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Abstract

In this work we present results of the flow of monodisperse spheres in a two-dimensional silo. By taking high-speed video
during the flow of grains, we are able to look at the microscopic dynamics of the individual grains. We report on how meas-
ures such as velocity fluctuations, non-affine motion, and dynamical heterogeneities change in as the system approaches
clogging. While we do find changes in these metrics on approaching the clogging point, we do not see evidence to suggest
that it is a critical point. We contrast the clogging transition with the jamming transition in light of these results.
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1 Introduction

The flow and jamming of granular material has been studied
for many years. With respect to flow, granular material is a
truly complex fluid. In some instances the material can be
modeled as a continuum fluid [1, 2]. However the realities of
secondary flows, nonlocal effects, and boundary conditions
can create real-world situations that evade modeling. The
equivalent Navier—Stokes equations for granular flow have
not been found. Nonetheless, recent continuum models such
as nonlocal granular fluidity [3] have shown very promis-
ing results, even producing many of these secondary flow
features that prove important in real flows.

The jamming of granular materials has also been exten-
sively studied. This has commonly been called the jamming
transition, and is easier to explain in the context of unjam-
ming the system. A densely packed system of particles may
become unjammed if the packing fraction is lowered, an
external shear stress is applied, and/or the temperature is
increased. (This could be the actual temperature if the parti-
cles are colloids, or a granular temperature (e.g. induced by
vibration) for macroscopic particles.) This transition is asso-
ciated with critical behavior in the system, including grow-
ing time and length scales. The jamming phase diagram,
with axes of packing fraction, shear stress, and temperature
has become iconic [4-6].
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A very common system that exhibits both flowing and
jammed states is a silo or hopper. However, the process for
achieving the jammed state in a silo (“clogging”) is distinct
from the jamming transition mentioned previously. This
distinction will be discussed further. In addition to its great
practical importance in many industrial processing situa-
tions, it also displays a number of intriguing flow character-
istics. Recently, interest in these systems has increased due
to advances in technology making such systems quantifiable
in new ways. Advances in computing and high-speed imag-
ing have made it possible to study the microscopics of these
flows [7-9], and techniques such as MRI and CT scanning
have been employed [10, 11]. Many have also become quite
interested in the connections between silo flow and other
kinds of bottleneck flows, such as pedestrian egress and traf-
fic bottlenecks [12-14].

Before moving on, we make a distinction between clog-
ging and jamming here. “Jamming” will refer to the notion
of passing through a boundary of the jamming phase dia-
gram, which presumes an isotropic infinite system in the
zero shear rate limit. Clogging refers to the formation of
a permanent blockage at the outlet in a silo flow. While a
clogged state is indeed a jammed state (mechanically rigid)
it did not achieve that state via a jamming transition. For
instance, the system does not uniformly become clogged: it
is a local event, perhaps just five particles create the clog,
and the state itself is produced by particle motion, not its
absence.

While there is an obvious mechanistic distinction, we are
interested (as are others [15, 16]) in what else distinguishes
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clogging from jamming, or in finding other commonalities.
Are there similar signatures upon the approach to clogging,
like a growing dynamic length scale? Is there an equiva-
lent clogging phase diagram [15], with modified control
parameters? For clogging it is proposed that there are three
somewhat analogous control parameters. The first is a length
scale (the ratio of aperture size to particle size) which argu-
ably takes the place of packing fraction. The second is the
“compatible load”—the driving force behind the flow, which
arguably takes the place of the external shear stress. Lastly,
the temperature variable is replaced by an “incompatible
load,” some feature like vibrations that might suppress
clogging.

Further, even though continuum models may reproduce
overall behavior in these systems, we may be interested prac-
tically in the experiences of individual particles, or local
neighborhoods of particles. If the connection to panicked
pedestrian egress is made, it becomes obvious why we
should care about individual experiences. However, this is
important practically for real flows. If some particles never
make the exit this may imply some segregation in the flow,
which is typically undesired in an industrial setting, not to
mention the buildup of product that doesn’t outflow, perhaps
creating new bottlenecks. The local experiences of particles,
such as locking and shearing at contacts, may also influence
how much they are damaged in the flow process.

