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Abstract—Multi-cloud resource brokering is becoming a criti-
cal requirement for applications that require high scale, diversity,
and resilience. Applications demand timely selection of dis-
tributed data storage and computation platforms that span local
private cloud resources as well as resources from multiple cloud
service providers (CSPs). The distinct capabilities and policies,
as well as performance/cost of the cloud services, are amongst
the prime factors for CSP selection. However, application owners
who need suitable cyber resources in community/public clouds,
often have preliminary knowledge and preferences of certain
CSPs. They also lack expert guidance to handle the problem
of overwhelming resource choice from CSPs, and optimization
to compensate for service dynamics. In this paper, we address
this challenge of optimal resource selection while also leveraging
limited user’s expertise and preferences towards CSPs through
multi-level fuzzy logic modeling based on convoluted factors of
performance, agility, cost, and security. We evaluate the efficiency
of our fuzzy-engineered resource brokering in improving alloca-
tion of resources as well as user satisfiability by using case studies
and independent validations of CSPs evaluation.

Index Terms—Multi-cloud resource recommendation, Perfor-
mance optimization, Custom cloud templates, Fuzzy logic

I. INTRODUCTION

Application developers working with data-intensive appli-
cations such as social media platforms, income tax filing and
other mass media platforms often require high-scale, diverse
and fault-tolerant high performance computing, networking
and storage resources. Such a requirement in many cases
today cannot be fulfilled by using private servers in a data
center due to e.g., cost, power, heating/cooling and personnel
expertise issues. The private servers with capacity limitations
would need exorbitant amount of time to deliver satisfac-
tory application performance. This necessitates applications
to leverage advanced and scalable resources such as high end
processors, RAM and GPUs, from community/public cloud
service providers (CSPs) [1][2]. However, limited and biased
expertise among users in composing and deploying suitable
multi-cloud architectures may cause delays in deployment, or
in some cases cause bottlenecks (e.g., in terms of time, cost)
in the deployment or functions after deployment.

To mitigate the problem of ill-advised resource allocation,
there is a need for systematic studies to identify and configure
resources based on key factors such as performance, agility,
cost and security (PACS) offered from the CSPs [1]. Since se-
lection and configuration of multi-cloud resources for modern
applications requires handling PACS factors, the multi-cloud
resource brokering involves a multi-dimensional optimization
problem. Apart from these functional and objective factors,

the users often gain expertise towards certain CSPs creating
inherent biases in CSP selection depending on the functional
requirements of PACS or business and geographical constraints
to name a few. Moreover PACS factors are subjective factors
which can have varying metric for evaluation for different
cloud service users (CSUs). For example, performance can
be evaluated based on sub-factors of availability, reliability,
response time and throughput. The measurement of these sub-
factors influence the evaluation of PACS factors and ultimately
the CSP selection.

Resource configuration and management service suites such
as AWS OpsWorks [3] give insight about trade offs among its
services in context of PACS criteria, but these tools generally
focus on a brokering a single cloud platform pool of resources.
Moreover, the tools do not consider subjective factors arising
from users’ bias toward certain cloud platforms or perceived
performance of the cloud resource by users, which also needs
to be considered in the multi-cloud resource brokering. The
subjective experience of users can also fluctuate depending
on the quality of service (QoS), type of applications, capacity
load on the servers, and location of the servers to name a few,
and thus can not be quantified. To gain meaningful insights of
the bias towards cloud providers which is affected by PACS
criteria, fuzzy logic can potentially be promising [4]. Fuzzy
logic theory gives tools and methodologies to study uncertainty
in a system or a situation and provides flexibility in reasoning.
The idea behind fuzzy logic is to imitate human behavior and
logical reasoning for deducing conclusions for vague problems
in a non-linearly weighted manner [5].

