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A B S T R A C T   

In recent decades, cultural eutrophication of coastal waters and inland lakes around the world has contributed to 
a rapid expansion of potentially toxic cyanobacteria, threatening aquatic and human systems. For many loca
tions, a complex array of physical, chemical, and biological variables leads to significant inter-annual variability 
of cyanobacteria biomass, modulated by local and large-scale climate phenomena. Currently, however, minimal 
information regarding expected summertime cyanobacteria biomass conditions is available prior to the season, 
limiting proactive management and preparedness strategies for lake and beach safety. To address this, sub- 
seasonal (two-month) cyanobacteria biomass prediction models are developed, drawing on pre-season pre
dictors including stream discharge, phosphorus loads, a floating algae index, and large-scale sea-surface tem
perature regions, with an application to Lake Mendota in Wisconsin. A two-phase statistical modeling approach is 
adopted to reflect identified asymmetric relationships between predictors (drivers of inter-annual variability) 
and cyanobacteria biomass levels. The model illustrates promising performance overall, with particular skill in 
predicting above normal cyanobacteria biomass conditions which are of primary importance to lake and beach 
managers.   

1. Introduction 

Cyanobacteria are aquatic photosynthetic microorganisms that can 
produce a range of toxins (Carmichael et al., 1994; Elliot, 2012) and 
potentially lead to harmful algal blooms with adverse impacts on eco
systems, economies, and human and animal health worldwide (Paerl 
et al., 2001; Guo, 2007; Carmichael and Boyer, 2016). Proliferation of 
cyanobacteria can negatively impact water quality by increasing 
turbidity and depleting oxygen through microbial degradation, leading 
to the death of aquatic macrophytes, fish, and invertebrates (Rabalais 
et al., 2010; Huisman et al., 2018). Additionally, toxins produced by 
cyanobacteria, or cyanotoxins, can result in mortality of animals, birds, 
and fish, weakening community structure (Paerl et al., 2001). Cyano
toxins are also responsible for human health issues ranging from contact 
irritation to lethal poisoning (Carmichael and Boyer, 2016). Since 2009, 
the Center for Disease Control National Outbreak Reporting System has 
documented eight outbreaks and 331 illnesses related to cyanotoxin 
exposure in the U.S. (221 - recreational exposure, 110 - drinking water) 
(Centers for Disease Control and Prevention (CDC) 2020). 
Cyanobacteria-related impacts on environmental and human health lead 

to economic stress as well. A study conducted in Australia assessed the 
cost of environmental management attributable to cyanobacteria, 
including wastewater treatment and rehabilitation of water resources, to 
range from $180 million to $240 million annually (Atech, 2000). More 
broadly, potential losses related to cultural eutrophication of freshwater 
in the U.S., a known driver of cyanobacteria biomass, total over $2.2 
billion annually (Dodds et al., 2009). 

In recent years, concerns regarding the global proliferation of 
cyanobacteria-related to eutrophication and climate change have grown 
(Paerl and Huisman, 2008; Huisman et al., 2018). Analysis of cyano
bacteria pigment in north temperate and subarctic sediment cores has 
revealed an acceleration of cyanobacteria growth since 1945, and a 
disproportionate increase in cyanobacteria relative to other, less harm
ful phytoplankton (Taranu et al., 2015). In the U.S., cyanobacteria 
blooms have received notable attention in larger water bodies. For 
example, a 2014 bloom in Lake Erie drew national attention after 
causing a shutdown of the drinking water supply in Toledo, Ohio, due to 
dangerous levels of cyanotoxins (Patel and Parshina-kottas, 2017). 
Other waterbodies such as Lake Okeechobee in Florida, and the Ches
apeake Bay have been the focus of cyanobacteria-related research and 
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legislation for the past 20 years (University of Maryland Center for 
Environmental Science 2015; Stern and Kornfield, 2016). A globally 
robust relationship between algal biomass and nutrient input (Smith, 
2003) suggests that small eutrophic lakes are significantly impacted as 
well, but have received less attention. 

Typically, cyanobacteria biomass peaks during the summer season 
(June-Aug or Sept) in the northern hemisphere, and is determined by the 
interactions of many physical, chemical, and biological variables 
throughout the spring and summer (Robarts and Zohary, 1987; Paerl, 
1988; Stow et al., 1997; Carpenter et al., 2018). Numerous studies have 
shown that nitrogen and phosphorus are key nutrients for cyanobacteria 
growth, however, phosphorus is generally considered the limiting 
nutrient for algal growth in freshwater systems (Schindler 1977; 
Downing et al., 2001; Smith et al., 2003; Xu et al., 2010). Agricultural 
use of nitrogen and phosphorus fertilizers creates nutrient-rich runoff 
that spurs productivity in lakes (Hart et al., 2004; Kronvang et al., 2005). 
Phosphorus is also known to accumulate in sediments which settle in 
lakes and subsequently release stored phosphorus into the water column 
(Søndergaard et al., 2003). Ratios of total nitrogen to total phosphorus 
have also been shown to have some influence on cyanobacteria biomass, 
however, the relationship may be more complex (Håkanson et al., 
2007). Physical lake characteristics, including temperature and strati
fication strength, also regulate cyanobacteria biomass. The photosyn
thetic capacities of many cyanobacteria species are maximized at high 
temperatures (Konopka and Brock, 1978; Robarts and Zohary, 1987), 
and gas vacuoles, used to regulate buoyancy, provide cyanobacteria 
with a competitive advantage over other phytoplankton groups in 
stratified water columns (Reynolds et al., 1987; Walsby et al., 1997; 
Huber et al., 2012). Additionally, cyanobacteria are known to have a 
high physiological tolerance, allowing them to grow in temperatures 
unfavorable to other organisms (Briand et al., 2004; Pearl and Huisman, 
2008). Many of the variables that may influence cyanobacteria growth 
are regulated by local climatic conditions which are, in turn, influenced 
by large-scale climate phenomena through atmospheric teleconnections. 
These variables can affect long-term trends in cyanobacteria growth but 
also lead to significant inter-annual variability in cyanobacteria 
biomass. 

