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In recent decades, cultural eutrophication of coastal waters and inland lakes around the world has contributed to
a rapid expansion of potentially toxic cyanobacteria, threatening aquatic and human systems. For many loca-
tions, a complex array of physical, chemical, and biological variables leads to significant inter-annual variability
of cyanobacteria biomass, modulated by local and large-scale climate phenomena. Currently, however, minimal
information regarding expected summertime cyanobacteria biomass conditions is available prior to the season,
limiting proactive management and preparedness strategies for lake and beach safety. To address this, sub-
seasonal (two-month) cyanobacteria biomass prediction models are developed, drawing on pre-season pre-
dictors including stream discharge, phosphorus loads, a floating algae index, and large-scale sea-surface tem-
perature regions, with an application to Lake Mendota in Wisconsin. A two-phase statistical modeling approach is
adopted to reflect identified asymmetric relationships between predictors (drivers of inter-annual variability)
and cyanobacteria biomass levels. The model illustrates promising performance overall, with particular skill in
predicting above normal cyanobacteria biomass conditions which are of primary importance to lake and beach

managers.

1. Introduction

Cyanobacteria are aquatic photosynthetic microorganisms that can
produce a range of toxins (Carmichael et al., 1994; Elliot, 2012) and
potentially lead to harmful algal blooms with adverse impacts on eco-
systems, economies, and human and animal health worldwide (Paerl
et al., 2001; Guo, 2007; Carmichael and Boyer, 2016). Proliferation of
cyanobacteria can negatively impact water quality by increasing
turbidity and depleting oxygen through microbial degradation, leading
to the death of aquatic macrophytes, fish, and invertebrates (Rabalais
et al., 2010; Huisman et al., 2018). Additionally, toxins produced by
cyanobacteria, or cyanotoxins, can result in mortality of animals, birds,
and fish, weakening community structure (Paerl et al., 2001). Cyano-
toxins are also responsible for human health issues ranging from contact
irritation to lethal poisoning (Carmichael and Boyer, 2016). Since 2009,
the Center for Disease Control National Outbreak Reporting System has
documented eight outbreaks and 331 illnesses related to cyanotoxin
exposure in the U.S. (221 - recreational exposure, 110 - drinking water)
(Centers for Disease Control and Prevention (CDC) 2020).
Cyanobacteria-related impacts on environmental and human health lead
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to economic stress as well. A study conducted in Australia assessed the
cost of environmental management attributable to cyanobacteria,
including wastewater treatment and rehabilitation of water resources, to
range from $180 million to $240 million annually (Atech, 2000). More
broadly, potential losses related to cultural eutrophication of freshwater
in the U.S., a known driver of cyanobacteria biomass, total over $2.2
billion annually (Dodds et al., 2009).

In recent years, concerns regarding the global proliferation of
cyanobacteria-related to eutrophication and climate change have grown
(Paerl and Huisman, 2008; Huisman et al., 2018). Analysis of cyano-
bacteria pigment in north temperate and subarctic sediment cores has
revealed an acceleration of cyanobacteria growth since 1945, and a
disproportionate increase in cyanobacteria relative to other, less harm-
ful phytoplankton (Taranu et al., 2015). In the U.S., cyanobacteria
blooms have received notable attention in larger water bodies. For
example, a 2014 bloom in Lake Erie drew national attention after
causing a shutdown of the drinking water supply in Toledo, Ohio, due to
dangerous levels of cyanotoxins (Patel and Parshina-kottas, 2017).
Other waterbodies such as Lake Okeechobee in Florida, and the Ches-
apeake Bay have been the focus of cyanobacteria-related research and
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legislation for the past 20 years (University of Maryland Center for
Environmental Science 2015; Stern and Kornfield, 2016). A globally
robust relationship between algal biomass and nutrient input (Smith,
2003) suggests that small eutrophic lakes are significantly impacted as
well, but have received less attention.

Typically, cyanobacteria biomass peaks during the summer season
(June-Aug or Sept) in the northern hemisphere, and is determined by the
interactions of many physical, chemical, and biological variables
throughout the spring and summer (Robarts and Zohary, 1987; Paerl,
1988; Stow et al., 1997; Carpenter et al., 2018). Numerous studies have
shown that nitrogen and phosphorus are key nutrients for cyanobacteria
growth, however, phosphorus is generally considered the limiting
nutrient for algal growth in freshwater systems (Schindler 1977;
Downing et al., 2001; Smith et al., 2003; Xu et al., 2010). Agricultural
use of nitrogen and phosphorus fertilizers creates nutrient-rich runoff
that spurs productivity in lakes (Hart et al., 2004; Kronvang et al., 2005).
Phosphorus is also known to accumulate in sediments which settle in
lakes and subsequently release stored phosphorus into the water column
(S¢ndergaard et al., 2003). Ratios of total nitrogen to total phosphorus
have also been shown to have some influence on cyanobacteria biomass,
however, the relationship may be more complex (Hakanson et al.,
2007). Physical lake characteristics, including temperature and strati-
fication strength, also regulate cyanobacteria biomass. The photosyn-
thetic capacities of many cyanobacteria species are maximized at high
temperatures (Konopka and Brock, 1978; Robarts and Zohary, 1987),
and gas vacuoles, used to regulate buoyancy, provide cyanobacteria
with a competitive advantage over other phytoplankton groups in
stratified water columns (Reynolds et al., 1987; Walsby et al., 1997;
Huber et al., 2012). Additionally, cyanobacteria are known to have a
high physiological tolerance, allowing them to grow in temperatures
unfavorable to other organisms (Briand et al., 2004; Pearl and Huisman,
2008). Many of the variables that may influence cyanobacteria growth
are regulated by local climatic conditions which are, in turn, influenced
by large-scale climate phenomena through atmospheric teleconnections.
These variables can affect long-term trends in cyanobacteria growth but
also lead to significant inter-annual variability in cyanobacteria
biomass.

