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Abstract
In this work we present results of the flow of monodisperse spheres in a two-dimensional silo. By taking high-speed video 
during the flow of grains, we are able to look at the microscopic dynamics of the individual grains. We report on how meas-
ures such as velocity fluctuations, non-affine motion, and dynamical heterogeneities change in as the system approaches 
clogging. While we do find changes in these metrics on approaching the clogging point, we do not see evidence to suggest 
that it is a critical point. We contrast the clogging transition with the jamming transition in light of these results.
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1  Introduction

The flow and jamming of granular material has been studied 
for many years. With respect to flow, granular material is a 
truly complex fluid. In some instances the material can be 
modeled as a continuum fluid [1, 2]. However the realities of 
secondary flows, nonlocal effects, and boundary conditions 
can create real-world situations that evade modeling. The 
equivalent Navier–Stokes equations for granular flow have 
not been found. Nonetheless, recent continuum models such 
as nonlocal granular fluidity [3] have shown very promis-
ing results, even producing many of these secondary flow 
features that prove important in real flows.

The jamming of granular materials has also been exten-
sively studied. This has commonly been called the jamming 
transition, and is easier to explain in the context of unjam-
ming the system. A densely packed system of particles may 
become unjammed if the packing fraction is lowered, an 
external shear stress is applied, and/or the temperature is 
increased. (This could be the actual temperature if the parti-
cles are colloids, or a granular temperature (e.g. induced by 
vibration) for macroscopic particles.) This transition is asso-
ciated with critical behavior in the system, including grow-
ing time and length scales. The jamming phase diagram, 
with axes of packing fraction, shear stress, and temperature 
has become iconic [4–6].

A very common system that exhibits both flowing and 
jammed states is a silo or hopper. However, the process for 
achieving the jammed state in a silo (“clogging”) is distinct 
from the jamming transition mentioned previously. This 
distinction will be discussed further. In addition to its great 
practical importance in many industrial processing situa-
tions, it also displays a number of intriguing flow character-
istics. Recently, interest in these systems has increased due 
to advances in technology making such systems quantifiable 
in new ways. Advances in computing and high-speed imag-
ing have made it possible to study the microscopics of these 
flows [7–9], and techniques such as MRI and CT scanning 
have been employed [10, 11]. Many have also become quite 
interested in the connections between silo flow and other 
kinds of bottleneck flows, such as pedestrian egress and traf-
fic bottlenecks [12–14].

Before moving on, we make a distinction between clog-
ging and jamming here. “Jamming” will refer to the notion 
of passing through a boundary of the jamming phase dia-
gram, which presumes an isotropic infinite system in the 
zero shear rate limit. Clogging refers to the formation of 
a permanent blockage at the outlet in a silo flow. While a 
clogged state is indeed a jammed state (mechanically rigid) 
it did not achieve that state via a jamming transition. For 
instance, the system does not uniformly become clogged: it 
is a local event, perhaps just five particles create the clog, 
and the state itself is produced by particle motion, not its 
absence.

While there is an obvious mechanistic distinction, we are 
interested (as are others [15, 16]) in what else distinguishes 

 *	 Kerstin Nordstrom 
	 knordstr@mtholyoke.edu

1	 Mount Holyoke College, South Hadley, MA, USA

http://orcid.org/0000-0001-8709-2427
http://crossmark.crossref.org/dialog/?doi=10.1007/s10035-021-01133-2&domain=pdf


	 G. Cai et al.

1 3

69  Page 2 of 11

clogging from jamming, or in finding other commonalities. 
Are there similar signatures upon the approach to clogging, 
like a growing dynamic length scale? Is there an equiva-
lent clogging phase diagram [15], with modified control 
parameters? For clogging it is proposed that there are three 
somewhat analogous control parameters. The first is a length 
scale (the ratio of aperture size to particle size) which argu-
ably takes the place of packing fraction. The second is the 
“compatible load”—the driving force behind the flow, which 
arguably takes the place of the external shear stress. Lastly, 
the temperature variable is replaced by an “incompatible 
load,” some feature like vibrations that might suppress 
clogging.