To address inter-annual variations in cyanobacteria biomass – most 
notably when levels are elevated – lake managers may benefit from 
advanced indication of expected conditions, particularly if there are 
explicit actions they can take. Most efforts in this vein focus on short- 
term (days to weeks) cyanobacteria forecasts with the goal of 
providing early warnings of elevated levels or bloom formation and 
growth (Wynne et al., 2013; Zhang et al., 2015). These forecasts allow 
public health officials and lake managers to respond to immediate 
threats. For example, Zhang et al. (2015) list emergency responses to 
elevated cyanobacteria in Lake Taihu, China, to include water diversion 
for flushing, algal bloom collection and removal, and emergency mea
sures for securing drinking water. On Lake Erie, Wynne et al. (2013) 
suggest other short-term actions such as alleviating taste and odor issues 
in drinking water and posting warning signs at beaches. In contrast, 
longer-lead (months to seasons) forecasts of elevated cyanobacteria 
biomass may provide opportunities for proactive lake management not 
possible at short timescales. Lake and beach managers may be able to 
adjust budgets for water quality testing, augment lifeguard training, and 
increase public awareness. These longer-lead forecasts are not intended 
to replace short-term forecasts, but ideally work in concert to provide 
managers a suite of actions at various lead times. 

Considerable progress has been made in the development of season- 
ahead forecasts to address water quantity management (e.g. Chiew 
et al., 2003; Delorit et al., 2017; Giuliani et al. 2019a; Baker et al., 2019), 
however significantly less focus has been devoted to the application of 
season-ahead forecasts for water quality management. Towler et al. 
(2010) applied seasonal forecasts to turbidity thresholds for drinking 
water in the Northwest U.S. with moderate success. On a sub-seasonal 
scale, Wang et al. (2013) developed a bootstrapped wavelet neural 

network to forecast monthly ammonia nitrogen and dissolved oxygen in 
the Harbin region of China. Recknagel et al. (2017) developed a 
microcystin cell concentration forecast for a similar timescale, effective 
for forecast horizons of up to 30 days. Previous research in cyanobac
teria forecasting, however, has predominantly focused on exploring 
alternative modeling techniques, relying primarily on spring phos
phorus loads, with minimal consideration of how season-ahead large-
scale and local hydroclimatic drivers may additionally inform variations 
in summertime cyanobacteria biomass (Stow et al., 1997, Lathrop et al., 
1998; Stumpf et al., 2016). Recently, the potential for developing 
sub-seasonal (i.e. within-season) forecasts for application to water 
management has garnered attention (Vitart et al., 2012; Vitart et al., 
2018) with the intention that such forecasts could bridge the gap be
tween seasonal and short-term time scales (Shentsis and Ben-Zyi, 1999; 
Vitart, 2014). In conversations with lake and public health mangers, 
there is an expressed desire to understand how cyanobacteria abun
dance may be changing throughout the summer season, and if a pre
diction update is possible. A sub-seasonal forecast of cyanobacteria 
biomass may indicate if expected cyanobacteria conditions are shifting 
within the season, providing managers with an opportunity to change 
the frequency of water quality monitoring, public engagement strate
gies, and prepare emergency resources for recreators and drinking water 
facilities before the potential for cyanobacteria productivity peaks. This 
study investigates relevant pre- and within-season local and global scale 
drivers of inter-annual variability in summertime cyanobacteria biomass 
and presents the development and verification of a sub-seasonal fore
casting framework for cyanobacteria conditions. Finally, this study ex
plores how a sub-seasonal forecast may be effectively paired with a 
seasonal forecast for holistic lake management. 

1.1. Case study 

Lake Mendota, in Madison, Wisconsin, is often labeled as one of the 
most studied lakes in the world (Brezonik et al., 1968; Brock, 1985; 
Aoki, 1989; Lathrop, 2007) (Figure 1). Mendota’s 596-square kilometer 
watershed is highly urbanized (21%) and agricultural (53%) (Genskow 
et al., 2012). Municipal wastewater discharge fueled eutrophication in 
Lake Mendota from the 1940’s-1970’s, however, in recent years urban 
and agricultural development in the Mendota watershed has maintained 
the state of high productivity in the lake (Lathrop et al., 1998; Lathrop, 
2007). Cyanobacteria blooms have occurred in Lake Mendota since the 
late 1800’s but have become a more serious concern as cultural eutro
phication has progressed over the last century, making blooms a com
mon summertime phenomenon (Brock, 1985; Lathrop and Carpenter, 
1992, Lathrop et al., 1998). 

