AAAS

BioDesign Research

Volume 2021, Article ID 9798714, 22 pages
https://doi.org/10.34133/2021/9798714

Review Article

BioDesign Research

A SCIENCE PARTNER JOURNAL

Biological Parts for Plant Biodesign to Enhance Land-Based

Carbon Dioxide Removal

Xiaohan Yang b2 Degao Liu,’> Haiwei Lu,* David J. Weston,"? Jin-Gui Chen ®,"?
Wellington Muchero,"? Stanton Martin,'> Yang Liu,' Md Mahmudul Hassan,'"
Guoliang Yuan 12 Udaya C. Kalluri , 2 Timothy J. Tschaplinski,l’2 Julie C. Mitchell,’
Stan D. Wullschleger ,> and Gerald A. Tuskan'

'Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

>The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

*Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering,
University of Minnesota, Saint Paul, MN 55108, USA

4Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902, USA

*Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge,
TN 37831, USA

Correspondence should be addressed to Xiaohan Yang; yangx@ornl.gov
Received 20 September 2021; Accepted 7 November 2021; Published 29 November 2021

Copyright © 2021 Xiaohan Yang et al. Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative
Commons Attribution License (CC BY 4.0).

A grand challenge facing society is climate change caused mainly by rising CO, concentration in Earth’s atmosphere. Terrestrial
plants are linchpins in global carbon cycling, with a unique capability of capturing CO, via photosynthesis and translocating
captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants
cannot meet the ambitious requirement for CO, removal to mitigate climate change in the future due to low photosynthetic
efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations,
there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems
design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for
biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in
bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the
framework of plant-based CDR (e.g., CO, capture, translocation, storage, and conversion to value-added products). Then, we
highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges

and strategies for the identification and curation of biological parts for CDR engineering in plants.

1. Introduction

It is becoming clear that the global climate is warming [1, 2].
Climate change or global warming is rapidly emerging as the
greatest threat to humanity and global ecosystems [3]. Global
warming will have negative impacts on the security and pro-
vision of food [4], water [5], energy [6], health [7], environ-
mental services [8], and the global economy [9]. Therefore,
it is imperative to stabilize global climate change at 1.5°C
above preindustrial levels [3] through multiple pathways
related to climate change mitigation, including both clean
energy technologies and large-scale CO, removal (CDR)

from the atmosphere [10, 11]. CDR technologies are at an
earlier stage of development than many clean energy technol-
ogies [11, 12]. Although CDR is nascent, it has attracted new
attention because clean energy technologies lag in adoption
or deployment needed to meet the goals of climate change
mitigation [13].

CDR solutions can be divided into three categories: (i)
natural CDR (N-CDR) solutions through growing more
organisms that naturally capture CO,, (ii) technological
CDR (T-CDR) solutions that rely on machines to remove
carbon from the atmosphere, and (iii) hybrid CDR (H-
CDR) solutions using technologies or biological changes to
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supplement the natural CDR processes [11]. N-CDR tech-
nologies based on the photosynthetic capture of CO, in ter-
restrial plants are most mature, with some applications (e.g.,
increasing carbon storage through reforestation and affores-
tation) ready for deployment at low to medium cost. How-
ever, these N-CDR solutions suffer some limitations,
including risks of losing stored carbon through disturbances
(e.g., fire and disease) and relatively high requirements for
land and water [11, 13, 14]. T-CDR (e.g., direct air capture
which pulls air into an apparatus, with CO, binding to a
liquid solvent or solid sorbent, followed by CO, separa-
tion, storage, or utilization) has the advantage of having
a low land footprint, yet it suffers the disadvantage of
being costly [11, 15]. These challenges can be partially
addressed by the development of H-CDR based on synthetic
biology or biosystems design, which involves predictable
modifications of existing organisms or creation of new plant
cultivars [16-18].

Curation of validated biological parts is critical for a suc-
cessful plant biosystems design linked to CDR [17]. Here, we
review the pathways in the framework for CDR mediated by
terrestrial plants and map representative biological parts to
the plant-based CDR pathways. We also discuss the chal-
lenges and perspectives of future research on the biological
parts for CDR biodesign in plants. In this review, we only
focus on genes encoding proteins or noncoding RNAs; other
types of biological parts, such as promoters, are covered by a
separate review article.

2. Framework for CDR Mediated by
Terrestrial Plants

In general, the CDR process in terrestrial plants starts from
photosynthetic fixation of CO, in the leaf tissue (source),
followed by translocation of fixed carbon (e.g., sucrose) from
source leaves to various sinks (e.g., roots belowground, stems
aboveground, and newly emerging leaves) for long-term
storage or utilization (illustrated in Figure 1).

2.1. Photosynthetic Fixation of CO,. Terrestrial plants have
evolved three photosynthetic pathways to convert CO, and
water into carbohydrates using energy from sunlight: C,
photosynthesis, C, photosynthesis, and Crassulacean acid
metabolism (CAM) [19]. There are approximately 295,000
flowering plant species known on Earth, of which ~90%,
~6%, and~3% are C;, CAM, and C, plants, respectively
[20-22]. C; photosynthesis is an ancient photosynthetic
pathway, from which both C, photosynthesis and CAM
photosynthesis have been independently derived [19,
23-25]. Among the three photosynthetic pathways, C, pho-
tosynthesis has the highest net photosynthetic efficiency
[26], whereas CAM photosynthesis has the highest water
use efficiency [27]. Therefore, there have been international
efforts to engineer C, photosynthesis and CAM photosyn-
thesis to enhance photosynthetic efficiency (for increasing
crop vield) [28, 29] and water use efficiency (for sustainable
crop production on marginal lands) [30-32], respectively,
in C; crops.

BioDesign Research

The ability of plants to capture CO, from the atmo-
sphere is constrained by low photosynthetic efliciency
(<1% in general) of converting the available sunlight to
chemical energy [33] and limitations of the CO,-fixing
enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco), which is not only catalytically slow for fixing
CO, but also responsible for the loss of previously fixed
CO, due to photorespiration [34]. Therefore, a lot of efforts
have been expended to enhance CO, fixation by (i) engi-
neering faster Rubisco [35], (ii) increasing Rubisco content
[34], (iii) replacing Rubisco-based pathway with a more
effective CO, fixation pathway [36], (iv) engineering CO,
concentrating mechanisms (CCMs) [17], (v) reassimilating
CO, released by photorespiration [37], and (vi) creating syn-
thetic photorespiratory bypasses [17, 38-44].

Recently, a computational simulation predicted that
engineering of the Calvin-Benson cycle would require bal-
anced activities of enzymes to gain a higher efficiency
because overexpression of a single enzyme could not
increase the rate of photosynthetic CO, uptake [45]. This
requirement for balanced activities of enzymes could be
met through synthetic metabolic engineering using an itera-
tive design-built-test-learn approach [17, 46], as discussed in
Section 4.