Further, even though continuum models may reproduce 
overall behavior in these systems, we may be interested prac-
tically in the experiences of individual particles, or local 
neighborhoods of particles. If the connection to panicked 
pedestrian egress is made, it becomes obvious why we 
should care about individual experiences. However, this is 
important practically for real flows. If some particles never 
make the exit this may imply some segregation in the flow, 
which is typically undesired in an industrial setting, not to 
mention the buildup of product that doesn’t outflow, perhaps 
creating new bottlenecks. The local experiences of particles, 
such as locking and shearing at contacts, may also influence 
how much they are damaged in the flow process.

In this paper, we study a quasi-2D silo flow. We focus 
on free-flow behavior, and approach the clogging point by 
reducing the aperture size. Using high-speed video, we are 
able to report on several particle/mesoscale behaviors in 
the flow as the clogging point is approached: velocity fluc-
tuations, non-affine motion, and dynamical heterogeneities. 
These metrics are defined in the corresponding sections. 
We compare these results with measurements in systems 
approaching the jamming point.

2 � Methods

2.1 � Experiment

We study the flow of monodisperse spheres in a quasi-2D 
silo. The silo walls are transparent to allow imaging of the 
particle motions. The particles are clear acrylic spheres 
(Engineering Labs). They are highly monodisperse, with a 
diameter of d = 3.160 ± 0.002 mm, sampled by micrometer 
measurement. The size distribution skews to the smaller 
size, with no particles sampled exceeding 3.175 mm. For 
each experiment, we start with a filled silo, which is approxi-
mately 12,000 particles. The particles are poured into the top 
of the apparatus for each experimental run, and completely 
emptied before pouring for new experiments. The front and 
back of the silo is made with 3/8-in. static dissipative acrylic 

sheets (McMaster-Carr). Teflon sheeting (McMaster-Carr) 
was laser cut (Epilog) to make inserts to provide the appro-
priate sidewall and aperture geometry. For different aperture 
sizes, a different insert is used. The insert is sandwiched 
between the acrylic sheets. The sheets and inserts have 
tapped holes, and so the silo is screwed together with set 
screws. The silo is then mounted onto a support frame built 
from t-slot aluminum, which rests on an optical table. The 
resulting dimensions of the silo are: 200 mm wide, 475 mm 
tall, and 3.2 mm thick. Before a trial, testing is done with a 
rod of fixed diameter to ensure the gap is sufficient to allow 
free flow of particles, and in rare cases of any doubt, the set 
screws are all loosened the same small amount. This process 
is iterated until the gap is judged sufficient. Plugs to close the 
aperture while filling the silo were 3D printed (Makerbot) to 
specification, allowing the particles on the plug to rest flush 
with the other particles on the bottom. The plugs are primar-
ily flat pieces that are inserted horizontally, and designed to 
be removed via a swift horizontal motion, minimizing their 
influence on the outflow dynamics. Specifically, if one con-
siders the silo area to be the xy-plane, the plug is inserted/
removed in the z direction. A force sensor (Pasco) is placed 
below the aperture to measure the mass flow rate. We use 
a Phantom v1611 camera (Vision Research) to film flow at 
1000 frames per second at a resolution of 1280 × 800 pixels. 
The system is illuminated by symmetric LED spotlights to 
the sides of the camera. This results in bright reflections at 
the center of each particle. These reflections are used for 
tracking. Tracking is done via homebuilt code in MATLAB, 
which is an adaptation of the Crocker-Grier code [17], which 
gives subpixel accuracy of particle positions.

Before moving on, a note about the choice of monodis-
perse particles. Monodisperse particles in 2D do show some 
regions of crystallization. We have chosen to follow the path 
of other groups, which is to simply go ahead with it. In other 
words for spherical grains in 2D silos, it has been standard 
practice to look at monodisperse grains. This is a very prac-
tical choice, as different grain sizes would create additional 
3D structure in the gap between walls. Small particles might 
settle down into the crevices between large grains and be “in 
front” or behind them. (As a digression, this is reminiscent 
of the Ising model on a hexagonal lattice.) However, results 
from many groups with spherical particles have consist-
ently appeared to match the behavior of 3D grains, which 
are much less likely to crystallize even if monodisperse. So 
while it is interesting to think about experiments without any 
crystallization, this is future work. For instance, crystalliza-
tion can be suppressed by using bidisperse disks, which our 
group is also doing work towards.
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2.2 � Simulation

