (time-reversibility) w.r.t. the µk, µℓ operators. In other words we have

µk(S)Dk→ℓ(S, T) = µℓ(T)Uℓ→k(T, S).

This property ensures that the composition of the down and up operators have the appropriate µ as a
stationary distribution, are time-reversible, and have nonnegative real eigenvalues.

Proposition 44 ([see, e.g., KO18; AL20; ALO20]). The operators Dk→ℓUℓ→k and Uℓ→kDk→ℓ both define Markov
chains that are time-reversible and have nonnegative eigenvalues. Moreover µk and µℓ are respectively their stationary
distributions.

Our goal is to show that these operators contract f -divergence by a multiplicative factor. To this end, it is
enough to show contraction of f -divergence under Dk→ℓ. This is because, by the data processing inequality,
Proposition 27, the operator Uℓ→k cannot increase the f -divergence.

The key ingredient in local-to-global arguments is the “local contraction” assumption. Here, one assumes
that D2→1 contracts f -divergences w.r.t. the background measure µ2. The goal is to go from this assumption,
and similar ones for conditionings of µ, see Definition 16, to contraction of f -divergence for Dk→ℓ. This is
the natural “ f -divergence” generalization of the notion of local spectral expansion and its implications for
global expansion [see KO18].

First we define the notion of the link of the distribution µ w.r.t. a set T [see, e.g., KO18]. This notion is
almost the same as the notion of conditioned distributions µT , see Definition 16, except we remove the set
T as well.

Definition 45. For a distribution µ : ([n]k ) → R≥0 and a set T ⊆ [n] of size at most k, we define the link of T

to be the distribution µ−T : ([n]−T
k ) → R≥0 which describes the law of the set S − T where S is sampled

from µ conditioned on the event S ⊇ T.

Next we define the notion of local f -divergence contraction for a distribution µ.

Definition 46 (Local f -Divergence Contraction). For a distribution µ : ([n]k ) → R≥0 and a set T of size at
most k − 2, define the local contraction at T, to be the smallest number α(T) ≥ 0 such that D2→1 contracts
f -divergences w.r.t. (µ−T)2 = µ−T D(k−|T|)→2 by a factor of α(T). That is α(T) is the smallest number such

that for all ν : ([n]−T
2 ) → R≥0 we have

D f

(︂
νD2→1

⃦⃦⃦
πT(µ)D(k−|T|)→1

)︂
≤ α(T) · D f

(︂
ν
⃦⃦⃦

πT(µ)D(k−|T|)→2

)︂
.

We now show that local contraction of f -divergence results in a bound on the contraction of Dk→ℓ operators.

Theorem 47. Suppose that µ : ([n]k ) → R≥0 has local f -divergence contraction with contraction factors α(T). Define
β(T) = min {1, α(T)/(1 − α(T))}. For a set T ⊆ [n] define

γT := Ee1,...,em∼uniformly random permutation of T [β(∅)β({e1}) · · · β({e1, . . . , em})] .

Then the operator Dk→ℓ has contraction factor at least 1 − 1/ max
{︂

k · γT

⃓⃓⃓
T ∈ ( [n]

ℓ−1)
}︂

.

Proof. Consider an arbitrary distribution ν : ([n]k ) → R≥0. The f -divergence D f (ν ∥ µ) is a difference of two
terms, both involving expectations over samples S ∼ µ:

D f (ν ∥ µ) = ES∼µ

[︃
f
(︃

ν(S)
µ(S)

)︃]︃
− f

(︃
ES∼µ

[︃
ν(S)
µ(S)

]︃)︃
.
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Our strategy is to write this difference as a telescoping sum of differences, where elements of S are revealed
one-by-one in the sum.

Consider the following process. We sample a set S ∼ µ and uniformly at random permute its elements to
obtain X1, . . . , Xk. Define the random variable

τi = f
(︃

E

[︃
ν(S)
µ(S)

⃓⃓⃓⃓
X1, . . . , Xi

]︃)︃
= f

(︄
∑S′∋X1,...,Xi

ν(S′)

∑S′∋X1,...,Xi
µ(S′)

)︄
= f

(︃
νDk→i({X1, . . . , Xi})
µDk→i({X1, . . . , Xi})

)︃
.

Note that τi is a “function” of X1, . . . , Xi. It is not hard to see that

D f (ν ∥ µ) = E[τk]− E[τ0] =
k−1

∑
i=0

(E[τi+1]− E[τi]).

A convenient fact about this telescoping sum is that to obtain D f (νDk→ℓ ∥ µDk→ℓ), one has to just sum
over the first ℓ terms instead of k:

D f (νDk→ℓ ∥ µDk→ℓ) = E[τℓ]− E[τ0] =
ℓ−1

∑
i=0

(E[τi+1]− E[τi]).

This is because the set {X1, . . . , Xℓ} is distributed according to µDk→ℓ. So our goal of showing that Dk→ℓ

has contraction boils down to showing that the last k − ℓ terms in the telescoping sum are sufficiently large
compared to the rest.

Consider applying the assumption of local contraction to the link of the set T = {X1, . . . , Xi}. From this
one can extract that

E[τi+1 | X1, . . . , Xi]− E[τi | X1, . . . , Xi] ≤ α(T) · (E[τi+2 | X1, . . . , Xi]− E[τi | X1, . . . , Xi]).

Defining ∆i = τi+1 − τi, the above can be rewritten as

E[∆i | X1, . . . , Xi] ≤ α({X1, . . . , Xi}) · E[∆i + ∆i+1 | X1, . . . , Xi].

Rearranging yields

E[∆i | X1, . . . , Xi] ≤
α({X1, . . . , Xi})

1 − α({X1, . . . , Xi})
E[∆i+1 | X1, . . . , Xi] ≤ β({X1, . . . , Xi})E[∆i+1 | X1, . . . , Xi].

From this we obtain that if we consider the quantities

∆i · β(∅) · β({X1}) · · · β({X1, . . . , Xi−1}),

they form a submartingale; this means that we have

E[∆ℓ · β(∅) · · · β({X1, . . . , Xℓ−1})] ≥ E[∆0] .

Now, consider an alternative process for generating the ordering X1, X2, . . . , Xk. First select S ∼ µ, and
partition it into two sets, T of size ℓ− 1 and S − T of size k − ℓ+ 1. We then randomly shuffle T and let
X1, . . . , Xℓ−1 be the result, and then randomly shuffle S − T and let Xℓ, . . . , Xk be the result. This process is
equivalent to randomly shuffling all elements of S.

The key insight is that ∆ℓ is only a function of the unordered set T and the ordering of S − T. However the
other factor β(∅) · · · β({X1, . . . , Xℓ−1}) is only a function of the ordering chosen for T and not S − T. This
means that conditioned on T, these two quantities are independent and we get

E[∆ℓ · β(∅) · · · β({X1, . . . , Xℓ−1})] = ET [E[∆ℓ | T] · E[β(∅) · · · β({X1, . . . , Xℓ−1}) | T]] .

From the definition of γT , we obtain

E[∆ℓ · β(∅) · · · β({X1, . . . , Xℓ−1})] ≤ E[∆ℓ] · max
{︃

γT

⃓⃓⃓⃓
T ∈

(︃
[n]
ℓ− 1

)︃}︃
.
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Combining with previous inequalities we obtain

E[∆ℓ] ≥
E[∆0]

max
{︂

γT

⃓⃓⃓
T ∈ ( [n]

ℓ−1)
}︂ .

