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Routine Hospital-based SARS-CoV-2 Testing Outperforms State-based Data in Predicting
Clinical Burden

ABSTRACT
Throughout the COVID-19 pandemic, government policy and healthcare implementation
responses have been guided by reported positivity rates and counts of positive cases in the
community. The selection bias of these data calls into question their validity as measures of the
actual viral incidence in the community and as predictors of clinical burden. In the absence of
any successful public or academic campaign for comprehensive or random testing, we have
developed a proxy method for synthetic random sampling, based on viral RNA testing of patients
who present for elective procedures within a hospital system. We present here an approach under
multilevel regression and poststratification (MRP) to collecting and analyzing data on viral
exposure among patients in a hospital system and performing statistical adjustment that has been
made publicly available to estimate true viral incidence and trends in the community. We apply
our MRP method to track viral behavior in a mixed urban-suburban-rural setting in Indiana. This
method can be easily implemented in a wide variety of hospital settings. Finally, we provide
evidence that this model predicts the clinical burden of SARS-CoV-2 earlier and more accurately
than currently accepted metrics.
Keywords: Covid-19; clinical burden; community infection risk; multilevel regression and
poststratification
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INTRODUCTION

Early knowledge of incidence and trends of SARS-Cov-2 transmission in communities is crucial,
but in the absence of universal screening or random testing, interested parties have been left to
extrapolate impressions of community viral behavior from nonrepresentative data. Public health
professionals have relied on state-sourced positivity rates and raw numbers of positive tests in
any given jurisdiction as proxies for the true SARS-Cov-2 burden. Unfortunately, these
presumed proxies are subject to significant selection bias, as most testing protocols
understandably target symptomatic and presumed-exposed populations. Further, tests have been
applied with different criteria over time and geography according to test availability, perceived
community SARS-Cov-2 burden, and disparate clinical or political testing norms. The
uncontrolled nature of the data raises questions or criticism about their validity as determinants
of policy that delimits clinical or economic behavior. Alleva et al. provide a review of strategies
and experiences currently in progress to estimate the SARS-CoV-2 incidence in the community
(1). Briefly, the existing approaches include massive test campaigns without a formal sampling
design, diagnostic tests through a probabilistic sample, volunteer massive surveys and
supplements of existing sample surveys. Absent randomized testing of the population or
community, we need a means of normalizing currently available data to better track trends in the
true underlying incidence, either as a more reliable metric or as a reassurance of the validity of

our current ones in predicting clinical behavior of SARS-CoV-2.

In the present article, we apply multilevel regression and poststratification (MRP), a standard
adjustment method used in survey research that is particularly effective when sample sizes are
small in some demographic or geographic slices of the data (2, 3). MRP has increasingly been

shown to be useful in public health surveys, and even be successful in highly unrepresentative



probability or non-probability samples (4-6). We work with data from the Community Hospital
group in Indiana, which serves an urban-suburban-rural mix of patients. COVID testing was
already being performed for patients in this hospital system, and it was relatively costless to
augment this data collection with the statistical analysis presented here. For this reason, we

believe that this method can be easily implemented in a wide variety of hospital settings.

METHODS

Study Data and Sample

Upon reopening without restriction to elective medical and surgical procedures after the early
spring COVID-19 outbreak, clinical professionals in our hospital system were sufficiently
concerned about asymptomatic viral shedding to test all patients for acute SARS-Cov-2 infection
before performing any such procedure. All elective patients for invasive procedures are
presumptively asymptomatic, as any potential surgical patient acknowledging symptoms or
presenting a recent history of known viral exposure would have the procedure canceled or
deferred. All prospective surgical (and other invasive procedure) patients were subjected to a
preoperative evaluation of these issues and excluded if they showed evidence of symptoms or

exposure.

This population presented a potentially valuable resource. All patients used the same test
administered within a health system by similar health care professionals. There is a broad age,
racial/ethnic, and economic diversity to this group, and its only overt correlation to disease status
is that it is specifically selected for a lack of symptoms and a negative exposure history. By way
of contrast, cumulative state-wide data include testing data from multiple sources (private clinics,

large hospitals, pop-up clinics, large employers, universities, etc.), with different types of tests,



different levels of training for testers, different test settings (clinic office or drive through clinic),
where the test results are valuable but likely much more variable than those under consideration.
More importantly, the criteria used in the cumulative state data to determine whether to test
individuals in the first place are subject to varying prior assumptions. As an example, an
outpatient exposed to a family member suspected of active COVID has a substantially different
prior than a dyspneic patient admitted to the emergency department, yet the implication of the

state data trends is that these positive cases should be handled similarly.

