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Abstract
Equation-free modeling aims at extracting low-dimensional macroscopic dynamics from
complex high-dimensional systems that govern the evolution ofmicroscopic states. This algo-
rithm relies on lifting and restriction operators that map macroscopic states to microscopic
states and vice versa. Combined with simulations of the microscopic state, this algorithm can
be used to apply Newton solvers to the implicitly defined low-dimensional macroscopic sys-
tem or solve it more efficiently using direct numerical simulations. The key challenge is the
construction of the lifting and restrictions operators that usually require a priori insight into
the underlying application. In this paper, we design an application-independent algorithm
that uses diffusion maps to construct these operators from simulation data. Code is available
at https://doi.org/10.5281/zenodo.5793299.

Keywords Equation-free modeling · Diffusion maps · Bifurcation analysis

Mathematics Subject Classification 34C23 · 34C60 · 37M20

1 Introduction

In many complex dynamical systems, low-dimensional macroscopic behavior emerges from
interactions at the high-dimensional microscopic level. For instance, traffic jams are global
macroscopic structures that emerge from the interactions of many individual cars that move
along a road: traffic jams can be captured meaningfully by a single macroscopic quan-
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tity, namely the standard deviation of the distances between consecutive cars from the
mean (see below for further details). Mathematically, these macroscopic structures live on
low-dimensional invariantmanifolds, and our goal is to exploit their existence, and the accom-
panying reduction in effective dimension, when we conduct bifurcation analyses or carry out
direct simulations. In certain cases, we may be able to characterize these invariant mani-
folds explicitly, either because they are given as graphs of explicit functions or because the
microscopic variables decouple from the macroscopic system. In most cases, however, these
invariant manifolds are not known. We are interested in the latter case, particularly where
the microscopic variables are interchangeable when considering macroscopic effects and
structures.

Equation-free modeling, so named because the macroscopic system is not governed by
an explicit ordinary differential equation, estimates macroscopic behavior through a multi-
scale approach that exploits the connection between the macro and microlevels [13–15].
All equation-free methods depend on the following algorithm that attempts to describe the
macroscopic system implicitly [15]:

(1) lift: build the microstate from the macrostate using the lifting operator L;
(2) evolve: simulate the microstate for short bursts using the evolution Φt ; and
(3) restrict: calculate the macrostate from the evolved microstate using the restriction oper-

ator R.

One of the biggest challenges in equation-free modeling is the selection of lifting and
restriction operators since the choice of macroscopic observables may not always be obvi-
ous [22]. One way to pick relevant macroscopic variables is to use a dimension-reduction
technique such as diffusion maps. Diffusion maps embed high dimensional data sets into
low-dimensional Euclidean spaces. Unlike standard linear methods such as principal com-
ponent analysis, diffusion maps are able to find useful low-dimensional parametrizations of
the original data sets even when the data lie on or near a nonlinear manifold [6,7,18]. In this
paper, we show that low-dimensional embeddings given through diffusion maps can be used
to identify macroscopic variables in equation-free modeling and define lifting and restriction
operators. We note that this approach will not necessarily provide a physical interpretation
of the resulting parametrization, though it will often result in macroscopic variables that are
physically relevant: We refer to Sect. 4.3 below, [10, Inset in Figure 5], and [25, § IV.A and
Figure 5] for examples, and to [16] for an algorithm that interprets macroscopic variables in
terms of a prescribed list of relevant physical quantities.

To illustrate our algorithm and demonstrate its effectiveness, we apply it to the same traffic
model [1] to which traditional equation-free modeling had been applied in earlier work [21].
In this model, N cars drive around a ring road of length L . We assume that all drivers follow
the same deterministic behavior governed by

τ
d2xn
dt2

+ dxn
dt

= V (xn+1 − xn), xn ∈ R/LZ, n = 1, 2, . . . N , (1)

where xn is the position of the nth car, τ reflects the inertia of cars (or, alternatively, reaction
times of drivers), and V is the optimal velocity function defined by

V (d) = v0(tanh(d − h) + tanh(h)),

where v0(1 + tanh(h)) is the maximal velocity and h determines the desired safety distance
between cars. In this model, each driver adjusts their acceleration to attain an optimal velocity
based on the distance Δxn = xn+1 − xn to the car in front, which is also referred to as
the headway. Two common traffic patterns can emerge as stable solutions in this model,
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Fig. 1 Shown are the time evolution of the headway profile (left) and the standard deviation from the mean
headway (right) for a solution of (1) with v0 = 1 (all other parameters are as in Table 1). In the left panel, the
initial state (black dots) is compared with the final traveling-wave solution (red diamonds to blue circles): note
that the traffic jam corresponds to the region where the headways are small, so that the car density is high. The
right panel shows the time evolution of the deviation σ of the headways from the mean headway: the increase
and eventual convergence of σ to a larger value indicates the emergence of a stable traffic jam (Color figure
online)

namely free-flow solutions, where cars are evenly spaced and move with the same speed,
and traveling-wave solutions, which correspond to traffic jams [21]. To illustrate traffic jam
solutions, it is convenient to monitor the headways of cars: as indicated in Fig. 1, localized
traveling-wave profiles correspond to traffic jams.