To address inter-annual variations in cyanobacteria biomass — most
notably when levels are elevated — lake managers may benefit from
advanced indication of expected conditions, particularly if there are
explicit actions they can take. Most efforts in this vein focus on short-
term (days to weeks) cyanobacteria forecasts with the goal of
providing early warnings of elevated levels or bloom formation and
growth (Wynne et al., 2013; Zhang et al., 2015). These forecasts allow
public health officials and lake managers to respond to immediate
threats. For example, Zhang et al. (2015) list emergency responses to
elevated cyanobacteria in Lake Taihu, China, to include water diversion
for flushing, algal bloom collection and removal, and emergency mea-
sures for securing drinking water. On Lake Erie, Wynne et al. (2013)
suggest other short-term actions such as alleviating taste and odor issues
in drinking water and posting warning signs at beaches. In contrast,
longer-lead (months to seasons) forecasts of elevated cyanobacteria
biomass may provide opportunities for proactive lake management not
possible at short timescales. Lake and beach managers may be able to
adjust budgets for water quality testing, augment lifeguard training, and
increase public awareness. These longer-lead forecasts are not intended
to replace short-term forecasts, but ideally work in concert to provide
managers a suite of actions at various lead times.

Considerable progress has been made in the development of season-
ahead forecasts to address water quantity management (e.g. Chiew
et al., 2003; Delorit et al., 2017; Giuliani et al. 2019a; Baker et al., 2019),
however significantly less focus has been devoted to the application of
season-ahead forecasts for water quality management. Towler et al.
(2010) applied seasonal forecasts to turbidity thresholds for drinking
water in the Northwest U.S. with moderate success. On a sub-seasonal
scale, Wang et al. (2013) developed a bootstrapped wavelet neural
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network to forecast monthly ammonia nitrogen and dissolved oxygen in
the Harbin region of China. Recknagel et al. (2017) developed a
microcystin cell concentration forecast for a similar timescale, effective
for forecast horizons of up to 30 days. Previous research in cyanobac-
teria forecasting, however, has predominantly focused on exploring
alternative modeling techniques, relying primarily on spring phos-
phorus loads, with minimal consideration of how season-ahead large--
scale and local hydroclimatic drivers may additionally inform variations
in summertime cyanobacteria biomass (Stow et al., 1997, Lathrop et al.,
1998; Stumpf et al., 2016). Recently, the potential for developing
sub-seasonal (i.e. within-season) forecasts for application to water
management has garnered attention (Vitart et al., 2012; Vitart et al.,
2018) with the intention that such forecasts could bridge the gap be-
tween seasonal and short-term time scales (Shentsis and Ben-Zyi, 1999;
Vitart, 2014). In conversations with lake and public health mangers,
there is an expressed desire to understand how cyanobacteria abun-
dance may be changing throughout the summer season, and if a pre-
diction update is possible. A sub-seasonal forecast of cyanobacteria
biomass may indicate if expected cyanobacteria conditions are shifting
within the season, providing managers with an opportunity to change
the frequency of water quality monitoring, public engagement strate-
gies, and prepare emergency resources for recreators and drinking water
facilities before the potential for cyanobacteria productivity peaks. This
study investigates relevant pre- and within-season local and global scale
drivers of inter-annual variability in summertime cyanobacteria biomass
and presents the development and verification of a sub-seasonal fore-
casting framework for cyanobacteria conditions. Finally, this study ex-
plores how a sub-seasonal forecast may be effectively paired with a
seasonal forecast for holistic lake management.

1.1. Case study

Lake Mendota, in Madison, Wisconsin, is often labeled as one of the
most studied lakes in the world (Brezonik et al., 1968; Brock, 1985;
Aoki, 1989; Lathrop, 2007) (Figure 1). Mendota’s 596-square kilometer
watershed is highly urbanized (21%) and agricultural (53%) (Genskow
et al., 2012). Municipal wastewater discharge fueled eutrophication in
Lake Mendota from the 1940’s-1970’s, however, in recent years urban
and agricultural development in the Mendota watershed has maintained
the state of high productivity in the lake (Lathrop et al., 1998; Lathrop,
2007). Cyanobacteria blooms have occurred in Lake Mendota since the
late 1800’s but have become a more serious concern as cultural eutro-
phication has progressed over the last century, making blooms a com-
mon summertime phenomenon (Brock, 1985; Lathrop and Carpenter,
1992, Lathrop et al., 1998).

Seasonal forecasts have been produced for summertime cyanobac-
teria biomass on Lake Mendota since 2015 (Soley, 2016). The authors
use a principal component analysis and regression modelling approach
conditioned on season-ahead (March-May) local and global scale pre-
dictors to generate probabilistic forecasts of average cyanobacteria
biomass for June-August (released on June 1). The highest cyanobac-
teria biomass concentrations, however, have historically occurred in
July and August (Fig. 2), further motivating the potential utility of a
sub-seasonal forecast by updating later in the season.