We perform simulations in LAMMPS (lammps.sandia.gov) 
with the “granular” package. The particle interactions are 
given by a Hertzian interaction with Coulomb friction (“pair 
style gran/hertz/history”) and interact normally and tangen-
tially with each other [18]. Properties are tuned to match 
the acrylic spheres in the experiments. The particles also 
experience a uniform gravitational field. The simulations are 
run much like the experiments. Particles are poured into a 
quasi-2D box of dimensions 200d in height, 63.3d in width, 
and 1.1d in depth (d = particle diameter), settle the particles, 
create an outlet at the center of the silo base, and let parti-
cles exit the silo. These box dimensions correspond to our 
experimental setup. Note that the box is only thick enough 
to fit one layer of spherical particles.

Due to the controlled nature of the simulations, which 
do not naturally contain randomness as experiments do, 
the simulations produce the same results in identical ini-
tial conditions. For repeated simulation runs, we introduce 
variability into the system by placing a fixed intruder into 
the silo before particles are poured. The intruder itself is 
made of particles bonded together permanently. The intruder 
diameter is about 10 particle diameters and is placed above 
the aperture, at various heights but at a minimum distance 
of 30d above the opening. This has been shown to be far 
enough to not influence the exit [19], even if the intruder 
were to remain. Before initiating flow, the intruder particles 
are deleted from the simulation, and the remaining particles 
are allowed to settle into place, and extra particles are poured 
into the top as needed. This intruder protocol creates a dif-
ferent initial packing structure before the flow is initiated. 
We have confirmed that this procedure does not influence 
the flow rate or avalanche size systematically. Avalanche 
size is measured by the number of particles that flow out of 
the silo, from the initiation of flow until the formation of a 
stable arch. Flow rate is measured by the number of particles 
that outflow per second (Fig. 1).

3 � Bulk results

To begin, it is important to show our system behaves as it 
should. The general phenomenology of gravity-driven silo 
flow is simple. There appears to be a transitional exit aper-
ture size, about five grain diameters. The precise value var-
ies from system to system, but the phenomenon is general. 
When the exit aperture is larger than this transitional size, 
particles will flow continuously according to the Beverloo 
law, with a rate that is independent of filling height, pro-
vided the fill height is adequate and the silo width is large 
enough compared to the aperture and grain diameters [20]. 

This precise flow rate will vary slightly from system to 
system, but the functional form holds over a wide array of 
systems. When the aperture is smaller than this transitional 
size, particles will form a clog with some likelihood [21, 
22]. In the infinitely tall silo limit this means any silo with 
a small aperture will clog eventually. There is no way to 
predict when this clog will occur, but larger aperture sizes 
will have larger average discharge events before a clog 
[23]. There is controversy in the literature about whether 
the transition in behavior marks a critical point, or whether 
the clogging transition is simply probabilistic in nature: 
beyond some aperture size, it becomes overwhelmingly 
unlikely for a clog to occur [24–27].

Silo flow for apertures above the clogging size is almost 
always described well by the Beverloo equation for silo 
flow [28]. The Beverloo equation in 2D is as follows:

Fig. 1   a A schematic of the silo used in our experiments, with rela-
tive proportions modified for clarity of presentation. A monolayer 
of grains is poured between two acrylic sheets. The gap between the 
sheets as well as the exit aperture are set by a Teflon insert sand-
wiched between the acrylic sheets. The apparatus is supported by alu-
minum framing. b An image of particles in our flow experiments. The 
bright spots are reflections off the particle centers used for tracking. 
The particles themselves are close-packed in this image, though may 
take on a more disordered configuration in the general case
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In this equation W is the mass flow rate per unit time, �B 
is the bulk density of the granular material, g is the accel-
eration due to gravity, RA is the size of the aperture, and d 
is the particle size. C and k are empirical fit coefficients, 
though generally k is of order 1. Note that W does not depend 
on time, on the filling height of the silo, nor on any obvi-
ous material parameters aside from density. In 3D the main 
qualitative change is the size of the exponent (5/2).