In this paper, we propose a multi-level fuzzy logic controller
viz., OnTimeFLC for multi-cloud resource brokering of data-
intensive applications considering users perspectives. Figure 1
shows core components and control flow for creating the multi-
level FLC in order to capture, mimic and utilize application
developers’ preferences/expertise of CSPs resources. We pro-
pose a model that contains two levels of fuzzy logic inference
engine to evaluate CSPs for: (a) evaluation of PACS factors
from their respective sub-factors, and (b) CSP evaluation from
their respective PACS factors. We formulate the multi-cloud
resource selection problem from a user’s perspective when
they desire optimal solutions for deploying their applications.
Our optimizer prescriptively recommends an intelligent set
of customized cloud template solutions optimized based on
PACS criteria over multi-cloud resources. Our OnTimeFLC
implementation involves integration of our optimizer based
on integer linear programming (ILP) aided by the multi-
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Flg 1: OnTimeFLC’s core optimizer engine uses an integer linear program-
ming based optimizer and fuzzy engineering augmented with a knowledge
base from different cloud providers: (i) Amazon Web Services (AWS) [6] -
public cloud, (ii) GENI - community cloud [7], (iii) MU Data Center - private
cloud [8].
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level FLC model for providing users with three sets of cloud
template solutions classified as: (i) Red (low-cost), (ii) Green
(high-performance), and (iii) Gold (optimal cost-performance)
templates [9].

For evaluation of our OnTimeFLC implementation, we con-
duct experiments with a catalog of compute and data intensive
bioinformatics applications featuring varying type and size
of datasets. We consider three CSP resources (i.e., Amazon
Web Services, GENI and MU) featuring more than 300 dif-
ferent machine configuration instances in our simulations and
experiments. We compare the improvement in performance
of application execution through resource brokering ‘with’
and ‘without’ our proposed fuzzy logic controller. We also
evaluate accuracy of fuzzy modeling through use cases and
independent validations where we characterize PACS metrics
for three above mentioned CSPs based on CSUs preferences.

The remainder of this paper is organized as follows: In
Section II, we describe related works. Section III presents the
multi-cloud resource selection problem background and our
solution architecture description. Section IV presents details
of our OnTimeFLC resource broker components and their im-
plementation. Section V discusses the testbed & performance
evaluation. Section VI concludes the paper.

II. RELATED WORK

Fuzzy logic in user cloud selection: There have been compre-
hensive studies on the behavior and utilities of fuzzy models in
simulating decision making [10] [11] which can be simulated
for cloud service selection decision. Specifically, fuzzy logic
can be used to complement multi-cloud resource brokering
methods that take into account quantitative user resource speci-
fications [1]. These methods can leverage fuzzy logic modeling
to consider user’s expertise and biases in cloud selection using
the integer linear optimization approaches. Since fuzzy logic
can be used in decision making, it has also been used by
researchers in modeling optimal scheduling of resources on
cloud infrastructure on data centers. In [10], the researchers
have evaluated different characteristic of fuzzy models and

their accuracy in decision making. The study aimed to compare
fuzzy systems with different configurations to predict the
surface temperature of broiler chickens subjected to different
intensities and duration of thermal challenges in the second
week of life. The study concludes that while developing fuzzy
systems, different configurations must be compared, and the
system with smaller simulation errors should be selected.

Fuzzy logic have also been used in the domain of quan-
tifying resource selection. Exemplar efforts in characterizing
cloud resources can be seen in [4]. The authors emphasize
that there is need of measuring and evaluating cloud per-
formance to help the users in making their decisions. The
researcher primarily aimed to develop a model to evaluate
the performance of cloud based on factors such as workload,
storage, hypervisor, and network devices. Their proposed
model clarifies how the infrastructure and applications on a
cloud platform can play an important role in the application
performance delivery. However the study is focused only for
performance benchmarking for a single cloud platform.

A similar work [12] aims to facilitate decision making pro-
cess in order to determine the choice of service provider for a
particular process by using a rule-based fuzzy logic technique
and deep learning. The decision is based on parameters such
as priority, age and execution time required for the process.
However, the approach requires a very large knowledge base
of data with details about the tasks to be processed. In a
closely related work [11], authors present the state-of-the-
art approaches and their important features in fuzzy logic
based cloud computing. The work focuses on the use of
fuzzy logic in cloud computing with different membership
functions and with different type of defuzzification methods.
Fuzzy logic have also been used in improving resources allo-
cation strategies for scientific applications [13] where authors
propose a novel elasticity controller for autonomic resource
provisioning which is a combination of fuzzy logic control
and autonomic computing. Results show that their proposed
approach minimizes execution time and resource utilization by
the applications.