Similar inequalities can be obtained with ∆0 replaced by ∆1, ∆2, . . . in the above arguments (with potentially
better factors than γT , but we ignore this potential improvement). Averaging over these k inequalities we
obtain

E[∆ℓ] ≥
E[∆0 + · · ·+ ∆k−1]

max
{︂

k · γT

⃓⃓⃓
T ∈ ( [n]

ℓ−1)
}︂ =

D f (ν ∥ µ)

max
{︂

k · γT

⃓⃓⃓
T ∈ ( [n]

ℓ−1)
}︂ .

It just remains to note that

D f (ν ∥ µ)−D f (νDk→ℓ ∥ µDk→ℓ) = E[∆ℓ + · · ·+ ∆k−1] ≥ E[∆ℓ].

Here we used nonnegativity of E[∆i] which follows from convexity of f and Jensen’s inequality. Combining
the previous two inequalities and rearranging the terms yields the desired result.

Remark 48. We remark that similar to prior works, in this paper we only deal with the case where the
α(T) contraction factors only depend on the size |T|. However, we suspect the more general statement
we proved here to be useful in potential future applications of this method, especially to distributions
µ that “factorize” into two independent distributions when conditioned on an element; some potential
examples include distributions over chains in a poset. In these scenarios, the order of conditioning on
the elements matters, and we hope that by having Eorderings[β(∅)β({e1}) · · · β({e1, . . . , em})] instead of
maxorderings {β(∅)β({e1}) · · · β({e1, . . . , em})}, we get more tractable results.

From this point on, we deal with cases where α(T), β(T) only depend on the cardinality |T|, and as such
we write them as αi, βi, where i = |T|. Consequently, the global contraction factor we obtained can be
rewritten as

1 − 1
kβ0β1 · · · βℓ−1

.

Remark 49. A similar, slightly better, contraction factor can be obtained when β(T) only depend on |T|. In
these cases one can simply use E[∆i] ≤ βi · E[∆i+1] and obtain that the we have contraction

E[∆0 + · · ·+ ∆ℓ−1]

E[∆0 + · · ·+ ∆k−1]
≤ 1 + 1/β0 + · · ·+ 1/β0 · · · βℓ−2

1 + 1/β0 + · · ·+ 1/β0 · · · βk−2
.

This is essentially the same bound found by Chen, Liu, and Vigoda [CLV20a] and Guo and Mousa [GM20]
and the analysis is essentially the same as those in its core. However this slightly better bound does not
produce any meaningful improvement in the mixing time bounds we get in this work, and for simplicity
we use the more naive bound.

While it might seem that β0 · · · βℓ−1 can get exponentially large, in the case of distributions that satisfy
spectral independence [ALO20], this product remains polynomially small. In particular, one can show [see,
e.g., ALO20; CLV20a] that if the correlation matrix, see Definition 15, has O(1)-bounded eigenvalues for
the distribution µ and all of its conditionings, then βi ≃ 1/(1 −O(1/(k − i))). In particular, as long as k − i
is larger than a constant (hidden in the O-notation), then βi is finite an can be roughly approximated by
eO(1/(k−i)). Thus for k − ℓ larger than an appropriate constant, we have the bound

β0β1 · · · βk−ℓ ≃ exp
(︃

O
(︃

1
k
+

1
k − 1

+ · · ·+ 1
ℓ

)︃)︃
≤ exp(O(log k)) = poly(k).
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4 Sector-Stability Implies Bounded Correlations

In this section, we prove Theorem 17.

Definition 50 (Signed Pairwise Influence/Correlation Matrix). Let µ be a probability distribution over 2[n]

with generating polynomial f (z1, · · · , zn) = ∑S∈2[n] µ(S)zS.

Let the signed pairwise influence matrix Ψinf
µ ∈ Rn×n be defined by

Ψinf
µ (i, j) =

{︄
0 if j = i
P[j | i]− P[j | ī] else

where P[j | i] = PT∼µ[j ∈ T | i ∈ T], P[j] = PT∼µ[j ∈ T] and P[j | ī] = PT∼µ[j ∈ T | i ̸∈ T].

Let the correlation matrix Ψcor
µ ∈ Rn×n be defined by

Ψcor
µ (i, j) =

{︄
1 − P[i] if j = i
P[j | i]− P[j] else

In Definition 50, we use the convention that the entry Ψinf(i, j) (Ψcor(i, j) resp.) is set to 0 if P[j | i] or P[j | ī]
(P[j | i] resp.) are not well-defined, e.g., P[i] = 0 or P[ī] = 0 (P[i] = 0 resp.)

Note that the influence matrix, Ψinf
µ , was first introduced in [ALO20]. All of eigenvalues of Ψinf

µ and Ψcor
µ

are real [see, e.g., ALO20].

We show that Ω(1)-aperture sector-stability of the generating polynomial of µ implies O(1)-bound on the
row norms of Ψinf

µ and Ψcor
µ . The high level idea is to write the ℓ1-norm of a row of Ψinf as the derivative at 0

of some holomorphic function that maps the unit disk to itself, and then use Schwarz’s Lemma (Lemma 29)
to derive a bound.

Theorem 51. Consider a multi-affine f ∈ R≥0[z1, · · · , zn] polynomial that is Γα-stable with α ≤ 1. Let µ : 2[n] →
R≥0 be the distribution generated by f , then Ψinf

µ and Ψcor
µ have bounded row norms. Specifically,

∑
j
|Ψinf

µ (i, j)| ≤ 2/α − 1,

and
∑

j
|Ψcor

µ (i, j)| ≤ 2/α.

As a corollary, the same bounds hold for maximum eigenvalues, i.e., λmax(Ψ
inf
µ ) ≤ 2/α − 1 and λmax(Ψcor

µ ) ≤ 2/α.

Proof. If we can show the first statement, the second follows from

P[j | i]− P[j] = P[j | i]− (P[j | i]P[i] + P[j | ī]P[ī]) = (1 − P[i])(P[j | i]− P[j | ī])

∑
j
|Ψcor

µ (i, j)| ≤ (1 − P[i])(1 + ∑
j ̸=i

|P[j | i]− P[j | ī]|) ≤ 2/α.

Fix a row i. W.l.o.g., assume i = n. Let h = ∂i f , g = fzi=0. We can assume w.l.o.g. that neither g and h are
the zero polynomial. If either g or h are the zero polynomial then the row just become identically 0 and the
statement is trivial. Let S :=

{︁
j ∈ [n] \ {i}

⃓⃓
P[j | i]− P[j | ī] < 0

}︁
then

∑
j ̸=i

|Ψinf
µ (i, j)| = ∑

j∈S
(P[j | ī]− P[j | i])− ∑

j ̸∈S
(P[j | ī]− P[j | i]). (1)

Note that P[j | i] =
∂jh(1⃗)
h(1⃗)

and P[j | ī] =
∂jg(1⃗)
g(1⃗)

.

21



Define z⃗ ∈ Rn−1 by zj =

{︄
y for z ∈ S
y−1 else

.