Seasonal forecasts have been produced for summertime cyanobac
teria biomass on Lake Mendota since 2015 (Soley, 2016). The authors 
use a principal component analysis and regression modelling approach 
conditioned on season-ahead (March-May) local and global scale pre
dictors to generate probabilistic forecasts of average cyanobacteria 
biomass for June-August (released on June 1). The highest cyanobac
teria biomass concentrations, however, have historically occurred in 
July and August (Fig. 2), further motivating the potential utility of a 
sub-seasonal forecast by updating later in the season. 

Numerous large-scale climate phenomena influence climate condi
tions in the upper Midwestern US, however one of the most prominent 
teleconnection patterns affecting precipitation and temperature is the El 
Niño Southern Oscillation (ENSO) (Ropelewski and Halpert, 1986; 
1987). ENSO’s influence globally is widely studied and generally un
derstood, acting independently or interacting with other large-scale 
climate phenomena such as the Pacific Decadal Oscillation (Kahya and 
Dracup 1993; Shabbar and Skinner, 2004). The state of these climate 
phenomena and the atmospheric-oceanic system is an important factor 
in local climate variability, and therefore regulate many processes 
important to cyanobacteria growth (Justić et al., 2005; Zhang et al., 
2012). Two studies of lake ice cover records in Wisconsin lakes found 
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that warmer air temperatures lead to early spring ice breakup in strong 
El Niño years (Anderson et al., 1996; Robertson et al., 2000). Addi
tionally, an analysis of winter precipitation in the Great Lakes region 
found evidence for an asymmetric response to measures of ENSO, with 
more distinct linkages to La Niña conditions (Fu and Steinschneider, 
2019). 

Lake Mendota is included in the National Science Foundation’s North 
Temperate Lakes - Long-Term Ecological Research (LTER) network and 
has a wealth of high-quality, long-term ecological data (LTER 2020). 
Access to cyanobacteria data in addition to extensive ecological, hy
drological, and climatological datasets make Lake Mendota an ideal 
case-study for the application of seasonal (June-August) and sub- 
seasonal (July-August) cyanobacteria forecasts. Cyanobacteria biomass 
data has been collected at the LTER buoy in Lake Mendota each summer 

since 1995 (Magnuson et al., 2020a). Composite samples for 0-8 meters 
of depth are typically collected 2-4 times a month from June through 
August. 

2. Methods 

2.1. Drivers of variability in cyanobacteria biomass 

In Lake Mendota, cyanobacteria biomass is generally most apparent 
from June-August (Fig. 2), with elevated levels typically observable in 
July and August. The existing seasonal prediction model issues a June- 
August average cyanobacteria biomass forecast at the beginning of 
June, whereas the sub-seasonal July-August prediction model proposed 
here focuses on the peak months, taking advantage of June observations, 
and issues a forecast of average July-August cyanobacteria biomass at 
the beginning of July. 

Numerous drivers and factors at local to global scales influence inter- 
annual cyanobacteria productivity. From a forecasting perspective, ideal 
predictors include pre-season (e.g. April-June), observable hydro
climatic and landscape variables that effect the state of the lake system 
into July-August. Potential predictors are identified based on previous 
literature regarding cyanobacteria dynamics and/or correlation anal
ysis. Predictors that correlate with July-August average cyanobacteria 
biomass at the 95% confidence level (P<0.05) are considered statisti
cally significant and added to the suite of potential predictors. 

As discussed previously, phosphorus is a well-established driver of 
cyanobacteria biomass. Strong correlations between phosphorus in 
contributing waters and cyanobacteria biomass has been demonstrated 
repeatedly (Smith, 1985; Stow et al., 1997; Lathrop et al., 1998; 
Downing et al., 2001; Håkanson et al., 2007). Phosphorus data for the 
Lake Mendota case study are extracted from USGS station 05427718 

Fig. 1. Map of Lake Mendota, contributing watersheds, and sources of local data.  

Fig. 2. June, July, and August average cyanobacteria biomass at the LTER buoy 
in Lake Mendota (1995–2017). 
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located on the Yahara River at Windsor, WI for the month of June 
(USGS, 2020). Relatedly, local scale hydroclimatic variables influencing 
transport of phosphorus across the landscape prior to July are also 
important drivers of external phosphorous loading. These include 
extreme precipitation events, discharge, soil moisture, and suspended 
sediments (Michalak, 2016; Motew et al., 2017; Carpenter et al., 2018). 
Precipitation events can wash high concentrations of nutrients off the 
landscape and into surface waters, contributing to eutrophication 
(Sinha et al., 2017). Agricultural watersheds similar to the Lake Men
dota watershed are particularly vulnerable to phosphorus loading driven 
by precipitation events (Garnache et al., 2016; Carpenter et al., 2018). 
Most of the phosphorus loading in the Mendota watershed occurs in a 
relatively small number of large loading events (Carpenter et al., 2015). 
Similarly, soil moisture conditions regulate infiltration versus direct 
runoff into rivers or lakes. Intense loading events occurring in June, 
represented by phosphorus load, discharge, and suspended sediments, 
have the potential to alter phosphorus availability for cyanobacteria 
later in the summer (Lathrop and Carpenter, 2014). Precipitation data 
was obtained from the Midwest Regional Climate Center for March-May 
(Wuertz et al., 2020). Soil moisture data in the Mendota watershed 
comes from the North American Land Data Assimilation System 
(NLDAS) for June (Mocko, 2013). Both discharge and suspended sedi
ment loads are from USGS station 05427718 for the month of June (U.S. 
Geological Survey 2020a) . 