In general, plants can maintain an appropriate source-
sink balance through regulatory molecular feedback systems
[47], as demonstrated by a recent report showing that reduc-
ing the source to sink ratio by partial defoliation or heavy
shading significantly increased the photosynthetic rate in
the remaining leaves in tomato [48]. Similarly, reducing
the source-to-sink ratio by stem decapitation greatly
increased the net photosynthetic rate in the remaining leaves
of a Populus deltoides x nigra ‘DN22’ hybrid [49]. Further-
more, the higher photosynthetic rates of coppice shoots of
P. maximowiczii x nigra ‘MN9” hybrid versus comparable
intact shoots of control plants were associated with greater
sink demand of the coppice shoots, as indicated by their
greater export of newly fixed assimilate [50]. It would be
interesting to explore the potential of enhancing photosyn-
thesis through the manipulation of source-to-sink ratio by
increasing the sink capacity, along with regulation of sink-
to-source signaling, using biosystems design.

2.2. Translocation of Fixed Carbon from Source to Sink. Soil
plays a critical role in carbon sequestration, holding twice as
much carbon as does the atmosphere, and most carbon
stored in soils is derived from the translocation of carbon
fixed by photosynthesis into root structures and further
into the rhizosphere via root exudation [51]. From the
perspective of CDR, the rhizosphere and roots are the
major sinks for carbohydrates generated via photosynthe-
sis. Phloem is a supracellular highway for transporting
sugars from sources to sinks [52]. Sucrose is the predom-
inant form of carbohydrate translocated from leaves to
roots [53, 54]. The translocation of sucrose from leaves
to roots follows multiple steps: (i) sucrose loading into
the collection phloem, which involves symplasmic and
apoplastic movement of sucrose from the mesophyll cells
to the companion cells, and ultimately into the sieve
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FiGurek 1: Carbon flow in the CDR (carbon dioxide removal) process mediated by terrestrial plants. The atmospheric CO, is captured by
plant photosynthesis in source leaves, and the photosynthate, primarily in the form of sucrose, is translocated from source leaves to
various sinks, such as roots belowground, stem aboveground, and newly emerging leaves through a “phloem highway.” The sucrose in
roots can be further translocated to the rhizosphere via root exudation or plant-microbe interactions. SC: structural carbon (e.g., cell wall
components) or storage carbon (i.e., non-structural carbon for local storage such as starch and sugars).

elements via plasmodesmata; (ii) long-distance sucrose
movement, through the transport phloem, from the collec-
tion phloem to the release phloem; and (iii) sucrose
unloading from the release phloem into the roots [53].
While roots store some carbon (e.g., in the form of
starch), they can release carbon into the soil and associ-
ated microbes (e.g., mycorrhizal fungi) [55-57]. Besides
roots and soils being the primary carbon sink for plant-
based CDR, aboveground tissues (e.g., stems, branches,
and leaves) can serve as important short-term carbon
sinks for CDR [58, 59].

2.3. Long-Term Carbon Storage. Soil carbon storage is a very
attractive biological negative emission strategy due to several
reasons: (i) soil carbon storage has a great potential for CDR,
with the total size of the soil carbon reservoir exceeding the
total carbon mass in vegetation and atmosphere combined
[60]; (ii) carbon stocks are most depleted on agricultural
lands, and thus, soil carbon sequestration can be enhanced
without requirement for land use conversions (e.g., to for-
ests) and competition for land resources [60]; (iii) increasing
soil carbon sequestration can improve soil health and soil
fertility, as well as reduce soil erosion and habitat conver-

sion, providing additional incentives for adopting soil car-
bon sequestering practices [60, 61]; and (iv) soil carbon
can be stabilized for long-term storage, in particular for car-
bon stored in deep soil [62]. For long-term below-ground
carbon storage required by CDR, sucrose translocated from
leaves to roots needs to be either biologically converted into
more recalcitrant carbon-containing compounds (e.g., lig-
nin, suberin, and phytolith) inside the roots [17, 63, 64] or
delivered into the deep soil through deep root systems. In
general, the depth of plant roots varies from <0.01 to
>70m, with a distribution peak at 1m [65]. Remarkably,
plant roots can reach a depth of up to 122 m below-ground,
as demonstrated by a wild fig tree at Echo Caves, near
Ohrigstad, Mpumalanga, South Africa [66]. Many natural
plants and most agricultural crops have a rooting depth of
~1m, and there is a great potential for increasing rooting
depth to stabilize below-ground storage of carbon [51, 67].
For example, researchers at the Salk Institute for Biological
Studies have initiated the CRoPS (CO, removal on a plane-
tary scale) project to transform crops plants (e.g., wheat, rice,
and corn) for long-term storage of carbon in the ground
through increasing the biomass, depth, and suberin content
of roots [68].



2.4. Conversion of Carbon for the Bioeconomy. For large-
scale deployment of plant-based CDR technologies, it is
important to consider the co-benefits of bioeconomy, such
as production of bioenergy (e.g., biodiesel and jet fuels)
and high-value biobased products (e.g., specialty or com-
modity chemicals) in the aboveground plant tissue [17,
69]. Recently, it was reported that genetically modified
lipid-producing sugarcane (lipid-cane) with 20% lipid con-
tent had much higher biodiesel yield (~6700 L biodiesel per
hectare of land) than soybean (~500L biodiesel per hectare
of land) [70]. Multigene engineering was used to achieve
hyperaccumulation of triacylglycerol (TAG) in sugarcane,
with TAG contents being elevated by more than 70- and
400-fold in the stem and leaf tissue, respectively, compared
to nonengineered sugarcane, laying a solid foundation for
commercial biodiesel production [71]. Therefore, synthetic
metabolic engineering has a great potential for increasing
the economic value of plant-based CDR.

3. Validated Biological Parts for Engineering
CDR in Terrestrial Plants

Based on the framework discussed in Section 2, biological
parts (protein-coding sequences and noncoding RNAs),
which have been experimentally validated, are discussed
here in four categories: (i) photosynthetic fixation of CO,,
(ii) carbon translocation, (iii) long-term carbon storage,
and (iv) conversion of carbon to value-added products.
Here, we focus on discussing some representative biological
parts to showcase the linkage between the biological parts
and the biodesign framework for plant-based CDR.

3.1. Validated Biological Parts for Photosynthetic Fixation of
CO.,. The biological parts for enhancing CO, fixation in ter-
restrial plants have been derived from a wide range of organ-
isms, including microbes, algae, plants, and humans, with
representative examples listed in Table 1, and their corre-
sponding pathways summarized in Figure 2. These biological
parts have been utilized for making genetic modifications and
epigenetic changes to enhance CO, fixation in the framework
described in Section 2.1.