In this paper, we study a quasi-2D silo flow. We focus
on free-flow behavior, and approach the clogging point by
reducing the aperture size. Using high-speed video, we are
able to report on several particle/mesoscale behaviors in
the flow as the clogging point is approached: velocity fluc-
tuations, non-affine motion, and dynamical heterogeneities.
These metrics are defined in the corresponding sections.
We compare these results with measurements in systems
approaching the jamming point.

2 Methods
2.1 Experiment

We study the flow of monodisperse spheres in a quasi-2D
silo. The silo walls are transparent to allow imaging of the
particle motions. The particles are clear acrylic spheres
(Engineering Labs). They are highly monodisperse, with a
diameter of d = 3.160 + 0.002 mm, sampled by micrometer
measurement. The size distribution skews to the smaller
size, with no particles sampled exceeding 3.175 mm. For
each experiment, we start with a filled silo, which is approxi-
mately 12,000 particles. The particles are poured into the top
of the apparatus for each experimental run, and completely
emptied before pouring for new experiments. The front and
back of the silo is made with 3/8-in. static dissipative acrylic
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sheets (McMaster-Carr). Teflon sheeting (McMaster-Carr)
was laser cut (Epilog) to make inserts to provide the appro-
priate sidewall and aperture geometry. For different aperture
sizes, a different insert is used. The insert is sandwiched
between the acrylic sheets. The sheets and inserts have
tapped holes, and so the silo is screwed together with set
screws. The silo is then mounted onto a support frame built
from t-slot aluminum, which rests on an optical table. The
resulting dimensions of the silo are: 200 mm wide, 475 mm
tall, and 3.2 mm thick. Before a trial, testing is done with a
rod of fixed diameter to ensure the gap is sufficient to allow
free flow of particles, and in rare cases of any doubt, the set
screws are all loosened the same small amount. This process
is iterated until the gap is judged sufficient. Plugs to close the
aperture while filling the silo were 3D printed (Makerbot) to
specification, allowing the particles on the plug to rest flush
with the other particles on the bottom. The plugs are primar-
ily flat pieces that are inserted horizontally, and designed to
be removed via a swift horizontal motion, minimizing their
influence on the outflow dynamics. Specifically, if one con-
siders the silo area to be the xy-plane, the plug is inserted/
removed in the z direction. A force sensor (Pasco) is placed
below the aperture to measure the mass flow rate. We use
a Phantom v1611 camera (Vision Research) to film flow at
1000 frames per second at a resolution of 1280 x 800 pixels.
The system is illuminated by symmetric LED spotlights to
the sides of the camera. This results in bright reflections at
the center of each particle. These reflections are used for
tracking. Tracking is done via homebuilt code in MATLAB,
which is an adaptation of the Crocker-Grier code [17], which
gives subpixel accuracy of particle positions.

Before moving on, a note about the choice of monodis-
perse particles. Monodisperse particles in 2D do show some
regions of crystallization. We have chosen to follow the path
of other groups, which is to simply go ahead with it. In other
words for spherical grains in 2D silos, it has been standard
practice to look at monodisperse grains. This is a very prac-
tical choice, as different grain sizes would create additional
3D structure in the gap between walls. Small particles might
settle down into the crevices between large grains and be “in
front” or behind them. (As a digression, this is reminiscent
of the Ising model on a hexagonal lattice.) However, results
from many groups with spherical particles have consist-
ently appeared to match the behavior of 3D grains, which
are much less likely to crystallize even if monodisperse. So
while it is interesting to think about experiments without any
crystallization, this is future work. For instance, crystalliza-
tion can be suppressed by using bidisperse disks, which our
group is also doing work towards.
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2.2 Simulation

We perform simulations in LAMMPS (lammps.sandia.gov)
with the “granular” package. The particle interactions are
given by a Hertzian interaction with Coulomb friction (“pair
style gran/hertz/history”) and interact normally and tangen-
tially with each other [18]. Properties are tuned to match
the acrylic spheres in the experiments. The particles also
experience a uniform gravitational field. The simulations are
run much like the experiments. Particles are poured into a
quasi-2D box of dimensions 2004 in height, 63.3d in width,
and 1.1d in depth (d = particle diameter), settle the particles,
create an outlet at the center of the silo base, and let parti-
cles exit the silo. These box dimensions correspond to our
experimental setup. Note that the box is only thick enough
to fit one layer of spherical particles.

