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ABSTRACT

In a forested watershed, identity of tree species and

topographical position could be important driving

factors shaping mycorrhizal fungal communities.

Here we aimed to disentangle the contributions of

these two factors to mycorrhizal fungal community

structure. We collected tree roots colonized by ei-

ther arbuscular mycorrhizal (AM) or ectomycor-

rhizal (EM) fungi in a small, temperate, forested

watershed of the Susquehanna-Shale Hills Critical

Zone Observatory. Relative abundances of fungal

OTUs were assessed using high-throughput DNA

sequencing. The structures of fungal communities,

both AM and EM, were compared between differ-

ent host species at the same slope position, and

within the same host species at different slope

positions that vary in soil moisture, nutrient con-

tent and belowground biomass. We found that

structures of AM fungal communities were signif-

icantly affected by host species but not by slope

position. Although the structures of EM fungal

communities were not significantly affected by ei-

ther host identity or slope position, there were

three core EM fungal OTUs (occurrence ‡ 50%) for

which their relative abundances were significantly

affected by slope position and three for which their

relative abundances were significantly affected by

host species. In our system, the effects of host

identity and slope position were only moderately

strong and varied between mycorrhizal types. Our

findings provide guidance to those attempting to

link the fine-scale distribution of mycorrhizal fungi

and mycorrhizal-mediated ecosystem functions to

both host species and topographic position.

Key words: critical zone observatory; host speci-

ficity; Illumina sequencing; temperate forest; trees;

slope position.

HIGHLIGHTS

� Effects of host identity varied between mycor-

rhizal fungal types
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� Arbuscular mycorrhizal fungi were more

strongly driven by host than by topography

� Topography affected the relative abundance of a

few individual fungal taxa

INTRODUCTION

Mycorrhizal fungi exchange resources with plant

hosts while simultaneously interacting with the

physical environment (Smith and Read 2008). The

distribution of mycorrhizal fungi, therefore, can be

constrained by two potential factors: location of

preferred hosts and variation in the abiotic envi-

ronment (Johnson and others 1992, 2017; Helga-

son and others 2002; Tedersoo and others 2008;

Hazard and others 2013; Bonfim and others 2016;

van der Linde and others 2018). Understanding the

relative contributions of these factors in structuring

mycorrhizal fungal communities may provide a

practical way to map mycorrhizal fungal-mediated

ecosystem functions at both local and regional

scales (Agerer 2001; Clemmensen and others 2015;

Treseder and others 2018).

In many forested watersheds of a particular

lithology, the physical and chemical soil properties

vary across slope position, partly because of differ-

ences in erosional and depositional processes

(Ovalles 1986; Ludwig and others 2005) and partly

because of differences in host species composition

and vegetation productivity (Smith and others

2016). Variation in soil factors may shift the dis-

tribution of certain mycorrhizal fungal taxa (Tol-

jander and others 2006; Branco and others 2013;

Bonito and others 2014; Erlandson and others

2016), resulting in a gradient of mycorrhizal fungal

taxon abundance across hillslopes of different

scales and environmental conditions (Day and

others 1987; Gibson and Hetrick 1988; Yao and

others 2013).

Host tree species, independent of slope position,

select for specific mycorrhizal fungal taxa from tens

to hundreds of candidates at their habitats (Lang

and others 2011; Roy and others 2013; Toju and

others 2013; Martı́nez-Garcı́a and others 2015).

However, the degree of host specificity varies (Peay

and others 2015; Hempel 2018) and could be

confounded by other factors such as slope position.

If the structure of mycorrhizal fungal communities

is predominately driven by host identity, irrespec-

tive of slope position, we can simply track spatial

patterns of fungal communities via the host species

distribution across the watershed. Otherwise, we

need to consider how, independent of host identity,

slope position influences fungal communities and

mediates host–fungal interactions. Systematic

analyses of both factors are needed to better

understand the drivers on the abundance of indi-

vidual fungal taxa or the species composition of the

fungal community.