Though not ideal, our test group is therefore a promising proxy for the general community.
SARS-CoV-2 has clearly shown the ability to spread throughout the population via both
asymptomatic and symptomatic infection. If we were to assume the as yet unverified but
reasonable hypothesis that, for any uniform demographic, the ratio of asymptomatic-to-
symptomatic viral infection is constant, then the asymptomatic population in a community would
vary in a strict ratio with overall prevalence, and could therefore serve as an excellent proxy for
true viral incidence. The trending of asymptomatic infection would be expected to be strictly
proportional to clinical infection. To the degree to which external comorbidities or other factors
might contribute to variation in this ratio across the sample, we anticipate that much of this

variation would be captured by our demographic adjustments.

Of crucial importance, our sample group varies from a true random sample in predictable ways.
It is selected rigorously for asymptomatic/non-exposed status, and age, racial/ethnic, and
geographic demographics are well documented in the hospital electronic health records (EHR). It
remains only to normalize our sample to the demographics of the larger community to represent

the general population.

Measures



We subjected all patients to polymerase chain reaction (PCR) testing for viral RNA, 4 days
before their intended procedure. Samples were submitted to LabCorp for analysis using the
Roche cobas system. This testing regime was used throughout the study interval and continues to
be employed without change to the present day. A 70% clinical sensitivity is presumed for this
test, based on near 100% internal agreement with positive controls on in vitro analytics (7) and
broadly observed clinical performance of PCR testing throughout the pandemic (8); however,
asymptomatic and pre-symptomatic patients may be harder to detect than predicted by these
analytic data, as dates of infection as well as symptom status/onset are known to have a large
effect on sensitivity (9). These effects would need to be acknowledged and, to the degree
possible, accounted for in the model. Specificity is near 100%, with false positives likely
generated only by cross-contamination or switched samples. These false positives become
important when underlying prevalence is near zero (10), as was the case for our community this
summer, and we have applied a Bayesian procedure to account for the false positivity. We
evaluate whether the estimated trends and magnitudes are robust against the sensitivity and

specificity parameters.

Statistical Analysis

We are interested in rates of SARS-CoV-2 infection in two populations: 1) Individuals
undergoing care within the hospital system as patients, and 2) the community from which the
hospital draws as a whole. In addition to adjusting for measurement error associated with PCR
testing for SARS-CoV-2 infection, we need to generate standardized estimates that reflect
prevalence in the populations of interest rather than merely our sample of elective surgery
patients we are drawing on. We anticipate that this sample of asymptomatic patients is a fairly

representative group with minor discrepancy selected from the community-at-large, but also



expect that poststratification to the target population with matching sociodemographics would
help enhance the accuracy of our conclusions. We acknowledge that those who seek even
elective hospital-based procedures may further vary from the overall community with respect to
their comorbidities (hence, their susceptibility to symptomatic COVID-19), but believe it is
reasonable to infer that MRP normalization of their age, race/ethnicity, gender, and geography

will account for much of that discrepancy.

We use a Bayesian approach to account for unknown sensitivity and specificity and apply MRP
to testing records for population representation, here using the following adjustment variables:
reported sex, age (0-17, 18-34, 35-64, 65-74, and 75+), race (white, black, and other), and county
(Lake and Porter). MRP has two key steps: (1) fit a multilevel model for the prevalence with the
adjustment variables based on the testing data; and (2) poststratify using the population

distribution of the adjustment variables, yielding prevalence estimates in the target population.

We poststratify to two different populations: patients in the hospital database (those who have
historically and currently obtained care in our regional hospital system) and residents of
Lake/Porter County, Indiana. For the hospital, we use the EHR database to represent the
population of patients from three hospitals in the Community Health System (Community
Hospital, St. Catherine Hospital, and St. Mary Medical Center). For the community, we use the

American Community Survey 2014-2018 data from the two counties.