Let h̄(y) = h(z⃗) and ḡ(y) = g(z⃗). Note that ∑j∈S ∂jh(1)− ∑j ̸∈S ∂jh(1) = h̄′(1) and the same goes for ḡ. This
is because for each monomial zU = zU∩SzU\S, we have(︄

∑
j∈S

∂jzU − ∑
j ̸∈S

∂jzU

)︄
z⃗=1

= |U ∩ S| − |U \ S| =
(︂

y|U∩S|(y−1)|U\S|
)︂′

|y=1

Substitute into (1), we get

n−1

∑
j=1

|Ψinf
µ (i, j)| = ∑

j∈S
(

∂jg(1⃗)

g(1⃗)
−

∂jh(1⃗)

h(1⃗)
)− ∑

j ̸∈S
(

∂jg(1⃗)

g(1⃗)
−

∂jh(1⃗)

h(1⃗)
) =

ḡ′(1)
ḡ(1)

− h̄′(1)
h̄(1)

= (log ḡ− log h̄)′y=1 = φ′(0)

(2)
where φ(x) = log ḡ(ex)

h̄(ex)
− log ḡ(1)

h̄(1) . Note that φ maps 0 to itself.

Let D, H ⊆ C be the centered (open) unit disk and the (open) right half-plane respectively. For any set
Ω ⊆ C, we let Ω denote its closure.

The Mobius transformation T : x ↦→ x−1
x+1 is a conformal map from H onto D.

For angle θ ∈ (0, π) let Ωθ := {x ∈ C | |Im(x)| < θ} and ϕθ : Ωθ → D, x ↦→ T(exp(πx
2θ )). Note that

ϕθ(0) = T(1) = 0, ϕ′
θ(0) = T′(1) π

2θ = π
4θ and (ϕ−1

θ )′(0) = 1
ϕ′

θ(0)
= 4θ

π .

To bound |φ′(0)|, we show that φ maps Ωαπ/2 to Ωπ−απ/2. Now, for all small ϵ > 0, φ̃ := ϕπ−απ/2+ϵ ◦
φ ◦ ϕ−1

απ/2 is a holomorphic function that takes the centered unit disk to itself. We use Schwarz Lemma to
bound |φ̃′

(0)|, then use this to bound |φ′(0)|.

Let θ := απ/2. Consider x ∈ Ωθ . Note that the function x ↦→ ex maps Ωθ to Sα. Also, ḡ(ex)
h̄(ex)

̸∈ −Sα else

ḡ(ex) + h̄(ex)z = 0 for some z ∈ Sα i.e., f (ex, · · · , ex, z) = 0, which contradicts Sα-sector-stability of f .
In particular, ḡ(ex)

h̄(ex)
never takes negative real value, thus the function log ḡ(ex)

h̄(ex)
is holomorphic, and as

argued earlier, |Im(log ḡ(ex)
h̄(ex)

)| ≤ π − θ. Additionally, since g, h has non-negative coefficients and are not

the zero polynomial, ḡ(1) and h̄(1) are positive real and log ḡ(1)
h̄(1) is a real number. Therefore, |Im(φ(x))| =

|Im(log ḡ(ex)
h̄(ex)

)| ≤ π − θ. Hence, φ maps Ωθ to Ωπ−θ+ϵ for every ϵ > 0.

Fix ϵ > 0. Consider the holomorphic map φ̃ = ϕπ−θ+ϵ ◦ φ ◦ ϕ−1
θ that takes D to itself. Since φ, ϕ∗ both

take 0 to itself, so is φ̃. By Schwarz’s Lemma (Lemma 29), |φ̃′
(0)| ≤ 1. On the other hand, φ̃

′
(0) =

ϕ′
π−θ+ϵ(0)× φ′(0)× (ϕ−1

θ )′(0) = π
4(π−θ+ϵ)

φ′(0) 4θ
π = θ

π−θ+ϵ φ′(0), thus |φ′(0)| ≤ π+ϵ
θ − 1. Taking ϵ → 0 we

get |φ′(0)| ≤ π
θ − 1. Substitute back into (2) gives the desired bound.

Remark 52. Theorem 51’s bounds on ∥Ψinf∥∞, ∥Ψinf
µ ∥, and ∥Ψcor∥∞ are tight, even for homogeneous µ.

For e.g., consider fµ(z1, . . . , zrk) = ∑r−1
i=0 ∏

(i+1)k
j=ik+1 zj For r = 2, we have Ψinf

µ =

[︃
Jk −Jk
−Jk Jk

]︃
− I2k and

∥Ψinf∥∞ = ∥Ψinf
µ ∥ = 2k − 1. For arbitrary r we get Ψcor

µ =

⎡⎢⎢⎢⎣
Jk 0 . . . 0
0 Jk · · · 0
...

...
0 . . . Jk

⎤⎥⎥⎥⎦− 1
r Jrk with J being the all

ones matrix.

∥Ψcor∥∞ = k(1 − 1
r
) + (r − 1)k

1
r
= k(1 − 2

r
) −−−→

r→∞
2k.

22



The bound on ∥Ψcor
µ ∥ is tight in general, for e.g. consider f (z1, . . . , z2k) = ϵz1 . . . z2k + (1 − ϵ) for small

ϵ > 0, but is not tight for homogeneous distribution µ.

Remark 53. The proof of Theorem 51 can be easily generalized to weaker types of stability. In particular, for
the proof we only need to show that φ maps a “large enough” domain A around 0 to a “bounded” region
B. One can then pre-compose φ with a map from the disk D to A and post-compose with a map from B to
the disk D, and apply Schwarz’s lemma to the combination of these maps. We then derive a bound on
|φ′(0)| that only depends on the shape of regions A and B and what the derivative of the pre-composed
and post-composed maps are at 0.

In the case of sector-stability A was the strip Ωαπ/2 and B was Ωπ−απ/2. For weaker stability assumptions,
one can get a smaller but large-enough region A, and a larger but small-enough region B. As an example,
suppose that Γ contains both R>0 and a disk D(1, ϵ) around the point 1, and gµ is sector stable w.r.t.
Γ. Assume further that Γ is closed under inversion z ↦→ z−1 (by choosing a potentially smaller ϵ). By
plugging in zi from R>0, we get that any positive linear of combination of h̄ and ḡ must be D(1, ϵ)-stable.
In particular, we still obtain that ḡ(y)/h̄(y) does not assume any value in R≤0 as long as y ∈ D(1, ϵ). This
means that we can define a branch of log here that only takes values in Ωπ . So our A region will be the
largest domain around 0 with exp(A) ⊆ D(1, ϵ) and B will be Ωπ . For any constant ϵ, the derivative of a
map φ from this A to this B will be O(1).

5 Sector-Stable Polynomials and Preserving Operations

In this section, we show how certain natural operations affect the sector-stability of polynomials. In
Corollary 62, we show that the degree-k part of a Hurwitz-stable (or Γ1-stable) polynomial is Γ1/2-stable. In
Theorem 66, we show that given a homogeneous real-stable polynomial g, the sum of terms in g whose
(T1, . . . , Tk)-degree is equal to (c1, . . . , ck) is Γ1/2k -stable. These results are important ingredients in the
proof of Theorems 8 and 11 and Corollary 14.