Due to the controlled nature of the simulations, which
do not naturally contain randomness as experiments do,
the simulations produce the same results in identical ini-
tial conditions. For repeated simulation runs, we introduce
variability into the system by placing a fixed intruder into
the silo before particles are poured. The intruder itself is
made of particles bonded together permanently. The intruder
diameter is about 10 particle diameters and is placed above
the aperture, at various heights but at a minimum distance
of 30d above the opening. This has been shown to be far
enough to not influence the exit [19], even if the intruder
were to remain. Before initiating flow, the intruder particles
are deleted from the simulation, and the remaining particles
are allowed to settle into place, and extra particles are poured
into the top as needed. This intruder protocol creates a dif-
ferent initial packing structure before the flow is initiated.
We have confirmed that this procedure does not influence
the flow rate or avalanche size systematically. Avalanche
size is measured by the number of particles that flow out of
the silo, from the initiation of flow until the formation of a
stable arch. Flow rate is measured by the number of particles
that outflow per second (Fig. 1).

3 Bulk results

To begin, it is important to show our system behaves as it
should. The general phenomenology of gravity-driven silo
flow is simple. There appears to be a transitional exit aper-
ture size, about five grain diameters. The precise value var-
ies from system to system, but the phenomenon is general.
When the exit aperture is larger than this transitional size,
particles will flow continuously according to the Beverloo
law, with a rate that is independent of filling height, pro-
vided the fill height is adequate and the silo width is large
enough compared to the aperture and grain diameters [20].
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Fig.1 a A schematic of the silo used in our experiments, with rela-
tive proportions modified for clarity of presentation. A monolayer
of grains is poured between two acrylic sheets. The gap between the
sheets as well as the exit aperture are set by a Teflon insert sand-
wiched between the acrylic sheets. The apparatus is supported by alu-
minum framing. b An image of particles in our flow experiments. The
bright spots are reflections off the particle centers used for tracking.
The particles themselves are close-packed in this image, though may
take on a more disordered configuration in the general case

This precise flow rate will vary slightly from system to
system, but the functional form holds over a wide array of
systems. When the aperture is smaller than this transitional
size, particles will form a clog with some likelihood [21,
22]. In the infinitely tall silo limit this means any silo with
a small aperture will clog eventually. There is no way to
predict when this clog will occur, but larger aperture sizes
will have larger average discharge events before a clog
[23]. There is controversy in the literature about whether
the transition in behavior marks a critical point, or whether
the clogging transition is simply probabilistic in nature:
beyond some aperture size, it becomes overwhelmingly
unlikely for a clog to occur [24-27].

Silo flow for apertures above the clogging size is almost
always described well by the Beverloo equation for silo
flow [28]. The Beverloo equation in 2D is as follows:
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W = Cpp\/3(R, — kd)*? (1)

In this equation W is the mass flow rate per unit time, pg
is the bulk density of the granular material, g is the accel-
eration due to gravity, R, is the size of the aperture, and d
is the particle size. C and k are empirical fit coefficients,
though generally £ is of order 1. Note that W does not depend
on time, on the filling height of the silo, nor on any obvi-
ous material parameters aside from density. In 3D the main
qualitative change is the size of the exponent (5/2).

The equation can be divided through by the mass of one
particle m,, to recover an equivalent expression for the par-
ticle flow rate, N. One can also factor out the particle size
from the parenthetical factor in Eq. 1. We define R as the
nondimensional aperture size: R = R, /d. Absorbing the
prefactors into a constant A, the expression for the particle
flow rate reduces to this simple expression:

N = AR - k)>*? )

We present results of experiments for systems that free-flow,
with exit aperture diameters 5d, 6d. 7d, 8d, 10d and 20d,
where d is the diameter of one particle. It should be noted
that while 6d rarely clogs, 5d has a high clogging probability
of 73% [29]. Results presented here are for trials where clog-
ging does not occur, with three trials for each aperture size.
As show in Fig. 2 we see good agreement with experiments,
simulation, and the 2D Beverloo equation.