Variables related to in-situ productivity, including nitrate + nitrite 
and total unfiltered phosphorus are also considered. While phosphorus 
has historically been considered the primary limiting nutrient for 
phytoplankton in freshwater, there is evidence that inorganic nitrogen 
can control growth and toxicity of cyanobacteria as well (Gobler et al., 
2016). These data are available in the LTER database for June (Mag
nuson et al., 2020b). To further assess the state of lake productivity in 
June, a Floating Algae Index (FAI) was generated using remotely sensed 
images in June from Landsat 5 (1995-1999) and MODIS (2000-2017) 
satellites (ORNL DAAC 2020; U.S. Geological Survey 2020b), using 
methods outlined by Hu (2009). The FAI has been used for mapping 
floating algae, including cyanobacteria, in lacustrine and coastal envi
ronments (Hu, 2009; Oyama et al., 2015). The effects of nutrient loading 
on algal biomass are well established, therefore, an estimation of algal 
biomass in June may indicate the general state of productivity in the 
lake and serve as a predictor of cyanobacteria productivity later in the 
summer (Vollenweider, 1970). 

As discussed previously, elevated air temperature is thought to favor 
dominance of cyanobacteria through direct effects on photosynthetic 
capacity and indirect effects on competition. June air temperature and 
the number of events exceeding the 99th percentile of air temperatures 
for the climate reference period (1981-2010) are included in the suite of 
potential predictors (Gallina et al., 2011; Anneville et al., 2015). Daily 
temperature data from NOAA’s Global Historical Climatology Network 
was accessed through the Midwest Regional Climate Center (Menne 
et al., 2012). Mean pre-season water temperature, accessed through the 
NTL-LTER data repository, is also evaluated as a potential predictor 
(Robertson, 2016; Magnuson et al., 2020c). 

Variable grazing rates by Daphnia spp. may also influence cyano
bacteria biomass. In Lake Mendota, (Lathrop et al., 1996)found that 
summer water clarity is significantly greater in years dominated by 
D. pulicaria compared to D. mendotae. This difference in clarity has been 
attributed to the ability of the larger-bodied D. pulicaria to significantly 
reduce summertime algal biomass, including cyanobacteria (Epp, 1996; 
Kasprzak and Lathrop, 1997; Sarnelle, 2007). Furthermore, there is 
evidence to suggest that summertime Daphnia biomasses are greater in 
Lake Mendota when D. pulicaria dominate in the spring months (Lathrop 
et al., 1999). Thus, April-May D. pulicaria biomass, measured at the 
LTER buoy, is included as a potential predictor of July-August cyano
bacteria biomass (Magnuson et al., 2019). 

Sea surface temperature (SST) and sea level pressure (SLP) anomalies 
have been well-documented to influence precipitation and temperature 

on monthly to seasonal timescales by altering atmospheric flow condi
tions (Barnston, 1994; Giannini and Kushnir, 2000; Markowski and 
North, 2003; Quan et al., 2006), and are thus also considered as po
tential predictors. Locations of SST and SLP influencing climate condi
tions in the Lake Mendota watershed are further developed below. 
May-June SST and SLP anomalies are from NOAA’s ERSST v3b and 
HadSLP2r datasets, respectively, and were accessed through the IRI Data 
Library (Allan and Ansell, 2006); Smith et al., 2008). 

2.2. Prediction modeling approach 

Prediction models may take a statistical/machine learning or 
process-based approach. Given the high complexity of limnological 
processes and lake dynamics, and the singular focus here on predicting 
cyanobacteria biomass, statistical approaches are arguably better suited 
(Rastetter, 2017). When sufficient observational records exist, statistical 
models can readily incorporate a wide variety of potential predictors at 
both local and global scales. This is advantageous given the vast array of 
variables contributing to summertime cyanobacteria growth. A prin
cipal component analysis and regression approach are selected to build 
the July-August cyanobacteria prediction model. Principal component 
analysis decomposes a multivariate dataset into orthogonal patterns 
(principal components, PCs) that represent the dominant signals from 
the original set of predictors (Block et al., 2009). This approach mini
mizes multi-collinearity among the predictors by construction and thus 
does not artificially inflate prediction skill. Here, principal components 
that explained more than 10% of the variance in the data are retained. 
Principal component regression models are fit based on the retained PCs 
across 1995-2017. These models take the form of Eq. 1, where ∝ and β 
are the coefficients fit through ordinary least squares, PC1t through PCnt 
are the principal components retained, and Yt is the prediction of 
average cyanobacteria at each time step, t. 

Yt = α + β1 ∗ PC1t + …βn ∗ PCnt (1) 

The generalized cross-validation (GCV) score is used to select the 
best subset from the suite of predictors and is given as, 

GCV =

∑N
t=1

e2
t

N
(

1 − m
N

)2 (2)  

where N is the number of time steps (1995–2017), m is the number of 
PCs (predictors) retained in each candidate model, and et is the residual 
(difference between observed and model estimated values) at each time 
step, t (July-August each year). The GCV penalizes overfitting and is a 
good estimate of predictive risk (Craven and Wahba 1978). Using this 
method, the best set of predictors can be identified by evaluating a 
number of predictor combinations (candidate models) and selecting the 
combination that results in the minimum GCV score (Regonda et al., 
2006). Statistical models were developed using R version 1.3.1056. 