In [21], equation-free methods were used to trace out the bifurcation diagram for the
existence and stability of traffic jam solutions as the parameter v0 varies. For this analysis,
the standard deviation σ of the headways, defined by

σ =
√
√
√
√

1

N − 1

N
∑

n=1

(Δxn − 〈Δxn〉)2,

was used as the macroscopic variable, where 〈Δxn〉 = L
N is the average headway. Low

standard deviations correspond to free-flow solutions, while large values of the standard
deviations correspond to traffic jams (see Fig. 1). With σ as the macroscopic variable, the
lifting and restriction operators are easy to define in terms of σ : as illustrated in Fig. 2, lifting
is accomplished by changing the locations of cars to match a given value of σ , and restricting
is achieved by calculating σ for a given profile. Note that many different car arrangements
will lead to the same value of σ , and the lifting operator is therefore not uniquely defined.
Choosing σ as the macroscopic variable requires knowledge of the underlying structure of
the traffic system, and our goal is to provide algorithms that identify macroscopic variables
automatically from the data set.

We will see that the proposed approach via diffusion maps will, when applied to the same
traffic model, generate a parametrization that recovers the standard deviation as one of the
macroscopic variables; in addition, it identifies the location of the traveling wave as a second
dimension in the parametrization.Using this newembedding as ourmacroscopic variables,we
apply equation-free methods to reproduce the bifurcation diagram in [21], but we do so with
restriction and lifting operators that emerge automatically from our diffusion map analysis
without using prior knowledge of the system. In particular, we use the Nyström extension
for our restriction operator, which gives estimates for new components of an eigenvector
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Fig. 2 Overview of the time stepping scheme in the context of the traffic model [21]. The macroscopic state
σ1 is lifted to the microscopic profileL(σ1). The microsystem is then evolved for time t to the next microstate
Φt (L(σ1)). Finally, this profile is restricted to find the evolution of the macroscopic state σ2 = R(Φt (L(σ1)))

of a matrix constructed from data [20,21,25]. We define a new lifting operator that creates
microstates from linear combinations of existing data points. We apply these techniques to
trace out the bifurcation diagram of traveling waves in the traffic system.

The remainder of this paper is organized as follows. In Sect. 2, we present an overview of
equation-free methodologies. Then, in Sect. 3, we introduce the concept of diffusion maps
and define diffusionmap based operators to be used in equation-freemodeling.We then apply
these techniques to conduct bifurcation analysis in a traffic flow model in Sect. 4. Finally, in
Sect. 5, we summarize our conclusions and give an outlook of open problems.

2 Overview of Equation-FreeModeling

The equation-free approach is appropriate when working with a dynamical system of large
dimension N � 1 that reflects a known microscopic evolution law with N variables
and an attracting, low-dimensional, transversely stable manifold of dimension D. The N -
dimensional system is referred to as the microsystem, and the D-dimensional manifold is
the macrosystem. We assume that the system exhibits a sufficiently prominent time-scale
separation: more precisely, we assume that the dynamics on the D-dimensional attracting
manifold is slow compared to the fast transverse attraction towards this D-dimensional slow
manifold [3,11,17]. Once a system is known to be slow-fast, the goal is to choose macro-level
variables that parametrize the slowmanifold as best as possible. The process of equation-free
modeling uses two operators: lifting and restriction.

The lifting operator L : R
D → R

N maps a given macrostate to a corresponding
microstate. Ideally, the lifting operator maps onto the slow manifold, but this is not easy
to accomplish directly since the slow manifold may not be known. However, exploiting both
time-scale separation and the assumption that the slowmanifold is attracting, we only need to
evolve the liftedmicrostate for a short timeduration, using the time evolutionΦt : RN → R

N ,
to guarantee that the profile is close to the slow manifold, and can then use the resulting
microstate as the image of the macrostate under lifting; see Fig. 3 for an illustration. The
additional short time evolution is often referred to as the healing step. We note that the choice
of the lifting operator may affect the required time duration of the healing step, and we refer
to [24, End of § II.A, and references therein] for a discussion of this issue.
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Fig. 3 Sketch showing the equation-freemodeling approach applied to a slow-fast system.An initialmacrostate
σ is lifted to a point that may possibly not lie on the slow manifold. Evolving this state for a short time will
bring the profile close to the manifold. The evolved microstate can then be restricted back to the macro level
or further evolved in time along the slow manifold

The restriction operator R : R
N → R

D takes a microstate and maps it to a low-
dimensional macrostate. Once the macrolevel parametrization is known, the restriction
operator is usually much easier to define. In the traffic model, for instance, the restriction
operator is defined to be the standard deviation of the headways of a microstate [21]. For
consistency, we require that R ◦ L = IRD , where IRD is the identity map for the macrolevel
variables.

The equation-free framework hasmany benefits as an approach to studymacrolevel behav-
ior. Once the operators are defined, traditional numerical analyses of the macrosystem can be
conducted without constantly simulating the microsystem [15]. Since equilibria can exist in
the macrostate without existing in the microstate, equation-free methods can even carry out
macro-level bifurcation analyses that would be impossible with only the microsystem [15],
and we will demonstrate this in Sect. 4.