We take statistics on avalanches using the simulation for
R <5, as it is experimentally untenable to do the equiva-
lent experiments and build up good statistics. It takes a long
time to reset and refill the apparatus, and the smaller aper-
ture sizes run into issues of uncertainty in aperture size,
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Fig.2 Particle flow rate data as a function of aperture size from our
experiments and simulations, fit to the Eq. 2 version of the Beverloo
equation. The fit shown is to N = 124(R — 1)*/2. k is fixed at 1 for
the fit, and A = 124 + 5. For this nonlinear fit, the data are weighted
according to their experimental uncertainties
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whereas the simulation does not have such uncertainties.
Avalanche size s is defined as the number of particles that
outflow before a clog forms, and we sample 100 runs for
each value of R. One form proposed for the dependence of
average avalanche size on R is given by [23]:

(s) = Be"™® — 1 3)

In this expression a, B are constants related to the probability
one particle will pass through the aperture without form-
ing an arch. Thus a plot of In({(s) + 1) vs R? should yield a
straight line. We see that this captures our data well in Fig. 3.
The basis for this form is based on the idea that clogging is
a random process. The R? dependence of the exponent is
directly related to geometry, in 3D this form becomes R>.
We have tested this data against other models [24], including
those incorporating a critical aperture size, but we find this
form fits the data best. While we do not dwell in particular
on this result, we see that this lends more weight to the idea
that clogging is not connected to a critical outlet size.

4 Velocity fields and fluctuations

Next, we consider the particle motions. In our trials during
free flow, we take videos of the flow and use particle track-
ing methods to reconstruct trajectories for the particles, as
detailed further in the experimental section. Specifically, we
are able to measure instantaneous position and velocity of
each particle. One simple visualization is show in Fig. 4 for
R = 5and R = 20 for about 1 second of developed flow. Each
particle’s position is marked by one pixel, and we overlay
the position for subsequent frames on the image, to see the
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Fig.3 Average avalanche size dependence on aperture size R. What
is plotted is In({s) + 1) vs R?, to show agreement/disagreement with
Eq. 3. The fit is to a line, with (intercept) B = 1.69 + 0.354 and
(slope) @ = 0.554 + 0.0424
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Fig.4 a A plot of particle tracks
for R = 5 for about 1 second of
flow. The tracks are colored by
their horizontal position in the
first frame analyzed, to aid in
visualizing the flow. b The same
plot as in (a) for R = 20

trajectories. The colors are simply a guide to the eye, and
indicate the initial horizontal position of each particle. This
visualization also suggests some mixing within the system,
but that is future work, beyond the scope of this paper. Using
this visualization, we see that particles near the edge may
never make it out, and that the R = 20 particles have a much
more pronounced direct downward flow through the aper-
ture. The R = 5 data is more jagged, showing regions of
halting and plastic deformations.

We also observe spatiotemporal inhomogeneity in the
flows. Figure 4 shows some asymmetry in between the left
and right side (note that this is for 1 s of data) in both exam-
ples. This was indeed a consistent observation, using this
high time resolution. However, the asymmetry would not
persist: we would see that one side would move faster than
the other, then the sides would switch. This effect was more
pronounced for smaller apertures. This was difficult to fully
characterize, we have also observed this to a greater effect

Fig.5 a A map of the particle
speed for one frame of one

R = 5 experiment. The particles
are colored by their speed, with
the warmest colors at the high-
est speed, and black is no/very
little motion. Asymmetry in the
instantaneous velocity field is
apparent. b Average instantane-
ous speed vs time for the same
experiment. Each datapoint is
the average over all particles
within the bottom portion of the
silo. The overall mean speed is
shown (color figure online)

with flows involving an obstacle [29]. We show a qualita-
tive example of this in Fig. 5a for R = 5, where particles are
colored by instantaneous speed.