Numerous large-scale climate phenomena influence climate condi-
tions in the upper Midwestern US, however one of the most prominent
teleconnection patterns affecting precipitation and temperature is the El
Nino Southern Oscillation (ENSO) (Ropelewski and Halpert, 1986;
1987). ENSO’s influence globally is widely studied and generally un-
derstood, acting independently or interacting with other large-scale
climate phenomena such as the Pacific Decadal Oscillation (Kahya and
Dracup 1993; Shabbar and Skinner, 2004). The state of these climate
phenomena and the atmospheric-oceanic system is an important factor
in local climate variability, and therefore regulate many processes
important to cyanobacteria growth (Justi¢ et al., 2005; Zhang et al.,
2012). Two studies of lake ice cover records in Wisconsin lakes found
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Fig. 1. Map of Lake Mendota, contributing watersheds, and sources of local data.
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Fig. 2. June, July, and August average cyanobacteria biomass at the LTER buoy
in Lake Mendota (1995-2017).

that warmer air temperatures lead to early spring ice breakup in strong
El Nino years (Anderson et al., 1996; Robertson et al., 2000). Addi-
tionally, an analysis of winter precipitation in the Great Lakes region
found evidence for an asymmetric response to measures of ENSO, with
more distinct linkages to La Nina conditions (Fu and Steinschneider,
2019).

Lake Mendota is included in the National Science Foundation’s North
Temperate Lakes - Long-Term Ecological Research (LTER) network and
has a wealth of high-quality, long-term ecological data (LTER 2020).
Access to cyanobacteria data in addition to extensive ecological, hy-
drological, and climatological datasets make Lake Mendota an ideal
case-study for the application of seasonal (June-August) and sub-
seasonal (July-August) cyanobacteria forecasts. Cyanobacteria biomass
data has been collected at the LTER buoy in Lake Mendota each summer

since 1995 (Magnuson et al., 2020a). Composite samples for 0-8 meters
of depth are typically collected 2-4 times a month from June through
August.

2. Methods
2.1. Drivers of variability in cyanobacteria biomass

In Lake Mendota, cyanobacteria biomass is generally most apparent
from June-August (Fig. 2), with elevated levels typically observable in
July and August. The existing seasonal prediction model issues a June-
August average cyanobacteria biomass forecast at the beginning of
June, whereas the sub-seasonal July-August prediction model proposed
here focuses on the peak months, taking advantage of June observations,
and issues a forecast of average July-August cyanobacteria biomass at
the beginning of July.

Numerous drivers and factors at local to global scales influence inter-
annual cyanobacteria productivity. From a forecasting perspective, ideal
predictors include pre-season (e.g. April-June), observable hydro-
climatic and landscape variables that effect the state of the lake system
into July-August. Potential predictors are identified based on previous
literature regarding cyanobacteria dynamics and/or correlation anal-
ysis. Predictors that correlate with July-August average cyanobacteria
biomass at the 95% confidence level (P<0.05) are considered statisti-
cally significant and added to the suite of potential predictors.

As discussed previously, phosphorus is a well-established driver of
cyanobacteria biomass. Strong correlations between phosphorus in
contributing waters and cyanobacteria biomass has been demonstrated
repeatedly (Smith, 1985; Stow et al., 1997; Lathrop et al., 1998;
Downing et al., 2001; Hakanson et al., 2007). Phosphorus data for the
Lake Mendota case study are extracted from USGS station 05427718
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located on the Yahara River at Windsor, WI for the month of June
(USGS, 2020). Relatedly, local scale hydroclimatic variables influencing
transport of phosphorus across the landscape prior to July are also
important drivers of external phosphorous loading. These include
extreme precipitation events, discharge, soil moisture, and suspended
sediments (Michalak, 2016; Motew et al., 2017; Carpenter et al., 2018).
Precipitation events can wash high concentrations of nutrients off the
landscape and into surface waters, contributing to eutrophication
(Sinha et al., 2017). Agricultural watersheds similar to the Lake Men-
dota watershed are particularly vulnerable to phosphorus loading driven
by precipitation events (Garnache et al., 2016; Carpenter et al., 2018).
Most of the phosphorus loading in the Mendota watershed occurs in a
relatively small number of large loading events (Carpenter et al., 2015).
Similarly, soil moisture conditions regulate infiltration versus direct
runoff into rivers or lakes. Intense loading events occurring in June,
represented by phosphorus load, discharge, and suspended sediments,
have the potential to alter phosphorus availability for cyanobacteria
later in the summer (Lathrop and Carpenter, 2014). Precipitation data
was obtained from the Midwest Regional Climate Center for March-May
(Wuertz et al., 2020). Soil moisture data in the Mendota watershed
comes from the North American Land Data Assimilation System
(NLDAS) for June (Mocko, 2013). Both discharge and suspended sedi-
ment loads are from USGS station 05427718 for the month of June (U.S.
Geological Survey 2020a) .