Proposition 54. The following operations preserve α-sector-stability:

1. Specialization: g(z1, . . . , zn) ↦→ g(a, z2, . . . , zn), where a ∈ Γ̄α.

2. Scaling: g ↦→ g ⋆ λ, if λi ∈ R≥0∀i ∈ [n].

3. Dual: g ↦→ g∗, where g(z) = ∑S⊆[n] cSzS and g∗(z1, · · · , zn) := ∑S⊆[n] cSz[n]\S.

Proof. Part 1 for a ∈ Γα holds by the definition and for the closed boundary of Γα we can set a to 0 or ∞ by
Lemma 34. Part 2 holds by the definition of sector-stability. For part 3,

g∗(z1, · · · , zn) = z1 · · · zng(z−1
1 , · · · , z−1

n ) ̸= 0

for all z1, · · · , zn ∈ Γα, where we use Γα-stability of g and the fact that z−1
1 , · · · , z−1

n are also in Γα.

Lemma 55 (Homogenization). If multi-affine polynomial g(z1, · · · , zn) := ∑S⊆[n] cSzS is Γα-stable, then its
homogenization

ghom(z1, · · · , zn, w1, · · · , wn) := ∑
S⊆[n]

cSzSw[n]\S

is multi-affine, homogeneous of degree n, and Γα/2-stable.

Proof. One can rewrite ghom as

ghom(z1, · · · , zn, w1, · · · , wn) = w1 · · ·wng(
z1

w1
, · · · ,

zn

wn
).

For any z1, · · · , zn, w1 · · · , wn ∈ Γα/2, we have zi
wi

∈ Γα∀i ∈ [n], thus the RHS is nonzero by Γα-stability of
g.
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Lemma 56. Consider graph G = G(V, E) on n vertices with edge weight w : E → R≥0 and vertex weight
λ : V → R≥0. For S ⊆ V, let mS := ∑M weight(M) = ∑M(∏e∈M w(e)∏v ̸∈S λ(v)) where the sum is taken over
all perfect matching M of S. The following polynomial is Γ1/2 stable

f (z1, · · · , zn, y1, · · · , yn) = ∑
S⊆V

ySz[n]\SmS.

The class of sector-stable polynomials was studied in [SS19], where the authors proved that symmetrization
preserves sector-stablity of univariate polynomials with nonnegative coefficients. Given a univariate
complex polynomial p(z) = anzn + . . . + a1z + a0, its symmetrization with n variables is defined as

P(z1, . . . , zn) =
n

∑
k=0

ak
(n

k)
Sk(z1, . . . , zn),

where Sk(z1, . . . , zn) = ∑1≤i1<...<ik≤n zi1 . . . zik . By the definition, P(z, . . . , z) = p(z). We call (z1, . . . , zn) a
solution of p, if P(z1, . . . , zn) = 0. Define a closed set Ω ⊆ C∗ the locus holder of p, if every solution of p
has a point in Ω. Call a minimal by inclusion locus holder Ω a locus of p. For examples and properties of
locus holders see [SS14]. Note that any polynomial is stable with respect to the complement of its locus.
The next result shows that symmetrization of a univariate sector-stable polynomial with non-negative is
sector-stable. Note that this result is not true if we drop the assumption of nonnegative coefficients.

Proposition 57 (Theorem 1.1 [SS19]). Let p(z) be a univariate Γα-sector-stable polynomial with nonnegative
coefficients. Then Γα is the locus holder of p(z).

For the following results, we consider degree of a polynomial g with respect to indices in a given set S.
When the set S and g is specified let kmax, kmin be the maximum and minimum S-degree among monomials
in g.

Lemma 58. Let U := ∏i Γαi ⊆ C, S ⊆ [n]. If g ∈ C[z1, . . . , zn] is U-stable, then gS
kS

max
, gS

kS
min

are also U-stable.

Proof. We may re-index zi so that S = [t] for some t ≤ n. W.l.o.g., assume that this is already done.

For simplicity of notation, below we omit the superscript S. Observe that U is open and gkmax , gkmin are not
identically zero, by definition.

For λ ∈ R>0 let

gλ(z1, · · · , zn) :=
1

λkmax
g(λz1, · · · , λzt, zt+1, · · · , zn) = gkmax(z1, · · · , zn) +

kmax−1

∑
k=0

gk(z1, · · · , zn)

λkmax−k

Clearly, gλ is U-stable, and limλ→∞ gλ = gkmax , so by Lemma 34, gkmax is U-stable. Similarly, gkmin =

limλ→0+
1

λkmin
g(λz1, · · · , λzn) is U-stable.

As a consequence, we can prove partial derivatives preserve sector stability.

Corollary 59. If p(z1, . . . zn) is a multiaffine polynomial, then the partial derivative of p with respect to any variable
zi in i ∈ [n], which we denote by ∂i p, is sector stable.

Remark 60. In general taking derivatives of non-multiaffine polynomials does not preserve sector stability.
For example, let x, y, z1, . . . , zn be variables. Look at the polynomial p = (xz1 + yz2)(xz2 + yz3)(xz3 +
yz4) . . . (xzn + yz1). This is Γ1/2-sector stable. Now differentiate w.r.t. each zi once, and then set each zi it
to zero. What you end up with is xn + yn. This is only Γ1/n-sector-stable.

Theorem 61 (Hurwitz-stable intersected with one partition constraint). Suppose g(z1, . . . , zn) is a Γ1-stable
polynomial with constant parity (the degree of every monomial is even or odd). Then gk is Γ1/2-stable or identically 0.

More precisely, for k ∈ [kmin, kmax] with k ≡ kmax (mod 2), gk is Γ1/2 stable.
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Proof. Lemma 58 with S = [n] and U = Γn
1 implies gkmax , gkmin are Γ1-stable. W.l.o.g., we assume kmax >

kmin ≥ 0, otherwise there is nothing to prove.

Fix arbitrary z1, . . . , zn ∈ Γ1/2. Let h(z) = 1
zkmin

g(z1z, z2z, . . . , znz). Note that h(0) = gkmin(z1, · · · , zn) ̸= 0
by Γ1-stability of gkmin . Note also that all terms in h has even degree in z, and the highest degree term
is gkmax(z1, · · · , zn)zkmax−kmin with gkmax(z1, · · · , zn) ̸= 0 by Γ1-stability of gkmax . By substituting z = y1/2

in h, we obtain a polynomial h̃(y) := h(y1/2) that satisfies h̃(y) ̸= 0 whenever y ∈ S̄1 ∪ {0}. Indeed,
h̃(0) = h(0) ̸= 0. For y ∈ S̄1, we have z = y1/2 ∈ S̄1/2 thus (ziz)n

i=1 ∈ Γn
1 , and h̃(y) = g(z1z, · · · , znz) ̸= 0

by Γ1-stability of g.

Let λ1, · · · , λd be the roots of h̃(y) where d := deg(h̃) = kmax−kmin
2 . As argued earlier, λi ∈ (C \ (S̄1 ∪{0})) =

H−π/2. Fix k ∈ [kmin, kmax) with k ≡ kmax (mod 2). By half-plane stability of symmetric polynomial (
Corollary 36),

gk(z1, · · · , zn) = gkmax(z1, · · · , zn)et(λ1, · · · , λd) ̸= 0

where t := kmax−k
2 ∈ N.

The next corollary results in DPP sampling on P0 matrix A ∈ Rn×n, where A+ AT is PSD, and the sampling
from monomer-dimer of fixed size.

Corollary 62. Suppose g(z1, . . . , zn) ∈ R[z1, · · · , zn] is Γ1-stable, then gk is either identically 0 or Γ1/2-stable.

Proof. Define the even and odd parts ge and go of g as in Theorem 37. If ge ≡ 0 or go ≡ 0 then the claim
follows from Theorem 61.