Regardless of the spatial structure of the flow, we see
that the particle speed itself has a well-defined average, but
is quite unsteady in time. Figure 5b shows a representative
example of this, showing the average speed from the initia-
tion of flow through 2.5 s (the total outflow time is a factor of
10 larger for this aperture). This shows a transient develop-
ment of about 0.5 s, then an unsteady, but developed average
speed. The average are taken in the bottom portion of the silo
(aroughly square area of 600x650 pixels) across all particles
for each time. We also do not see any signature of a clogging
event in plots of speed vs time. The graph up until the clog is
indistinguishable from a system that doesn’t clog: there are
fluctuations and then a very abrupt stop, and the abrupt stop
looks no different from a regular dip in the plot. However,
we might ask how the fluctuations themselves change with

mean = 0.132 +- 0.0524 m/s
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changing aperture size in free-flow conditions. This is the
question we explore next.

To characterize the velocity fluctuations more precisely,
we find the average speed during developed flow for each
experiment, and then calculate each particle’s instantaneous
difference from that speed: 6v = v — v,,,,. This data is accu-
mulated for all particles in all frames, in the bottom portion
of the silo, and we find the standard deviation of this data.
This is a similar method to [30], however we have used the
actual speed (magnitude of total velocity) rather than just the
horizontal speed (magnitude of horizontal component). We
are also measuring the deviation from the long-term average,
rather than the instantaneous average. Nonetheless, this is
enough to show a clear trend with changing aperture size.
We plot the results for all experiments in Fig. 6. The (rela-
tive) velocity fluctuations grow on approach to the clogging
point, in agreement with results of [27, 30]. However, the
“clogging point” for this experiment is somewhere around
6 particle diameters, and R = 5 is an aperture size that defi-
nitely clogs. Were this to be a phase transition point, we
might expect a sharp increase (e.g. a peak) in the veloc-
ity fluctuations at the transition—though the details of this
would depend on the order of the transition. But there is
no kink or any other feature in the graph near our potential
critical point that indicates this is a special point; there is no
signature of transition. The slight misordering of R = 7 and
R = 8is not statistically significant.

5 Non-affine motion

The velocity fluctuations are measurable, but this does not
give insight into how the particles move. In order for some
particles to outflow, some other particles must get stuck or
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Fig.6 The dependence of velocity fluctuations on aperture size.
Fluctuations are measured by the standard deviation of the parameter
év = v —v,,,, normalized by v,,,, where v is a single particle speed at
a single time. The fluctuations group as the aperture size gets smaller
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slowed down. This can create a “hot spot” of deformation,
where a local region of particles does not deform affinely.
This could be more extreme, where large groups of particles
slide along a grain boundary in a large plastic deformation.
In Ref. [30], the plastic deformations in the silo are noted as
an area of great interest. While models of cage-like motion
are typical for glassy systems, these plastic rearrangements
may be the more dominant mechanism for the mechani-
cal behavior of this silo system—they appear to propagate
through the material over large time and length scales in
flowing systems, and they may be related to unstable arch
formation near the aperture for systems that are prone to
clog.

To measure the local plastic rearrangements of particles
relative to their neighbors in the silo flow, we use the metric

Dlznin [3 1 ]:
D2, =mind ¥ [4dy0) - Edy|’ @

J

This metric quantifies the nonaffine deformation of the j
particles in the neighborhood around a given particle i after
removing the averaged linear response to the strain, given
by the tensor E;. The vector c_z’,j is the relative position of 1
and j, d;;(1) is the relative displacement after a delay time 7.
This method removes the macroscopic flow from the cal-
culation of non-affine motion [31-33]. In more detail, the
linear strain tensor is not known in advance, it is the best fit
to the actual deformation; the algorithm minimizes the dif-
ference between the actual deformation and the calculated
deformation by sampling values of E;.