Variables related to in-situ productivity, including nitrate + nitrite
and total unfiltered phosphorus are also considered. While phosphorus
has historically been considered the primary limiting nutrient for
phytoplankton in freshwater, there is evidence that inorganic nitrogen
can control growth and toxicity of cyanobacteria as well (Gobler et al.,
2016). These data are available in the LTER database for June (Mag-
nuson et al., 2020b). To further assess the state of lake productivity in
June, a Floating Algae Index (FAI) was generated using remotely sensed
images in June from Landsat 5 (1995-1999) and MODIS (2000-2017)
satellites (ORNL DAAC 2020; U.S. Geological Survey 2020b), using
methods outlined by Hu (2009). The FAI has been used for mapping
floating algae, including cyanobacteria, in lacustrine and coastal envi-
ronments (Hu, 2009; Oyama et al., 2015). The effects of nutrient loading
on algal biomass are well established, therefore, an estimation of algal
biomass in June may indicate the general state of productivity in the
lake and serve as a predictor of cyanobacteria productivity later in the
summer (Vollenweider, 1970).

As discussed previously, elevated air temperature is thought to favor
dominance of cyanobacteria through direct effects on photosynthetic
capacity and indirect effects on competition. June air temperature and
the number of events exceeding the 99th percentile of air temperatures
for the climate reference period (1981-2010) are included in the suite of
potential predictors (Gallina et al., 2011; Anneville et al., 2015). Daily
temperature data from NOAA’s Global Historical Climatology Network
was accessed through the Midwest Regional Climate Center (Menne
et al., 2012). Mean pre-season water temperature, accessed through the
NTL-LTER data repository, is also evaluated as a potential predictor
(Robertson, 2016; Magnuson et al., 2020c).

Variable grazing rates by Daphnia spp. may also influence cyano-
bacteria biomass. In Lake Mendota, (Lathrop et al., 1996)found that
summer water clarity is significantly greater in years dominated by
D. pulicaria compared to D. mendotae. This difference in clarity has been
attributed to the ability of the larger-bodied D. pulicaria to significantly
reduce summertime algal biomass, including cyanobacteria (Epp, 1996;
Kasprzak and Lathrop, 1997; Sarnelle, 2007). Furthermore, there is
evidence to suggest that summertime Daphnia biomasses are greater in
Lake Mendota when D. pulicaria dominate in the spring months (Lathrop
et al., 1999). Thus, April-May D. pulicaria biomass, measured at the
LTER buoy, is included as a potential predictor of July-August cyano-
bacteria biomass (Magnuson et al., 2019).

Sea surface temperature (SST) and sea level pressure (SLP) anomalies
have been well-documented to influence precipitation and temperature
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on monthly to seasonal timescales by altering atmospheric flow condi-
tions (Barnston, 1994; Giannini and Kushnir, 2000; Markowski and
North, 2003; Quan et al., 2006), and are thus also considered as po-
tential predictors. Locations of SST and SLP influencing climate condi-
tions in the Lake Mendota watershed are further developed below.
May-June SST and SLP anomalies are from NOAA’s ERSST v3b and
HadSLP2r datasets, respectively, and were accessed through the IRI Data
Library (Allan and Ansell, 2006); Smith et al., 2008).

2.2. Prediction modeling approach

Prediction models may take a statistical/machine learning or
process-based approach. Given the high complexity of limnological
processes and lake dynamics, and the singular focus here on predicting
cyanobacteria biomass, statistical approaches are arguably better suited
(Rastetter, 2017). When sufficient observational records exist, statistical
models can readily incorporate a wide variety of potential predictors at
both local and global scales. This is advantageous given the vast array of
variables contributing to summertime cyanobacteria growth. A prin-
cipal component analysis and regression approach are selected to build
the July-August cyanobacteria prediction model. Principal component
analysis decomposes a multivariate dataset into orthogonal patterns
(principal components, PCs) that represent the dominant signals from
the original set of predictors (Block et al., 2009). This approach mini-
mizes multi-collinearity among the predictors by construction and thus
does not artificially inflate prediction skill. Here, principal components
that explained more than 10% of the variance in the data are retained.
Principal component regression models are fit based on the retained PCs
across 1995-2017. These models take the form of Eq. 1, where « and g
are the coefficients fit through ordinary least squares, PC1, through PCn,
are the principal components retained, and Y; is the prediction of
average cyanobacteria at each time step, t.

Y, =a+ Bl PCl, + ...pn % PCn, €}

The generalized cross-validation (GCV) score is used to select the
best subset from the suite of predictors and is given as,

°

2
GV — ey 2

(1-%)

where N is the number of time steps (1995-2017), m is the number of
PCs (predictors) retained in each candidate model, and e; is the residual
(difference between observed and model estimated values) at each time
step, t (July-August each year). The GCV penalizes overfitting and is a
good estimate of predictive risk (Craven and Wahba 1978). Using this
method, the best set of predictors can be identified by evaluating a
number of predictor combinations (candidate models) and selecting the
combination that results in the minimum GCV score (Regonda et al.,
2006). Statistical models were developed using R version 1.3.1056.