3 Lifting and Restriction Operators via DiffusionMaps

We first review diffusion maps [7,22] and then use this approach to construct lifting and
restriction operators from a given data set. The goal of diffusion maps is to embed a large
data set in a high-dimensional space RN into a low-dimensional space RD with N � D so
that the local geometry of the data is preserved.

3.1 DiffusionMaps

Given a high-dimensional data set X = {Xm ∈ R
N | m = 1, . . . , M} of m observations, we

first calculate the pairwise distances between the data points Xm . Although any metric can
be used, we use the Euclidean norm to define di j = ∥

∥Xi − X j
∥
∥. Next, we define an affinity

matrix D ∈ R
M×M such that a smaller distance corresponds to a high affinity and a larger

distance corresponds to a small affinity. We use a Gaussian kernel to construct D from the
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pairwise distances via

Di j = exp

(−d2i j
ε2

)

= exp

(

− ∥
∥Xi − X j

∥
∥
2

ε2

)

where the parameter ε should be chosen so that it reflects the spatial distance on which we
want to resolve geometric features of the data set. Choosing ε too small treats all data points
as singletons; picking an ε that is too large ignores the differences between data points: either
way, we lose all geometric information. In our application in Sect. 4, we select

ε = 5median(di j )i> j

to be five times the median of the pairwise distances di j , which yielded good results. Other
strategies for selecting ε are discussed in [22]. We will discuss at the end of this section
how we can measure the effectiveness of a given choice of ε for reducing the dimension
quantitatively.

Next, we convert the affinity matrix D into a Markov transition matrix M ∈ R
M×M by

normalizing each row via

Mi j := Di j

M
∑

m=1

Dim

.

For each fixed 0 < D < M and each choice of D eigenvalues λ1, . . . , λD with associated
eigenvectors ψ1, . . . , ψD ∈ R

M of the matrix M, we follow [9,19] and map the data set X
into R

D via
Xm �−→ (ψ1,m, . . . , ψD,m) ∈ R

D, m = 1, . . . , M, (2)

where ψ	,m denotes the mth element of the eigenvector ψ	 ∈ R
M for 	 = 1, . . . , D.

The final step is to select the finite set of eigenvectors to represent the data set. A common
choice is to choose the eigenvectors that belong to the D largest eigenvalues of M, where
D is chosen, for instance, to indicate a gap in the eigenvalues. This approach ignores the
fact that not all eigenvectors add significantly new geometric information. Hence, we instead
follow the algorithm proposed in [8] to determine the dimension D and the eigenvectors that
provide anoptimal embedding.The idea is to pick eigenvectors recursively anduse local linear
fits with the previously selected set of eigenvectors to see whether the new eigenvector adds
sufficient information to be included. Assume that we selected the first j−1 eigenvectors and
set Ψ j−1,m := [ψ1,m, . . . , ψ j−1,m]T ∈ R

j−1 for m = 1, . . . , M . Let ψ j be the eigenvector
ofMwith the largest eigenvalue that we have not considered yet. We then compute the local
fit parameters

(α j,m, β j,m) := argmin
α∈R,β∈R j−1

∑

i 	=m

exp

(−‖Ψ j−1,m − Ψ j−1,i‖2
ε2

)
(

ψ j,i −
(

α + βTΨ j−1,i

))2

where “local” refers to data points whose Gaussian distance is small, and the accompanying
cross-validation error for the linear fit given by

r j :=
√
√
√
√

∑M
m=1(ψ j,m − (α j,m + βT

j,mΨ j−1,m))2

∑M
m=1 ψ2

j,m

. (3)

Note that small values of r j indicate that ψ j is locally well approximated by ψ1, . . . , ψ j−1,
so that includingψ j will not improve the embedding.We therefore include only eigenvectors
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with large r j values in our diffusion-map embedding and stop its recursive definition once
the values of r j stay close to zero. A good choice of ε will result in a steep transition of the
sequence r j from values close to one to values close to zero.

3.2 Lifting and Restriction Operators

In general, equation-free modeling requires the definition of lifting and restriction operators
that depend on the specific system we want to solve. Previous approaches rely on in-depth
understanding of the relationship between the microscopic and macroscopic states. Here, we
provide an algorithm for the construction of lifting and restriction operators that depends
only on a given set of data points or observations and on a given diffusion-map embedding.