The j particles used to calculate Dfm.n are typically chosen
to be within approximately 2d of the reference particle i for
amorphous systems. We restrict this radius to be 1.5d as
our particles are packed tightly. Every particle has a value
of Dfm.n for every chosen delay time between frames. Di“.n
has an embedded lengthscale and timescale. Low values
of Dlzm.n indicate the motion is likely affine in that region,
whereas high values indicate plastic deformations or other
rearrangements.

For our data, we measure Dlzm.n for all experiments for
two different delay times: df = 2 frames and df = 10 frames
during developed flow. One burning question parallels our
investigation into velocity fluctuations: is there a signature
in the fluctuations of Di”,n preceding a clog? However, much
like the velocity, we do not find any such signature preced-
ing a clog, but we illustrate the fluctuations in the average
value in Fig. 7.

We show representative frames of this measurement for
two aperture sizes R = 5 and R = 20 in Fig. 8. We see that
R = 20 for dt = 2 shows little non-affine motion (Fig. 8C),
but the equivalent plot for R =5 (Fig. 8a) shows what
appears to be more small regions of high Diin. Moving
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Fig. 7 Fluctuations in the average value of Drzm,n for dt = 2 frames.
The data is shown for R = 5 for one second of fully-developed flow

Fig.8 Snapshots of Dfm.n in the silo for various experiments and delay
times.aR=5,dt=2,bR=5,dt=10,¢ R=20,dt =2,d R =20,
dt = 10. Yellow corresponds to higher values of Dfnm, blue corre-
sponds to low values (color figure online)

over to plots 8B and 8D, we see that a larger timescale
produces more non-affine motion, which is not surpris-
ing. However the contrast between the two aperture sizes
becomes more apparent. The larger aperture has non-aff-
ine motion distributed somewhat randomly through the
flowing region, with a stronger signal near the exit. The
smaller aperture also has an increased value near the exit,
but shows distinct larger regions of non-affine motion in
the bulk, including a visible large plastic deformation at a
grain boundary on the left (Fig. 8b).

The visual perception of a higher Drzm.n may be mislead-
ing, so we calculate the mean Drzm.n value for each aperture
size for all experiments, in the same region used for veloc-
ity measurements. First we calculate the average value for
dt = 2. For comparison between apertures, we divide the
average value of Dfm.n by the average displacement squared
for dr = 2, which we denote Ar*. This makes D2~ dimen-
sionless, though with an associated timescale. While the
rescaled Dfm.n is not numerically equivalent to the propor-
tion of non-affine motion compared to the total motion, it
does represent this proportion, in that it will monotonically
increase as the proportion of non-affine motion grows.

Next we consider the relative sizes of the rescaled Dim
values for different aperture sizes. In Fig. 9, the data is plot-
ted. We see a clear (black circles) increase in nonaffine
motion as the aperture size gets smaller. For the dr = 10
data (red circles), we rescale the data by the same Ar* and
then divide by \/g as this should be the proper adjustment
for delay time scaling [31]. We see the data collapse for
both values of dr, indicating we do not appear to be probing
significantly different dynamics for the two delay times.

6 Dynamical heterogeneities

The transition to jamming in granular and colloidal systems
is accompanied by the growth of dynamical heterogenei-
ties [34, 35]. As the system is typically closely packed, a
grain must cooperate with its neighbors in order to move.
String-like swirling motions or “conga lines” of particles
may be observed if one can see the particles. The closer
the system is to jamming, whether it is smaller strain rate, a

1 3 2 ® dt=2 E
§ ® dt=10 [scaled]
: 3 )
R ¢

£ 0.1 3 (] E
(\ID F ]
v i ]
001 E | | 1 T E

0 5 10 15 20 25

R

Fig.9 The dependence of the average value of Dfm.n as a function of
dimensionless aperture size. Dfm.n values for dr = 2 (black circles)
have been rescaled by the average displacement squared for the same
time interval, and df = 10 (red circles) have been rescaled for collapse
(color figure online)
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higher packing fraction, or a lower temperature, these col-
lective motions are larger, and thus a growing length scale is
reported on approach to jamming. Additionally, these coop-
erative motions become rarer, and a growing timescale may
also be measured.