In an effort to appropriately represent teleconnection patterns be-
tween global climate phenomenon and local-scale processes that drive
cyanobacteria biomass, a Nino Index Phase Analysis (Zimmerman et al.
2016; Giuliani et al. 2019a) is adopted. This method draws on the state
of the atmospheric-oceanic system in months prior to the season of in-
terest to divide a timeseries into different “mean states”. This allows for
possible asymmetric relationships between “mean states” to be captured
and modeled (Lee et al., 2018). Given that ENSO expresses moderate
influence over climate conditions in the upper Midwestern U.S., the
Multivariate ENSO Index (MEI) — consisting of SLP and SST information
in the Pacific Ocean - is used to classify historical years into phases of
ENSO; here two phases are adopted: positive and negative, based on MEI
values averaged over May — June. Global and local-scale predictors may
subsequently be evaluated for each “mean state” of the
atmospheric-oceanic system represented by each phase. For the histor-
ical cyanobacteria biomass record on Lake Mendota, seven years fall into
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the positive phase and 16 into the negative phase. For the years falling
within each phase, regions of SST and SLP anomalies that correlated
significantly with July-August cyanobacteria are selected following
Zimmerman et al. (2016). Principal components of these SST and SLP
regions are included as potential sub-seasonal predictors. Each of the
specified predictors are evaluated independently for the positive and
negative phase, as correlation with cyanobacteria biomass in one phase
does not necessitate inclusion as a predictor in both phase models. Thus
the important processes contributing to cyanobacteria growth in each
phase of ENSO are identified, potentially leading to enhanced biomass
forecasts. The Nino Index Phase Analysis was performed in Python
2.7.16 and Spyder 3.3.6 using code developed by Giuliani et al. (2019b)

To evaluate historical performance, a hindcast is undertaken, such
that a year of information is dropped (drop one cross-validation), the
PCs are constructed, coefficients o« and f are fit based on the remaining
years of data, and Y, for the dropped year is calculated. This is repeated
to create a deterministic forecast of biomass for all years. The optimal
number of PCs for each model, based on the GCV, was held constant for
the cross-validation in all years.

Ensemble predictions for each year in the hindcast are based on er-
rors, defined as the difference between predicted and observed cyano-
bacteria biomass in the leave-one-out cross-validated approach. Errors
are fit to a normal distribution, with mean zero, using a maximum
likelihood estimation. For each hindcast year, 100 random draws from
the distribution are added to the deterministic biomass forecast to form
the ensemble (Helsel and Hirsch 1992; Zhang et al., 2016; Delroit et al.,
2017; Alexander et al., 2019).

2.3. Model performance metrics

To assess model performance, observations are compared with
model forecasts using five skill scores: correlation coefficients, Root
Mean Square Error (RMSE), Heidke skill score (HSS), ranked probability
skill score (RPSS), and a hit-miss matrix (Heidke, 1926; Epstein, 1969).
HSS and RPSS are categorical performance metrics and can be inter-
preted as a percentage improvement over a reference forecast. A stan-
dard reference forecast for hydro-climate prediction is based on a
climatological (equal odds) distribution of observed July-August cya-
nobacteria biomass. Here, the reference forecast is split into three cat-
egories of equal probability (33% each), representing below normal
(0-2.91 mg/L), near normal (2.91-4.56 mg/L), and above normal (4.56+
mg/L) cyanobacteria conditions. For the forecast model developed here,
if there is no predictive information, the model defaults to equal odds
categorical prediction, as in the reference forecast. However, for most
years, the distribution of expected conditions shifts and results in un-
equal likelihoods of each category. Thus the forecast developed here
outperforms the reference forecast when it assigns a greater probability
(more than 33%) to the category that is ultimately observed. The HSS is
a deterministic categorical score:

= ZiP(FhOf) — ZiP(F[)P(O[)

1SS = S P(F)P(0)

3

where the joint distribution of forecasts and observations is described by
P(F;, 0y), and the marginal distributions of forecasts and observations
are described by P(F;) and P(Oj), respectively (Wilks 2011). HSS values
range from -co to 1, where 0 represents no skill and 1 represents a perfect
forecast. RPSS is a probabilistic categorical score based on ensemble
forecasts for each year (summertime) in the time series. RPSS uses the
ranked probability score (RPS), a measure of the squared differences in
the cumulative probability of a multi-categorical ensemble. The RPSS
score is increasingly penalized as more forecast ensemble members are
assigned to categories farther from the observed category. RPSS values
range from -co to 1, where O represents no skill, 1 represents a perfect
forecast, and negative values indicate that forecasts are inferior to the
reference forecast. RPSS values are generated for each year using Eq. 4;

Harmful Algae 108 (2021) 102100

the median value is reported.

RPS — RPS,eference RPS
RPSS = =1- 4
0 — RPS,eference RPS,ference @
3. Results

3.1. Phase model performance

A unique set of cyanobacteria predictors are retained for the MEI
positive and negative phase models (Table 1), validating the utility of
separate models to describe this asymmetric relationship. Regions of
May-June SST anomalies are identified following Zimmerman et al.
(2016) for both the positive and negative phases (Fig. 3). In the negative
phase (La Nina-like) model, significantly correlating regions of
May-June SST anomalies are located in the equatorial Pacific Ocean. In
the positive phase (El Nino-like) model, significantly correlating regions
of May-June SST anomalies are located in the mid and northern Atlantic
Ocean.

The final set of predictors for the negative (La Nina-like) phase in-
cludes June discharge, June phosphorus load, June total unfiltered
phosphorus measured at the LTER buoy, the floating algae index for
June, and May-June average SST anomalies in parts of the Pacific Ocean.
These first four variables represent local-scale processes, and SSTs
represent global scale processes, explaining cyanobacteria variability.
The first three principal components are retained for the negative phase
model and explain approximately 65%, 13%, and 10% of the variance,
respectively.