To address the issue of Rubisco-mediated photorespira-
tion, biological parts for CCM derived from C, and CAM
photosynthesis have been used to increase photosynthetic
efficiency in C, photosynthesis plants. For example, ectopic
expression of an Agave americana gene encoding a CAM-
specific phosphoenolpyruvate carboxylase (PEPC) in Nicoti-
ana sylvestris significantly increased net CO, uptake [72].
Also, photosynthetic rates were increased by 4.5-26.4% in
transgenic wheat plants expressing maize genes encoding
C,-type pyruvate orthophosphate dikinase (PPDK) and C,-
type PEPC, individually or in combination, relative to
wild-type plants [73]. Interestingly, constitutive expression
of a gene encoding PEPC derived from the C; photosynthe-
sis plant Solanum tuberosum can increase the CO, assimila-
tion rates in Arabidopsis thaliana [74]. However, the similar
impact on net CO, uptake was not achieved through some
earlier efforts to overexpress PEPC and PPDK in C; plants,
which also revealed that PEPC overexpression had pleio-
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tropic effects on stomatal opening and secondary metabo-
lism [75]. It was also recently reported that overexpression
of an Agave PEPC upregulated the expression of two genes
involved in proline biosynthesis and five other CAM-
related genes [72]. In the future, it is necessary to systema-
tically compare the impacts of CAM-type, C,-type, and
C,-type PEPC-encoding genes on photosynthetic efficiency
by engineering them separately into the same C, photo-
synthesis plant species to determine the most efficient iso-
form of PEPC for CO, fixation.

In addition to C, and CAM-based CCM, C, photosyn-
thesis is another natural CCM that is predicted by modeling
studies to be able to increase net CO, assimilation, relative to
C, photosynthesis, by capturing, concentrating and reassi-
milating CO, released by photorespiration [40]. However,
the components of C, photosynthesis need to be experimen-
tally validated as biological parts for CDR biodesign using
genetic engineering approaches. Also, reassimilating CO,
released by photorespiration has been achieved by coexpres-
sing a Zea mays PEPC, a Glycine max aspartate aminotrans-
ferase, and a N. tabacum glutamine synthetase in transgenic
A. thaliana plants, resulting in an improved photosynthetic
rate and a higher flux of assimilated CO, toward sugars
and amino acids [37].

Biological parts have been identified for engineering vari-
ous synthetic photorespiratory bypasses to increase photo-
synthetic efficiency. The first synthetic photorespiratory
bypass (i.e., bypass 1 illustrated in Figure 2) containing three
Escherichia coli enzymes (glycolate dehydrogenase, glyoxylate
carboligase, and tartronic semialdehyde reductase) of the gly-
colate catabolic pathway was engineered in A. thaliana chlo-
roplasts [76], which was also demonstrated in the oilseed
crop Camelina sativa [39]. The second synthetic photore-
spiratory bypass (i.e., bypass 2 illustrated in Figure 2) was
introduced in chloroplasts of A. thaliana, which comprises
A. thaliana glycolate oxidase (At3g14420), Cucurbita max-
ima (pumpkin) malate synthase, and E. coli catalase [77].
Recently, an alternative chloroplastic photorespiratory path-
way (i.e., bypass 3 illustrated in Figure 2), based on a malate
synthase from C. maxima and a glycolate dehydrogenase
from Chlamydomonas reinhardtii (a single-cell green alga),
was shown to increase the CO, assimilation efficiency in N.
tabacum [41]. Also, a chloroplastic photorespiratory bypass
(i.e., bypass 4 illustrated in Figure 2), called GOC, containing
three rice-self-originating enzymes (i.e., glycolate oxidase,
oxalate oxidase, and catalase) was engineered in rice to
increase photosynthetic efficiency [42]. Because the perfor-
mance of GOC bypass was not stable, it was recently upgraded
into a more efficient chloroplastic photorespiratory bypass
(i.e., bypass 5 illustrated in Figure 2), called GCGT, which
includes an Oryza sativa glycolate oxidase and three addi-
tional enzymes (i.e., catalase, glyoxylate carboligase, and
tartronic semialdehyde reductase) derived from E. coli
[43]. Besides the chloroplastic photorespiratory bypasses,
a photorespiratory shortcut (ie., bypass 6 illustrated in
Figure 2) was created by engineering E. coli glyoxylate car-
boligase and hydroxypyruvate isomerase into N. tabacum
peroxisomes to convert glyoxylate to hydroxypyruvate
[78]. However, the photorespiration issue cannot be
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FIGURE 2: Synthetic metabolic pathways for enhancing CO, fixation
in terrestrial plants. The blue lines with arrowhead indicate the CO,
concentrating mechanisms (CCMs). The orange lines with
arrowhead indicate synthetic photorespiratory bypasses (i.e., bypass
1, bypass 2, bypass 3, bypass 4, bypass 5, bypass 6, and bypass 7)
described in Section 3.1. PEPC: phosphoenolpyruvate carboxylase;
Rubisco: ribulose-1,5-bisphosphate carboxylase/oxygenase; CCM1:
CCM mediated by PEPC derived from C, or CAM plants; CCM2:
CCM mediated by C, photosynthesis. Adapted from [41-44, 76-78,
187, 188].

completely solved by the above photorespiratory bypasses
because these synthetic bypasses still release CO,. To address
this limitation, a CO,-free photorespiratory bypass (i.e.,
bypass 7 illustrated in Figure 2) based on the f-hydroxyas-
partate cycle (BHAC) in the marine proteobacterium Para-
coccus denitrificans [79] was engineered in A. thaliana
peroxisomes to directly convert photorespiratory glycolate
into a C, compound (i.e., oxaloacetate), without the loss of
carbon resulting from decarboxylation of a photorespiratory
precursor [44].

Although engineering of CCM and synthetic photore-
spiratory bypasses has great potential for enhancing net
CO, fixation, it was reported that increasing the regenera-
tion of the carbon dioxide acceptor ribulose 1,5-bispho-
sphate (RuBP) in the Calvin-Benson cycle through
overexpressing sedoheptulose-1,7-bisphosphatase (SBPase),
which was cloned from A. thaliana, increased CO, assimila-

tion rate by 45%-65% in N. tabacum plants [80]. Also,
genetic improvement of light capture for photosynthesis
has been shown to enhance leaf CO, uptake. For example,
it was demonstrated that coexpression of three A. thaliana
proteins (i.e., photosystem II (PSII) subunit S, zeaxanthin
epoxidase, and violaxanthin de-epoxidase), which are
involved in the recovery from photoprotection via accelera-
tion of NPQ (i.e., nonphotochemical quenching of chloro-
phyll fluorescence) relaxation on transfer of leaves from
high light to shade, in N. tabacum accelerated response to
natural shading events, resulting in an average increase of
9% in CO, fixation rates under fluctuating light [81]. In
addition, nuclear expression (driven by a heat-responsive
promoter in the nuclear genome) of the Arabidopsis chlo-
roplast gene psbA, which encodes the D1 subunit protein
of PSII, protects PSII from severe loss of D1 protein,
and consequently enhances net CO, assimilation rates by
16.9-48.5% in the transgenic plants of Arabidopsis,
tobacco, and rice under heat stress [82].