Fuzzy logic in Cloud platforms: Many researchers have
attempted in using fuzzy logic for scheduling of re-
sources [14] [15] [16]. Amin et. al. [14] have presented
and evaluated a new scheduling algorithm that is an effi-
cient technique for scheduling virtual machines between data
centers using fuzzy logic. A similar work [15] focuses on
allocation and scheduling of resources as well as improving the
reliability of cloud computing. The fuzzy model is based on
the governing rules which consider factors of cost, trust, length
of processes and priority. Further, the authors showed that their
output resulted in lower cost and increased reliability of cloud
resources compared to the scheduling techniques such as FIFO
(first in first out) and Min-Max (min requirement task first).
Toosi et. al. [17] extended fuzzy logic into a load balancing
algorithm. Their approach helps cloud providers with multiple
geo-distributed data centers in a region by evaluating the
temporal variations in on-site power and grid power price.
It then optimizes by routing the demand to a suitable data
center in order to reduce cost and improve energy utiliza-



tion. A similar work [16] proposes a multi-objective best-fit-
decreasing (BFD) solution to the virtual machine reallocation
problem. The authors consider a multi-objective formulation
accounting for power costs and resource utilization. Although
the methodologies followed in above works give better insights
of the research domain and utility, the users experience with
cloud service providers have not been considered in decision
making progress of resource selection as we do in our work
in this paper.

A recent work by Rizvi et al. [18] sought to evaluate security
of CSPs through a fuzzy inference system. The authors used
several sub-factors modeled with a fuzzy inference model
for measuring security readiness of cloud providers in cloud
service users’ (CSUs) perspective. Our work is inspired by
this prior effort and we further characterize cloud platforms
based on performance, agility, cost and security (PACS) factors
from a user’s perspective of non-functional requirements. Our
proposed model is unique compared to other related works
because we consider the input from CSUs and their convoluted
definition of PACS to then synthesize the information into a
quantitative form, and finally evaluate cloud service provider
selection. We further use the results to create optimal cloud
templates customized to user preferences through a novel
OnTimeFLC’s optimizer augmented with a fuzzy logic model.
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Fig. 2: A standard fuzzy inference system comprising of: (a) Input/Output
variables, (b) Rule Base, (c) Inference Engine and, (d) Membership functions
for variables.

III. FUzZY-ENGINEERING BROKERING SOLUTION
OVERVIEW

To ease the process of multi-cloud resource brokering for
non-expert cloud users, we divide our OnTimeFLC into four
steps: (i) Collection, (ii) Composition, (iii) Consumption, and
(iv) Fuzzy Engineering.

A. Collection

1) Fuzzy Interface System (FIS)

For collecting user resource requirements, we integrate
a Fuzzy Interface System (FIS) in the KBCommons web
portal [19][20][21]. The KBCommons portal is a science
gateway where multiple scientific workflows are deployed
by bioinformatics researchers/educators. We integrated our
OnTimeFLC middleware in the KBCommons portal to collect

user specific resource constraints and criteria to execute work-
flows as shown in Figure 4. The middleware presents users
with a set of questions (e.g., number of VCPU/RAM required)
organized into functional groups such as: storage, networking,
computation, and software requirements. Collection process
also requires users to identify themselves as expert/non-expert
cyber users. Further, the FIS is designed to collect and un-
derstand users experience in using CSPs based on PACS and
their sub-factors. The user are provided with questionnaires
to rate their experiences towards different CSP services on a
scale (1-100). The users are also given an option to create rules
to quantify their experiences. The format of rule creation is
governed by ‘If’, “Then’ and abbreviations shown in Table IV.

B. Composition

1) Fuzzy Inference Engine

The user inputs from FIS are evaluated using a fuzzy
inference engine. The inference engine evaluates user inputs
with their corresponding membership function against a set
of pre-defined rule knowledge base as shown in Figure 2.
The fuzzy inference system outputs the expected weights
towards different CSPs in probability. These biases are further
used to influence cloud solution template composition through
OnTimeFLC’s core integer linear programming (ILP) based
optimization engine. Section IV contains detailed explanation
of the multi-level inference engine. Below is a final sample
output from the fuzzy system.

{ AWS 0.50
GENI 0.35
MU : 0.15

}

Listing 1: Sample fuzzy output from fuzzy inference model.