The equation can be divided through by the mass of one 
particle mp , to recover an equivalent expression for the par-
ticle flow rate, Ṅ . One can also factor out the particle size 
from the parenthetical factor in Eq. 1. We define R as the 
nondimensional aperture size: R = RA∕d . Absorbing the 
prefactors into a constant A, the expression for the particle 
flow rate reduces to this simple expression:

We present results of experiments for systems that free-flow, 
with exit aperture diameters 5d, 6d. 7d, 8d, 10d and 20d, 
where d is the diameter of one particle. It should be noted 
that while 6d rarely clogs, 5d has a high clogging probability 
of 73% [29]. Results presented here are for trials where clog-
ging does not occur, with three trials for each aperture size. 
As show in Fig. 2 we see good agreement with experiments, 
simulation, and the 2D Beverloo equation.

We take statistics on avalanches using the simulation for 
R < 5 , as it is experimentally untenable to do the equiva-
lent experiments and build up good statistics. It takes a long 
time to reset and refill the apparatus, and the smaller aper-
ture sizes run into issues of uncertainty in aperture size, 

(1)W = C�B
√
g(RA − kd)3∕2

(2)Ṅ = A(R − k)3∕2

whereas the simulation does not have such uncertainties. 
Avalanche size s is defined as the number of particles that 
outflow before a clog forms, and we sample 100 runs for 
each value of R. One form proposed for the dependence of 
average avalanche size on R is given by [23]:

In this expression �,B are constants related to the probability 
one particle will pass through the aperture without form-
ing an arch. Thus a plot of ln(⟨s⟩ + 1) vs R2 should yield a 
straight line. We see that this captures our data well in Fig. 3. 
The basis for this form is based on the idea that clogging is 
a random process. The R2 dependence of the exponent is 
directly related to geometry, in 3D this form becomes R3 . 
We have tested this data against other models [24], including 
those incorporating a critical aperture size, but we find this 
form fits the data best. While we do not dwell in particular 
on this result, we see that this lends more weight to the idea 
that clogging is not connected to a critical outlet size.

4 � Velocity fields and fluctuations

Next, we consider the particle motions. In our trials during 
free flow, we take videos of the flow and use particle track-
ing methods to reconstruct trajectories for the particles, as 
detailed further in the experimental section. Specifically, we 
are able to measure instantaneous position and velocity of 
each particle. One simple visualization is show in Fig. 4 for 
R = 5 and R = 20 for about 1 second of developed flow. Each 
particle’s position is marked by one pixel, and we overlay 
the position for subsequent frames on the image, to see the 

(3)⟨s⟩ = Be�R
2

− 1

Fig. 2   Particle flow rate data as a function of aperture size from our 
experiments and simulations, fit to the Eq. 2 version of the Beverloo 
equation. The fit shown is to Ṅ = 124(R − 1)3∕2. k is fixed at 1 for 
the fit, and A = 124 ± 5 . For this nonlinear fit, the data are weighted 
according to their experimental uncertainties

Fig. 3   Average avalanche size dependence on aperture size R. What 
is plotted is ln(⟨s⟩ + 1) vs R2 , to show agreement/disagreement with 
Eq.  3. The fit is to a line, with (intercept) B = 1.69 ± 0.354 and 
(slope) � = 0.554 ± 0.0424
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trajectories. The colors are simply a guide to the eye, and 
indicate the initial horizontal position of each particle. This 
visualization also suggests some mixing within the system, 
but that is future work, beyond the scope of this paper. Using 
this visualization, we see that particles near the edge may 
never make it out, and that the R = 20 particles have a much 
more pronounced direct downward flow through the aper-
ture. The R = 5 data is more jagged, showing regions of 
halting and plastic deformations.

We also observe spatiotemporal inhomogeneity in the 
flows. Figure 4 shows some asymmetry in between the left 
and right side (note that this is for 1 s of data) in both exam-
ples. This was indeed a consistent observation, using this 
high time resolution. However, the asymmetry would not 
persist: we would see that one side would move faster than 
the other, then the sides would switch. This effect was more 
pronounced for smaller apertures. This was difficult to fully 
characterize, we have also observed this to a greater effect 

with flows involving an obstacle [29]. We show a qualita-
tive example of this in Fig. 5a for R = 5 , where particles are 
colored by instantaneous speed.