In this contribution, we selected common tree

species from different slope positions across a

temperate forested watershed. These tree species

form associations with either arbuscular mycor-

rhizal (AM) fungi or ectomycorrhizal (EM) fungi.

Soil microenvironments vary along slope positions.

Valley floor soils may be thick and poorly drained,

whereas mid-slope soils are often thinner and

prone to drought. We hypothesized that the rela-

tive abundance of individual AM and EM fungal

OTUs, as well as the overall structure of AM and

EM fungal communities (1) vary between slope

positions for a given host and vary among host

species of the same slope position; and (2) respond

more strongly to slope position than to host iden-

tity.

MATERIALS AND METHODS

Site Description and Root Collection

The study watershed is located in a natural forest

within the Shale Hills catchment of the Susque-

hanna-Shale Hills Critical Zone Observatory in

central Pennsylvania, USA (40� 39¢ N, 77� 54¢ W).

A detailed description of this site can be found in

Smith and others (2016). In early August 2014, we

sampled roots of Acer and Liriodendron species on

the valley floor, both of which are associated with

AM fungi, and we also sampled roots of Acer species

in the mid-slope position (Figure 1). Similarly, we

sampled roots of EM tree species Tsuga and Quercus

on the valley floor, with additional root samples of

Quercus from the mid-slope positions (Figure 1).

Although AM colonization has been observed in

Quercus roots, we consider it to be an EM plant

genus in this study. We previously obtained evi-

dence that AM fungi colonizing the roots of Quercus

rubra, one of the dominant tree species at our site,

do not improve plant nutrient uptake (Dickie and

others 2001). Moreover, the nutrient foraging

strategies by mycorrhizal roots of Q. rubra, as well

as Quercus alba (also at our site), are more similar to

other EM tree species than AM tree species (Chen

and others 2016). The number of individual trees

sampled within a slope position was approximately

proportional to the tree species’ natural abundance,

and the sampling points were designed to encom-

pass the majority of the valley floor and mid-slope

position in this small watershed (Figure 1). Some

1538 W. Chen and others



environmental variables of the two topographic

positions are given in Table 1.

For each tree individual, four root branches (15–

20 cm long) were harvested in the 0–10 cm depth

from 4 random locations (1 branch per location)

within a 2 m radius of the trunk. Soil particles

adhering to root surfaces were carefully removed,

and all root samples were stored at - 80�C for

subsequent DNA analysis. The first two orders of

the root branches were selected for fungal molec-

ular studies because they often contain the major-

ity of the mycorrhizal fungal tissue (Guo and others

2008). Twenty root segments (from the first two

orders, usually < 1 cm in length) were dissected

from each sampled root branch. The 80 root seg-

ments from a given individual tree were combined

for DNA extraction.

Molecular Methods

We used MoBio Power Soil DNA extraction kits

(MoBio Laboratories, Carlsbad CA) to extract DNA

from all samples, following the manufacturer’s

recommendations. The PowerSoil kits were se-

lected because they handle PCR inhibitors, such as

polyphenolic compounds, better than the other

MoBio kits, and polyphenolic compounds occur in

high concentrations in Quercus and Pinus roots.

Before the molecular studies on mycorrhizal fungi,

we first determined tree species identity of the root

samples. The plant chloroplast rbcL was amplified

using the primers rbcLaF-rbcLajf634R (ATGTCAC-

CACAAACAGAGACTAAAGC/GAAACGGTCTCTC-

CAACGCAT, Fazekas and others 2008). Successful

PCR products were Sanger sequenced (Genomics

Core Facility, The Pennsylvania State University,

USA). Sequences were BLASTed and the results

with the highest scores were chosen. In this pro-

cess, samples were relabeled with the DNA-identi-

fied hosts if differed from targeted hosts. Because of

the limitations of plant sequence resolution, root

samples were categorized at the genus level.