The final set of predictors for the positive (El Nino-like) phase only
includes May-June SST anomalies in the Atlantic Ocean and the floating
algae index. The first principal component of the positive phase model
explains approximately 92% of the variance in the data and is the only
PC retained for the model. Variables commonly associated with cyano-
bacteria productivity (e.g. phosphorus, discharge, extreme precipitation
events) are not statistically significant during the positive phase
(Table 1).

3.2. Combined model performance

A hindcast assessment combining the positive and negative phase
models results in Pearson and Spearman correlation coefficients of 0.90
and 0.83 respectively, an RMSE of 1.22, an HSS of 0.41, and a median
RPSS of 0.72, indicating a clear improvement over climatology (Fig. 4).
The model illustrates particular skill in predicting below normal and
above normal conditions but performs poorly in the near normal category
(Table 2). The model’s ability to correctly predict above normal July-
August cyanobacteria biomass (6 out of the 8 years) is particularly ad-
vantageous from a management perspective. Additionally, the two-
phase model demonstrates substantial improvement over a traditional
model that does not discriminate between ENSO phases (Fig. 5; the “one-
phase” model results in Pearson and Spearman correlation coefficients
of 0.81 and 0.70, respectively, an RMSE of 1.53, an HSS of 0.35, and a
median RPSS of 0.56.)

3.3. Seasonal and sub-seasonal model comparison

A comparison between the full (June-Aug) and sub-seasonal (July-
Aug) model outputs is warranted to understand agreement between
models and potential gains from issuing an updated forecast. A proba-
bility density plot of the sub-seasonal hindcast appears to more accu-
rately reflect observed conditions than the seasonal hindcast and
illustrates the sub-seasonal model’s increased accuracy in the tails, with
less emphasis on the near normal category (Fig. 6). To assess the degree
of difference between the predicted probability distributions and the
observed distribution, two, two-sample Komolgorov-Smirnov test are
performed. The Komolgorov-Smirnov test statistic (D) quantifies the
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Table 1
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Pearson and Spearman correlation coefficients between July-August average cyanobacteria biomass with ENSO phase indicated. Bold values indicate the set of
significantly correlated predictors selected with the GCV for each phase model. * indicate significantly correlated variables.

Predictor Months ENSO Phase Pearson Spearman Source
Discharge (USGS Station 05427718) June Positive -0.09 -0.04 USGS
Phosphorus Load (USGS Station 05427718) June 0.11 -0.13 USGS
Suspended Sediment Load (USGS Station 05427718) June 0.22 -0.11 USGS

Soil Moisture (Grid: 43.313 -89.313) June 0.15 0.25 NLDAS

Nitrate + Nitrite (Buoy) June -0.41 -0.21 LTER

Total Unfiltered Phosphorus (Buoy) June 0.21 0.04 LTER

Sea Surface Temperature (PC1) May-June -0.87* -0.96* IRI Data Library
Sea Level Pressure (PC1) May-June -0.88* -0.96* IRI Data Library
Extreme Events (>25mm) March-May 0.25 0.25 MRCC

Air Temperature June -0.11 -0.54 MRCC

Extreme Air Temperature Events March-June -0.002 -0.23 MRCC

Floating Algae Index June 0.93* 0.89* MODIS/Landsat
D. Pulicaria Biomass June -0.89* -0.89* LTER

Water Temperature April-June 0.64 0.57 LTER
Pre-season Cyanobacteria Biomass June 0.52 0.02 LTER

Discharge (USGS Station 05427718) June Negative 0.83* 0.63* USGS
Phosphorus Load (USGS Station 05427718) June 0.82* 0.57* USGS
Suspended Sediment Load (USGS Station 05427718) June 0.78* 0.55% USGS

Soil Moisture (Grid: 43.313 -89.313) June 0.43 0.43 NLDAS

Nitrate + Nitrite (Buoy) June 0.63* 0.66* LTER

Total Unfiltered Phosphorus (Buoy) June 0.62* 0.61* LTER

Sea Surface Temperature (PC1) May-June -0.74* -0.57* IRI Data Library
Sea Level Pressure (PC1) May-June -0.63 -0.41 IRI Data Library
Extreme Events (>25mm) March-May 0.72% 0.75% MRCC

Air Temperature June -0.05 -0.003 MRCC

Extreme Air Temperature Events March-June 0.09 -0.02 MRCC

Floating Algae Index June 0.71* 0.70* MODIS/Landsat
D. Pulicaria Biomass June -0.15 -0.03 LTER

Water Temperature April-June 0.58 0.39 LTER
Pre-season Cyanobacteria Biomass June 0.18 0.60 LTER

distance between two empirical distribution functions. A smaller test
statistic is found between the sub-seasonal and observed distributions
(D=0.22) compared to the seasonal and observed distributions
(D=0.30). Neither the predicted sub-seasonal or seasonal distribution
was significantly different from the observed July-August biomass dis-
tribution at the 95% confidence level (P>=0.66 and P=0.23, respec-
tively). From a categorical perspective, normalized seasonal and sub-
seasonal hindcasts correctly predict 56.5% and 60.8% of observed
July-August biomass respectively (Table 3). Both hindcasts perform well
in the below normal category and poorly in predicting near normal con-
ditions. Most notably, the sub-seasonal prediction model for above
normal cyanobacteria biomass is an improvement over the seasonal
forecast model. Specifically, the sub-seasonal forecast correctly predicts
above normal conditions for three years in which the seasonal forecast
does not (Table 4). The sub-seasonal forecast incorrectly updated an
above normal seasonal prediction in only one year (2011). Increased
accuracy in prediction of above normal cyanobacteria conditions by the
sub-seasonal forecast is encouraging, as these conditions present the
greatest threat to public health.