Suppose ge, go ̸≡ 0, then they are Γ1-stable by Theorem 37. The claim follows by applying Theorem 61 to ge
(go) if k is even (odd resp.)

Lemma 39 and Corollary 62 together imply the following corollaries.

Corollary 63. Consider A ∈ Rn×n where A + AT is positive semi-definite, then

fk(z1, · · · , zn) = ∑
S∈([n]k )

det(AS,S)z[n]\S

and its dual
f ∗k (z1, · · · , zn) = ∑

S∈([n]k )

det(AS,S)zS

are either identically 0 or Γ1/2-stable, and has nonnegative real coefficients.

Corollary 64. Consider a graph G = G(V, E) on n vertices. For S ⊆ V, let mS be the number of perfect matching
on S. Then

fk(z1, · · · , zn) = ∑
S∈([n]k )

mSz[n]\S

and its dual f ∗k are either identically 0 or Γ1/2-stable.

Lemma 65. Suppose that p(x, y) is a homogeneous polynomial with coefficients in C, defined as

p(x, y) = ∑
i

cixiyd−i.

If p is (Γα × Γβ)-stable for α + β ≥ 1, then the sequence of ci will have no holes (zeros in between nonzeros).
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Proof. We may as well assume that c0, cd ̸= 0, otherwise we can factor out extra powers of x and y. Let
g(z) = p(z, 1). Then g is Γ1-stable. This is because every z ∈ Γ1 can be written as x/y for x ∈ Γα and y ∈ Γβ.
So g(z) = p(x/y, 1) = p(x, y)/yd ̸= 0. Since g is Γ1-stable and has no zero root, its roots must be in the left
half-plane {z | Re(z) < 0}. But then cd−i/cd is going to be up to a plus/minus sign the i-th elementary
symmetric polynomial of the roots of g. Since elementary symmetric polynomials are half-plane-stable for
every open half plane, all the coefficients of g must be nonzero.

Theorem 66. Suppose that g(z1, . . . , zn) is a homogeneous Γ1-stable polynomial. Let T1, . . . , Tk be a partition of [n]
and (c1, . . . , ck) ∈ Zn

≥0. Define the (T1, . . . , Tk)-degree of a monomial zt1
1 · · · ztn

n as (∑i∈T1
ti, ∑i∈T2

ti, . . . , ∑i∈Tk
ti).

Let h be the sum of terms in g whose (T1, . . . , Tk)-degree is equal to (c1, . . . , ck). Then h is either identically zero, or
is Γ1/2k -stable.

Proof. Let hi be the polynomial obtained from g by retaining the terms whose (T1, . . . , Ti)-degree is
(c1, . . . , ci). Then h0 = g and hk = h. If hi ≡ 0 for some i, then hk ≡ 0. W.l.o.g., we assume hi ̸≡ 0∀i.
We will inductively prove that hi is

(︂
∏j∈T1∪···∪Ti

Γα × ∏j∈Ti+1∪···∪Tk
Γβi

)︂
-stable for α = 1/2k and βi =

1 − (2i − 1)/2k. Let ∏i :=
(︂

∏j∈T1∪···∪Ti
Γα × ∏j∈Ti+1∪···∪Tk

Γβi

)︂
. Note that ∏i+1 ⊆ ∏i ∀i.

Note that β0 = 1, and by assumption g = h0 is Γ1-stable. So it is enough to prove the induction step.
Assume the statement is true for hi and let us prove it for hi+1. Fix (z1, . . . , zn) ∈ ∏i+1 . We will show
hi+1(z1, . . . , zn) ̸= 0. Note that we can get hi+1 from hi by retaining the terms whose Ti+1- degree is ci+1.
Take two variables x and y, and look at the polynomial p(x, y) = hi(u1, . . . , un), where

uj :=

⎧⎪⎨⎪⎩
zj if j ∈ T1 ∪ · · · ∪ Ti,
xzj if j ∈ Ti+1,
yzj if j ∈ Ti+2 ∪ · · · ∪ Tk.

Note that p is a homogeneous polynomial (of some degree d). This is because hi is homogeneous in
variables from Ti+1 ∪ · · · ∪ Tk. Let cmax, cmin be the maximum and minimum Ti+1-degree in hi respectively.
Note that the coefficient of xcyd−c in p(x, y) is exactly hTi+1

i,c (z1, · · · , zn), where hTi+1
i,c are sum of terms

in hi whose Ti+1-degree is c. We will show that the coefficient of xcyd−c in p(x, y) are nonzero, where
c ∈ [cmin, cmax]. This immediately implies stability of hi+1, as ci+1 ∈ [cmin, cmax] since hi+1 ̸≡ 0. For
c ∈ {cmin, cmax} , hTi+1

i,c is ∏i-stable by inductive assumption on hi and Lemma 58, thus hTi+1
i,c (z1, · · · , zn) ̸= 0,

as (z1, · · · , zn) ∈ ∏i+1 ⊆ ∏i .

For the remaining c ∈ (cmin, cmax) we will use Lemma 65. Let x ∈ Γβi−α and y ∈ Γβi−βi+1 . These choices
make sure that xzj ∈ Γβi and yzj ∈ Γβi for appropriate indices j. By the inductive assumption, we have
p(x, y) ̸= 0. So p is (Γβi−α × Γβi−βi+1)-stable. If this stability satisfies the assumptions of Lemma 65, we are
done. So it is enough to check

(βi − α) + (βi − βi+1) ≥ 1.

An easy calculation shows that the l.h.s. is

2βi − α − βi+1 = 2 − 2i+1 − 2
2k − 1

2k − 1 +
2i+1 − 1

2k = 1.

Conjecture 67. With the same assumptions as in Theorem 66, we have h is either identically zero or Γ1/k-stable.

For any distribution µ, define its Newton polytope, newt(µ) as the convex hull of its support,

newt(µ) := conv({S : µ(S) > 0}).

Next, we show that the ℓ1 edge lengths of the Newton polytope of a Γ1/k-sector-stable distribution are
O(k).
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Lemma 68. Let µ : 2[n] → R be a Γ1/k-sector-stable distribution, then the length of edges of newt(µ) is at most 2k.

Proof. First, we show that for any face F of newt(µ) there exists a Γ1/k-sector-stable polynomial with
support equal to the face F. Since F is a face of newt(µ) there exists some vector w = (w1, . . . , wn) that

F = arg max{⟨w, x⟩|x ∈ newt(µ)}.

Let gµ be the generation polynomial of µ, then

gµ(tw1 z1, . . . , twn zn) = ∑
α∈Zn

≥0

coeffg(zα)t
⟨w,α⟩zα.

Now, if we take the limit t → ∞ only the coefficients of the terms that are the supports of F remain, i.e.,

1
tmax⟨w,x⟩ g(tw1 z1, . . . , twn zn) = ∑

α∈F
coeffg(zα)z

α + ∑
α ̸∈F

t−δαcoeffg(zα)z
α

gF = lim
t→∞

1
tmax⟨w,x⟩ g(tw1 z1, . . . , twn zn) = ∑

α∈F
coeffg(zα)z

α.