We particularly care about changes in SARS-Cov-2 incidence over time. Indeed, even if our
demographic and geographic adjustment is suspect (given systematic differences between sample
and populations), the greatest clinical utility lies in being able to predict how much the clinical
burden present today is likely to change in the future. Here, the adjustment may be particularly

important, as the mix of patients has changed somewhat during the study interval. The statistical



details are included in the Supplement. We perform all computations in R (11); data and code are

publicly available at https://github.com/yajuansi-sophie/covid19-mrp.

Assumptions and Conjectures

We began the data collection with a few hypotheses or speculations. First, we expected that the
ratio between asymptomatic and symptomatic patients would be relatively constant, for a
uniform demographic distribution specific to age, gender, and race/ethnicity. Second, we
anticipated that changes in PCR positivity among asymptomatic individuals would precede
changes in symptomatic PCR-detected infections by several days, because of the known
temporal relationship of viral shedding to the onset of clinical disease (12). Third, these
hypotheses would imply that trends in our asymptomatic SARS-COV-2 infections would predict
the behavior of the virus within the community as a whole. To this end, we aim to determine

whether our model mirrors or predicts hospitalization rates as a proxy for clinical viral burden.

In summary, we anticipated that appropriate modeling of the PCR dataset would allow us to
measure changes in acute infection incidence as an early warning metric to grasp the developing
trend of the disease, or at least in concert with any changes. The procedure provides accurate
assessment of trends, rather than incidence, and offers more temporally relevant information than
the current use of percent-testing-positive. Further, we aimed to evaluate the validity of positivity

and counts of positive cases as metrics to predict clinical burden.

RESULTS

Demographic Stability



Table 1. Descriptive summary of test results and sociodemographic distributions.

Asymptomatic Symptomatic

PCR PCR Hospital Community
Size 30116 13960 35838 654890
Prevalence(%) 1 26 NA NA
Female(%) 59 60 57 51
Male(%) 41 40 43 49
Age0-17(%) 3 15 9 24
Agel8-34(%) 10 20 12 21
Age35-64(%) 46 44 30 40
Age65-74(%) 24 12 20 9
Age75+(%) 17 9 29 6
White(%) 72 75 65 69
Black(%) 14 10 19 19
Other(%) 14 15 16 12
Lake(%) 84 84 88 74
Porter(%) 16 16 12 26

We collect the preoperative PCR test time and results of patients in the hospital system, and
demographic/geographic information including sex, age, race, and counties. As one of our study
interests was to compare our analytic method to established symptomatic testing metrics, we
collected the records for both asymptomatic presurgical and symptomatic patients tested within

our hospital system, where the asymptomatic patients are assumed as our proxy sample to the



target population. The symptomatic group is represented exclusively by outpatients tested with a
positive answer to one or more queries about COVID 19 symptoms as defined by the Centers for
Disease Control and Prevention (CDC); these queries have only changed over time in concert
with changes made by CDC itself. Our data include daily records from Apr 28, 2020 to Feb 15,
2021, representing 30,116 asymptomatic and 13,960 symptomatic patients who received PCR
tests. We poststratified the patients with tests to the 35,838 hospital EHR records in 2019 and the
654,890 community residents in Lake and Porter counties. Table 1 summarizes the test results
and sociodemographic distributions, as well as the sociodemographics in the hospital system and

the community, thus illustrating the discrepancy between the sample and the population.

The observed incidence rates are quite naturally different between the PCR tests: 1% for
asymptomatic patients and 26% for symptomatic patients. As compared to the hospital system
patients, asymptomatic patients with PCR tests tend to be female, middle-aged (35-64) or old
(65-74), and white. For this reason, neither the hospital patients nor the asymptomatic patients
serve as a precise representation of the community population, in particular with an under-
coverage for young, male, and nonwhite residents. These differences are not large (Table 1);
nonetheless, they are potential sources of error if not accounted for in our statistical model, and
can also interfere with estimates of trends if the demographic breakdown of hospital patients
varies over time. Furthermore, the county representation is unbalanced. Some patients are from
south Cook County, Illinois, and are grouped into the Lake County as a proxy. Fortunately for
our analysis, these contiguous communities have similar socioeconomic and ethnic
demographics. The demographic discrepancy can be caused by unmeasured factors of the
asymptomatic patients seeking elective surgeries, such as comorbidity status and healthcare

utilization measures, the direct adjustment of which is impractical without their population
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Figure 1. Observed weekly PCR test incidence for asymptomatic and symptomatic patients in the
Community Hospital system. Note the different scales on the two graphs. The positions of the
months on the x-axis correspond to the week of data containing the first of that month.