Restriction. First, we describe how we construct the restriction operator based on a given
data set and the accompanying diffusion-map embedding. Assume X ∈ R

N×M is an existing
data set, andM ∈ R

M×M denotes the associated Markov transition matrix with eigenvalues
λ j and eigenvectors ψ j for j = 1, . . . , M . Assume also that we picked an embedding
dimension D and thatweordered the eigenvaluesλ j and eigenvectorsψ j so that the restriction
operator R evaluated on a point Xm ∈ R

N in the data set is defined by

R(Xm) := (

ψ1,m, . . . , ψD,m
) ∈ R

D, m = 1, . . . , M, (4)

where ψ	,m denotes the mth component of ψ	. We need to extend the definition ofR so that
R(Xnew) is defined for each Xnew ∈ R

N . One option is to add the new data point Xnew to
the existing data set and recalculate for the new (M + 1)-dimensional data set, but this is
cumbersome and very expensive. Instead, we follow [5] and use the Nyström extension to
extendR to new data points. This technique takes advantage of the fact that eigenvectors and
eigenvalues are related by Mψ	 = λ	ψ	 or, equivalently,

ψ	,m = 1

λ	

M
∑

j=1

Mm, jψ	, j , 	,m = 1, . . . , M . (5)

The embedding for a new data point Xnew cannot be calculated directly from (5), but we can
modify this equation as follows to approximate the embedding. As in Sect. 3.1, we define
the Gaussian kernel

Dnew,m = exp

(

−‖Xnew − Xm‖2
ε2

)

and use this expression to define

ψ	,new := 1

λ	

M
∑

m=1

Dnew,m
∑M

j=1 Dnew, j
ψ	,m .

Following [20,22,25], we then set

R(Xnew) := (

ψ1,new, . . . , ψD,new
)

, (6)

which extends the definition of the restriction operatorR to include the new data point Xnew.
Lifting. Next, we focus on the lifting operator. Given a macrostate in φ ∈ R

D , we need
to define a lifted microstate X = L(φ) ∈ R

N so that R(X) = R(L(φ)) ∈ R
D is close

to φ. Our goal is to construct a lifting operator using only the given data set in R
N and

the parametrization via diffusion maps, which we accomplish by solving an optimization
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Fig. 4 Shown is a visualization of the lifting operator. We solve for a linear combination of the K microstates
corresponding to the K nearest macrostates such that the linear combination restricts to φtarget

problem to interpolate between the original data points. Earlier work in [9,19,25] approached
this problem using simulated annealing, which is computationally more expensive. Other
complementary approaches to the construction of lifting operators are discussed in [4, §3.2].

To set up the algorithm, we choose an integer K with K ≥ D + 1. Given the data points
Xm ∈ R

N with m = 1, . . . , M , we define

φm := R(Xm) = (

ψ1,m, . . . , ψD,m
) ∈ R

D, m = 1, . . . , M .

Given a macrostate φtarget ∈ R
D , we first find the K macrostates φmk with k = 1, . . . , K that

are closest to φtarget in R
D . We then define the lifted state to be

L(φtarget) :=
K

∑

k=1

ak Xmk ,

where the coefficient vector (a1, . . . , aK ) ∈ R
K is determined as the solution to the opti-

mization problem

(a1, . . . , aK ) := argmin
(b1,...,bK )∈[0,1]K

{∥
∥
∥
∥
∥
φtarget − R

(
K

∑

k=1

bk Xmk

)∥
∥
∥
∥
∥
subject to

K
∑

k=1

bk = 1

}

.

(7)
Thus, we define the lifted microstate to be the element in the convex hull of the K microstates
whose restriction is closest to the specified targeted macrostate and refer to Fig. 4 for an
illustration. Note that (7) will always have a solution since R is continuous and the domain
is compact. In general, (7) may have multiple solutions. In practice, choosing larger values
of K ensures that zero is achieved as a minimum and evolving solutions forward will bring
them close to the underlying attracting manifold: as discussed in the next section, we did
not encounter any difficulties with potential discontinuities of the lifting operators during
arclength continuation.

4 Case Study: TrafficModel

In this section, we will use the traffic model introduced in Sect. 1 to, first, demonstrate
the accuracy and efficiency of the lifting and restriction operators we defined in Sect. 3.2
and, second, use these operators to compute bifurcation diagrams using equation-free
modeling.
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4.1 Traffic Model

We write the traffic model introduced in Sect. 1 as the first-order system

dxn
dt

= yn,

dyn
dt

= 1

τ

[

V (xn+1 − xn) − yn
]

, n = 1, . . . , N
(8)

with xn ∈ R/LZ, where the velocity function V (d) is given by

V (d) = v0(tanh(d − h) + tanh(h)). (9)

We note that (8) is posed on the 2N -dimensional space (R/LZ × R)2N , and we denote the
solution of (8) with initial condition P = (xn, yn)n=1,...,N evaluated at time t by Φt (P). We
record that (8) respects the action of the discrete symmetry group ZN given by

(R/LZ × R)2N −→ (R/LZ × R)2N ,

(xn, yn)n=1,...,N �−→ (x(n+l)modN , y(n+l)modN )n=1,...,N

(10)

for l ∈ ZN , which corresponds to relabeling the cars consecutively. Throughout, we will
fix the parameters as in Table 1, and focus on the emergence of free-flow and traffic-jam
solutions as the parameter v0, which appears in the velocity function, varies.

The free-flow solution of the microsystem (8) is defined by

xn(t) = (n − 1)
L

N
+ tV

(
L

N

)

mod L, yn(t) = V

(
L

N

)

, n = 1, . . . , N .