In an effort to appropriately represent teleconnection patterns be
tween global climate phenomenon and local-scale processes that drive 
cyanobacteria biomass, a Nino Index Phase Analysis (Zimmerman et al. 
2016; Giuliani et al. 2019a) is adopted. This method draws on the state 
of the atmospheric-oceanic system in months prior to the season of in
terest to divide a timeseries into different “mean states”. This allows for 
possible asymmetric relationships between “mean states” to be captured 
and modeled (Lee et al., 2018). Given that ENSO expresses moderate 
influence over climate conditions in the upper Midwestern U.S., the 
Multivariate ENSO Index (MEI) – consisting of SLP and SST information 
in the Pacific Ocean – is used to classify historical years into phases of 
ENSO; here two phases are adopted: positive and negative, based on MEI 
values averaged over May – June. Global and local-scale predictors may 
subsequently be evaluated for each “mean state” of the 
atmospheric-oceanic system represented by each phase. For the histor
ical cyanobacteria biomass record on Lake Mendota, seven years fall into 
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the positive phase and 16 into the negative phase. For the years falling 
within each phase, regions of SST and SLP anomalies that correlated 
significantly with July-August cyanobacteria are selected following 
Zimmerman et al. (2016). Principal components of these SST and SLP 
regions are included as potential sub-seasonal predictors. Each of the 
specified predictors are evaluated independently for the positive and 
negative phase, as correlation with cyanobacteria biomass in one phase 
does not necessitate inclusion as a predictor in both phase models. Thus 
the important processes contributing to cyanobacteria growth in each 
phase of ENSO are identified, potentially leading to enhanced biomass 
forecasts. The Nino Index Phase Analysis was performed in Python 
2.7.16 and Spyder 3.3.6 using code developed by Giuliani et al. (2019b) 

To evaluate historical performance, a hindcast is undertaken, such 
that a year of information is dropped (drop one cross-validation), the 
PCs are constructed, coefficients ∝ and β are fit based on the remaining 
years of data, and Yt for the dropped year is calculated. This is repeated 
to create a deterministic forecast of biomass for all years. The optimal 
number of PCs for each model, based on the GCV, was held constant for 
the cross-validation in all years. 

Ensemble predictions for each year in the hindcast are based on er
rors, defined as the difference between predicted and observed cyano
bacteria biomass in the leave-one-out cross-validated approach. Errors 
are fit to a normal distribution, with mean zero, using a maximum 
likelihood estimation. For each hindcast year, 100 random draws from 
the distribution are added to the deterministic biomass forecast to form 
the ensemble (Helsel and Hirsch 1992; Zhang et al., 2016; Delroit et al., 
2017; Alexander et al., 2019). 

2.3. Model performance metrics 

To assess model performance, observations are compared with 
model forecasts using five skill scores: correlation coefficients, Root 
Mean Square Error (RMSE), Heidke skill score (HSS), ranked probability 
skill score (RPSS), and a hit-miss matrix (Heidke, 1926; Epstein, 1969). 
HSS and RPSS are categorical performance metrics and can be inter
preted as a percentage improvement over a reference forecast. A stan
dard reference forecast for hydro-climate prediction is based on a 
climatological (equal odds) distribution of observed July-August cya
nobacteria biomass. Here, the reference forecast is split into three cat
egories of equal probability (33% each), representing below normal 
(0–2.91 mg/L), near normal (2.91–4.56 mg/L), and above normal (4.56+

mg/L) cyanobacteria conditions. For the forecast model developed here, 
if there is no predictive information, the model defaults to equal odds 
categorical prediction, as in the reference forecast. However, for most 
years, the distribution of expected conditions shifts and results in un
equal likelihoods of each category. Thus the forecast developed here 
outperforms the reference forecast when it assigns a greater probability 
(more than 33%) to the category that is ultimately observed. The HSS is 
a deterministic categorical score: 

HSS =

∑
iP

(
Fi, Oj

)
−

∑
iP(Fi)P(Oi)

1 −
∑

iP(Fi)P(Oi)
(3)  

where the joint distribution of forecasts and observations is described by 
P(Fi, Oj), and the marginal distributions of forecasts and observations 
are described by P(Fi) and P(Oj), respectively (Wilks 2011). HSS values 
range from -∞ to 1, where 0 represents no skill and 1 represents a perfect 
forecast. RPSS is a probabilistic categorical score based on ensemble 
forecasts for each year (summertime) in the time series. RPSS uses the 
ranked probability score (RPS), a measure of the squared differences in 
the cumulative probability of a multi-categorical ensemble. The RPSS 
score is increasingly penalized as more forecast ensemble members are 
assigned to categories farther from the observed category. RPSS values 
range from -∞ to 1, where 0 represents no skill, 1 represents a perfect 
forecast, and negative values indicate that forecasts are inferior to the 
reference forecast. RPSS values are generated for each year using Eq. 4; 

the median value is reported. 