4. Discussion

In addition to practical applications, prediction plays an important
role in demonstrating ecological understanding (Houlahan et al., 2017).
The development and assessment of the positive and negative phase
forecasting models provides some insight into the relative importance of
local and global scale variables on a seasonal timeframe.

At the local scale, the predictive power of several variables are
noteworthy. The floating algae index, a remotely sensed indicator of pre-
season lake productivity, is the only local-scale predictor singifcant in
both phase models. Pre-season cyanobacteria biomass, however, was not
a significant predictor of July-August biomass in either phase. This
suggests that general algae productivity in the early summer may be
more indicative of favorable conditions for July-August cyanobacteria

than early summer cyanobacteria biomass itself. Additionally, despite
the established importance of temperature in cyanobacteria productiv-
ity, neither of the air temperature-based predictors are significantly
correlated with July-August cyanobacteria biomass in either phase. Pre-
season water temperatures resulted in higher correlation coefficients
than air temperature predictors, but relationships were not strong
enough to be included in either phase. Konopka and Brock (1978)
purport that the relationship between lake temperature and cyanobac-
teria growth in Mendota is complicated by other concurrent environ-
mental changes. Ultimately, the temperature-based predictors included
here may be too simplistic to fully capture the relationships between air
and water temperature and cyanobacteria growth.

At a global scale, regions of relevant sea surface temperatures iden-
tified by the NIPA process suggest differences in the influence of large-
scale climate phenomena on local hydroclimatic processes in the Mid-
west during the positive and negative phases of ENSO. In the negative
phase (La Nina-like) model, significantly correlating regions of May-
June SST anomalies are located in the equatorial Pacific Ocean, a re-
gion commonly associated with ENSO (Fig. 3). A relationship has been
previously established between springtime La Nina conditions and a
strong Great Plains low level jet (GPLLJ), which acts as a conduit for
moisture from the tropical Atlantic to the continental U.S. (Munoz and
Enfield, 2011; Krishnamurthy et al., 2015). Increased springtime mois-
ture during the MEI negative phase may explain why variables associ-
ated with precipitation (e.g. phosphorus load, discharge, extreme
events, suspended sediments) are significantly correlated with
July-August cyanobacteria biomass in the negative phase, but not in the
positive phase (Table 1).

In the positive phase (El Nino-like) model, significantly correlating
regions of May-June SST anomalies are located in the mid and northern
Atlantic Ocean (Fig. 3). The GPLLJ draws moisture from the tropical
Atlantic via the Caribbean low-level jet, however, Krishnamurthy et al.
(2015) suggest that El Nino conditions are not typically associated with
a strong GPLLJ in boreal spring (April-June). This may explain why
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Fig. 3. Regions of statistically significant (95th-percentile) Pearson correlation coefficients between July-August cyanobacteria biomass and May-June SST anom-
alies for negative and positive ENSO phases. The black dot represents the study site. Colors represent the degree of correlation.
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Fig. 4. July-August average cyanobacteria biomass predictions for positive and negative phases of ENSO (box plots) and observed data (solid black line.) Thresholds
between below, near, and above normal categories are denoted by horizontal black lines.

regions of significantly correlating SST (and SLP) anomalies are focused
in the Atlantic, and why they are absent from the equatorial Pacific
Ocean. On average, total June precipitation is lower during the positive
phase compared to the negative phase (Fig. 7). Furthermore, drought
periods in the Yahara watershed have been shown to decrease
July-August discharge, phosphorus loads, and total phosphorus within
the lake (Lathrop and Carpenter, 2014). A weaker GPLLJ in the positive

phase may explain lower June precipitation and the lack of significant
correlations between precipitation-driven variables and cyanobacteria
biomass in these years.

ENSO signals may also explain asymmetries in predictor relation-
ships at the lake scale. D. pulicaria biomass is not selected by the model
for the final suite of predictors but is significantly correlated with cya-
nobacteria biomass in the positive phase. Plankton community
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Cyanobacteria biomass forecast results: observed cyanobacteria biomass category vs. the forecasted category in a given year. Values represent the number of historical

years that fall into each category based on a hindcast.

Observed
Below Normal Near Normal Above Normal
Forecast Below Normal 7 5 2
Near Normal 1 1 0
Above Normal 0 1 6
[ ]
= 10+
o
S
-
(2]
C
K]
s}
©
()
S
o
@ 57
©
&)
©
S
I
[} 2One—phase :0.66
° Two-phase : 0.80
O -

T T
2.5 5.0

T T
7.5 10.0 12.5

JA Average Cyanobacteria Abundance (mg/L)

One-phase Model =e= Two-phase Model

Fig. 5. July-August average cyanobacteria biomass observations compared to hindcast predictions using “one-phase” and “two-phase” (NIPA) models. A 1:1 line

(perfect forecast) is represented by the dashed gray line.

dynamics in Lake Mendota are complex, however, there is some evi-
dence that the effects of D. pulicaria grazing on phytoplankton are more
pronounced when phosphorus concentrations are low (Vanni et al.,
1990). It is possible then, that the influence of D. pulicaria grazing on
July-August cyanobacteria biomass is more pronounced in the positive
phase due to differences in phosphorus conveyance between the phases
of ENSO.