It captures traffic flows where all cars keep the same distance L/N from each other and
travel with the velocity dictated by the constant headway. Traffic jams are captured by the
traveling-wave ansatz

(xn(t), yn(t)) = (x∗(n − ct), y∗(n − ct)), n = 1, . . . , N ,

where (x∗(ξ), y∗(ξ)) are N -periodic functions that describe the profile of the traveling
wave, and c is its speed. Substituting this ansatz into (8) shows that the N -periodic pro-
file (x∗(ξ), y∗(ξ)) and the wave speed c need to satisfy the system

−c
dx∗
dξ

(ξ) = y∗(ξ)

−c
dy∗
dξ

(ξ) = 1

τ
(V (x∗(ξ + 1) − x∗(ξ)) − y∗(ξ))

(11)

of delay differential equations. Note that the wave speed c is a variable that needs to be solved
for as part of (11).

4.2 Computing Bifurcation Diagrams Using theMicrosystem

First, we use pseudo-arclength continuation to compute and continue traveling waves, and
their wave speeds, as N -periodic solutions to (11) as the parameter v0 is varied. We will use
the headways u(ξ) := x(ξ + 1) − x(ξ) instead of the positions x(ξ) as variables. We will
argue that N -periodic traveling waves correspond to regular roots of the function
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Table 1 Parameter descriptions and values

Parameter Description Value Used in

N Number of cars 30 (8)

L Length of the road 60 (8)

τ−1 Inertia of the car 1.7 (8)

h Desired safety distance between cars 2.4 (9)

v0 Optimal velocity parameter Uniform([0.96, 1.1]) §4.3

A Amplitude of initial conditions in the dataset Uniform([0, 4.5]) §4.3

tstop Time evolved to create dataset Exp(mean=700, shift=200) §4.3

K Number of points used for lifting 3 (n = 1) §4.4

8 (n = 2) §4.4

tskip Healing evolution time 300 §4.5

δ Time evolved for finite difference approximation 240 §4.5

s Continuation step size 0.0025 (m = 5000) §4.5

0.01 (m = 1000) §4.5

ν Integer multiple of period sought 7 §4.5

F tw : C2(R/NZ) × R
2 −→ C0(R/NZ) × R

2 (12)

(u, c, d) �−→

⎛

⎜
⎜
⎝

ξ �→ c2τ d2u
dξ2

(ξ) − c dudξ (ξ) − V (u(ξ + 1)) + V (u(ξ)) + d

L − ∑N−1
n=0 u(n)

∫ N
0

〈
du
dξ (ξ), u∗(ξ) − u(ξ)

〉

dξ

⎞

⎟
⎟
⎠

for each fixed value of the constant v0 that appears in the function V (u) defined in (9).
The first component F tw

1 is the delay-differential equation (11) written as a function of the
headways; the additional term d accounts for the fact that the first component (with d = 0)
has mass zero, so that

∫ N
0 F tw

1 (u, c, d)(ξ)dξ = 0 for all (u, c, d). The second component
of F tw ensures that the headways add up to the length L of the ring road. Finally, the last
component is a phase condition that selects a unique profile amongst the family of spatial
translates of a given solution u∗(ξ); during continuation, u∗(ξ) is normally taken to be the
solution obtained at a previous continuation step. The following result gives conditions that
guarantee that the set of roots of F tw consists of regular zeros.

Theorem 1 Fix v0. If (i) F tw(u∗, c∗, 0) = 0, (ii) the null space of DuF tw
1 (u∗, c∗, 0) is

two-dimensional and spanned by du∗
dξ , v ∈ C2(R/NZ) with

∑N−1
j=0 v(n) 	= 0, and (iii)

DcF tw
1 (u∗, c∗, 0) is not in the range of DuF tw

1 (u∗, c∗, 0), then D(u,c,d)F tw(u∗, c∗, 0) has a
bounded inverse.

Proof We give only a brief outline of the proof. The key observations are that DuF tw
1 is

Fredholm of index zero and that elements in its range have mass zero. Since du∗
dξ is contained

in the null space of DuF tw
1 , it is not difficult to show that the null space is at least two-

dimensional, and we assumed that its dimension is indeed two and that the null space is
spanned by du∗

dξ and v. Using this information and the remaining assumptions, it is now

straightforward to prove that the null space of the full linearization D(u,c,d)F tw
1 (u∗, c∗, 0) is

123



Journal of Dynamics and Differential Equations

Fig. 5 Shown is the zero set of the function F tw obtained by pseudo-arclength continuation. The associated
traveling-wave profiles are shown for selected points (marked with black diamonds) on the bifurcation branch.
Note that the scale on the vertical axes of the insets varies to better illustrate the shape of the profiles. The
algorithm detects a fold point at (v0, σ ) ≈ (0.97, 0.25), where stability changes: blue dots mark stable states,
and green dots mark unstable states (Color figure online)

Fig. 6 Shown are the Floquet spectra of the linearization of the traffic system (1) about a traveling-wave
solution for the fold points for N = 30 and N = 60 (v0 = 0.97, 0.88 and h = 2.4, 1.2, respectively). Note
that the nonzero Floquet exponents are much closer to zero for N = 60 than for N = 30, which indicates that
the slow-fast time-scale separation becomes less pronounced as N increases

trivial, which proves the theorem since this operator is also Fredholm with index zero by the
bordering lemma (see [2, Lemma 2.3]). ��

Theorem 1 indicates that we can use arclength continuation with a secant predictor
and Newton’s method as corrector to compute branches of traveling waves by solving
F tw(u, c, d; v0) = 0, where F tw depends on v0 through the optimal velocity function
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Fig. 7 Shown are the data points generated for the diffusion map

V (u) = V (u; v0). We implemented this algorithm in Fourier space to take advantage of
spectral convergence.