distribution. However, this confounding bias merely enhances the need to poststratify

demographics.
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Figure 1 presents the observed PCR test incidence over time for asymptomatic and symptomatic
patients. The two groups present different prevalence magnitudes and trends. The prevalence
changed over time with low values until September, then we see an increasing trend, with a spike

at the end of October, a decrease in November and December, and a bounce back in January.

We present the weekly number of asymptomatic patients seeking elective surgeries in the
hospital system, which shows stable sample sizes, and examine the observed sociodemographic
distributions of asymptomatic and symptomatic patients receiving PCR tests over time and find
that the asymptomatic patients’ profiling is stable, while the sample decomposition of the
symptomatic patients changes over time. Details are presented in eFigures 1-2 of the
Supplement. This discrepancy provides supporting evidence for our pre-study hypothesis that we
should treat the asymptomatic samples as a substantially better proxy sample of the target

hospital or community population than the corresponding symptomatic data.

The variation of prevalence could be due to various sample decompositions across time, but
variation in thresholds for testing symptomatic people over time and demographic is certainly a
likely factor. Overall, our analysis here calls into question relying upon symptomatic data
trends—as is currently the norm—in understanding the underlying true viral trends in the

community and argues that asymptomatic testing is likely to be a superior proxy.

To correct for discrepancies between the sample demographics and those of the community at
large, as necessitated by the above observations, we next apply MRP to model the incidence and
poststratify to the hospital and community population for representative prevalence estimates.
The outputs are given in Figure 2. For asymptomatic patients, the estimated positive PCR test
prevalence is lower than the raw value after a spike between May 19 and May 25 and generally

lower than 0.5% through September 28. These findings reflect a low observed clinical burden of

12



0.05
MRP-community
0.04 1
8 4 - MRP-hospital %
o R
aw
= 0.037
> ) |
o 23
o ] L
v 002 ST (A
O -
o I 3 s Y
0.01 4 Y 8 ;
m\ i ‘;;n“.nuq.‘a“ L AR i
0.00

Apr May Jun July Aug Sep Oct Nov Dec Jan Feb

Figure 2: Estimated prevalence of the hospital system and community based on asymptomatic

patients. The error bars represent one standard deviation of uncertainty. The positions of the

months on the x-axis correspond to the week of data containing the first of that month.

COVID-19 in our community after the initial March-April outbreak; see District 1
hospitalization (13) in eFigure 3 in the Supplement. We observe an increasing trend in October
and then decreasing throughout November, with MRP adjusted rates inflated significantly. The

trend has spikes in December and January and decreases since mid-January.
Prediction metrics of clinical burden

We are interested in evaluating whether MRP-adjusted asymptomatic patients could track SARS-
CoV-2 related hospitalization rates—as measured by counts of hospitalizations and emergency
department (ED) visits—better than the currently applied metrics within our counties: positivity

rate and counts of positive cases. Our expectation was that hospitalization census would lag viral
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incidence by a week or more and that ED COVID-19 visits would track actual viral incidence,
perhaps with a few days’ lag. These inferences follow from known lag times from exposure to
symptoms to serious illness (12). To test this conjecture, we focus on the September 2020
through February 2021 interval as that timeframe encompasses all of the observed growth in

viral burden after very low levels throughout late spring and the summer.

Our side-by-side analysis is illustrated in Figure 3. Each plot shows the week-to-week trend of
the available metrics (asymptomatic MRP, positivity rate, and the number positive cases) and
those of hospitalization rates (the number of hospitalizations and ED visits) within Lake and

Porter Counties. Comparison with district and state data are in the Supplement.