To look into the cooperative motions in the silo flow,
we turn to an often used metric in the jamming and glass
community to characterize these dynamics, the quantity y,,
which measures dynamical heterogeneities. To define y,,
we first define the simple self-overlap order parameter w;(7),
which compares a particle’s position in two frames. If the
particle has not moved more than a cutoff distance (typi-
cally the particle size), then w; = 1, if the particle has moved
more, then w; = 0 for that particle and delay time combina-
tion. Then an ensemble average is taken over all particles for
a given start time to get the order parameter Q, defined as so:

o, 1) = Z w,(t,7) Q)

Here t refers to the start time and 7 is the delay time. In the
absence of any heterogeneous dynamics, Q would resemble
w exactly. However, due to heterogeneous dynamics, there
are fluctuations in the instantaneous number of fast mov-
ing regions which manifests as a variability in the decay of
Q(t, 7) for different start times. By computing the variance
of this decay for different start times, the heterogeneity may
be quantified. It is customary to multiply this variance by
the number of particles N, to form a metric that does not
depend on N as the variance for counting statistics will go
as 1/N. This is the parameter y,, also called the dynamic
susceptibility:

24(7) = N(Q(2)?), = (Q(0))?] ©)

Fig. 10 a The particle averaged self-overlap order parameter (colors)
displayed for different start times. The average with respect to start
times is overlaid on top (thick black line). The curve does not decay
to zero as there are particles that never move. b The normalized vari-
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We illustrate a typical procedure for the calculation of y, in
Fig. 10 for experimental data R = 5. Fig 10a shows the Q
order parameter functions overlain for a number of differ-
ent start times, and the average over start times is shown.
Note that our data does not decay to zero, as there are some
particles that do not move. However, the decay curve shows
a clear plateau and looks as expected. For systems with het-
erogeneous dynamics, the function y, should have a peak
value (y, *) at some time (z *). By calculating the variance
as described in Eq. 6, we generate Fig. 10b, and clearly see
a peak.

A counting argument [36] gives the number of grains n
in a dynamical heterogeneity:

Xy *

"0 - 000 -0 @

Here Q = is the value of Q where y, is maximized, and Q,
and Q, are the average contributions from the fast and slow
regions. The quantities Q *, O, and Q, will all be between
zero and one, and not in generally dramatically different
from one another. Thus the value of n * will be some fixed
multiple of jy, *, of order 1-10 [37]. We will report the value
of y, * only, but bring this up to acknowledge that it con-
nects to a physical length scale for cooperative motion.

In Fig. 11, we show results for all of our experiments.
Figure 11a shows the value of y, * vs R, and we see that
this value grows as the aperture size grows. We also see in
Fig. 11b that the value of = * does not systematically change,
as far as we can tell. These are somewhat surprising results,
as jammed systems tend to have time and lengthscales that
grow together. However, to our knowledge this is the first
measurement of such a parameter in this type of system. We
discuss these results in the next section.

50
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10

OO

ance of O, which is y,. A clear peak is seen. The height of the peak
corresponds to a lengthscale for cooperative motion, and the peak
location corresponds to a timescale (color figure online)
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Fig. 11 a y, * vs R for all experiments. The error bars represent the
spread in measured values. Clearly, the value increases as R increases.
b 7 % vs R for all experiments. There is no apparent trend in this data

7 Discussion

The results of fluctuation measurements agree with prior
results from silo flows [27, 30] and indicate higher rela-
tive fluctuations as the clogging point is approached. This
also qualitatively agrees with findings regarding systems
approaching the jamming point [38], where fluctuations
increase approaching this point. However, the similarities
end there. The contrast with jamming comes with the nature
of the increase, where fluctuations are specifically found to
diverge. We see no divergence of the fluctuations, just a
smooth growth with decreasing aperture size, and our data
includes one aperture with a high clogging probability. Were
there to be some transition point, we would see it.