Regardless of the spatial structure of the flow, we see 
that the particle speed itself has a well-defined average, but 
is quite unsteady in time. Figure 5b shows a representative 
example of this, showing the average speed from the initia-
tion of flow through 2.5 s (the total outflow time is a factor of 
10 larger for this aperture). This shows a transient develop-
ment of about 0.5 s, then an unsteady, but developed average 
speed. The average are taken in the bottom portion of the silo 
(a roughly square area of 600×650 pixels) across all particles 
for each time. We also do not see any signature of a clogging 
event in plots of speed vs time. The graph up until the clog is 
indistinguishable from a system that doesn’t clog: there are 
fluctuations and then a very abrupt stop, and the abrupt stop 
looks no different from a regular dip in the plot. However, 
we might ask how the fluctuations themselves change with 

Fig. 4   a A plot of particle tracks 
for R = 5 for about 1 second of 
flow. The tracks are colored by 
their horizontal position in the 
first frame analyzed, to aid in 
visualizing the flow. b The same 
plot as in (a) for R = 20

Fig. 5   a A map of the particle 
speed for one frame of one 
R = 5 experiment. The particles 
are colored by their speed, with 
the warmest colors at the high-
est speed, and black is no/very 
little motion. Asymmetry in the 
instantaneous velocity field is 
apparent. b Average instantane-
ous speed vs time for the same 
experiment. Each datapoint is 
the average over all particles 
within the bottom portion of the 
silo. The overall mean speed is 
shown (color figure online)
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changing aperture size in free-flow conditions. This is the 
question we explore next.

To characterize the velocity fluctuations more precisely, 
we find the average speed during developed flow for each 
experiment, and then calculate each particle’s instantaneous 
difference from that speed: �v = v − vavg . This data is accu-
mulated for all particles in all frames, in the bottom portion 
of the silo, and we find the standard deviation of this data. 
This is a similar method to [30], however we have used the 
actual speed (magnitude of total velocity) rather than just the 
horizontal speed (magnitude of horizontal component). We 
are also measuring the deviation from the long-term average, 
rather than the instantaneous average. Nonetheless, this is 
enough to show a clear trend with changing aperture size. 
We plot the results for all experiments in Fig. 6. The (rela-
tive) velocity fluctuations grow on approach to the clogging 
point, in agreement with results of [27, 30]. However, the 
“clogging point” for this experiment is somewhere around 
6 particle diameters, and R = 5 is an aperture size that defi-
nitely clogs. Were this to be a phase transition point, we 
might expect a sharp increase (e.g. a peak) in the veloc-
ity fluctuations at the transition—though the details of this 
would depend on the order of the transition. But there is 
no kink or any other feature in the graph near our potential 
critical point that indicates this is a special point; there is no 
signature of transition. The slight misordering of R = 7 and 
R = 8 is not statistically significant.

5 � Non‑affine motion

The velocity fluctuations are measurable, but this does not 
give insight into how the particles move. In order for some 
particles to outflow, some other particles must get stuck or 

slowed down. This can create a “hot spot” of deformation, 
where a local region of particles does not deform affinely. 
This could be more extreme, where large groups of particles 
slide along a grain boundary in a large plastic deformation. 
In Ref. [30], the plastic deformations in the silo are noted as 
an area of great interest. While models of cage-like motion 
are typical for glassy systems, these plastic rearrangements 
may be the more dominant mechanism for the mechani-
cal behavior of this silo system—they appear to propagate 
through the material over large time and length scales in 
flowing systems, and they may be related to unstable arch 
formation near the aperture for systems that are prone to 
clog.

To measure the local plastic rearrangements of particles 
relative to their neighbors in the silo flow, we use the metric 
D2

min
 [31]:

This metric quantifies the nonaffine deformation of the j 
particles in the neighborhood around a given particle i after 
removing the averaged linear response to the strain, given 
by the tensor Ei . The vector d̄ij is the relative position of i 
and j, d̄ij(t) is the relative displacement after a delay time t. 
This method removes the macroscopic flow from the cal-
culation of non-affine motion [31–33]. In more detail, the 
linear strain tensor is not known in advance, it is the best fit 
to the actual deformation; the algorithm minimizes the dif-
ference between the actual deformation and the calculated 
deformation by sampling values of Ei.

The j particles used to calculate D2

min
 are typically chosen 

to be within approximately 2d of the reference particle i for 
amorphous systems. We restrict this radius to be 1.5d as 
our particles are packed tightly. Every particle has a value 
of D2

min
 for every chosen delay time between frames. D2

min
 

has an embedded lengthscale and timescale. Low values 
of D2

min
 indicate the motion is likely affine in that region, 

whereas high values indicate plastic deformations or other 
rearrangements.