RPSS =
RPS − RPSreference

0 − RPSreference
= 1 −

RPS
RPSreference

(4)  

3. Results 

3.1. Phase model performance 

A unique set of cyanobacteria predictors are retained for the MEI 
positive and negative phase models (Table 1), validating the utility of 
separate models to describe this asymmetric relationship. Regions of 
May-June SST anomalies are identified following Zimmerman et al. 
(2016) for both the positive and negative phases (Fig. 3). In the negative 
phase (La Niña-like) model, significantly correlating regions of 
May-June SST anomalies are located in the equatorial Pacific Ocean. In 
the positive phase (El Niño-like) model, significantly correlating regions 
of May-June SST anomalies are located in the mid and northern Atlantic 
Ocean. 

The final set of predictors for the negative (La Niña-like) phase in
cludes June discharge, June phosphorus load, June total unfiltered 
phosphorus measured at the LTER buoy, the floating algae index for 
June, and May-June average SST anomalies in parts of the Pacific Ocean. 
These first four variables represent local-scale processes, and SSTs 
represent global scale processes, explaining cyanobacteria variability. 
The first three principal components are retained for the negative phase 
model and explain approximately 65%, 13%, and 10% of the variance, 
respectively. 

The final set of predictors for the positive (El Niño-like) phase only 
includes May-June SST anomalies in the Atlantic Ocean and the floating 
algae index. The first principal component of the positive phase model 
explains approximately 92% of the variance in the data and is the only 
PC retained for the model. Variables commonly associated with cyano
bacteria productivity (e.g. phosphorus, discharge, extreme precipitation 
events) are not statistically significant during the positive phase 
(Table 1). 

3.2. Combined model performance 

A hindcast assessment combining the positive and negative phase 
models results in Pearson and Spearman correlation coefficients of 0.90 
and 0.83 respectively, an RMSE of 1.22, an HSS of 0.41, and a median 
RPSS of 0.72, indicating a clear improvement over climatology (Fig. 4). 
The model illustrates particular skill in predicting below normal and 
above normal conditions but performs poorly in the near normal category 
(Table 2). The model’s ability to correctly predict above normal July- 
August cyanobacteria biomass (6 out of the 8 years) is particularly ad
vantageous from a management perspective. Additionally, the two- 
phase model demonstrates substantial improvement over a traditional 
model that does not discriminate between ENSO phases (Fig. 5; the “one- 
phase” model results in Pearson and Spearman correlation coefficients 
of 0.81 and 0.70, respectively, an RMSE of 1.53, an HSS of 0.35, and a 
median RPSS of 0.56.) 

3.3. Seasonal and sub-seasonal model comparison 

A comparison between the full (June-Aug) and sub-seasonal (July- 
Aug) model outputs is warranted to understand agreement between 
models and potential gains from issuing an updated forecast. A proba
bility density plot of the sub-seasonal hindcast appears to more accu
rately reflect observed conditions than the seasonal hindcast and 
illustrates the sub-seasonal model’s increased accuracy in the tails, with 
less emphasis on the near normal category (Fig. 6). To assess the degree 
of difference between the predicted probability distributions and the 
observed distribution, two, two-sample Komolgorov-Smirnov test are 
performed. The Komolgorov-Smirnov test statistic (D) quantifies the 
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distance between two empirical distribution functions. A smaller test 
statistic is found between the sub-seasonal and observed distributions 
(D=0.22) compared to the seasonal and observed distributions 
(D=0.30). Neither the predicted sub-seasonal or seasonal distribution 
was significantly different from the observed July-August biomass dis
tribution at the 95% confidence level (P>=0.66 and P=0.23, respec
tively). From a categorical perspective, normalized seasonal and sub- 
seasonal hindcasts correctly predict 56.5% and 60.8% of observed 
July-August biomass respectively (Table 3). Both hindcasts perform well 
in the below normal category and poorly in predicting near normal con
ditions. Most notably, the sub-seasonal prediction model for above 
normal cyanobacteria biomass is an improvement over the seasonal 
forecast model. Specifically, the sub-seasonal forecast correctly predicts 
above normal conditions for three years in which the seasonal forecast 
does not (Table 4). The sub-seasonal forecast incorrectly updated an 
above normal seasonal prediction in only one year (2011). Increased 
accuracy in prediction of above normal cyanobacteria conditions by the 
sub-seasonal forecast is encouraging, as these conditions present the 
greatest threat to public health. 

4. Discussion 

In addition to practical applications, prediction plays an important 
role in demonstrating ecological understanding (Houlahan et al., 2017). 
The development and assessment of the positive and negative phase 
forecasting models provides some insight into the relative importance of 
local and global scale variables on a seasonal timeframe. 

At the local scale, the predictive power of several variables are 
noteworthy. The floating algae index, a remotely sensed indicator of pre- 
season lake productivity, is the only local-scale predictor singifcant in 
both phase models. Pre-season cyanobacteria biomass, however, was not 
a significant predictor of July-August biomass in either phase. This 
suggests that general algae productivity in the early summer may be 
more indicative of favorable conditions for July-August cyanobacteria 

than early summer cyanobacteria biomass itself. Additionally, despite 
the established importance of temperature in cyanobacteria productiv
ity, neither of the air temperature-based predictors are significantly 
correlated with July-August cyanobacteria biomass in either phase. Pre- 
season water temperatures resulted in higher correlation coefficients 
than air temperature predictors, but relationships were not strong 
enough to be included in either phase. Konopka and Brock (1978) 
purport that the relationship between lake temperature and cyanobac
teria growth in Mendota is complicated by other concurrent environ
mental changes. Ultimately, the temperature-based predictors included 
here may be too simplistic to fully capture the relationships between air 
and water temperature and cyanobacteria growth. 