Mammals/humans can be a valuable source of biological
parts for enhancing plant photosynthesis. Recently, the
human RNA demethylase FTO, which does not have a
homolog in plants, was transferred into rice and potato, to
increase photosynthetic efficiency, resulting in ~50%
increases in yield and biomass in field trials [83]. The FTO
protein was found to be associated with fat mass and obesity
in humans through oxidative demethylation of the abundant
N6-methyladenosine (m°A) residues in RNA [84, 85]. These
results suggest that there exists a conservation in epigenetic
regulation between humans and plants, providing a new
source for the identification of novel biological parts in
humans/mammals for CDR engineering in plants.

Besides partial modifications of the natural photosyn-
thetic pathways in plants, progress has been made to con-
struct synthetic pathways to completely replace Rubisco-
mediated photosynthesis. For example, a synthetic photo-
synthetic pathway called CETCH v7.0 was recently created
from 16 biological parts derived from eight different organ-
isms, including Methylorubrum extorquens (a Gram-
negative bacterium), Rhodobacter sphaeroides (a purple bac-
terium), Clostridium kluyveri (a Gram-positive bacterium),
Homo sapiens (humans), Nitrosopumilus maritimus (an
archaeon living in seawater), Pseudomonas migulae (a
Gram-negative bacterium), E. coli (a Gram-negative bacte-
rium), and P. aeruginosa (a Gram-negative bacterium) [86].

Although most of the genes that have been demonstrated
to influence photosynthetic efficiency encode proteins, non-
coding RNAs can play important roles in the regulation of
photosynthesis. For example, overexpression of microRNA
OsmiR408 increases photosynthesis in O. sativa via down-
regulating a phytocyanin gene [87].

3.2. Validated Biological Parts for Carbon Translocation. The
validated biological parts for translocation of fixed carbon
from leaves to roots in terrestrial plants include genes
involved in sucrose synthesis, sucrose transport, root exuda-
tion, and plant-microbe symbiosis, as represented in Table 2.

Sucrose and starch are the two key components of car-
bon partitioning [88]. Sucrose synthesis is the key point of
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TABLE 2: Selected examples of biological parts for carbon translocation in terrestrial plants.
Name Definition Biological function Source Reference
IbSUT4 Sucrose transporter 4 Sucrose transport Ipomoea batatas [96]
AtSUC2 (At1g22710) Sucrose-proton symporter 2 Phloem sucrose loading A:ZZZ(Z):S [94, 95]
AtSWEETI11 (AT3G48740) Sucrose efflux transporter SWEET11 Sucrose transport A. thaliana [93]
AtSWEETI12 (AT5G23660) Sucrose efflux transporter SWEET12 Sucrose transport A. thaliana [93]
AtAVPI (AT1G15690) Type I proton-pumping Proton transmembrane A. thaliana [97]
pyrophosphatase transport
AtSPS5b (At5g20280) Sucrose phosphate synthase 1F Sucrose biosynthesis A. thaliana [89]
Sucrose-6F-phosphate . . .
AtSPP (At2g35840) phosphohydrolase Sucrose biosynthesis A. thaliana [89]
PtLecRLKI (POPTR_ . a Mediating plant-fungal Populus
0011513000) G-type lectin receptor-like kinase symbiosis trichocarpa [101, 102]
ABCG30 (At4g15230) ATP-binding cassette G30 Carbohydr:éztesxport from A. thaliana [105]
AGPase ADP-glucose pyrophosphorylase Starch biosynthesis Zea mays [92]

carbon partitioning because it provides the primary source
material for long-distance translocation of carbon. It
involves the synthesis of sucrose-6-phosphate (Suc-6-P)
from fructose-6-phosphate (Fru-6-P) and UDP-glucose,
which is catalyzed by Suc-6-P synthase (SPS), such as
AtSPS5b (At5g20280) in A. thaliana, and hydrolysis of
Suc-6-P to sucrose, which is catalyzed by sucrose-6-
phosphate phosphatase (SPP), such as AtSPP (At2g35840)
[89]. Starch acts as both a source (releasing carbon reserves
in leaves) and a sink (a dedicated starch storage, or a tempo-
rary reserve of carbon contributing to sink strength) [88].
Source or sink activities can be manipulated by genetic
engineering [90]. The synthesis of adenosine diphosphate-
(ADP-) glucose by ADP-glucose pyrophosphorylase
(AGPase) is critical for starch polymer formation [91]. It was
reported that AGPase overexpression in both source (leaf)
and sink (seed tissue) synergistically increased leaf starch
content, total plant biomass, and seed yield in rice [92].
Sucrose transport involves various types of sucrose
transporters (SUTSs) or carriers (SUCs), such as AtSWEET11
(AT3G48740) and 12 (AT5G23660) for sucrose export from
phloem parenchyma cells to the apoplasm [93] and AtSUC2
(At1g22710) for importing sucrose from the apoplasm into
the companion cell-sieve element complex in the phloem
[94], which is controlled via ubiquitination and phosphory-
lation in a light-dependent manner [95]. Recently, it was
reported that engineering a SUT gene (called IbSUT4)
derived from Ipomoea batatas (sweet potato) into A. thali-
ana reduced sucrose content in the leaves, while increasing
sucrose content in the roots, indicating that IbSUT4 plays
an important role in the translocation of sucrose from leaves
to roots [96]. Besides the direct involvement of SUTSs in
sucrose translocation, other factors crucial for normal phloem
function have an impact on sucrose movement through
phloem, such as Arabidopsis type I proton-pumping pyropho-
sphatase (AVP1), which is localized at the plasma membrane
of the sieve element-companion cell complexes, with its over-
expression being able to enhance source-to-sink transport of
carbon fixed by photosynthesis [97]. Efforts to engineer

increased sucrose export have met with limited success, which
is likely due to downstream effects on sugar signaling path-
ways. Sucrose is a signaling entity, and the expression of
sucrose transporters at the site of phloem loading can be reg-
ulated by sucrose signaling [98]. The molecular mechanisms
of sucrose signaling are largely unknown [99]. Therefore, it
is necessary to gain a deep understanding of the mechanisms
underlying the regulation of sucrose transport by sugar
signaling for identifying biological parts which can be used
to engineer enhanced sucrose transport.

Symbiosis between plants and microbes is an important
channel for carbon flux from roots into the rhizosphere.
Root-associated fungi, such as arbuscular mycorrhizal fungi,
can create a strong carbon sink to avoid feedback downreg-
ulation of photosynthesis by preventing photosynthate accu-
mulation [100]. Therefore, improvement of the beneficial
interactions between plants and symbiotic fungi has great
potential of enhancing leaf-to-root transport of carbon.
Various plant genes have been found to be involved in
the establishment and maintenance of symbiosis, such as
a G-type lectin receptor-like kinase PtLecRLK1 (POPTR_
0011s13000) in Populus trichocarpa, which could promote
symbiosis between the ectomycorrhizal fungus Laccaria
bicolor and multiple nonhost species, such as A. thaliana
[101] and Panicum virgatum [102]. Although root exudation
was engineered using the natural T-DNA from Agrobacter-
ium rhizogenes in Lotus corniculatus to influence the micro-
bial communities in the rhizosphere [103, 104], no specific
foreign genes were mentioned in the transgenic L. cornicula-
tus plants. In A. thaliana, a loss-of-function mutation in the
ABC transporter ABCG30 (At4gl5230) was found to alter
root exudation and consequently influence the surrounding
soil microbial community [105]. In the future, more effort
will be needed to identify genes for engineering novel symbi-
otic plant-microbe interactions as well as root exudation in
plants to enhance carbon flow into the rhizosphere.