2) Template Composition

Once the user specified requirements for the application
workflow are collected, they are input to OnTimeFLC frame-
work to create template solutions forming a catalog similar to
the work in Antequera et. al. [9]. Each template solution in the
catalog is formatted as a JSON object comprising of a set of
distinct machine node instances. Each node instance represents
a distinct machine configuration in terms of the available
processing units (e.g., CPUs, memory, network bandwidth).
For example, al.medium is one of the machine instances
provided from AWS. A sample representation of template is
provided in Listing 2, wherein three distinct type of AWS
intances are used to compose the template.
[{csp:AWS, name:t3.nano,count:2},
{csp:AWS,name:t3.micro,count:1},
{csp:AWS, name:t3.small,count:1}]
Listing 2: Sample template format consisting of three type of
instance machines from AWS.

C. Consumption

Cloud templates generated by OnTimeFLC are selected and
automatically deployed on cloud resources. Figure 4 illustrates
the detailed steps of the template consumption and monitoring
that we have designed and implemented for a custom scientific
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Fig. 3: Multi-Level fuzzy inference model with: (i) Red-box representing base fuzzy inference model for measuring PACS from sub-factors, and (ii) Green
box representing fuzzy inference model for evaluating CSPs from PACS factors.

workflow on KBCommons. These workflows are based on the
Pegasus workflow management system [22] and HTCondor
job scheduler [23]. Pegasus and HTCondor are configured to
run the application workflow on the deployed cloud resources
recommended by the cloud template. Pegasus breaks the
workflow tasks into sub-tasks mapped into a directed acyclic
graph with edges representing dependencies, which are further
scheduled on different cloud instances by HTCondor scheduler
and pyGlidein glidein service [24].

Figure 4 displays all the components of Collection, Com-
position, Consumption and Fuzzy Engineering (explained in
detail in Section IV) in synergy to create the end-to-end
multi-cloud resource brokering solution. In addition to these
four primary components, Cyverse [25][26] data portal is
also integrated within the service management to enable users
to store their raw data, which is staged in real-time to the
OnTimeFLC recommended CSPs for processing with help of
the ‘iCommand’ tool from Cyverse [25][26] and Pegasus [22]
APIs.

IV. Fuzzy ENGINEERING IN ONTIMEFLC OPTIMIZATION

Selection of machines from a distributed set of diverse cloud
instances under specific constraints is an NP-hard problem.
To effectively formulate the problem, we use a CPLEX [27]
optimizer to create the relevant optimization model. Our mod-
eling objective is to reduce the effective cost of the template
solution for specific user requirements by suitably considering
constraints based on the threshold and user specification of
required resources. We integrate the results from fuzzy model
into the optimization model by effectively manipulating cost
of instances so that the probability of selection instances from
fuzzy model favored CSPs are increased. We discus below the

key PACS and their sub-factors effecting CSP evaluation in
the context of CSUs.

A. PACS: Key Criteria Optimizations

1) Performance: Categorization of Templates

OnTimeFLC is designed to produce multiple template solu-
tions for different performance requirements. This categoriza-
tion effectively provides users with multiple choices to select
template solutions that have varying allocation of resources
for better performance. Red Solution: Strict user defined
resource constraints are considered. This is the most cost-
effective optimal solution. The template is the closest match
to the user resource specification with minimal over provi-
sioning. Potential resource provisioning: {{cpu:2, ram:4Gb,
network: 200Mbps, storage: 15Gb} & {cpu:2, ram:4Gb, net-
work: 200Mbps, storage: 15Gb}}. Green Solution: All user
defined resources are amplified in step sizes up to a user
defined threshold limit. Each step gives an amplified resource
constraint which results in a corresponding over-provisioned
solution. Maximum potential resource provisioning: {cpu:5,
ram:10Gb, network: 250Mbps, storage: 37Gb}. Gold Solu-
tion: It is similar to a green solution, but less over provisioning
of resources is applied as per the user preferences. To evaluate
performance for CSPs by the CSUs we have considered
four sub-factors namely: (i) Availability, (ii) Reliability, (iii)
Response time, (iv) Throughput as shown in Figure. 3.