In comparison to a model conditioned on all available years of cya-
nobacteria biomass data, the split phase model approach significantly
improves predictions of July-August cyanobacteria biomass, most
notably for above normal cyanobacteria conditions (Fig. 5). Additionally,
the subseasonal forecast developed here shows an improvement in
forecast skill for July-August cyanobacteria biomass over the full season
(June-August) forecast developed by Soley et al. (2016) (Table 4, Fig. 6).
This suggests that a sub-seasonal cyanobacteria forecast (released on
July 1%) can provide lake and beach managers with a meaningful update
to the full season forecast (released on June 1%, with greater accuracy
regarding the peak months for cyanobacteria productivity in Lake
Mendota.

Despite the sub-seasonal model’s ability to improve forecasts of
above normal cyanobacteria conditions overall, the model incorrectly
updated a seasonal forecast of above normal cyanobacteria biomass to
near normal in 2011 (Table 4). Increased cyanobacteria abundance in
2011 may have resulted from high concentrations of dissolved inorganic
nitrogen throughout the summer. Beversdorf et al. (2013) suggest that
an abnormally high ratio of dissolved inorganic nitrogen to dissolved
reactive phosphorus in 2011 allowed the early summer cyanobacteria

species Aphanizomenon to persist into July and August, coexisting with
Mycrocysits, a species typical of later summer months. It is possible that
cyanobacteria biomass in 2011 was driven primarily by nitrogen
availability, a predictor not selected for the negative phase model by the
GCV. Neglecting to distinguish between cyanobacteria species may limit
the model’s ability to capture the influence of community dynamics on
overall cyanobacteria abundance throughout the summer.

While linear models are unable to entirely capture non-linear drivers
of atmospheric and limnological processes, the NIPA approach high-
lights the diverse response of local and global predictor variables
important to cyanobacteria productivity given the mean state of the
atmospheric-oceanic system. Differences in the predictive power of
phosphorus load and related variables (e.g. discharge, extreme events,
suspended sediments) between MEI phases are particularly notable
considering the large body of work establishing phosphorus load as a
major driver of cyanobacteria productivity in Lake Mendota. The
number of years in each phase is relatively small from a statistical
perspective, however, compared to most inland lakes, the record for
Lake Mendota is considered long. Nonetheless, continued collection of
water quality data is warranted for the refinement of these models.

5. Conclusions

In this paper, skillful sub-seasonal cyanobacteria biomass prediction
models are developed and compared with full-season prediction models
to understand potential prediction gains and inform lake and beach
management. The inter-annual variability of biomass results from a
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Table 3

Observations and number of correct normalized categorical predictions of July-August cyanobacteria biomass from 1995 to 2017.

Category Years observed Correct Seasonal Forecasts (%) Correct Sub-seasonal Forecasts (%)
Above Normal 8 3(37.5) 5 (62.5)
Near Normal 7 2 (28.6) 2 (28.6)
Below Normal 8 8 (100) 7 (87.5)
All 23 13 (56.5) 14 (60.8)

Table 4 Notably, variables closely related to spring and summer phosphorus load
able

Years in which the sub-seasonal forecast corrected an incorrect seasonal forecast
(Corrections) and years in which the sub-seasonal forecast miscorrected an ac-
curate seasonal forecast (Miscorrections). “Corrections” always imply an
incorrect seasonal forecast. “Miscorrections” imply a correct seasonal forecast.
Cases in which both forecasts are correct or incorrect are not represented.

Category Corrections Miscorrections
Above Normal 3 1

Near Normal 2

Below Normal 0 1

complex array of physical, chemical, and biological variables, many of
which are significantly impacted by local climate, yet modulated
broadly by large-scale climate phenomena through atmospheric tele-
connections such as ENSO. In this paper, spring and early summer var-
iables are evaluated to determine their ability to represent within-season
drivers of July-August cyanobacteria biomass.

In comparison to a traditional model conditioned on all years in the
historical record, a two-phase approach is adopted — categorizing years
as falling into either a positive or negative phase according to the pre-
season MEI value. This modeling approach significantly improves pre-
dictions of July-August cyanobacteria biomass — particularly for above
normal July-August conditions — and highlights the relative importance
of unique local and global cyanobacteria biomass drivers in each phase.

are included in the negative phase model however are not significantly
correlated with cyanobacteria biomass in the positive phase. This
distinct behavior difference may be mediated by atmospheric tele-
connections between ENSO and the Great Plains Low-Level Jet, which
acts as a conduit for moisture transport from the mid-Atlantic to the
Midwest. While inferences in how precipitation and thus variability in
lake processes is modulated by ENSO specifically and large-scale climate
generally are provided here, additional investigation is still warranted
(Justi¢ et al., 2005; Morse et al., 2014). Additional lines of inquiry could
include development of coupled seasonal and sub-seasonal forecast
systems for other water quality indicators, use of remote sensing
methods to enhance observational records and predictability, and
further integration of forecasts with lake and beach management
alternatives.
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