For our data, we measure D2

min
 for all experiments for 

two different delay times: dt = 2 frames and dt = 10 frames 
during developed flow. One burning question parallels our 
investigation into velocity fluctuations: is there a signature 
in the fluctuations of D2

min
 preceding a clog? However, much 

like the velocity, we do not find any such signature preced-
ing a clog, but we illustrate the fluctuations in the average 
value in Fig. 7.

We show representative frames of this measurement for 
two aperture sizes R = 5 and R = 20 in Fig. 8. We see that 
R = 20 for dt = 2 shows little non-affine motion (Fig. 8C), 
but the equivalent plot for R = 5 (Fig. 8a) shows what 
appears to be more small regions of high D2

min
 . Moving 

(4)D2

min,i
= min

{
∑

j

[
𝛥d̄ij(t) − Eid̄ij

]2
}

Fig. 6   The dependence of velocity fluctuations on aperture size. 
Fluctuations are measured by the standard deviation of the parameter 
�v = v − vavg , normalized by vavg , where v is a single particle speed at 
a single time. The fluctuations group as the aperture size gets smaller
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over to plots 8B and 8D, we see that a larger timescale 
produces more non-affine motion, which is not surpris-
ing. However the contrast between the two aperture sizes 
becomes more apparent. The larger aperture has non-aff-
ine motion distributed somewhat randomly through the 
flowing region, with a stronger signal near the exit. The 
smaller aperture also has an increased value near the exit, 
but shows distinct larger regions of non-affine motion in 
the bulk, including a visible large plastic deformation at a 
grain boundary on the left (Fig. 8b).

The visual perception of a higher D2

min
 may be mislead-

ing, so we calculate the mean D2

min
 value for each aperture 

size for all experiments, in the same region used for veloc-
ity measurements. First we calculate the average value for 
dt = 2 . For comparison between apertures, we divide the 
average value of D2

min
 by the average displacement squared 

for dt = 2 , which we denote �r2 . This makes D2

min
 dimen-

sionless, though with an associated timescale. While the 
rescaled D2

min
 is not numerically equivalent to the propor-

tion of non-affine motion compared to the total motion, it 
does represent this proportion, in that it will monotonically 
increase as the proportion of non-affine motion grows.

Next we consider the relative sizes of the rescaled D2

min
 

values for different aperture sizes. In Fig. 9, the data is plot-
ted. We see a clear (black circles) increase in nonaffine 
motion as the aperture size gets smaller. For the dt = 10 
data (red circles), we rescale the data by the same �r2 and 
then divide by 

√
5 as this should be the proper adjustment 

for delay time scaling [31]. We see the data collapse for 
both values of dt, indicating we do not appear to be probing 
significantly different dynamics for the two delay times.

6 � Dynamical heterogeneities

The transition to jamming in granular and colloidal systems 
is accompanied by the growth of dynamical heterogenei-
ties [34, 35]. As the system is typically closely packed, a 
grain must cooperate with its neighbors in order to move. 
String-like swirling motions or “conga lines” of particles 
may be observed if one can see the particles. The closer 
the system is to jamming, whether it is smaller strain rate, a 

Fig. 7   Fluctuations in the average value of D2

min
 for dt = 2 frames. 

The data is shown for R = 5 for one second of fully-developed flow

Fig. 8   Snapshots of D2

min
 in the silo for various experiments and delay 

times. a R = 5 , dt = 2 , b R = 5 , dt = 10 , c R = 20 , dt = 2 , d R = 20 , 
dt = 10 . Yellow corresponds to higher values of D2

min
 , blue corre-

sponds to low values (color figure online)

Fig. 9   The dependence of the average value of D2

min
 as a function of 

dimensionless aperture size. D2

min
 values for dt = 2 (black circles) 

have been rescaled by the average displacement squared for the same 
time interval, and dt = 10 (red circles) have been rescaled for collapse 
(color figure online)



	 G. Cai et al.

1 3

69  Page 8 of 11

higher packing fraction, or a lower temperature, these col-
lective motions are larger, and thus a growing length scale is 
reported on approach to jamming. Additionally, these coop-
erative motions become rarer, and a growing timescale may 
also be measured.

