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Living  cells  self-organize  to  perform  various  complex  tasks  that a single  cell  alone  could  not  accomplish.
Few  synthetic  nano-  or micro-scale  objects  can  autonomously  carry  out comparable  coordinated  behav-
ior.  We  develop  computational  models  to  design  fluid-filled  microchambers  containing  both  nano-  and
micro-particles  that  convert  inputs  of  thermal,  optical  or  chemical  energy  into  mechanical  motion  to
exhibit  collective  biomimetic  activity.  For  example,  the  heat  generated  by illuminating  the solution  of
nanoparticles  within  the  microchamber  drives  the  dispersed  microparticles  to self-organize  into  colloidal
crystals  that  follow  a moving  light  source,  and thus  exhibit  life-like  photo-tactic  behavior.  For  microcham-
nd chemically driven flow
ting
cs
ly

 active sheets
yancy

bers  containing  catalyst-coated  flexible  sheets,  chemo-responsive  microparticles  and  the  appropriate
reactants,  the  sheets  self-organize  into  autonomously  moving  “predators”  that  effectively  collaborate  to
trap  the  “prey-like”  particles.  These  computational  studies  provide  valuable  guidelines  for  developing
microfluidic  devices  and  soft-robots  displaying  autonomous  bio-inspired  properties  that  greatly  expand
the  functionality  of these  systems.

©  2019  Elsevier  Ltd. All  rights  reserved.
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llective behavior of “active” nano- and micro-scopic par-
olution can resemble forms of self-organization found in
cluding the migration of photo-tactic organisms toward
the dynamics of predator-prey interactions. Synthetic
rticles are propelled by energy inputs from an external
.g., heat or light) or from chemical reactions occurring
icle’s surface. By harnessing thermal, optical or chemical
ctive particles undergo self-sustained motion in the sur-

 fluid and hence, perform mechanical work. Commonly
o as “motors”, these particles can autonomously transport
cargo in fluid-filled microchambers and thereby increase
bility of microfluidic devices. Additionally, clusters of
n perform complex, collaborative tasks and facilitate the
ent of small-scale robots that operate within fluidic envi-

 (e.g., such as blood vessels).
henomena involved in the propulsion of active particles
ss the reaction and diffusion of chemicals, conduction of
eration of chemical or thermal gradients, and convection
in microchambers. A significant challenge in developing
ticles for specific applications is establishing design rules
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 into account the different spatial, temporal, and energy
involved in these complex, dynamic systems. Below, we
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hallenge and facilitating the creation of fluidic systems
g useful, life-like functionality. These simulations reveal
osing dissolved nanoparticles to light converts optical

al energy into the mechanical motion of the host fluid
ersed microparticles, which subsequently move toward

 The studies provide guidelines for harnessing irradiated
icles to reversibly construct and move colloidal crystals
chambers. Additional simulations show that by simply
is illuminated microchamber, polydisperse mixtures of
ticles can be readily separated by size (or density). Finally,
ibe simulations where the interplay of chemical and
al energy enables active sheets to collaborate and thus,
all-scale “prey”.

 gold nanoparticles within a fluid-filled microchamber are
 with UV light, this energy is dissipated into heating the

which consequently undergoes net motion [1,2]. In Fig. 1A,
beneath the transparent bottom wall produces tempera-
ients and the heated, less dense fluid rises upward. Since
is confined in the microchamber, the flow circulates to the
all, forming an “inward” flow. If the solution contains sed-

microparticles, then the thermally generated inward flow
drag forces that drive the aggregation of the microparti-
he formation of colloidal crystals [1], which are useful for

ovel sensors, coatings, and optoelectronic devices [3].

 1A–D, the crystal formation is nucleated at points where
beam enters the microchamber. Moving the light source
position causes the cluster formation to occur around this
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rodynamic “tweezers”. (A). The bottom of the chamber is illuminated by an externa
es aggregates microparticles into a colloidal cluster. The aggregated cluster (B) is dr
e particles by convective flow on the bottom of the inclined chamber.

tion (Fig. 1B–D). For example, particles of radius 150 �m
 into a single cluster in approximately 30 min. If the light
moved sufficiently slowly, then the entire self-organized
llows the moving light without losing its integrity. Hence,
inated, dispersed nanoparticles function as “tweezers”
ct and relocate microscopic cargo to a desired position
e chamber. The temperature increase resulting from heat-
lution is approximately one Kelvin, which is compatible
g specimens, and thus, these tweezers could gather bac-

ther biological cells and concentrate these species around
or a biochemical analysis.

 this illuminated, nanoparticle-containing chamber is
ith respect to the horizontal direction, the competition

gravity and the fluid drag acting on the microparticles pro-
ethod for sorting cargo with different properties [4]. The

d heat again generates an inward flow (Fig. 1E); at a point
n the resultant counter-rotating vortexes, where the flow
arallel to the wall is zero. As indicated by the arrows in

he flow field about x0 changes sign, with the drag flow
e particles up the incline at x < x0. On the other hand, grav-

 the sedimented particles to the bottom of the channel.
x < x0, the two effects drive particles in opposite directions.
rguments indicate that particles of different sizes and/or

 attain a balance between the competing forces at different
 along the inclined wall. This size-dependent separation
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 evident in Fig. 1E. The separation distance between the
depends on the inclination angle and relative differences
rticle sizes or densities. For particles with radii of 40 and

arrows in
(Fig. 2A–B
the chem
t source. The fluid flow induced by the heat released from the irradiated
o new positions (C and D) by the moving light source. (E) Segregation of

the separation distance between the respective clusters is
ately 0.5 mm at an inclination angle of 15 ◦. This system is

cant technological importance since it provides a simple,
 approach for particle sorting, which forms a vital step in
s industrial processes.
illustrates another scenario where nanoscopic objects can
roscopic flow. In this case, an isolated crystal of catalase is
pic in one of its dimensions. In the dissolved state, catalase
ses hydrogen peroxide into water and oxygen; through
ytic process, even a single molecule of catalase anchored
ce can act as a “chemical pump”, enhancing diffusion of

 a microchamber [5]. The micron-sized flexible sheets in
 partially coated with catalase (area marked in dark green)
e simulations, the sheets are modeled as a single layer of
ected microparticles that form a four-lobed structure; the
ck tips are taken to be heavier than the catalase-coated

n this system, two distinct mechanisms drive the trans-
of chemical energy into mechanical motion: solutal

 [7] and diffusiophoresis [8]. The solutal buoyancy
m becomes operative when the catalase on the sheet
ses H2O2 into the less dense products (H2O and O2) and
reates density variations in the fluid. Analogous to the

buoyancy effects described above, the product-rich fluid
ard from the surface to produce inward flow (black
 Fig. 2A). The centers of the sheets in these simulations
) are restricted from moving in the lateral dimension, but
ically-generated inward flow below the sheet drives the
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tic  mechanism dictates that the particles move along the
 of the highest chemical gradients. Since the reactants are
d at the sheet and the products diffuse towards the edge
amber, the highest chemical gradients point away from
. Hence, when diffusiophoresis dominates, the particles
d relatively far from the sheet (Fig. 2B) and appear to flee
crab-shaped object.
articles can, however, be trapped if the effects of solutal

 are dominant, as in Fig. 2C–D. The four crabs are now
ly mobile (the centers of sheets are no longer constrained
ulations). The chemically generated fluid not only molds

e of the sheets, but also propels their movement in the
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e amplified, increasing the magnitude of the fluid veloc-
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