2) Agility

To ensure agility of the template solutions, we use a
parameter wP that includes a weight on the cost of instances
of the CSPs. The wP will be a number between 1 to 10, and
represents a global view of services and features provided
from individual CSPs. A smaller wP suggests fewer number
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Fig. 4: Brokering lifecycle comprising of: (a) Collection - Fuzzy Interface System (FIS) deployed in KBCommons portal [19] to collect user specification;
(b) Composition - Templates are composed and classified by optimizer into Red, Green, Gold templates which are presented in the FIS for selection; (c)
Consumption: Pegasus, HTCondor and workflows are configured in a GENI [7] node machine, and HTCondor as per cloud template schedules tasks in
resources of AWS, GENI or MU, and (d) Fuzzy Engineering - Rules and ratings on PACS criteria are collected and inferred, the results are input to optimizer.

of services from a CSP. The optimizer will also track the
increase in cost to agility ratio of inclusion of instances from
a CSP as per Equation 2. Weights wP for agility of cloud
providers can be assessed by the number of agile services
provided from the provider (f?) against a combined set of all
agile services offered from all providers assessed by the user
(F) as formulated in Equation 9, and normalized between 1 to
10. User discretion is used to identify agile services from CSPs
as users will have varying standard of agility expectations. We
use Cloudarado [28] as a reference data source to identify a
set of agile services.
1P
e ()

To evaluate agility for CSPs by the CSUs we have consid-
ered four sub-factors namely: (i) Automation, (ii) Flexibility
and scalability, (iii) Adaptive-Scaling, and (iv) Capacity as
shown in Figure 3.

3) Cost: Optimization

We customize the cloud resource information to the opti-
mizer in the JSON format detailed in Listing 3, based on real
world data we extracted from more than 300 physical instance
types from different CSPs that are candidates for optimization.
These instances were considered because they are available on
a pay-as-you-go basis from the corresponding CSPs. However,
more instances can be added to this knowledge base and
used by the optimizer. Given that the optimizer does not
differentiate between these instance objects, the recommended
template solutions could be a mix of resources from multiple
CSPs. To evaluate agility for CSPs by the CSUs, we have
considered four sub-factors namely: (i) Compute cost, (ii) RAM
cost, (iii) GPU cost, and (iv) Storage cost as shown in Figure 3.

AgilityFactor(w?) =

[ { "csp" . "AWS",
"Oos":"LINUX",
"name":"al.mediumn",
"yCPUT LT,

"ramll . "2",
"price":"0.0255",
"network":"10",
"clock":"2.3",

Yolooo} ]

Listing 3: Sample of JSON formatted machine instances
provided to our optimizer engine.

To ensure hardware granularities provided as instances
from CSPs, the optimization problem is formulated as an
integer linear programming (ILP) model, which is convex and
guarantees the best possible solution. Equation 2 ensures the
objective to minimize the cost of template solution creation.
The number of instances (xP;) are calculated subject to the
constraints deployed in the model referenced in Equation 3.
Constraints are created on instances such that the resources
contributed from the deployed instances should satisfy user-
specified requirements (S;). Equation 4 adds constraints on
instances that belong to incompatible CSPs using Apqpso.

The parameters, as summarized in definitions Table I, are
inputs for our model described with Equations 2,3, and 4.

P 1P
minimize Z Z — - al -mP )
p=1i=1 *?
subject to: £ I”
S > R -at > 8,4+ 8" vteT 3)



TABLE I: Descriptions of Parameters, Sets & Variables used
in the problem formulation.

Parameter Symbol | Parameter Description

P Number of agile services from the Py, CSP

cf cost of renting iy, instance at Py CSP

wP agility factor of Py, CSP

uP number of CPUs assigned with Py, CSP by optimizer

in a template composition

mP membership distribution factor for p platform

F Super set of all agile services identified by the user

AP max number of instances of type i available at CSP p

R%t resource ty, available with iy, instance of Py, resource
t specification requirement of type t

Sih' threshold on resource of type t

Apip2 binary number indicating compatibility between CSPs

M large integer number

Set Symbol Set Description

P total number of instances in Py, provider

P total number of provider

T total type of resources

Variable Symbol Variable Description

x? € o, Af ] is an integer variable denoting the number of instances

of type i at provider p
is a binary variable ensuring only one of incompatible
P1, P2 is selected

op, P, € {0,1}

171

P1
§ 2 <M by,
i=1

172

foz SM-(1=0pp,)
i=1

7VP17P2 cP: Ampz =0 (4)

4) Security

We consider security policy incompatibilities between CSPs
as a constraint to multi-cloud resource selection for users.
Security requirements are unique to groups of users and
can range from authentication, access control, sensitive data
storage, administrative privileges, location of CSP and com-
munication link between nodes, and more. To mitigate such
security policy issues, OnTimeFLC allow users to be able to
custom-define an interoperability matrix as per their expertise
and preferences. To evaluate agility for CSPs by the CSUs,
we have considered four sub-factors namely: (i) Compliance,
(ii) Access Controls, (iii) Auditability, and (iv) Encryption as
shown in Figure 3.