To look into the cooperative motions in the silo flow, 
we turn to an often used metric in the jamming and glass 
community to characterize these dynamics, the quantity �4 , 
which measures dynamical heterogeneities. To define �4 , 
we first define the simple self-overlap order parameter wi(�) , 
which compares a particle’s position in two frames. If the 
particle has not moved more than a cutoff distance (typi-
cally the particle size), then wi = 1 , if the particle has moved 
more, then wi = 0 for that particle and delay time combina-
tion. Then an ensemble average is taken over all particles for 
a given start time to get the order parameter Q, defined as so:

Here t refers to the start time and � is the delay time. In the 
absence of any heterogeneous dynamics, Q would resemble 
w exactly. However, due to heterogeneous dynamics, there 
are fluctuations in the instantaneous number of fast mov-
ing regions which manifests as a variability in the decay of 
Q(t, �) for different start times. By computing the variance 
of this decay for different start times, the heterogeneity may 
be quantified. It is customary to multiply this variance by 
the number of particles N, to form a metric that does not 
depend on N as the variance for counting statistics will go 
as 1/N. This is the parameter �4 , also called the dynamic 
susceptibility:

(5)Q(t, �) =
∑

i

wi(t, �)

(6)�4(�) = N[⟨Q(�)2⟩t − ⟨Q(�)⟩2
t
]

We illustrate a typical procedure for the calculation of �4 in 
Fig. 10 for experimental data R = 5 . Fig 10a shows the Q 
order parameter functions overlain for a number of differ-
ent start times, and the average over start times is shown. 
Note that our data does not decay to zero, as there are some 
particles that do not move. However, the decay curve shows 
a clear plateau and looks as expected. For systems with het-
erogeneous dynamics, the function �4 should have a peak 
value ( �4 ∗ ) at some time ( � ∗ ). By calculating the variance 
as described in Eq. 6, we generate Fig. 10b, and clearly see 
a peak.

A counting argument [36] gives the number of grains n ∗ 
in a dynamical heterogeneity:

Here Q ∗ is the value of Q where �4 is maximized, and Q1 
and Q0 are the average contributions from the fast and slow 
regions. The quantities Q ∗ , Q1 and Q0 will all be between 
zero and one, and not in generally dramatically different 
from one another. Thus the value of n ∗ will be some fixed 
multiple of �4 ∗ , of order 1-10 [37]. We will report the value 
of �4 ∗ only, but bring this up to acknowledge that it con-
nects to a physical length scale for cooperative motion.

In Fig. 11, we show results for all of our experiments. 
Figure 11a shows the value of �4 ∗ vs R, and we see that 
this value grows as the aperture size grows. We also see in 
Fig. 11b that the value of � ∗ does not systematically change, 
as far as we can tell. These are somewhat surprising results, 
as jammed systems tend to have time and lengthscales that 
grow together. However, to our knowledge this is the first 
measurement of such a parameter in this type of system. We 
discuss these results in the next section.

(7)n ∗=
�4 ∗

(Q1 − Q0)(Q1 − Q ∗)

Fig. 10   a The particle averaged self-overlap order parameter (colors) 
displayed for different start times. The average with respect to start 
times is overlaid on top (thick black line). The curve does not decay 
to zero as there are particles that never move. b The normalized vari-

ance of Q, which is �4 . A clear peak is seen. The height of the peak 
corresponds to a lengthscale for cooperative motion, and the peak 
location corresponds to a timescale (color figure online)
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7 � Discussion

The results of fluctuation measurements agree with prior 
results from silo flows [27, 30] and indicate higher rela-
tive fluctuations as the clogging point is approached. This 
also qualitatively agrees with findings regarding systems 
approaching the jamming point [38], where fluctuations 
increase approaching this point. However, the similarities 
end there. The contrast with jamming comes with the nature 
of the increase, where fluctuations are specifically found to 
diverge. We see no divergence of the fluctuations, just a 
smooth growth with decreasing aperture size, and our data 
includes one aperture with a high clogging probability. Were 
there to be some transition point, we would see it.