Note that linear scaling of variables and taking limit with respect to t, preserves sector-stability of the
function, therefore, gF is a sector-stable polynomial. By applying the same argument again, we can
constraint the Newton polytope to lower dimensional faces and yet still preserves sector-stability, until we
get an edge. As a result, the corresponding polynomial for each edge should be also Γ1/k-sector-stable.
Now, assume the the contrary that there exists an edge (α, α′) of newt(µ) with length more than 2k. Then
we should have that

g(α,α′)(z) = azα + bzα′ = bzα(ab−1 + zα′−α)

is Γ1/k-sector-stable, where a = coeffg(zα) and b = coeffg(zα′ ) are nonzero.

If |α − α′|1 > 2k, we can set zi ∈ Γ1/k for i ∈ α∆α′ so that zα′−α can take any values in C. Therefore, g(α,α′)(z)
is not Γ1/k-stable, a contradiction.

6 Fractionally Log-Concave Polynomials

In this section, first, we show that any sector-stable polynomial is a fractionally log-concave polynomial
as well. Then by analyzing properties of fractionally log-concave polynomials we show that entropy
of marginals gives a constant approximation for the entropy of fractionally log-concave distributions.
This leads to a multiplicative-approximation on the logarithm of the size of the support of a sector-stable
polynomial (see Lemma 75). Our techniques are a natural generalization of the results obtained by Anari,
Oveis Gharan, and Vinzant [AOV18]. See also [ES20] for recent alternative techniques for proving similar
entropy-based inequalities. An immediate consequence of our results is a multiplicative-approximation for
the logarithm of the size of the support of the monomer-dimer model (Corollary 77).

Lemma 69. For α ∈ [0, 1/2], if polynomial f ∈ R≥0[z1, · · · , zn] is Γ2α-sector-stable then f is α fractionally
log-concave.

Proof. Let µ : 2[n] → R≥0 be the distribution generated by f .

First we claim that, it is enough to prove fractional log-concavity at 1⃗. For an arbitrary vector v⃗ ∈ R>0 let
f v(zi) = f ({vα

i zi}). Note that f v is sector stable, and

∇2 log f ({zα
i })|v⃗ = Dv⃗

(︁
∇2 log f v({zα

i })|1⃗
)︁

Dv⃗,

where Dv⃗ = diag{v−1
i }. So, we proceed by replacing f with f v.
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Let H = ∇2 log f ({zα
i })|1⃗ then

Hij =

{︄
α(α − 1)P[i]− α2 P[i]2 if j = i
α2(P[i ∧ j]− P[i]P[j]) otherwise

.

Since the row norm of Ψcor
µ is bounded by 2

2α , its maximum eigenvalue λmax(Ψcor
µ ) is at most 1

α . Therefore,

1
α

I ≥ Ψcor
µ =

1
α2 diag(1/ P[i])i H +

1
α

I,

hence, H ≤ 0 and log f ({zα
i }) is concave.

Remark 70. Observe that the proof of Lemma 69 implies that µ is α-fractional log-concave if and only if for
all external fields λ ∈ Rn

>0, λmax(Ψcor
λ∗µ) ≤

1
α .

Lemmas 65 and 69 imply that for Γα-sector stable µ : 2[n] → R≥0, the homogenization µhom : ([2n]
n ) → R≥0

of µ is Γα/2-sector stable and α/4-fractionally log concave. In Lemma 71, we prove the stronger statement
that µhom is α/2-fractionally log concave.

Lemma 71. Consider distribution µ : 2[n] → R≥0 that is generated by a Γα-sector-stable polynomial f . Let
ν := µhom be the homogenization of µ. We have λmax(Ψcor

ν ) ≤ 2
α , or, equivalently, the homogenization f hom of f is

α/2-fractionally log-concave.

Proof. Let Ω = {1, . . . , n} and Ω̄ = {1̄, . . . , n̄} . For set S ⊆ Ω, let S ⊆ Ω :=
{︁

ī
⃓⃓

i ∈ S
}︁

. Recall that

ν(U) =

{︄
µ(U ∩ Ω) if U = S ∪ (Ω \ S)
0 else

We let P[i] := PU∼ν[i ∈ U] = PS∼µ[i ∈ S] and P[ī] := PU∼ν[ī ∈ U] = PS∼µ[i ̸∈ S].

Note that Ψcor
ν (i, i) = −Ψcor

ν (i, ī) = P[ī] and Ψcor
ν (ī, ī) = −Ψcor

ν (ī, i) = P[i]. For i ̸= j, we can write

Ψcor
ν (i, j) = −Ψcor

ν (i, j̄) = P[ī]Ψinf
µ (i, j)

Ψcor
ν (ī, j̄) = −Ψcor

ν (ī, j) = P[i]Ψinf
µ (i, j)

Let D := diag(P[i])n
i=1 and D := diag(P[ī])n

i=1. We can rewrite Ψcor
ν as a block matrix in term of matrix

A := Ψinf
µ + I as follow

Ψcor
ν =

[︃
DA −DA
−DA DA

]︃
We consider the left eigenvectors of Ψcor

ν . Recall that all eigenvalues of Ψinf
µ are real.Let v1, · · · , vn ∈ Rn be

a basis of left eigenvectors of Ψinf
µ , with corresponding eigenvalues λ1(Ψinf

µ ) ≥ · · · ≥ λn(Ψinf
µ ). For i ∈ [n],

let wi ∈ R2n be the concatenation of vi and −vi i.e. wt
i :=

[︁
vt

i −vt
i
]︁

. Then {wi} are linearly independent,
and are left eigenvector of Ψcor

ν with eigenvalues {λi + 1}, since

wt
i Ψ

cor
ν =

[︁
vt

i −vt
i
]︁ [︃ DA −DA

−DA DA

]︃
=
[︁
vt

i(D + D)A −vt
i(D + D)A

]︁
=
[︁
vt

i A −vt
i A
]︁
= (λi + 1)wt

i

On the other hand, for i ∈ [n], consider the vector ui ∈ R2n defined by ut
i :=

[︁
et

i D et
i D
]︁

where ei is the i-th
standard basis vector of Rn. Observe that ui ̸= 0 since either P[i] or P[ī] must be nonzero, and ut

i Ψ
cor
ν = 0.

Moreover, {ui} are linearly independent.
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Now, let W, U be the n-dimensional subspaces of R2n spanned of {wi} and {ui} respectively. We show that
W ∩ U = {0} , then conclude that the vectors {ui} ∪ {wi} are linearly independent, and form a basis of
(left) eigenvectors of Ψcor

ν . Hence, the spectrum of Ψcor
ν is the union of {λi + 1}n

i=1 and n copies of 0. In
particular, λmax(Ψcor

ν ) ≤ λ1(Ψinf
µ ) + 1 = 2

α .

Indeed, suppose w ∈ W ∩ U. We can write wt =
[︁
yt −yt]︁ for some y ∈ Rn and wt =

[︁
xtD xtD

]︁
for

some x ∈ Rn.Then

0 = y(i)− y(i) = w(i) + w(i + n) = x(i)P[i] + x(i)P[ī] = x(i)

where we use y(i) (x(i), z(i) resp.) to denote the i-th entries of vector y. Now, all entries of x are 0, so
w = 0.

Remark 72. Lemma 71 is tight. For example, take fµ(x1, x2) = x1 + x2, which is Γ1-stable, then λmax(Ψcor
µhom) =

2.

For any probability distribution µ over a finite set Ω, define its entropy as H(µ) = ∑ω∈Ω µ(ω) log 1
µ(ω)

.
Recall the marginal probability of element i ∈ Ω, µ(i), is the probability that i is in a sample from µ, i.e.,
µ(i) = PS∼µ[i ∈ S]. For any probability distribution, by sub-additivity of entropy, we know that entropy of
marginals is an upper bound on the entropy,

∑
i
H(µ(i)) ≥ H(µ).