Amplification of fungal DNA was conducted with

DNA samples identified for each of the plant spe-

cies. For the AM samples, we used primers of NS31-

AML2 (TTGGAGGGCAAGTCTGGTGCC/GAACC-

Figure 1. Sampling locations of mycorrhizal roots at the Shale Hills watershed. Symbol color represents host tree species

identity, and symbol shape represents slope position. Quer = Quercus spp. (Q. alba, Q. prinus, and Q. rubra); Tsuga = Tsuga

canadensis; Acer = Acer spp. (A. saccharum and A. rubrum); Lirio = Liriodendron tulipifera. The blue line indicates the valley

intermittent stream (Color figure online).

Table 1. Abiotic and Biotic Variables (mean ± S.E.) of the Two Slope Positions at the Shale Hills Watershed

Variable Unit Mid-slope Valley floor

Soil temperature �C 20.1 ± 0.1 19.8 ± 0.1

Soil water content % 17.3 ± 0.3 19.7 ± 0.8

NH4 (10 cm depth) mg kg-1 0.05 ± 0.01 0.34 ± 0.11

NO3 (10 cm depth) mg kg-1 0.02 ± 0.01 0.05 ± 0.01

DOC (10 cm depth) mg kg-1 3.51 ± 0.45 8.26 ± 1.32

RLD (0–10 cm depth) cm cm-3 3.67 ± 0.66 2.41 ± 0.39

Soil temperate and soil water content are averaged from June 1 to August 31.
DOC dissolved organic carbon, RLD root length density.
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CAAACACTTTGGTTTCC, Liu and others 2011) to

amplify the partial 18S rRNA gene sequences. For

EM samples, we used primers of ITS1F and ITS2

(CTTGGTCATTTAGAGGAAGTAA/GCGTTCTTCATC

GATGC, White and others 1990) to amplify the ITS1

region. Successful PCR products were sent to the

DNA Sequencing Facility at the University of Wis-

consin-Madison for the remaining procedures for

Illumina sequencing. There, a library was prepared

by adding a unique barcoding sequence to each

sample in a second PCR step. All amplicons were

sequenced on the MiSeq platform with 2 9 300 bp

pair-end reading.

We used PANDAseq assembler (Masella and

others 2012) to merge the pair-end reads. Full-

length amplicons were quality-filtered and pro-

cessed using the QIIME v.1.8.0 (Caporaso and

others 2012). In the bioinformatics pipeline, se-

quences were clustered into operational taxonomic

units (OTUs) using an open reference-based (that

is, reference-based + de novo) approach with the

UCLUST algorithm (Edgar 2010) and a 97% simi-

larity threshold. The relative abundance of a fungal

OTU within a sample was represented by its per-

centage of sequencing read numbers.

The UNITE (Abarenkov and others 2010) and

MaarjAM (Öpik and others 2010) databases,

respectively, were used as reference assignment

databases for EM fungi and AM fungi. Taxonomy

was assigned via the RDP classifier (Wang and

others 2007) with the aforementioned databases

using a 0.7 confidence threshold. In particular,

because primers of ITS1F-ITS2 amplified the ITS1

region of all fungal DNA, we checked the trophic

status (EM, non-EM and unknown) of the assigned

genus. We included only EM OTUs in subsequent

analyses by referencing online databases such as

UNITE (http://unite.ut.ee/) and DEEMY (http://w

ww.deemy.de/) and other literature (Tedersoo and

Smith 2013; Trocha and others 2016). We assumed

that the trophic status of EM fungi is conserved

within a genus.