All three metrics parallel hospitalization through September up until mid-October, after which

the growth in positivity and counts of positive cases far outstrip the growth in hospitalization

while the MRP data remains in strict parallel throughout. Further, the MRP estimates track even

better with the ED visits. The hospitalization data, on the other hand, show a 1-week lag of the
peak in November. Indeed, we begin to see some decrease in the MRP adjusted asymptomatic

positives in November and December that parallels a decrease in hospitalization while the

generally accepted state metrics continue to increase and even accelerate. These data suggest that

ongoing increases in District 1 positive testing metrics may simply be artifacts of the test
selection process, rather than actual growth in the viral spread. Overall, a comparison of trends
shows that symptomatic positive cases only begin to decrease at the time hospitalization does,
and fully a week after ED visits do. Positivity rate does not identify the apparent decrease in

clinical burden and has in fact accelerated through that decrease.

DISCUSSION
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Figure 3: Comparison of MRP estimates with the reported hospitalization counts, ED visits,

positivity rate, and the number of positive cases in Lake and Porter counties. The vertical dashed

lines indicate the peak values. Note the different scales on the five graphs. The positions of the

months on the x-axis correspond to the week of data containing the first of that month.

Our analysis indicates that applying our MRP normalization to data on the prevalence of

asymptomatic SARS-CoV-2 infection produces a valuable leading indicator of hospital and
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community risk. When we set out to create a model for tracking viral incidence, we recognized
substantial shortcomings in the available testing and its interpretation. While state data has
become much richer and testing protocols more uniform since we started applying our model,
selection bias is still a substantial concern. Our goal for this study was to develop an easily
implemented testing strategy—available to any hospital system—that, after demographic and
geographic adjustment, could reasonably approximate a representative sample. In so doing, we
hoped to assess the reliability of currently accepted metrics in their prediction of virus trends

and, if possible, to improve our ability to anticipate those trends.

The asymptomatic preoperative patients we identify with our protocol are a favorable group to
build upon. All sizable hospital systems have a ready-made group of such patients who can
produce a large number of data points quite rapidly. As patients continue to seek medical
procedures, the population continues to naturally expand over time, and lends itself to trending
data. In our nearly 900-bed hospital system, we have thus far generated over 30,000 data points
over 43 weeks, representing a community of approximately 700,000 residents. The weekly
number of data points has been fairly stable over time, and that observation is likely similar to
many hospital systems. We have demonstrated that this sample population is fairly representative
of the community demographics as a whole and that there has been minimal sample
decomposition over time. That this population stability is not matched by similar demographic
stability in the symptomatic population and that we are able to employ MRP to account for any
demographic skew and instability in our own protocol both strongly argue that our model is far
more representative of random sampling than the currently employed positive case and positivity

data. We argue that hospital-based asymptomatic testing with MRP is a more reliably random
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metric than any currently available and is easily generated from the routine testing of patients

prior to their scheduled procedures.

Having established a reasonable statistical validity for our model, we wished to use it to measure
the reliability of current state-based metrics. Our analysis finds that in our community, all of the
metrics trend similarly during viral surges. We would support the current view that numbers of
positive cases and positivity both remain relatively stable during periods that our pseudorandom
proxy method predicts to be stable and have increased during periods that our proxy predicts
show true viral increases. Since the beginning of our study in early May, there have been
significant changes in test availability and certainly anecdotal evidence that the indications for
testing have changed quite a bit as well. Consequently, the number of tests and clinical
indications for testing have almost certainly both increased considerably over that interval, but
the patterns cited above have remained stable. For that reason, we feel that there are good
reasons to believe that the validity of positive case counts and positivity as metrics for viral
spread is, in the event, relatively insensitive to test numbers, test availability, and clinical

thresholds for testing, at least in our community.

Finally, we wanted to test each of these metrics as predictors of clinical burden. During the entire
study period, we have used our model to predict clinical needs: staffing, bed and ventilator
availability, personal protection equipment supplies, and so forth. Our general observation was
that this proxy provided us some useful lead time to prepare for the virus. When we compare our
model’s behavior to that of the standard metrics, we find it to be generally a better predictor of
clinical burden. The effect is best seen in our November data. During the week of November 3-
10, we were able to predict that viral transmission was decreasing and that our hospitalization

was likely to be at or near its peak. Comparison of our model with ED COVID presentations in
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our area demonstrates a precise correlation. It is clear that new acute presentations correlate
quite precisely with our metric, and that these changes occur about a week before positive cases
and hospitalization census data change. Further, we see positivity rates continue to rise in our
area well past the time that our metric and numbers of positive cases have declined. Given that
ED visits and hospitalization census rates have also declined in that interval, we find that our
model and the number of positive cases appear to be much better and more current predictors of

the true viral clinical burden than positivity rates are.