3.3. Validated Biological Parts for Long-Term Carbon
Storage. As discussed in Section 2.3, long-term carbon
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storage mediated by terrestrial plants can be achieved
through in-planta conversion of carbohydrates into recalci-
trant carbon-containing compounds (e.g., lignin, suberin,
and phytolith) inside roots and delivery of carbon into the
deep soil through deep root systems. Representative biolog-
ical parts for enhancing the biosynthesis of recalcitrant
carbon-containing compounds and increasing rooting depth
are listed in Table 3.

For enhancing long-term carbon storage, plants can be
engineered to increase lignin content and/or change lignin
chemistry, such as lowering the syringyl-to-guaiacyl (S/G)
ratio, of the root tissue [106]. It was recently reported that
overexpression of a poplar root-specific transcription factor,
nuclear factor Y subunit B21 (PANF-YB21), dramatically
increased root growth as well as the lignin content and S/G
ratio in the root [107, 108]. Also, overexpression of an Euca-
lyptus grandis NAC transcription factor, EgNACI41, in A.
thaliana resulted in higher lignin content due to the up-
regulation of multiple lignin biosynthetic genes [109].
Besides protein-coding genes, noncoding RNAs, such as
microRNA393 (miR393), can also regulate lignin biosynthe-
sis, as demonstrated in Populus clone 84 K (P. alba x P. glan-
dulosa) [110]. Some genes can regulate lignin composition
without any impact on lignin content. For example, overex-
pressing an O. sativa transcription factor, NAC domain
protein 1 (OsSWNI1), reduced lignin S/G ratio without
any impact on the lignin content in the Populus clone T89
(P. tremula x P. tremuloides) [111].

Suberin is a hydrophobic biopolymer important for the
persistent storage of organic carbon [64]. Multiple transcrip-
tion factors have been shown to influence the suberin biosyn-
thesis and/or deposition in plants, such as NAC046
promoting suberin biosynthesis in A. thaliana roots [112],
WRKY9 promoting suberin deposition in A. thaliana roots
[113], and ShAMYB78 (a sugarcane MYB transcription factor)
enhancing suberin biosynthesis through activation of suberin
biosynthetic genes 3-ketoacyl-CoA synthase (ShKCS20) and
caffeic acid-O-methyltransferase (ShCOMT) [114]. Also, it
was reported that an O. sativa Class II trehalose-phosphate-
synthase (OsTPS8) can enhance suberin deposition possibly
through ABA signaling [115].

Many undomesticated plants and most agricultural
crops have a rooting depth of ~1 m and deeper roots can have
a hugely beneficial effect in stabilizing below-ground storage
of carbon captured through photosynthesis [51, 67]. Previous
experimental studies have identified a number of genes that
have a positive impact on the rooting depth. For example,
the deeper rooting 1 (DROI) gene increases deep rooting in
rice through increasing the root growth angle and conse-
quently allowing roots to grow in a more downward direction
[116]. Recently, an exocytosis factor, EXOCYST70A3, was
shown to control the depth of the root system in A. thaliana
via the dynamic modulation of auxin transport [117]. More
recently, it was reported that a Z. mays MEI2-like RNA bind-
ing protein gene (Zm00008a033967) increased rooting depth
through improving root tensile strength and enhancing pen-
etration ability in compacted soils [118]. Also, root-specific
expression of an A. thaliana cytokinin oxidase/dehydroge-
nase in Z. mays enhanced root growth through increasing

the degradation of cytokinin, which negatively regulates root
growth [119]. Besides the important roles of individual genes
in the regulation of rooting depth, some other genes act col-
lectively to promote root growth. For example, overexpres-
sing an expansin family gene AtEXPA5 in combination
with one pectin methylesterase inhibitor family protein
(PMEI) gene or one cellulase (CEL) gene increased the length
of primary roots in A. thaliana [120].

3.4. Validated Biological Parts for Conversion of Carbon to
Value-Added Products. As mentioned in Section 2.4, the
co-benefits of bioeconomy, resulting from in-planta conver-
sion of carbon to value-added products related to bioenergy
(e.g., biodiesel and jet fuels) or biobased products (e.g., spe-
cialty or commodity chemicals) in the aboveground plant
tissue, would facilitate the large-scale deployment of plant-
based CDR technologies. Representative biological parts for
in-planta conversion of carbon to value-added products are
listed in Table 4.

Much progress has been made towards the identification
of biological parts for in-planta production of biofuels.
For example, sugarcane has been converted towards oil-
cane for hyperaccumulation of TAG through ectopic
coexpression of multiple foreign genes, including WRII
(encoding a transcription factor with the capability of
upregulating the expression of genes involved in fatty acid
biosynthesis) from  Sorghum  bicolor, diacylglycerol
acyltransferasel-2 gene DGATI-2 (encoding an enzyme
responsible for the addition of an acyl group to snl-
sn2-G3P, a limiting step for the production of TAG from
diacylglycerol) from Z. mays, and OLEOSIN (encoding a
lipid packaging protein which protects lipid droplets from
coalescence and reduces lipid degradation) from Sesamum
indicum, along with RNAi- (RNA interference-) mediated
suppression of the endogenous SUGAR-DEPENDENTI,
which initiates oil breakdown and directs fatty acids for
B-oxidation [71]. However, TAG hyperaccumulation may
have a negative impact on the plant growth. This issue
has been addressed by individual overexpression of sedohep-
tulose-1,7-bisphosphatase (SBPase; an important factor for
RuBP regeneration in the Calvin-Benson cycle [121]),
chloroplast-targeted fructose-1,6-bisphosphatase (cpFBPase;
an enzyme in the Calvin-Benson cycle, contributing to the
partitioning of the fixed carbon for RuBP regeneration or
starch synthesis [121]), cytosolic FBPase (cytFBPase; an
enzyme in the sucrose synthesis pathway [122]), and lipid-
related transcription factor DOF4 (upregulating lipid metabo-
lism) in high oil N. tabacum plants [123], which were
previously engineered with three foreign genes (A. thaliana
WRI1, A. thaliana DGAT1, and S. indicum OLEOSIN) [124].