Statistical Analyses

For the AM and EM OTU tables, we performed

normalization using DESeq2 to remove the influ-

ence of variation in sequencing depth among

samples. Using all OTUs, we performed PerMA-

NOVAs (Hellinger-transformed data) to test for the

effects of host identity and slope position on fungal

community structure. We also performed PerMA-

NOVAs on binary-transformed OTU data (pres-

ence = 1, absence = 0) on fungal community

structure to determine how much of the variation

in community structure is driven by the OTU rel-

ative abundance versus occurrence. Corresponding

ordinations (NMDS) were performed for data

visualization. Both PerMANOVAs were performed

in R (R Core Team 2019). We also calculated the

dissimilarities in community structure using vegdist

in R with the ‘‘horn’’ distance. We calculated

fungal community dissimilarities (ranging from 0 to

1) between AM tree species at the same slope

position, between slope positions for a given AM

tree species, between EM tree species at the same

slope position, and between slope positions for a

given EM tree species. Finally, we compared be-

tween slope positions and between host species the

relative abundances of each AM and EM core

OTUs, those that were detected in 50% or more of

AM or EM root samples.

RESULTS

Using DESeq2-normalized OTU read counts, we

found that the dissimilarity in AM fungal commu-

nity structure between different AM hosts on the

valley floor averaged 0.89 for all possible sample-

pairs, which was significantly larger than the dis-

similarity of AM fungal communities associated

with the same host (Acer) at different slope posi-

tions (mean = 0.80 for all possible sample-pairs,

P = 0.02, Figure 2a). For the AM fungal commu-

nities, host species explained 11.7% of the varia-

tion in community structure (F = 1.727,

P = 0.037), whereas the contribution of slope

position was smaller, explaining 6.9%, and not

statistically significant (F = 1.012, P = 0.42) (Fig-

ure 3a). We found similar results using binary

(presence/absence) data. Dissimilarity was signifi-

cantly greater between the different AM hosts on

the valley floor (mean = 0.91) than for the same

host (Acer) at different slope positions (mean =

0.84, P < 0.001) (Figure 2b). Host species signifi-

cantly explained 9.9% of the variation in the

overall structure of AM OTU presence/absence

(F = 1.424, P = 0.020), but the contribution of

slope position was insignificant (F = 1.016,

r2= 7.0%, P = 0.39) (Figure 3c).

The dissimilarity of EM fungal community

structure between the different host species on the

valley floor did not significantly differ from the

dissimilarity for the same species at different slope

positions (mean = 0.41 vs. 0.38, P = 0.15, Fig-

ure 2a). Among the EM fungal communities, nei-

ther host species nor slope position explained

significant variation in community structure

(F = 1.115, r2= 8.4%, P = 0.17 for slope position

and F = 1.018, r2= 7.8%, P = 0.43 for host species,
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Figure 2. Dissimilarities of fungal communities between any two arbuscular mycorrhizal or ectomycorrhizal samples of

the same host species at two slope positions, and of different host species at the same slope position. Calculations of

dissimilarities were based on DESeq2-normalized OTU counts (A) or OTU presence/absence (B).

Figure 3. Non-metric multidimensional scaling (NMDS) plot ordination of arbuscular mycorrhizal (AM, A, C) and

ectomycorrhizal (EM, B, D) fungal communities among different host tree species (indicated by symbol shape, as

abbreviated in Figure 1) and slope positions (indicated by symbol color). Ordinations were based on DESeq2-normalized

OTU counts (A, B) or OTU presence/absence (C, D) (Color figure online).
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Figure 3b). Again, we found similar results using

the binary (presence/absence) data. Dissimilarity

was 0.61 for the same host (Quercus) at different

slope positions, similar to the dissimilarity of dif-

ferent host on the valley floor (mean = 0.63,

P = 0.27) (Figure 2b). And neither host species nor

slope position were significant with respect to

overall EM fungal community structure (F = 1.044,

r2= 8.0%, P = 0.27 for slope position and

F = 1.018, r2= 7.8%, P = 0.37 for host species,

Figure 3d).