The result of the numerical continuation is visualized in Fig. 5 using the standard deviation
σ of the headways u∗(n) := x∗(n + 1) − x∗(n). Figure 6 shows the Floquet spectra of the
linearization of themicroscale system about sample travelingwaves for N = 30 and N = 60.
In both cases, λ = 0 is an eigenvalue of multiplicity two.We observe that the gap between the
nonzero Floquet exponents and the eigenvalues at the origin is much smaller for N = 60 than
for N = 30. In fact, the gap will shrink to zero as N goes to infinity due to the presence of a
conservation law in the continuum limit and, in particular, the slow-fast time-scale separation
will become less prominent as N increases. For this reason, we focus on the case N = 30 in
the remainder of this paper.

4.3 Constructing Embeddings Using DiffusionMaps

Our goal is to use diffusion maps to construct an embedding of the essential dynamics of
the microsystem (8) into a low-dimensional space and identify macroscopic variables that
parametrize the reduced dynamics.

Construction of the data set
We construct the data set X to which we apply the diffusion-map approach as follows.

We generate m = 5000 initial conditions of the form

xn(0) = L(n − 1)

N
+ A sin

(
2πn

N

)

, yn(0) = V

(
L

N

)

, n = 1, . . . , N ,

and draw values for the coefficient A ∈ [0, 4.5] and the parameter v0 ∈ [0.96, 1.1] randomly
using the uniform distribution on these intervals. Each corresponding trajectory of (8) is
evolved using an ODE solver until a stopping time tstop is reached that is drawn from a
shifted exponential curve with mean 700 and shift 200. The collection of the M end states of
the headways inRN defines the data set X . We emphasize that we do not include information
about the velocities in our data set. By varying the parameters and the time captured, our
data set X is comprised of varying wave shapes as well as some free-flow profiles. Figure 7
shows that this sampling results in good coverage of the space encapsulating the bifurcation
diagram.
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Fig. 8 Shown are the local linear fit coefficients rk defined in (3) as functions of the index k for the diffusion
maps for D = 1 (left panel) and D = 2 (right panel)

Fig. 9 Plotted are the values of the restriction operator R(Xm ) = ψ1,m against the standard deviation σ

evaluated at the data points Xm for m = 1, . . . , M . Since there is a one-to-one relationship between the
diffusion map embedding and standard deviation of each data point, the two represent the same feature

Reduction to one dimension: factoring out the discrete symmetry
First, we explicitly factor out the discrete symmetry (10) present in the model (8). We

accomplish this by shifting the indices in each profile in our data set using the symmetry
(10) so that the maximum headway max(xn+1 − xn)n=1,...,N inside the profile is achieved at
n = 10. If all solutions converge to, or at least resemble, traveling waves, factoring out the
discrete symmetry effectively factors out the one-dimensional phase of all traveling waves
and should therefore reduce the effective dimension of the embedding by one. Applying the
diffusion-map approach outlined in Sect. 3.1 to the set Xalign of aligned elements in RN and
computing the linear fit coefficients defined in (3), we indeed find that we can take D = 1 as
the embedding dimension so that the resulting restriction operator (4) maps the aligned data
set Xalign into R; see Fig. 8 (left panel).

Figure 9 shows that the diffusion-map variable embedding data set into R is linearly
related to the standard deviation of the headways. In particular, our diffusion-map approach
automatically generates the parametrization introduced previously in [21] based on a priori
knowledge of the dynamics. In general, we might expect that the diffusion-map variables
are mapped one-to-one to a coordinate system defined by physically relevant variables, and
we refer to [10, Inset in Figure 5], [12, Figures 6–7], [23, Figure 15], and [25, § IV.A and
Figure 5] for other examples where similar relationships were observed.
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Fig. 10 Shown is the image of the data set X under the diffusion-map embedding into R
2 where the colors

indicate the standard deviation (left panel) of the pre-images Xm ∈ X and the wave peak position (right panel)

Reduction to two dimensions Next, we apply the diffusion-map approach from Sect. 3.1
directly to the original data set X without any alignment or other adjustments. In this case,
we can take D = 2 as the embedding dimension, and the resulting restriction operator (4)
therefore maps the data set X intoR2; see Fig. 8 (right panel). Figure 10 shows that the planar
embedding parametrizes the data set through polar coordinates where the radial direction
corresponds to the standard deviation of headways and the angular direction captures the
location of the peak of solutions along the circular ring road.