There is a great potential for engineering plants to pro-
duce bioplastic polyhydroxybutyrate (PHB), which is the
simplest form of polyhydroxyalkanoates (PHAs), a large
class of biodegradable biopolymers naturally synthesized in
eubacteria [125]. Plant-based production of bioplastics,
directly from natural resources (e.g., CO,, soil nutrients,
water, and solar energy), is a cheaper option than bacterial
synthesis [126]. Successful PHB production was demon-
strated in the biomass crop switchgrass (P. virgatum)
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through the engineering of three microbial genes in the PHB
biosynthetic pathway, including acetoacetyl-CoA thiolase
(phaA), acetoacetyl-CoA reductase (phaB), and PHA syn-
thase (phaC); however, the polymer levels (up to 3.72% dry
weight of PHB in leaf tissues) were lower than the estimated
threshold (7.5% dry weight) required for the commercializa-
tion of PHB-producing switchgrass [127]. Higher yield of
PHB production (~40% dry weight) was reported in trans-
genic A. thaliana plants expressing the three Ralstonia eutro-
pha genes (phbA, phbB, and phbC) in leaf chloroplasts;
however, the high-yield production of PHB generated severe
negative impacts on both plant development and metabo-
lism [128]. Further optimization of PHB production in
plants to reach economically viable yields without signifi-
cantly negative impacts on plant growth and development
requires careful consideration of the timing and duration
of biosynthesis for organelle-targeted PHB production, relo-
cation, and storage [125].

Genetic manipulation of the shikimate and isoprenoid
biosynthetic pathways in plants has been attempted for pro-
ducing multiple valuable biochemicals [129]. For example,
the E. coli gene ubiC encoding chorismate pyruvatelyase
was engineered in tobacco for directly converting chorismate
into 4-hydroxybenzoate (4HB), which is a precursor of shi-
konin, a pharmaceutical substance with antibacterial, anti-
phlogistic, and  wound-healing  properties  [130].
Botryococcene is a valuable precursor for producing chemi-
cals and high-quality fuels (gasoline and jet fuel) [129]. High
titers of botryococcene (>1 mg/g FW) were produced in Bra-
chypodium distachyon using the cytosolic expression of a
synthetic botryococcene synthase (BS), which is a fusion of
squalene synthase-like 1 (SSL1) and squalene synthase-like
3 (SSL3) from Botryococcus braunii and farnesyl diphos-
phate synthase (FPS) from Gallus gallus [131].

The coronavirus disease 2019 (COVID-19) is a global
challenge facing our society. Plant-based production of
COVID-19 vaccines has received immense attention due to
several advantages, such as low cost, rapidity, scalability,
safety, and glycosylation of recombinant proteins, which
affects the bioactivity of protein-based vaccines, not possible
in an E. coli-based culture system [132]. Recently,
coronavirus-like particle (CoVLP) was produced in N.
benthamiana as a COVID-19 vaccine candidate, which is a
self-assembling virus-like particle (VLP) with trimers of
recombinant modified S protein of SARS-CoV-2 (ancestral
variant) embedded in a lipid envelope [133].

4. Identification of New Biological Parts for
CDR Engineering in Terrestrial Plants

The biosystems design of CDR in plants is a nascent area of
research, with the appropriate strategies and eflicient tech-
nologies to be developed to achieve large-scale, cost-
effective deployment of plant-mediated CDR. One of the
major limitations deserving immediate attention is a lack
of validated biological parts for CDR engineering in plants.
Although millions of genes in total have been predicted in
the fast-increasing list of sequenced plant genomes, as dem-
onstrated in the Phytozome database [134], only limited
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numbers of genes have been experimentally characterized
and verified [17, 135], of which only a small portion are rel-
evant to CDR engineering in plants. Therefore, a large-scale
effort will be needed to systematically identify the genes that
can be used as biological parts for engineering CDR traits in
plants. Here, we discuss how to use an artificial intelligence-
(AI-) driven design-build-test-learn (DBTL) approach to
accelerate the progress in the identification of biological
parts for CDR engineering, as illustrated in Figure 3.

4.1. Designing Biological Parts for CDR Engineering. Modu-
larity is an important principle of the plant biosystems
design [17]. Biological parts can be designed in the context
of individual modules associated with specific CDR-related
traits, such as CO, fixation, carbon translocation, carbon
storage, and carbon conversion to value-added products.
Each module contains three types of biological parts: (i) val-
idated biological parts as demonstrated in Section 3, (ii)
unknown genes in a pathway containing some validated bio-
logical parts, and (iii) unknown genes in a pathway contain-
ing no validated biological parts, as illustrated in Figure 3(a).
The quality of validated biological parts can be assessed
using a data-driven method based on machine learning
[136]. For functionally redundant biological parts, such as
CO,-fixation enzymes (e.g., PEPCs from C,, C,, and CAM
plants) and different photorespiratory bypasses (Figure 2),
it is necessary to compare their enzymatic properties using
both computational modeling and experimental approaches.

To design new biological parts for CDR engineering in
target plant species, a genome-wide association study
(GWAS) approach can be used to identify candidate genes
associated with CDR-related traits. For example, a GWAS
analysis in Z. mays identified a candidate gene associated
with multiseriate cortical sclerenchyma (MCS), which can
enhance root penetration in compacted soils and increase
rooting depth [118]. Also, a sorghum carbon-partitioning
nested association mapping (NAM) population was recently
generated, which can be exploited for identifying genes
responsive for carbon partitioning and sequestration [137].
Another approach for designing new biological parts within
the target plant species is to find the genes that are directly
connected to the validated biological parts for CDR engi-
neering in various gene networks (e.g., coexpression net-
works, protein-protein interaction networks, and gene
regulatory networks). For example, a gene coexpression net-
work analysis was used to predict new candidate genes asso-
ciated with high photosynthetic efficiency in Camellia
oleifera [138]. The resolution of the network in this report
however was not high. It was recently reported that the
gene-to-trait problem can be better addressed using a mul-
tiomics network-based approach leveraging transcriptome,
protein-DNA interaction, and protein-protein interaction
data, which enabled the annotation of 42.6% of unknown
genes in A. thaliana [139]. Also, the multiomics association
database AtMAD, which is a repository for large-scale mea-
surements of genome x transcriptome x methylome x path-
way x phenotype associations in A. thaliana [140], is very
useful for linking genes to traits or phenotypes, but CDR-
related phenotypic data (e.g., source activities, sink
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fixation of CO,, and carbon translocation, and long-term carbon storage.

capacities, carbon partitioning, and translocation) are not
well represented in this database. Future efforts will be
needed to add more phenotypic data relevant to plant-
based CDR to AtMAD. Discovery of genes regulating CDR
in plants requires high-quality gene regulatory networks,
which can be constructed by integrative analysis of multiple
data types, including transcriptome profiles, chromatin
accessibility and long-range chromatin interaction, tran-
scription factor binding site motifs, microRNAs, ribosome-
associated RNAs, and proteomic profiles [141]. However,
these types of multiomics and high-resolution data are cur-
rently not available for nonmodel plant species such as pop-
lar and switchgrass, which are important target species for

CDR engineering. The potential solution to this challenge
is discussed in Section 4.3.