In dealing with a case surge, the extra time of preparedness has been useful and nontrivial. Great
benefit may also accrue from recognizing decreased transmission earlier, as we feel the model is
able to do, as it may allow for opening up of needed clinical services and socioeconomic
commerce in a community earlier than might otherwise be contemplated. In this sense,

adherence to positivity rates may be particularly damaging.

We believe our model to be easily generalizable to many hospital systems. As discussed, the
sample population and testing regime are readily available, likely to be reasonably representative
and stable demographically over time, and easily normalized to true community demographics
using the MRP code that we have made available. This approach represents a simple proxy for
random sampling for any community that chooses to employ it. Further benefits might be gained
by combining information from different hospital systems. The best way forward might be for
individual hospitals and medical groups to gather and analyze their data as we propose in this
article, with all the (de-identified) data shared in a common public repository, so that it would be
possible for researchers to learn more by analyzing trends as they develop in the pooled dataset.

This could be similar to other national data pooling efforts such as in the U.S. and Israel (14-15).

18



In addition, though, we demonstrate the clinical utility of less rigorous approaches as well.
Should a system choose to track its patients according to our testing protocol, but not incorporate
the MRP adjustments, the relative stability of the population demographics suggests that the
trends remain quite valid. Our regression models have shown potentially strong effects of age
and racial/ethnic status on our metric so that one would need to ensure at least reasonable
stability of those particular traits to trust observed raw trends without formal MRP adjustment.
We also find that while results depend strongly on the sensitivity of the test being employed, the

trends in the results do not (details in the Supplement).

This finding is encouraging for longer-term monitoring. Very inexpensive antigen testing is now
becoming broadly available. These tests may be less sensitive or more time-specific than the
PCR-based RNA testing we have been using and therefore less able to verify the true magnitude
of viral spread. Nonetheless, our data show that they will likely function perfectly well to follow
viral transmission and clinical burden trends, especially if normalized by MRP. Practically

speaking, these trends are the prime concern of most healthcare entities.
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SUPPLEMENT

Here we present the supplemental materials on the summary of the paper structure, modeling
details, and data showing demographic stability, comparison with publicly released records, and
posterior predictive checks, for the paper, “Routine Hospital-based SARS-CoV-2 Testing

Outperforms State-based Data in Predicting Clinical Burden.”

Summary

Our primary goal is to track SARS-CoV-2 infection prevalence over time, and to do so in a
reliable way. We are assuming that the ratio of the number of asymptomatic patients to that of
the symptomatic patients is fixed. We would then need to normalize each group from the sample
demographics to true demographics via MRP. Once that is accomplished, we posit that our
metric represents an appropriate approximation of a true random sample. In particular, it either is
superior to what is being done now (tracking positivity and overall positive case numbers) or it
provides a respectable metric to verify that those currently used data are reasonable
approximations of fact. All of our data representations should either support one of those
contentions, or provide evidence supporting or refuting critiques of our approach. To that end,
we need to follow prevalence changes over time, but verify (through MRP and statistical
analysis) that these trends are real changes in the community and not changes in the sample
demographics. We then compare the MRP normalized trends in our model with currently
employed metrics of viral prevalence trends: namely, positivity rates and numbers of positive

tests in the community. Finally, we compare these metrics with hospitalization rates to determine
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how predictive our model and the current metrics may be of the community clinical burden of

the virus.

Modeling details

We denote the test result for individual i as y;, where y; = 1 indicating a positive result and y; =
0 indicating negative. Let p; = Pr (y; = 1) be the probability that this person tests positive. The
analytic incidence p; is a function of the sensitivity d, specificity y, and the true viral incidence
1; for individual i: p; = (1 —y)(1 — m;) + 8m;. We fit a logistic regression for 1t; with
covariates including sex, age, race, county, time, and the two-way interaction between sex and
age. Using the model-predicted incidence T;, we apply the sociodemographic distributions in the
hospital system and the community to generate the population level prevalence estimates, as the

poststratification step in MRP.