DISCUSSION

Influence of Slope Position

Within the study watershed, soil physical and

chemical conditions exhibited considerable varia-

tion due to slope position (Table 1). The soil of the

valley floor is moister and more fertile than the soil

at mid-slope (Table 1). These abiotic environmen-

tal variations were expected to influence the

structure of mycorrhizal fungal communities (Tol-

jander and others 2006; Branco and others 2013;

Bonito and others 2014; Erlandson and others

2016; Williams and others 2017). In addition, we

observed differences in root length density along

the slope (Table 1) that are also expected to influ-

ence the structure of EM fungal communities (Peay

and others 2011). However, we did not find strong

evidence of variation in the relative abundance of

individual mycorrhizal fungal taxa or in the struc-

ture of whole fungal communities due to slope

position in our study watershed. Our findings

suggest the possibility that environmental filtering

due to slope position was negligible for the majority

of AM and EM fungi in this small watershed.

It is possible that our sampling effort was insuf-

ficient to detect a slope position effect. However,

our sampling locations were well dispersed across

the majority of the valley floor and mid-slope area

of this small watershed. Previous studies revealing

significant topographic effects on mycorrhizal fungi

were conducted at larger geographic scales for

which topography and spatial dispersal may have

been somewhat confounded (Shakya and others

2013; Goldmann and others 2016). For instance,

some studies included an elevation gradient of

nearly 1 km (Li and others 2014; Bonfim and

others 2016), while our study had an elevation

gradient of only about 20 m (altitude 261–

280 m.a.s.l.). Therefore, the lack of strong variation

in the relative abundance of individual mycorrhizal

fungal species or in the structure of whole com-

munities due to slope position in our study may be

consistent with the lack of AM and EM fungal

propagule dispersal limitation within the small

(8 ha) watershed as has been suggested in other

systems (Lekberg and others 2007; Peay and others

2012; Vályi and others 2016). Nevertheless, our

methods were capable of detecting significant

variation in mycorrhizal fungal communities if it

had existed. Indeed, we identified distinct mycor-

rhizal fungal communities at our Shale Hills site

and a site about 7 km away, even when the fungal

communities were associated with the same host

species between sites (Chen 2017).

We did detect three EM fungal individuals asso-

ciated with Quercus trees that were significantly

influenced by slope position within this relatively

small watershed (Table 2). Two Tomentella OTUs

were relatively more abundant in the valley floor,

whereas one Hymenogaster OTU was relatively more

abundant at mid-slope (Table 2). It is likely that

Tomentella species, which are often wood-rotting

fungi, prefer moister habitats, such as the valley

floor (Přı́větivý and others 2016). The Hymenogaster

species form truffle-like fruitbodies that can insu-

late fungal spores from drying (Thiers 1984),

allowing them to be adapted to drier habitats such

as at mid-slope positions (Table 1). Previous studies

have also shown variation in the distribution of

individual fungal taxa along a slope. For example,

in an alpine region the EM fungi Sebacinales, Corti-

narius and Meliniomyces showed distinct affinities

either to ridge-top or to valley floor that varied

largely in soil content of carbon, nitrogen, and

phosphorus (Yao and others 2013). In a pasture

where the valley floor had sandier surface textures

than other positions of the slope, the AM fungal

genera Gigaspora were more favored than Acaulos-

pora and Glomus in terms of fungal spore abun-

dance (Day and others1987). In a tallgrass prairie,

Glomus etunicatum decreased but Glomus geosporum

increased in abundance from the top to the bottom

of a slope (Gibson and Hetrick 1988). The full

reason for these spatial patterns of AM and EM

fungi is not very clear and may be highly context-

dependent. However, these patterns suggest that

topography cannot be overlooked with respect to

the spatial distributions of various fungal species.