For “uncooperative” motions in systems, D2

min
 has been 

shown to increase on approaching the critical density from 
above [5]. That is, if a system of soft particles starts above 
the jamming point, non-affine responses to external stresses 
will grow as the packing fraction is reduced. This makes 
some sense from an intutive standpoint, as there is more 
space for particles to rearrange. We find that the D2

min
 param-

eter increase on approaching the clogging point. In one sense 
this might appear to be the same finding, but requires think-
ing through the analogy. For our system, apertures far from 
the clogging point actually represent systems with more free 
space, the packing is reduced. Thus the values of D2

min
 are 

not just a simple question of free space, it is competition 

between geometric frustration and a macroscopic driving 
flow. The presence of non-affine motion is more important 
for systems near the clogging point.

Another analogy might be between D2

min
 and shear rate, 

as in some granular systems D2

min
 has been shown to grow 

with shear rate ( ∼ 𝛾̇ ) [32]. However, we see the opposite 
trend here: higher overall shear rates correspond to larger 
apertures, and the clear direction is the other way. A true 
comparison would compare D2

min
 values to the local shear 

rates, and indeed this is current work.
An open question involves the contribution of different 

types of non-affine motion. There are local hotspots, larger 
failures along a grain boundary, and perhaps something else 
unimagined. One other contribution to non-affine motion 
will be due to granular temperature: particles will experience 
random fluctuations due to collisions, and these motions 
would register as non-affine. This would be especially rel-
evant near the outlet.

For cooperative motions, we see that the cooperativity 
length increases with aperture size. For jammed systems, 
one sees this lengthscale grow as the shear rate is decreased 
[37], and generally grow on approaching the jamming den-
sity [34]. We see the opposite effect in general, as aper-
ture size increases, the length scale increases. Increasing 
the aperture size drives the system away from jamming in a 
classical sense: there is more free space and a higher shear 
rate. This is a very intriguing result. One point to remember 
is that for jammed/near-jammed systems, the strain rate is 
uniform or zero. Here the strain rate is not uniform, and the 
particles near the center seem to form streamlines down-
wards more, especially for larger apertures. This may be a 
large component of the cooperative motions.

We also see that the timescale does not appreciably 
change, whereas for jammed systems this grows on approach 
to jamming. We hypothesize that for silo flow, this time-
scale is set by fixed system parameters, such as gravity and 
perhaps the sound speed. While these are difficult to check 
experimentally, it would be worth exploring these effects 
via simulation.

While we have characterized D2

min
 as indicating “uncoop-

erative” motion and �4 as indicating “cooperative” motion, it 
should be noted they are not opposite metrics. The presence 
of a string of particles moving faster than average might 
require nonaffine motions at its edges. A large clump of rear-
rangement will involve cooperation. Thus seeing opposite 
trends in the two metrics is especially intriguing. Future 
work will involve characterizing the regions of cooperative 
motion, as they are typically thought to be stringlike, but 
may be “clumpy” in some circumstances [35].

We have presented measurements of mesoscopic dynam-
ics in a granular system on approach to the clogging point, 
one for cooperative motion and one for uncooperative 
motion. We see that these metrics change, but in ways that 

Fig. 11   a �4 ∗ vs R for all experiments. The error bars represent the 
spread in measured values. Clearly, the value increases as R increases. 
b � ∗ vs R for all experiments. There is no apparent trend in this data
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require further investigation, and show that the clogging 
point is different in many ways from the jamming point. 
Practically, a strength of these metrics is that while they 
are built from particle-scale data, and report on mesoscale 
behavior, the average values report the system changes effec-
tively, thus they may be useful bulk monitors. (Temperature 
is another example of a metric built on microscopics that is 
a useful system monitor.) Unfortunately, our experimental 
measurements cannot uncover the microscopic mechanisms 
of the phenomena we have observed. In the case of D2

min
 , a 

natural extension is to test the dependence of the D2

min
 value 

on the local strain rate. Further, there are different poten-
tial modes of non-affine deformations, so it would be worth 
characterizing them and their relative importance. What 
causes these non-affine motions? It may take looking into 
the interparticle forces [39] to gain ultimate clarity. For the 
�4 parameter, the data is even more “smeared” as not only 
are all particles averaged over, but the function itself does 
not have a value at a particular time point—it requires aver-
aging over multiple time points. However, these cooperative 
motions do exist, so locating and categorizing them is the 
next challenge. Lastly, while we do not find evidence for a 
true clogging transition, it is worth exploring the notion of 
the clogging phase diagram [15] further, by exploring these 
metrics in systems of different granular temperatures, per-
haps by adding vibrations.
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