For “uncooperative” motions in systems, Drzm.n has been
shown to increase on approaching the critical density from
above [5]. That is, if a system of soft particles starts above
the jamming point, non-affine responses to external stresses
will grow as the packing fraction is reduced. This makes
some sense from an intutive standpoint, as there is more
space for particles to rearrange. We find that the Dfm.n param-
eter increase on approaching the clogging point. In one sense
this might appear to be the same finding, but requires think-
ing through the analogy. For our system, apertures far from
the clogging point actually represent systems with more free
space, the packing is reduced. Thus the values of Dﬁ“.n are
not just a simple question of free space, it is competition

between geometric frustration and a macroscopic driving
flow. The presence of non-affine motion is more important
for systems near the clogging point.

Another analogy might be between Dﬁn.n and shear rate,
as in some granular systems Dfm.n has been shown to grow
with shear rate (~ y) [32]. However, we see the opposite
trend here: higher overall shear rates correspond to larger
apertures, and the clear direction is the other way. A true
comparison would compare Dfm.n values to the local shear
rates, and indeed this is current work.

An open question involves the contribution of different
types of non-affine motion. There are local hotspots, larger
failures along a grain boundary, and perhaps something else
unimagined. One other contribution to non-affine motion
will be due to granular temperature: particles will experience
random fluctuations due to collisions, and these motions
would register as non-affine. This would be especially rel-
evant near the outlet.

For cooperative motions, we see that the cooperativity
length increases with aperture size. For jammed systems,
one sees this lengthscale grow as the shear rate is decreased
[37], and generally grow on approaching the jamming den-
sity [34]. We see the opposite effect in general, as aper-
ture size increases, the length scale increases. Increasing
the aperture size drives the system away from jamming in a
classical sense: there is more free space and a higher shear
rate. This is a very intriguing result. One point to remember
is that for jammed/near-jammed systems, the strain rate is
uniform or zero. Here the strain rate is not uniform, and the
particles near the center seem to form streamlines down-
wards more, especially for larger apertures. This may be a
large component of the cooperative motions.

We also see that the timescale does not appreciably
change, whereas for jammed systems this grows on approach
to jamming. We hypothesize that for silo flow, this time-
scale is set by fixed system parameters, such as gravity and
perhaps the sound speed. While these are difficult to check
experimentally, it would be worth exploring these effects
via simulation.

While we have characterized Diu.n as indicating “‘uncoop-
erative” motion and y, as indicating “cooperative’” motion, it
should be noted they are not opposite metrics. The presence
of a string of particles moving faster than average might
require nonaffine motions at its edges. A large clump of rear-
rangement will involve cooperation. Thus seeing opposite
trends in the two metrics is especially intriguing. Future
work will involve characterizing the regions of cooperative
motion, as they are typically thought to be stringlike, but
may be “clumpy” in some circumstances [35].

We have presented measurements of mesoscopic dynam-
ics in a granular system on approach to the clogging point,
one for cooperative motion and one for uncooperative
motion. We see that these metrics change, but in ways that
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require further investigation, and show that the clogging
point is different in many ways from the jamming point.
Practically, a strength of these metrics is that while they
are built from particle-scale data, and report on mesoscale
behavior, the average values report the system changes effec-
tively, thus they may be useful bulk monitors. (Temperature
is another example of a metric built on microscopics that is
a useful system monitor.) Unfortunately, our experimental
measurements cannot uncover the microscopic mechanisms
of the phenomena we have observed. In the case of Dfm.n, a
natural extension is to test the dependence of the Diﬂ.n value
on the local strain rate. Further, there are different poten-
tial modes of non-affine deformations, so it would be worth
characterizing them and their relative importance. What
causes these non-affine motions? It may take looking into
the interparticle forces [39] to gain ultimate clarity. For the
4 parameter, the data is even more “smeared” as not only
are all particles averaged over, but the function itself does
not have a value at a particular time point—it requires aver-
aging over multiple time points. However, these cooperative
motions do exist, so locating and categorizing them is the
next challenge. Lastly, while we do not find evidence for a
true clogging transition, it is worth exploring the notion of
the clogging phase diagram [15] further, by exploring these
metrics in systems of different granular temperatures, per-
haps by adding vibrations.
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