New biological parts for CDR engineering beyond the
target plant species can be predicted using the following
strategies:

(1) Exploring an extended evolutionary space to identify
biological parts in other plant species that are related
to or distant from the target plant species. For exam-
ple, biological parts derived from cyanobacteria,
microalgae, and C, and CAM photosynthesis plants
have been identified for enhancing CO, fixation in
C, photosynthesis plants, as discussed in Section 3.1
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(2) Searching for new-to-plant biological parts in other
domains of life (e.g., microbes and mammals/
humans). For example, biological parts for engineer-
ing photorespiratory bypasses in higher plants have
been identified from microbes (e.g., E. coli and P.
denitrificans), as shown in Table 1. Also, the biolog-
ical parts of a synthetic photosynthetic pathway were
derived from bacteria, humans, and archaea [86]

(3) Designing synthetic biological parts that are new to
nature. For example, only a fraction of the potential
metabolic design space has been exploited for
improving photosynthesis by natural evolution, and
there are likely many opportunities to further rede-
sign novel biological parts for photosynthesis [17,
142, 143]. Computational methods have been
increasingly used for providing predictions to signif-
icantly narrow down the space of possible mutations
and reduce the experimental burden for creating new
enzymes [144]. Recently, two Al-based computa-
tional tools, AlphaFold and RoseTTAFold, became
available for high-accuracy prediction of protein
structure from sequence information alone [145,
146]. These new powerful tools will greatly facilitate
the designing of entirely novel protein folds and new
activities [147]. It is expected that AlphaFold and
RoseTTAFold will accelerate the progress in design-
ing new-to-nature proteins for CDR engineering

4.2. Building Gene Constructs into Plants for CDR
Engineering. The biological parts designed using computa-
tional approaches, as discussed in Section 4.1, need to be
engineered into plants through a two-step process: assem-
bling the biological parts into gene constructs (or gene cir-
cuits) and engineering the gene constructs into plants.
Assembling the biological parts into gene constructs has
become facile due to the technological advances in DNA
synthesis and DNA fragment assembly, as discussed in
recent reviews [17, 148]. The remaining challenge lies in
engineering gene constructs into plants. While some plant
species (e.g., sugarcane) are almost exclusively transformed
by particle bombardment, engineering of gene constructs
into the genomes of many plant species is dependent on tis-
sue culture-based, Agrobacterium-mediated plant transfor-
mation, which has two major limitations: (i) not all plant
species are Agrobacterium-infectable and (ii) in vitro regen-
eration of shoots or embryos from transformed cells is very
slow and genotype-dependent [17]. The development of
new plant transformation technologies is urgently needed
to enable the engineering of CDR biological parts into vari-
ous plant species, including those that are very difficult to be
transformed through tissue culture-based, Agrobacterium-
mediated approaches. The potential of in planta gene trans-
formation mediated by nanoparticles [149-151] or viruses
[152] can be exploited to address this challenge in the future.
CDR engineering in plants requires synchronization of
increase in source activities, sink capacities, and source-to-
sink C transport through simultaneous expression of multi-
ple genes. However, current plant transformation technolo-
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gies allow only one or several genes to be engineered at a
time due to the upper size limit of plasmids. One possible
solution to this challenge is to construct plant artificial mini-
chromosomes, which has a great potential for engineering a
large number of genes [153, 154].

4.3. Testing Transgenic Plants Expressing the Biological Parts
for CDR Engineering. Transgenic plants expressing the bio-
logical parts for CDR engineering can be used to test if the
biological parts can influence different aspects of CDR,
including net CO, fixation in the leaf tissue, carbon trans-
location from leaves to roots, root depth and biomass
accumulation, contents of recalcitrant carbon-containing
compounds and polymers (e.g., lignin, suberin) in root tis-
sue, and the yield of value-added products derived from
the captured carbon. Also, it is important to determine
whether the biological parts have negative impacts on
plant growth and development. Multiomics (e.g., tran-
scriptomics, proteomics, metabolomics, and phenomics)
data can be generated from the transgenic plants for
computational modeling, as described in Section 4.4. The
biological parts having significant impact on any of the
CDR-related traits, without any negative impact on plant
growth and development, can be selected as validated biologi-
cal parts for CDR engineering, as illustrated in Figure 3(b).
As mentioned in Section 4.1, there is a lack of multio-
mics and high-resolution data for nonmodel plant species.
This challenge can be addressed by generating multiomics
data at the cellular, tissue, and whole plant levels. Bulk-cell
and bulk-tissue omics (e.g., transcriptomics, proteomics,
and metabolomics) have been widely used to capture the
average expression of a gene product within a cell popula-
tion or tissue, masking the inherent heterogeneity of expres-
sion within single cells in complex multicellular organisms
like plants [155]. The single-cellular transcriptomics tech-
nology has been well established in plants, but the applica-
tion of single-cell proteomics and single-cell metabolomics
in plants is lagging behind because proteins and metabolites
cannot be amplified, yielding considerably less sensitive
detection than transcriptomics [155, 156]. To address the
limitation of single-cell proteomics, single-cell type proteo-
mics facilitated by fluorescent activated cell sorting was
developed in plants [157]. Therefore, single-cell transcripto-
mics and singe-cell type proteomics can be used for testing
the transgenic plants engineered with CDR-related genes.
Tracking the carbon flux in transgenic plants is critical
for understanding the function of CDR-related genes. To
investigate the impact of sucrose synthase on carbon alloca-
tion and carbon flow at the tissue and whole tree levels, the
source leaves, phloem, developing wood, and roots of trans-
genic hybrid aspen (P. tremula x P. tremuloides) lines, with
the expression of sucrose synthase gene repressed by RNA,
were analyzed using a combination of metabolite profiling,
>CO, pulse labelling experiments, and long-term field tests
[158]. These types of data can be very useful for metabolic
modeling in the “learn” phase of a DBTL cycle.
High-throughput phenotypic analysis of CDR traits in
transgenic plants can accelerate the design of biological
parts for CDR engineering. Recently, a semiautomated
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multichamber whole-canopy system was used for gas
exchange analysis to determine the net photosynthetic rate
[159]. Phenotypic analysis of root growth and architecture
is very important for determining the capacities of C sink.
A high-throughput phenotyping system called Chrono-
Root, which integrated machine intelligence methods and
a 3D-printed device, was developed for studying the tem-
poral parameters of plant root system architecture [160].
Also, an automated image segmentation method based
on the DeepLabv3+ convolutional neural network was
developed for high-throughput analysis of in situ cotton
root images obtained with a micro root window root sys-
tem monitoring system [161]. These high-throughput phe-
notyping approaches have great potential for accelerating
the identification of biological parts for bioengineering to
enhance source activities and sink capacities.