The next lemma, which is an analogous of Theorem 5.2. in [AOV18], leads to a lower bound for the entropy
of fractionally log-concave polynomials.

Lemma 73. For any α fractionally log-concave distribution µ : 2[n] → R with marginal probabilities µ1, . . . , µn, we
have

H(µ) ≥ α ∑
i

µ(i) log(
1

µ(i)
).

Proof. Let gµ be the polynomial of the distribution µ. Define

f (z1, . . . , zn) = log gµ

(︁ zα
1

µα
1

, . . . ,
zα

n
µα

n

)︁
.

Since µ is α fractionally log-concave, log gµ(zα
1 , . . . , zα

n) is a concave function. Also, scaling preserves
concavity. Therefore, f (z1, . . . , zn) is concave.

Now, let X be a random variable that indicates a set chosen according to µ, i.e., P(X = 1S) = µ(S). Then,
by Jensen inequality we have that f (E[X]) ≥ E[ f (X)]. Note that,

f (E(X)) = f (µ1, . . . , µn) = log gµ

(︁µα
1

µα
1

, . . .
µα

n
µα

n

)︁
= log(gµ(1, . . . , 1)) = 0.

Also,

f (1S) = log( ∑
T⊆S

µ(T)∏
i∈T

1
µ(i)α

) ≥ log(µ(S)∏
i∈S

1
µ(i)α

) = log µ(S) + α ∑
i∈S

log
1

µ(i)
,

where the inequality is true because of monotonicity of log. Hence,

E[ f (X)] = ∑
S

µ(S) f (1S) ≥ ∑
S

(︄
µ(S) log µ(S) + αµ(S) ∑

i∈S
log

1
µ(i)

)︄

= −H(µ) + α ∑ µ(i) log
1

µ(i)
.

29



By applying Jensen inequality we have

H(µ) ≥ α ∑
i

µ(i) log
1

µ(i)
.

Given a probability distribution µ : 2[n] → R≥0, the dual probability distribution µ∗ is defined so that
the probability of occurrence of each set is equal to its complement under µ, i.e., for any set S ⊆ [n],
µ∗(S) = µ([n] \ S).

Corollary 74. If µ and its dual µ∗ are α-fractionally log-concave then ∑i H(µ(i)) is a α
2 approximation for H(µ).

In particular, if µ is Γ2α-sector-stable, then µ and its dual µ∗ are α-fractionally log-concave (see Proposition 54 Part3
and Lemma 69). Therefore, ∑i H(µ(i)) is a α

2 approximation for H(µ).

Proof. For any probability distribution µ we have that, H(µ) ≤ ∑i H(µ(i)). So, it is enough to prove
H(µ) ≥ α

2 ∑i H(µ(i)) By Lemma 73 we have that,

H(µ) ≥ α ∑
i

µ(i) log
1

µ(i)
,

H(µ∗) ≥ α ∑
i
(1 − µ(i)) log

1
1 − µ(i)

.

Since µ and µ∗ are duals H(µ) = H(µ∗). Therefore,

2H(µ) = H(µ) +H(µ∗) ≥ α(∑
i

µ(i) log
1

µ(i)
+ ∑

i
(1 − µ(i)) log

1
1 − µ(i)

) = α ∑
i
H(µ(i)).

Given a distribution µ, let Fµ be its support. We want to show how to approximate log |Fµ| when µ is
fractionally log-concave. Previously, this result was shown for log-concave polynomials in [AOV18].

Lemma 75. Consider F ⊆ ([n]k ). Let F∗ := {[n] \ S | S ∈ F} . Let

β := max

{︄
∑

i
pi log

1
pi

⃓⃓⃓⃓
⃓ p ∈ conv(F)

}︄
,

and

β∗ := max
{︃

qi log
1
qi

⃓⃓⃓⃓
q ∈ conv(F∗)

}︃
.

Assume there exists an α-fractionally log-concave polynomials g and h with supp(g) = F and supp(h) = F∗. Then
β + β∗ is α/2-approximation for log |F| i.e. (β + β∗) ≥ log |F| ≥ (β + β∗)α/2.

In particular, if there exists an Γ2α-sector-stable polynomial g with supp(g) = F then β + β∗ is α/2-approximation
for log |F|.

Note that β and β∗ can be efficiently computed via a convex program (see e.g. [AOV18, Theorem 2.10].
The following lemma states that any point in conv(Fµ), where µ is fractionally log-concave, is equal to the
marginals of some fractionally log-concave distribution.
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Lemma 76. Consider F ⊆ ([n]k ). Suppose there exists an α-fractionally log-concave polynomial g with supp(g) = F.
For any (p1, · · · , pn) ∈ conv(F), there exists ν with supp(ν) ⊆ F such that ∑S ν(S)zS is α-fractionally log concave
and ν(i) = pi∀i ∈ [n].

Consequently, max
{︂

∑i pi log 1
pi

⃓⃓⃓
p ∈ conv(F)

}︂
= max

{︂
∑i µ(i) log 1

µ(i)

⃓⃓⃓
µ ∈ V

}︂
where V is the set of α-

fractionally log concave µ with supp(µ) ⊆ F.

The proof is very similar to [AOV18, Theorem 2.10, Corollary 2.11]. They show that given any p⃗ =
(p1, · · · , pn) ∈ newt(g), one can find vector λ ∈ Rn

≥0 such that the distribution generated by gλ⋆µ has the
same marginal as p⃗. Now, we are ready to prove Lemma 75.

Proof of Lemma 75. Let ν and ν∗ be the uniform distribution over F and F∗ respectively. For a set F′, let
VF′ be set of α-fractionally log concave µ with supp(µ) ⊆ F′. Since VF is non empty, by Lemma 76,
β = maxµ∈VF

{︂
∑i µ(i) log 1

µ(i)

}︂
and β∗ = maxµ∈VF∗

{︂
∑i µ(i) log 1

µ(i)

}︂
. For S ∈ {F, F∗} , let

µ
argmax
S = argmaxµ∈VS ∑

i
µ(i) log

1
µ(i)

.

We have log(|F|) = H(ν) ≤ ∑i H(ν(i)) = ∑i(ν(i) log 1
ν(i) + (1 − ν(i)) log 1

1−ν(i) ) ≤ β + β∗, where the
inequality follows from the fact that (ν(i))n

i=1 ∈ conv(F) and (1 − ν(i))n
i=1 ∈ conv(F∗).

On the other hand, since the uniform distribution over discrete set maximizes entropy, we have

log(|F|) = H(ν) ≥ H(µ
argmax
F ) ≥ α ∑

i
µ

argmax
F (i) log

1
µ

argmax
F (i)

= αβ,

where the second inequality follows from Lemma 73. Analogously,

log(|F∗|) = H(ν) ≥ H(µ
argmax
F∗ ) ≥ α ∑

i
µ

argmax
F∗ (i) log

1
µ

argmax
F∗ (i)

= αβ∗.

Summing the these two inequalities, we get

log(|F|) ≥ (β + β∗)α/2.

Lemmas 56 and 75 and Corollary 64 together imply the following corollary.