Influence of Host Identity

Increasing numbers of high-throughput sequenc-

ing studies of mycorrhizal fungal community

structures have suggested a scale-dependent host

identity effect (Hempel 2018). Neuenkamp and

others (2018) found a strong host effect on the

species composition of AM fungal communities
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within an area of 2 km2. Our study confirmed the

significant host effect for AM fungal communities

in an even smaller area (< 0.1 km2). We also

found that in this topographically heterogeneous

environment, the effect of host identity on AM

fungi was stronger than the effect of slope position

(Figure 2). The two selected AM hosts, Acer and

Liriodendron, exhibit large differences in root mor-

phology and nutrient foraging behavior (Chen and

others 2016), suggesting that host specificity of AM

fungi would likely occur when hosts employ dif-

ferent strategies for soil nutrient acquisition. It ap-

pears that variation in fungal OTU presence/

absence is the main contributor to the variation in

AM fungal community structure between Acer and

Liriodendron because quantitative and qualitative

(binary) OTU data resulted in similar results (Fig-

ures 2, 3).

Although EM tree species with variation in root

morphology, such as root tip diameter, are also

expected to associate with EM fungi of different

hyphal exploration distances (Chen and others

2018), the degree of difference in root tip diameter

between Quercus and Tsuga (0.4 vs. 0.5 mm, Comas

and Eissenstat 2009) may not be strong enough to

cause detectable shifts of hyphal exploration dis-

tance of the associated EM fungal communities.

Previous studies have shown that shifts in forest

composition between AM-dominated and EM-

dominated trees may cause fundamental shifts in

ecosystem function including carbon and nitrogen

cycling (Phillips and others 2013), and our study

additionally suggests that shifts in tree species

composition within the AM or EM functional

groups could change the relative abundance of

individual fungal OTUs or the structure of fungal

communities, resulting in altered mycorrhiza-me-

diated ecosystem processes.

Because of the limited nature of our study, it is

dangerous to extrapolate our findings to other tree

species or other forested watersheds. But we do

suggest that examining the effect of host and slope

position for more tree species in other systems will

be critical in attempts to link the existing high-

resolution documentation of tree species at various

slope positions across broad ecological regions, such

as the Database of Forest Inventory and Analysis

(FIA) program within the United States Forest

Service and the National 1-meter Digital Elevation

Models within the United States Geological Survey,

to the understudied fine-scale distributions of

mycorrhizal fungal communities.

Summary

In this study, we collected AM and EM fungi from

four different host tree species at two slope position

in a small, temperate, forested watershed to dis-

entangle the influence of host identity and slope

position on the distribution of mycorrhizal fungal

species and mycorrhizal fungal community struc-

ture. We found that the AM fungal communities of

Acer and Liriodendron trees were mainly affected by

host identity. Variation of slope position only af-

fected a few core EM OTUs (occurrence > 50%)

associated with Pinus and Quercus trees. These

findings suggest a way to link host species/topo-

graphic position to fine-scale distribution of myc-

orrhizal fungi to better understand the impact of

mycorrhizal fungi on important ecosystem func-

tions.

Table 2. The Relative Abundance of Core OTUs (occurrence ‡ 50%) that Were Significantly Influenced by
Host Identity or Slope Position (P < 0.05)

Taxa Occurrence

(%)

Average relative abundance

(%)

Significant

factor

Effect on relative

abundance

AM OTUs

Glomeraceae spp 53 1.7 Host identity Acer > Liriodendron

EM OTUs

Amanita fulva 93 0.8 Host identity Quercus < Tsuga

Tricholoma colum-

betta

93 0.6 Host identity Quercus < Tsuga

Tomentella spp 1 93 0.6 Slope position Valley > Mid-slope

Tomentella spp 2 57 0.4 Slope position Valley > Mid-slope

Hymenogaster spp 2 57 0.3 Host identity Quercus > Tsuga

Hymenogaster spp 1 50 0.3 Slope position Valley < Mid-slope

Occurrence of an OTU was defined as the percentage of AM or EM root samples that host this fungal OTU.
AM arbuscular mycorrhizas, EM ectomycorrhizas.
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