4.4. Learning from Transgenic Plants Expressing the
Biological Parts for CDR Engineering. As the last step of a
DBTL cycle, experimental data generated from testing trans-
genic plants can be used for learning, with the aid of compu-
tational tools similar to the Automated Recommendation
Tool (ART) which was designed for microbes [162], to pro-
vide recommendations on the design of biological parts in
the next DBTL cycle. Although ART cannot be directly
applied in complex multicellular organisms like plants, its
framework of leveraging machine learning and probabilistic
modeling techniques to guide synthetic biology in a system-
atic fashion, without a full mechanistic understanding of the
biological system [162], can be adopted for future effort to
develop new Al-aided learning capabilities for informing
the design of biological parts in plants. One bottleneck in
the development of ART-like tools for plants is a lack of
high-resolution multiomics data. One potential solution to
this challenge is the Plant Cell Atlas framework conceived
by the Plant Cell Atlas Consortium, which is aimed at link-
ing genes to phenotypes at a single-cell resolution [163].
Over the recent years, advancements have been made in
the learning phase of the DBTL cycle to help improve bioen-
gineering designs in plants through genome-scale metabolic
network reconstructions, large-scale plant context-specific
metabolic models, and increased prediction performance of
computational methods for designing and testing synthetic
metabolic pathways [164]. For example, the predictive
power of genome-scale metabolic model of carbon metabo-
lism in cassava storage roots was improved through incorpo-
rating gene expression data of developing storage roots into
the basic flux-balance model to minimize infeasible meta-
bolic fluxes [165]. As discussed in Section 3.1, multiple syn-
thetic photorespiratory bypasses have been created for
enhancing net CO, assimilation rate in plants. The impacts
of two different synthetic photorespiratory bypasses in A.
thaliana were predicted using constraint-based modeling,
demonstrating that metabolic modeling can qualitatively
reproduced the condition-dependent growth phenotypes of
one of the engineered bypasses [166]. Recently, metabolic
modeling was performed to determine the impact of rerout-
ing photorespiratory pathway in C, plants, showing that the
cyanobacterial glycolate decarboxylation bypass model
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exhibited a 10% increase in the net photosynthetic rate in
C, plants [167]. This type of metabolic modeling can be used
to inform optimization of biological parts to maximize the
capacity of photosynthesis-mediated CO, capture.

Multiscale plant modeling, with partial- or full-
integration of transcriptomics, proteomics, metabolomics,
and phenomics data, has a great potential for identifying
candidate genes for plant engineering [17, 168, 169] and
should be considered as a key approach for identifying new
biological parts relevant to CDR engineering. Multiscale
modeling has been successfully used for informing genetic
engineering in plants [167]. For example, multiscale model-
ing, with an integration of gene network, metabolic, and
leaf-level models, was able to identify transcription factors
(TFs) that matched the up- and down-regulation of genes
needed to improve photosynthesis in soybean under rising
CO, [170].

A balanced maximization of both source activities and
sink capacities is critical for plant-based CDR, which
requires synchronization of the developmental, molecular,
and metabolic aspects of source-sink interactions [171].
There has been a great success in the modeling of plant pho-
tosynthesis from metabolism to canopy structure [172, 173].
However, future modeling efforts are needed to support
system-level design of plant-based CDR through connecting
models of various CDR-related biological processes, such as
photosynthesis, root growth, and sucrose transport.

5. Conclusion

The main goal of engineering CDR traits in plants is to
design better plant biosystems that have a much higher
capacity for capturing and storing CO,. Identification and
curation of biological parts, such as protein-encoding genes
and noncoding RNAs involved in CO, capture, transloca-
tion, storage, and conversion, are critical for the develop-
ment of plant-based CDR technologies. It would be ideal
to engineer a minimum number of biological parts in plants
for capturing and transporting atmospheric CO, through an
expanded “phloem highway” into the soil for long-term stor-
age, as well as deriving fuels and biobased products that dis-
place petroleum-based sources.

In this review, we first outline a general framework for
engineering terrestrial plants to enhance the removal of
atmospheric CO,, with a focus on increasing the photosyn-
thetic fixation of CO, in the leaves, enhancing the transloca-
tion of fixed carbon from leaves to the roots and rhizosphere
for long-term belowground storage of carbon, and maximiz-
ing the co-benefits of bioeconomy through in-planta conver-
sion of carbon to value-added products in aboveground
tissues. We highlight representative biological parts (e.g.,
protein-coding genes and noncoding RNAs) that have been
proven to be effective for engineering CDR traits in plants.
Although the enzymes listed in this review have been well
characterized by molecular genetic studies, one area of
future research is to better characterize their biochemical
properties under a range of conditions (e.g., temperatures)
and their posttranslational regulation, including metabolite
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inhibition, as these are not well understood and will be vital
for predictable control.

The items listed in Tables 1-4 serve as the starting point
for continuing community efforts to generate a more com-
prehensive catalog of biological parts for CDR engineering.
We propose the following strategies for identification and
curation of more biological parts for CDR engineering:

(1) Selecting genes as validated biological parts for CDR
engineering from scientific publications based on
two criteria: (i) showing significant impact on CDR
and (ii) showing no significantly negative impact
on plant growth, development, or stress tolerance

(2) Generating new natural or synthetic biological parts
for CDR engineering in terrestrial plants using the
DBTL approach

(3) Assigning the biological parts onto the framework of
CDR engineering, as illustrated in Figure 1

(4) Describing the biological parts and their functional
properties electronically using FAIR data principles
[174] to ensure ease of access for CDR practitioners

Although this review focuses on identification and curation
of genes as biological parts for CDR engineering, the impor-
tance of regulatory elements (e.g., promoters, enhancers, and
terminators) cannot be underestimated. Engineering of plant-
based CDR requires targeted gene expression in different tis-
sues, each of which represents potentially unique regulatory
or developmental contexts [175]. To minimize unintended
effects, cell-type- or tissue-specific promoters should be used
to maintain the correct spatial pattern of gene expression. For
example, CDR engineering involves the modification of plant
form, such as changing root architecture with less nodal root
number and more deep roots in maize [176], which requires
precise control of gene expression by tissue-specific promoters
[177]. Leat-specific promoters [178] can be used for driving the
expression of genes involved in CO, fixation; phloem tissue-
specific promoters [179] can be used for genes involved in
phloem-mediated translocation of sugars; and root-specific
promoters [180, 181] can be used for genes involved in root
growth and development. Besides tissue-specific promoters,
cell-type-specific promoters [182, 183] can be used for high-
precision control of the spatial expression pattern of CDR-
related genes,

Also, to optimize the performance of a plant system for
CDR, it is necessary to fine-tune the expression of genes
involved in different processes (e.g., CO, fixation, carbon
partitioning and translocation, and carbon storage) to
achieve an optimal balance between source and sink activi-
ties. The level of gene expression can be controlled by using
rationally designed synthetic promoters [184], which can
potentially overcome the difficulties with cross-species func-
tionality of natural promoters. To avoid impeding or being
impeded by the native genes of the target plants to be engi-
neered, it is better to consider orthogonal regulatory sys-
tems, which consist of synthetic activators, synthetic
repressors, and synthetic promoters, for enabling the con-
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certed expression of multiple genes in a tissue-specific and
environmentally responsive manner [185].
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