Corollary 77. Consider graph G = G(V, E). Let VM be the family of sets of S ⊆ V that have a perfect matching.
For k ≤ n/2, let VM

k be the family of vertices of size 2k that have a perfect matching. Then we can efficiently compute
a 1/8-multiplicative-approximation of log |VM| and of log |VM

k |.

Analogously, Corollary 63 and Lemma 75 together imply the following

Corollary 78. Consider matrix L ∈ Rn×n such that L + LT is positive semi-definite. Let VL be the family of sets
S ⊆ [n] such that det(LS,S) ̸= 0. For k ≤ n, let VL

k be the family of sets S ∈ ([n]k ) such that det(LS,S) ̸= 0. Then we
can efficiently compute an 1/8-multiplicative-approximation of log |VL| and of log |VL

k |.

Remark 79. In Lemma 68, we show the convex hull of the support of a Γα-sector stable polynomial has edge
length bounded by O(1/α). We can show a similar result for α-fractionally log-concave polynomial. We
leave the problem of characterizing the support of α-fractionally log-concave polynomial to future work.
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7 Cardinality-Constrained Distributions

In this section, we state and prove the formal version of Corollary 14. This result suggests that there is
an efficient algorithm to compute mixed derivatives of a real-stable polynomials. The time complexity
of the algorithm depends on the bit complexity of coefficients of the polynomial and the number of
partial derivatives. As a result, we have an FPRAS to compute the sum of coefficients of the monomials
corresponding to a partition matroid with constantly many parts. By dropping the assumption on the
coefficients, the best known result gives an er-approximation factor where r is the rank of matroid (see
[SV17]).

Lemma 80. Let f ∈ R≥0[z1, · · · , zn] be a homogeneous real-stable polynomial whose maximum degree in zi is κi.
Let κ := ∑n

i=1 κi. For v1, · · · , vk, x ∈ Rn
≥0 with k = O(1), we can compute ∂c1

v1 · · · ∂
ck
vk f |z⃗=x in polynomial time in

κ and b, where b ≥ 0 is the bit complexity of the coefficients of f and the entries of v1, · · · , vk, x i.e., these entries are
in between [−2b, 2b].

Proof. W.l.o.g., we can assume f is homogeneous multiaffine, else we replace f with its polarization
f ↑(zij)i∈[n],j∈[κi ]

(see Proposition 35). Note that f ↑ is a homogeneous multi-affine polynomial in κ variables,
and has same degree as f . Moreover, ∂v f = (∑n

i=1 ∑κi
j=1 vi

∂
∂zij

) f ↑. Each call to the oracle O f ↑ for f ↑ can
be implemented using one call to the oracle O f for f . The bounds on coefficients of f implies that the

coefficients of f ↑ are bounded by 2−κO(1)b and 2κO(1)b. Therefore, in the remainder of the proof we assume
that polynomial f is multiaffine, homogeneous, real-stable, and κ = n.

We divide the proof into two main steps. In the first step, we map the polynomial f to another polynomial
g such that:

1. g is a homogeneous multiaffine real-stable polynomial in n′ = O(n) variables, of degree d = deg(g) =
deg( f ).

2. Dc1
v1 · · · Dck

vk ( f ) |x1,··· ,xn= Dc1
w1 · · · Dck

wk (g) |x′1,··· ,x′
n′
∈ R, where x′i ≥ 0 ∀i ∈ [n′]. The vectors wi ∈ {0, 1}n

and correspond to subsets Ti ⊆ [n′]; further these sets Ti are disjoint. Note that Dc1
w1 · · · Dck

wk (g) is
exactly h(x′1, · · · , x′n) where h(z1, · · · , zn′) is the sum of terms in g whose (T1, · · · , Tk, Tk+1)-degree is
(c1, · · · , ck, ck+1) where Tk+1 = [n′] \⋃︁k

i=1 Ti and ck+1 = n′ − ∑k
i=1 ci.

In the second step, we (approximately) sample from the distribution µ generated by h(x′1z1, · · · , x′nzn).
A routine sampling to counting argument then allows computing an approximation of h(x′1, · · · , x′n).
Theorem 66 and Lemma 69 implies h is α-fractionally log-concave for α = 1/2k+2. Let ∆ = 4(1/α − 1),
ℓ = ⌈∆⌉, the ℓ-steps down-up walk has eigenvalue gap ≥ 1

n∆+1 . The bound on coefficients of f implies an
upper bound of κO(1)b on minS∈supp(µ) log(1/µ(S)), thus the random walk starting from any S ∈ supp(µ)
mixes in kO(1)b steps. We can use Og to obtain a starting state in supp(µ). Each step of the random walk
can be implemented using polynomially many calls Og.

For t ≤ n and vi > 0 for i ∈ [t], it is easy to see that,

(
t

∑
i=1

vi∂i)
c f (x1, · · · , xn) = (

t

∑
i=1

∂i)
c f (v1x1, · · · , vtxt, xt+1, · · · , xn).

For j ∈ [k], consider wj ∈ {0, 1}n where wj
i = 1(vj

i ̸= 0). For i ∈ [n], let x′i := xi ∏j:vj
i ̸=0

vj
i ≥ 0. We have

Dc1
v1 · · · Dck

vk ( f ) |x1,··· ,xn= Dc1
w1 · · · Dck

wk ( f ) |x′1,··· ,x′
n′

.

Consider the linear transformation T : R[zi] → R[zi,j]i∈[n],j∈[k] obtained by substituting zi := ∑k
j=1 zi,j for

i ∈ [n] and define g = T( f ). Clearly, g is multiaffine, homogeneous and real-stable.

We next show that:
T(Dc1

w1 · · · Dck
wk f )|x1,··· ,xn = Dc1

w̃1 · · · Dck
w̃k (g)|{︂

x̃i,j

}︂
i∈[n],j∈[k]

,
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where x̃i,j = xi∀j ∈ [k] and w̃j
i,j′ =

{︄
wj

i if j′ = j
0 else

.

Recall that f and g are multiaffine. To prove the above equality, we only need to verify it for multiaffine
monomials. Fix a multiaffine monomial m and j ∈ [k]. We check

T(wj
i1
· · ·wj

icj
∂i1 · · · ∂icj

m) = w̃j
i1,j · · · w̃j

icj ,j
(

cj

∏
t=1

∂

∂zit ,j
)T(m).

This immediately implies T(D
cj

wj f̃ ) = D
cj

w̃j T( f̃ ) for any multiaffine polynomial f̃ . The desired equality then
follows by induction.

First, wj
i1
· · ·wj

icj
= w̃j

i1,j · · · w̃j
icj ,j

. We can factor them out, and prove T(∂i1 · · · ∂icj
m) = ∏

cj
t=1

∂
∂zit ,j

T(m). Now,

if the it are not distinct, then LHS and RHS are both 0 since m and T(m) are multiaffine. If m does not
divide zit for some t, then both LHS and RHS are 0. Now, write m = m1 ∏

cj
t=1 zit for some monomials m1

containing only variables in [n] \
{︂

i1, · · · , icj

}︂
. Clearly, the LHS is T(m1). The RHS is

cj

∏
t=1

∂

∂xj
it ,j

T(m1)

cj

∏
t=1

(
k

∑
j=1

xj
it
) = T(m1)(

cj

∏
t=1

∂

∂xj
it ,j

)

(︄ cj

∏
t=1

(
k

∑
j=1

xj
it
)

)︄
= T(m1).
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