We use the following logistic regression in (1) to allow time variation of prevalence over time in

the multilevel model parameters.

age race county time age*male

logit(m;) = B; + B,male; + Cagefi] T Xraceli] T Xcounty(i] T Ytimeli] T Xagesmale[i’

where male; is an indicator taking on the value 0.5 for men and -0.5 for women; age[i], race[i],
and county][i] represent age, race, and county categories, with a two-way interaction term age *
male[i]; time[i] indices the time in weeks when the test result is observed for individual i; and

the o parameters are vectors of varying intercepts to which we assign hierarchical priors:

a"@M¢ ~ normal(0,6"*™¢),  ¢"*™¢ ~ normal, (0, 2.5),
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for name € {age, race, county, age * male}. Here, normal, (a, b) represents a half-normal

distribution with the mean a and standard deviation b restricted to positive values. And we set

time time

the time-varying effect: "™ ~ normal(0, 6"™¢), ¢tim¢ ~ normal, (0, 5), to allow for the
possibility of large variations across time. The larger the estimated variation, the larger effects of
the predictors. Assume the prior information for the unknown sensitivity & and specificity y
includes: y, negative results in n,, tests of known negative subjects and y, positive results from

n, tests of known positive subjects. The model for the number of positive results y out of n tests

is specified as
Yy ~ binomial(ny, y), ys ~ binomial(ng, ).

According to the test protocol, the sensitivity is around 70%, and the specificity is around 100%.
We solicit prior information from previous testing results (2). For the sensitivity, the prior data
ys/ns are 70/100, 78/85, 27/37, and 25/35; and the prior data for the specificity y, /n, are 0/0,
368/371, 30/30, 70/70, 1102/1102, 300/300, 311/311, 500/500, 198/200, 99/99, 29/31, 146/150,

105/108, and 50/52.

After fitting the Bayesian model, we adjust for the selection bias by applying the
sociodemographic distributions in the hospital system and the community to generate the
population level prevalence estimates, as the poststratification step in MRP. For each of the 2 *
5 * 3 * 2 cells in the cross-tabulation table of sex (2 levels), age (5 levels), race (3 levels) and

county (2 levels), we have the cell-wise incidence estimate Tt;, and population count N;, where j

is the cell index, and calculate the weekly prevalence estimate in the population,

Tayg = 2 Nj T/ X5 Nj.
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eFigure 1: Number of elective surgeries for asymptomatic patients each week in the Community
Hospital system. The positions of the months on the x-axis correspond to the week of data

containing the first of that month.

Demographic stability
We examine the weekly number of asymptomatic patients seeking elective procedures, the
sample sizes of asymptomatic patients, and the frequency distributions of asymptomatic and

symptomatic patients across week in different sociodemographic (sex, race, and age) groups.
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eTablel. Weekly sample sizes available across time in different groups (week 18: 4/28/2020 -

5/3/2020, week 60: 2/8/2021 - 2/14/2021).