At a global scale, regions of relevant sea surface temperatures iden
tified by the NIPA process suggest differences in the influence of large- 
scale climate phenomena on local hydroclimatic processes in the Mid
west during the positive and negative phases of ENSO. In the negative 
phase (La Niña-like) model, significantly correlating regions of May- 
June SST anomalies are located in the equatorial Pacific Ocean, a re
gion commonly associated with ENSO (Fig. 3). A relationship has been 
previously established between springtime La Nina conditions and a 
strong Great Plains low level jet (GPLLJ), which acts as a conduit for 
moisture from the tropical Atlantic to the continental U.S. (Munoz and 
Enfield, 2011; Krishnamurthy et al., 2015). Increased springtime mois
ture during the MEI negative phase may explain why variables associ
ated with precipitation (e.g. phosphorus load, discharge, extreme 
events, suspended sediments) are significantly correlated with 
July-August cyanobacteria biomass in the negative phase, but not in the 
positive phase (Table 1). 

In the positive phase (El Niño-like) model, significantly correlating 
regions of May-June SST anomalies are located in the mid and northern 
Atlantic Ocean (Fig. 3). The GPLLJ draws moisture from the tropical 
Atlantic via the Caribbean low-level jet, however, Krishnamurthy et al. 
(2015) suggest that El Nino conditions are not typically associated with 
a strong GPLLJ in boreal spring (April-June). This may explain why 

Table 1 
Pearson and Spearman correlation coefficients between July-August average cyanobacteria biomass with ENSO phase indicated. Bold values indicate the set of 
significantly correlated predictors selected with the GCV for each phase model. * indicate significantly correlated variables.  

Predictor Months ENSO Phase Pearson Spearman Source 

Discharge (USGS Station 05427718) June Positive -0.09 -0.04 USGS 
Phosphorus Load (USGS Station 05427718) June 0.11 -0.13 USGS 
Suspended Sediment Load (USGS Station 05427718) June 0.22 -0.11 USGS 
Soil Moisture (Grid: 43.313 -89.313) June 0.15 0.25 NLDAS 
Nitrate + Nitrite (Buoy) June -0.41 -0.21 LTER 
Total Unfiltered Phosphorus (Buoy) June 0.21 0.04 LTER 
Sea Surface Temperature (PC1) May-June -0.87* -0.96* IRI Data Library 
Sea Level Pressure (PC1) May-June -0.88* -0.96* IRI Data Library 
Extreme Events (>25mm) March-May 0.25 0.25 MRCC 
Air Temperature June -0.11 -0.54 MRCC 
Extreme Air Temperature Events March-June -0.002 -0.23 MRCC 
Floating Algae Index June 0.93* 0.89* MODIS/Landsat 
D. Pulicaria Biomass June -0.89* -0.89* LTER 
Water Temperature April-June 0.64 0.57 LTER 
Pre-season Cyanobacteria Biomass June 0.52 0.02 LTER 
Discharge (USGS Station 05427718) June Negative 0.83* 0.63* USGS 
Phosphorus Load (USGS Station 05427718) June 0.82* 0.57* USGS 
Suspended Sediment Load (USGS Station 05427718) June 0.78* 0.55* USGS 
Soil Moisture (Grid: 43.313 -89.313) June 0.43 0.43 NLDAS 
Nitrate + Nitrite (Buoy) June 0.63* 0.66* LTER 
Total Unfiltered Phosphorus (Buoy) June 0.62* 0.61* LTER 
Sea Surface Temperature (PC1) May-June -0.74* -0.57* IRI Data Library 
Sea Level Pressure (PC1) May-June -0.63 -0.41 IRI Data Library 
Extreme Events (>25mm) March-May 0.72* 0.75* MRCC 
Air Temperature June -0.05 -0.003 MRCC 
Extreme Air Temperature Events March-June 0.09 -0.02 MRCC 
Floating Algae Index June 0.71* 0.70* MODIS/Landsat 
D. Pulicaria Biomass June -0.15 -0.03 LTER 
Water Temperature April-June 0.58 0.39 LTER 
Pre-season Cyanobacteria Biomass June 0.18 0.60 LTER  
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regions of significantly correlating SST (and SLP) anomalies are focused 
in the Atlantic, and why they are absent from the equatorial Pacific 
Ocean. On average, total June precipitation is lower during the positive 
phase compared to the negative phase (Fig. 7). Furthermore, drought 
periods in the Yahara watershed have been shown to decrease 
July-August discharge, phosphorus loads, and total phosphorus within 
the lake (Lathrop and Carpenter, 2014). A weaker GPLLJ in the positive 

phase may explain lower June precipitation and the lack of significant 
correlations between precipitation-driven variables and cyanobacteria 
biomass in these years. 

ENSO signals may also explain asymmetries in predictor relation
ships at the lake scale. D. pulicaria biomass is not selected by the model 
for the final suite of predictors but is significantly correlated with cya
nobacteria biomass in the positive phase. Plankton community 

Fig. 3. Regions of statistically significant (95th-percentile) Pearson correlation coefficients between July-August cyanobacteria biomass and May-June SST anom
alies for negative and positive ENSO phases. The black dot represents the study site. Colors represent the degree of correlation. 