Reducing the number of data points to M = 1000 To see if we can produce the same
results with fewer data points, we also reduce the original diffusion map from M = 5000 to
M = 1000. We use the 5000 point diffusion map to inform the down-sampling of the data.
For the one-dimensional case, we sort the embedding to be numerically ascending, uniformly
sample the M = 1000 data points corresponding to those embeddings, and then recompute
the diffusion map on those points. Since the two-dimensional diffusion map resembles a
disc, we covert the embedding to polar coordinates, uniformly sample 2000 points radially,
and then further uniformly sample m = 1000 points with respect to the angular component.
Finally, we recompute the diffusion map using the data points corresponding to the sampled
embeddings. Figure 7 shows that this down-sampling approach preserves the distribution of
σ values in the dataset. We also observe the same relationship with σ and the location of the
maximum headways in the embeddings.

4.4 Lifting and Restriction Operators

We now test the accuracy of the lifting and restriction operators that we defined in Sect. 3.2
based on the diffusion-map embedding constructed in Sect. 4.3.

First, we test the accuracy of the restriction operator defined via the Nyström extension.
For each fixed element Xm ∈ R

N of our data set X (or Xalign), we first calculate the image
R(Xm) of Xm under the restriction operator (4). Separately, we compute the restriction
operator RX\{Xm } by applying the algorithm outlined in Sect. 3.2 to the data set X \ {Xm},
obtained from X by removing the element Xm , and apply this restriction operator to the
removed element Xm to obtain RX\{Xm }(Xm) via the Nyström extension (6). The norm of
differenceR(Xm)−RX\{Xm }(Xm)measures the accuracy of our approach, and Fig. 11 shows
that the magnitude of the difference of these two images for both one- and two-dimensional
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Fig. 11 To test the accuracy of the restriction operator defined via the Nyström extension, we visualize the
differencesR(Xm ) −RX\{Xm }(Xm ) (see main text for their definitions). Left panel: For D = 1, we plot the
one-dimensional coordinates of R(Xm ) and RX\{Xm }(Xm ) against each other as m varies and indicate the
logarithm of the relative error of their difference using colors. Right panel: For D = 2, we plot the images
R(Xm ) as m varies and visualize the logarithm of the relative error of their difference using colors (Color
figure online)

Fig. 12 Shown are the norms of the difference I
RD − R ◦ L evaluated on the image R(Xalign) for D = 1

(left panel) and on R(X) for D = 2 (right panel)

embeddings is less than 10−5. For D = 1, the average relative error is about 0.26%, while
it is about 1.38% for D = 2. Plotting the errors as function of the reduced macrosystem,
we see that the error is smallest in the center of domain; see Fig. 11. Since the Nyström
extension essentially takes a linear combination of the existing points, this observation is not
unexpected.

Next, the theoretical approach to equation-free modeling assumes that R ◦ L = IRD is
the identity in the macrovariables in RD . To test this property, we calculate the sup-norm of
the map

IRD − R ◦ L : R(Y ) ⊂ R
D −→ R

D, φ �−→ φ − R(L(φ))

for Y = X , Xalign and plot the results in Fig. 12 separately for the aligned and the original
data sets. In the lifting operator, we set the number of interpolating points to K = 3 for
D = 1 and K = 8 for D = 2. We observe very little difference in accuracy based on the
value of K but chose these values as they show the greatest accuracy. For D = 1, the average
relative error is less than 0.27%. For D = 2, this error increases to 1.63%. We observe the
least accuracy near the embeddings corresponding to low values of σ , likely due to the fact
that these traffic jam solutions are unstable and thus have more variation in sampled profiles.
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Fig. 13 Shown is the bifurcation diagram in σ coordinates computed for the microsystem directly, the one-
dimensional, two-dimensional, full, and reduced diffusion maps

Fig. 14 Shown is a comparison of the bifurcation diagram computed using the equation-free approach for the
reduced system with D = 1 associated with the aligned data set and the diagram computed using pseudo-
arclength continuation for the microsystem. Left: M = 5000 points, right: M = 1000 points

4.5 Computing Bifurcation Diagrams Using theMacrosystem

In the preceding sections, we presented a data-driven approach to constructing lifting and
restriction operators based on embeddings derived from diffusion maps and validated this
approximation. In this section, we use an equation-free modeling approach based on these
operators to compute the bifurcation diagram of traveling-wave solutions of (8) in the reduced
n-dimensional embedding space separately for D = 1 and D = 2.

One-dimensional reduction: continuing fixed points
First, we focus on the lifting and restriction operators constructed from the aligned data

set Xalign, where we explicitly factored out the discrete symmetry. As shown above, the
restriction operator maps into R, and the parametrization of the macrosystem corresponds
to the standard deviation of the headways. Since the phase is effectively factored out, we
focus on computing and continuing equilibria of the macrosystem defined implicitly using
an equation-free model.