Week Total Male Female Age0-17 Agel8-34 Age35-64 Age65-74 Age75+ White Black Other
18 95 47 48 1 12 42 26 14 65 16 14
19 376 173 203 17 40 176 91 52 274 55 47
20 582 242 340 26 73 257 123 103 403 83 96
21 569 216 353 26 81 246 130 86 415 73 81
22 419 164 255 16 53 171 105 74 302 66 51
23 616 244 372 26 75 259 150 106 451 95 70
24 640 271 369 24 46 304 155 111 476 81 83
25 651 270 381 26 66 292 166 101 476 79 96
26 627 288 339 24 66 270 151 116 457 86 84
27 324 136 188 9 39 141 62 73 249 37 38
28 1070 435 635 46 114 466 248 196 793 148 129
29 668 273 395 17 66 306 173 106 471 94 103
30 635 266 369 17 70 279 145 124 472 74 89
31 711 292 419 29 72 326 149 135 490 103 118
32 665 267 398 20 81 287 163 114 487 86 92
33 750 312 438 18 101 321 185 125 527 115 108
34 678 262 416 10 85 330 157 96 477 91 110
35 700 266 434 17 74 313 171 125 494 96 110
36 420 163 257 13 60 181 92 74 293 56 71
37 1021 380 641 35 111 444 232 199 721 155 145
38 815 325 490 23 60 389 205 138 583 129 103
39 742 324 418 19 67 350 170 136 548 103 91
40 792 316 476 19 75 364 210 124 573 111 108
41 817 307 510 18 73 378 189 159 599 113 105
42 883 341 542 23 94 416 203 147 639 126 118
43 843 348 495 32 82 389 189 151 583 131 129
44 816 341 475 18 84 381 202 131 592 114 110
45 839 337 502 28 74 399 206 132 598 117 124
46 778 315 463 23 69 368 182 136 562 107 109
47 712 294 418 15 77 352 149 119 507 104 101
48 658 278 380 10 70 298 167 113 495 81 82
49 975 406 569 24 97 482 232 140 719 128 128
50 930 385 545 36 109 427 223 135 678 118 134
51 720 297 423 23 79 345 174 99 513 107 100
52 569 218 351 13 68 292 129 67 427 60 82
53 62 16 46 14 31 9 6 42 14 6
54 763 308 455 86 364 175 129 553 114 96
55 833 346 487 21 97 371 188 156 595 122 116
56 904 387 517 21 77 431 220 155 662 122 120
57 911 389 522 15 72 441 244 139 636 154 121
58 816 329 487 25 59 404 205 123 584 119 113
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59 929 399 530 32 86 207 157 680 132 117
60 792 330 462 23 70 223 122 580 91 121
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eFigure 2: Demographic distributions of asymptomatic and symptomatic patients across time.

The positions of the months on the x-axis correspond to the week of data containing the first of

that

month.
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eFigure 3: Comparison of MRP estimates with reported test positivity rate in District 1 and
hospital bed occupancy rates in the state, Indiana. Note the different scales on the three graphs.
The positions of the months on the x-axis correspond to the week of data containing the first of

that month.
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Comparison with publicly released data

eFigure 3 compares the MRP estimates of asymptomatic patients with the publicly released
positivity rate data in District 1, where our hospital system is located, and the state hospital bed
occupancy rate. The district-level test positivity rate is higher than that of MRP estimates, as
expected, since the state data largely involves the testing of symptomatic patients. The two
positivity rates both have an increasing trend since September, but deviate in November, where
MRP estimates start decreasing. The occupancy rate of hospital beds in the data generally
follows a similar trend but presents a lower increasing rate in November than the positivity rate
in District 1. We observe that MRP asymptomatic data are able to predict clinical behavior a

week or two earlier than the District 1 positivity data.

Posterior predictive check

To evaluate the model fitting, we apply a posterior predictive check by generating replicated data
from the posterior model distributions with the same sample size as the raw data. We use the
collected sample decomposition records every week and estimated prevalence rates of
poststratification cells, defined by the cross-tabulation of age, gender, race/ethnicity, and county
information, to generate replicated test results. We compare the weekly prevalence rates between
the replicated data and observed data. eFigure 4 shows that the model of asymptomatic patients
can capture the raw data structure, implying that this aspect of the data is captured well by the

fitted model.
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eFigure 4: Posterior predictive check: comparison of replicated and observed prevalence. The

error bars represent 95% predictive intervals. The positions of the months on the x-axis

correspond to the week of data containing the first of that month.

We have performed extensive sensitivity analyses of the estimates by changing the modeling

mean structure and prior specifications, for example, using spline functions of time, assigning a
flexible Gaussian process regression model as the prior distribution of time-varying effects, and
changing hyperparameter values. The findings of the hospital- and community-level prevalence

estimates are robust without changing conclusions.

We account for the uncertainty of sensitivity and specificity in a Bayesian framework and use the
meta-analysis study findings as the prior specification (1). The presented results above are based
on the prior information concentrated on the sensitivity value of 70% and specificity 100%.
When we set the prior sensitivity data as 70/100, the MRP estimates are similar under the current
prior setting. We also compare the PCR results when the prior sensitivity value is set at 65%,

60% and 55%; the results are approximately inflated by the reciprocal of the value of sensitivity,
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suggesting that the magnitude of our estimates is sensitive to the quality of PCR tests.

Nevertheless, the trends within a given sensitivity remain stable.
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