Fig. 4. July-August average cyanobacteria biomass predictions for positive and negative phases of ENSO (box plots) and observed data (solid black line.) Thresholds 
between below, near, and above normal categories are denoted by horizontal black lines. 
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dynamics in Lake Mendota are complex, however, there is some evi
dence that the effects of D. pulicaria grazing on phytoplankton are more 
pronounced when phosphorus concentrations are low (Vanni et al., 
1990). It is possible then, that the influence of D. pulicaria grazing on 
July-August cyanobacteria biomass is more pronounced in the positive 
phase due to differences in phosphorus conveyance between the phases 
of ENSO. 

In comparison to a model conditioned on all available years of cya
nobacteria biomass data, the split phase model approach significantly 
improves predictions of July-August cyanobacteria biomass, most 
notably for above normal cyanobacteria conditions (Fig. 5). Additionally, 
the subseasonal forecast developed here shows an improvement in 
forecast skill for July-August cyanobacteria biomass over the full season 
(June-August) forecast developed by Soley et al. (2016) (Table 4, Fig. 6). 
This suggests that a sub-seasonal cyanobacteria forecast (released on 
July 1st) can provide lake and beach managers with a meaningful update 
to the full season forecast (released on June 1st), with greater accuracy 
regarding the peak months for cyanobacteria productivity in Lake 
Mendota. 

Despite the sub-seasonal model’s ability to improve forecasts of 
above normal cyanobacteria conditions overall, the model incorrectly 
updated a seasonal forecast of above normal cyanobacteria biomass to 
near normal in 2011 (Table 4). Increased cyanobacteria abundance in 
2011 may have resulted from high concentrations of dissolved inorganic 
nitrogen throughout the summer. Beversdorf et al. (2013) suggest that 
an abnormally high ratio of dissolved inorganic nitrogen to dissolved 
reactive phosphorus in 2011 allowed the early summer cyanobacteria 

species Aphanizomenon to persist into July and August, coexisting with 
Mycrocysits, a species typical of later summer months. It is possible that 
cyanobacteria biomass in 2011 was driven primarily by nitrogen 
availability, a predictor not selected for the negative phase model by the 
GCV. Neglecting to distinguish between cyanobacteria species may limit 
the model’s ability to capture the influence of community dynamics on 
overall cyanobacteria abundance throughout the summer. 

While linear models are unable to entirely capture non-linear drivers 
of atmospheric and limnological processes, the NIPA approach high
lights the diverse response of local and global predictor variables 
important to cyanobacteria productivity given the mean state of the 
atmospheric-oceanic system. Differences in the predictive power of 
phosphorus load and related variables (e.g. discharge, extreme events, 
suspended sediments) between MEI phases are particularly notable 
considering the large body of work establishing phosphorus load as a 
major driver of cyanobacteria productivity in Lake Mendota. The 
number of years in each phase is relatively small from a statistical 
perspective, however, compared to most inland lakes, the record for 
Lake Mendota is considered long. Nonetheless, continued collection of 
water quality data is warranted for the refinement of these models. 

5. Conclusions 

In this paper, skillful sub-seasonal cyanobacteria biomass prediction 
models are developed and compared with full-season prediction models 
to understand potential prediction gains and inform lake and beach 
management. The inter-annual variability of biomass results from a 

Table 2 
Cyanobacteria biomass forecast results: observed cyanobacteria biomass category vs. the forecasted category in a given year. Values represent the number of historical 
years that fall into each category based on a hindcast.   

Observed 
Below Normal Near Normal Above Normal 

Forecast Below Normal 7 5 2 
Near Normal 1 1 0 
Above Normal 0 1 6  

Fig. 5. July-August average cyanobacteria biomass observations compared to hindcast predictions using “one-phase” and “two-phase” (NIPA) models. A 1:1 line 
(perfect forecast) is represented by the dashed gray line. 

M.R.W. Beal et al.                                                                                                                                                                                                                              



Harmful Algae 108 (2021) 102100

9

complex array of physical, chemical, and biological variables, many of 
which are significantly impacted by local climate, yet modulated 
broadly by large-scale climate phenomena through atmospheric tele
connections such as ENSO. In this paper, spring and early summer var
iables are evaluated to determine their ability to represent within-season 
drivers of July-August cyanobacteria biomass. 

In comparison to a traditional model conditioned on all years in the 
historical record, a two-phase approach is adopted – categorizing years 
as falling into either a positive or negative phase according to the pre- 
season MEI value. This modeling approach significantly improves pre
dictions of July-August cyanobacteria biomass – particularly for above 
normal July-August conditions – and highlights the relative importance 
of unique local and global cyanobacteria biomass drivers in each phase. 

Notably, variables closely related to spring and summer phosphorus load 
are included in the negative phase model however are not significantly 
correlated with cyanobacteria biomass in the positive phase. This 
distinct behavior difference may be mediated by atmospheric tele
connections between ENSO and the Great Plains Low-Level Jet, which 
acts as a conduit for moisture transport from the mid-Atlantic to the 
Midwest. While inferences in how precipitation and thus variability in 
lake processes is modulated by ENSO specifically and large-scale climate 
generally are provided here, additional investigation is still warranted 
(Justić et al., 2005; Morse et al., 2014). Additional lines of inquiry could 
include development of coupled seasonal and sub-seasonal forecast 
systems for other water quality indicators, use of remote sensing 
methods to enhance observational records and predictability, and 
further integration of forecasts with lake and beach management 
alternatives. 

Harmful algae 
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