We denote by Φt (P; v0) the solution of the microsystem (8) with parameter value v0 that
belongs to the initial condition P = (xn, yn)n=1,...,N ∈ R

N . The equation-free macrosystem

123



Journal of Dynamics and Differential Equations

Fig. 15 Shown is a comparison of the bifurcation diagram of periodic orbits computed using the equation-free
approach for the reduced system with D = 2 associated with the data set X and the diagram computed using
pseudo-arclength continuation for the microsystem. The left and right panel show projections into (v0, r) and
(T , r), respectively

is then defined by the finite-difference quotient

dφ

dt
= F(φ, v0) := R (

Φtskip+δ(L(φ); v0)
) − R (

Φtskip(L(φ); v0)
)

δ
,

where φ ∈ R denotes the macrovariable, and the time steps tskip, δ > 0 are chose to obtain
time-scale separation in the dynamics. We then compute and continue roots of the function
F(φ, v0) using pseudo-arclength continuation with a secant predictor of step size s and a
Newton corrector in the space (φ, v0) ∈ R

2.
The results are shown in σ coordinates in Fig. 13 and the diffusionmap coordinates Fig. 14

for both the full diffusion map and the reduced diffusion map. Both bifurcation diagrams
resemble the diagram computed previously in [21] and the diagram in Fig. 5 computed using
continuation in the microsystem. We notice that the reduced diffusion map is more robust
to continuation parameter choices, and we hypothesize that this difference results from the
artificial alignment of the profiles in the one-dimensional diffusion map. In the M = 5000
diffusion map, aligning the data introduces noise around each value of σ since there will
be many profiles originating from different positions to potentially lift. Downsampling the
diffusion map to M = 1000 reduces some of that noise, thus resulting in a more robust
method.

Two-dimensional reduction: continuing periodic orbits
Next, we focus on the lifting and restriction operators constructed from the original data

set X , which results in a two-dimensional macrosystem given by

dφ

dt
= F(φ, v0) := R (

Φtskip+δ(L(φ); v0)
) − R (

Φtskip(L(φ); v0)
)

δ
, (13)

where φ ∈ R
2 again denotes the, now two-dimensional, macrovariable. Traveling waves

of the microsystem (8) correspond to periodic orbits of the planar system (13). We denote
by Φ̃t (φ; v0) the solution operator of the macrosystem (13) and define the one-dimensional
Poincare section RφPS for a nonzero vector φPS ∈ R

2 in the macrosystem. Periodic orbits
with period T of (13) can then be found as solutions of the system F(r , T , v0) = 0 given by

F : R
3 −→ R

2, (r , T , v0) �−→ Φ̃tskip(rφPS; v0) − Φ̃tskip+νT (rφPS; v0).

We solve this system for (r , T , v0) using again pseudo-arclength continuation with a secant
predictor and a Newton corrector. Since the periods are roughly T ≈ 34.5, we choose to
evolve for ν = 7 periods to match δ = 240 ≈ νT used in the one-dimensional system.
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Fig. 16 Shown is a comparison of the bifurcation diagram of periodic orbits computed using the equation-free
approach for the reduced systemwith D = 2 associated with the reduced data set X and the diagram computed
using pseudo-arclength continuation for themicrosystem. The left and right panel show projections into (v0, r)
and (T , r), respectively

The results are illustrated in σ coordinates in Fig. 13 and in diffusion map coordinates
in Fig. 15. The full diffusion map diagram is computed accurately in (r , T , v0)-space and
deviates from the diagram obtained from the microsystem only slightly near the fold point.
The reduced diffusion map diagram shown in Fig. 16 is less accurate, particularly on the
stable branch. In this case, downsampling the data likely left gaps in the (r , T , v0) space of
interest, leading to less accurate results.

5 Conclusions

We considered large-dimensional dynamical systems, referred to as the microsystem, with a
slow-fast time-scale separation. Equation-free modeling attempts to reduce the dynamics of
the microsystem to an implicitly defined, lower-dimensional macrosystem that captures the
dynamics on the slowmanifold of the microsystem corresponding to the slow time scale. The
macrosystem can then be used, for instance, to carry out direct numerical simulations with
larger step sizes compared to simulations of the microsystem or to compute and continue
stationary solutions or periodic orbits of the macrosystem that may correspond to more
complex patterns in the microscopic variables. In previous applications, the macroscopic
variables were identified based on insights into the microsystem: for instance, in the context
of traffic-flowmodels, it makes sense to use the standard deviation from the free-flow solution
to capture traffic-jam solutions.

For this paper, our goal was to develop an application-independent approach to equation-
free modelling that does not rely on being able to make an explicit ansatz for the macroscopic
variables. We focused on a data-driven approach and used diffusion maps to embed the data
set into a lower-dimensional space, identify macroscopic variables that parametrize the low-
dimensional space, and construct lifting an restriction operators that connect the micro-
and macroscopic systems. Our case study demonstrated that these operators can be used to
continue traffic-flow patterns as steady states or as periodic orbits in the macroscopic system.

It would be interesting to see whether this approach can be used to compute and continue
more complex patterns that cannot be characterized directly in the microsystem: examples
are patches of turbulent fluid surrounded by laminar flow, for instance, or other spatially
chaotic structures whose overall shape that may be parametrized by appropriate macroscopic
variables.

In our application, we found that the most important aspect was appropriately sampling
data to build the diffusion map so that all regions of interest in phase space are well-covered.
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Another avenue for future research is to find a better method for identifying the underlying
data set, for instance by finding better sampling techniques for the initial data and the stopping
times.
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