B. Fuzzy Engineering

To guide non-expert users with resource allocation for
application workflows, we deploy a fuzzy engineering model
and utilize users expertise along with knowledge base of
benchmarks rules for assessing PACS criteria of CSPs. Fuzzy
logic is used to model uncertainty in unquantifiable variables
of a system.

1) Fuzzification:

This is a process of converting “crisp values” (i.e., a
user specified input or approval on a pre-defined scale) into
linguistic fuzzy values. The crisp data provided by the CSUs
is mapped to a fuzzy set which contains the membership
functions and linguistic values corresponding to the input as
shown in Table II. A fuzzy set is defined by the members
it contains as shown in x € X where x is the element. In

particular, a fuzzy set is defined by ordered pairs as shown
below:

A={(z,A(x)) | zeU} )

where U is the universe of discourse which contains all
of the elements that may be used in fuzzy set A. The
membership functions are read as A(x) wherein a membership
value ranges between interval [0,1] to each element in U.
In our proposed approach, the linguistic values represent the
fuzzy sets fs (i = b,p,a,g,e) which consists of bad, poor,
average, great, and exceptional. Each of these variables can
be interpreted differently by CSUs. Therefore, to standardize
the fuzzification the membership functions are used within
in the fuzzy sets to define the variation in interpretation. In
our approach, CSUs can utilize linguistic values as shown in
Table II in order to make a decision as to which CSP would
better fit their needs.

There are multiple factors that affect individual criteria of
PACS evaluation of a CSP. We identify four sub-factors for
each of the PACS criteria used in our multi-stage fuzzy-logic
approach as shown in Figure 3.

TABLE II: Fuzzy model linguistic terms descriptions.

Linguistic Membership | Membership Description

Terms Degree

Exceptional (e) 80-100 Near Flawless (Generally Cheap)
Great (g) 60-80 Better than most (Often Cheap)
Average (a) 40-60 Not Sure(Infrequently Cheap)

Poor (p) 20-40 Sometime fails (Frequently Costly)
Bad (b) 0-20 Frequent failures (Generally Costly)

2) Membership Function:

Membership function grades the association of a value
to a set. Different criteria or variables can follow different
type of membership depending on their actual distribution of
effectiveness in a metric scale.

pai () = e~ @ /207 (©6)

where 1 and o are center and width of the i*" fuzzy set Al
For our problem domain, we assumed that each of PACS cri-
teria and sub-factors will have gaussian membership function.
We also control the gaussian curves parameters depending on
CSUs feedback to create a custom membership function.

TABLE III: Centers and Sigma values of membership func-
tions for sub-factors of PACS.

Criteria “w o
Exceptional(e) 83.3 5
Great(g) 66.64 5
Average(a) 49.98 5
Poor(p) 33.32 5
Bad(b) 16.66 5

3) Inference Engines:

The inference engine is the core of fuzzy logic where the
inference rules are applied to the fuzzy input in order to
generate the fuzzy output. Essentially, the inference rules are
used to evaluate the linguistic values generated from crisp
fuzzy input and map them to a fuzzy set. These fuzzy sets



are then transformed into resulting output crisp values using
a defuzzification process. Inference engines are superficially
classified into two types: (i) Mamdani inference system: This
inference system is intuitive and well-suited to human input
and is based on an interpretable rule base. Due to its applica-
tion in simulating human like thoughts based on constraints,
we have utilized it to learn about user biases towards different
CSPs. Each of these inference rules is composed of if-then
statements wrapped around linguistic terms (Table IV). The if-
then rules contain the antecedents (i.e., linguistic input terms)
and the consequence(i.e., linguistic output). When fabricating
an inference rule, operators such as “and,” “or,” and sometimes
“not” are used [18]. For our proposed model, we have used
primarily “and” operator which is defined as below.

$AN B(x) = min[pA(z), pB(x)] )

This rule extracts the minimum number of the membership
values of the fuzzy sets to compute the “and” operation

(ii) Sugeno inference system: This inference uses singleton
output membership functions that are either constant or a linear
function of the input values. The defuzzification process for a
Sugeno system is more computationally efficient compared to
that of a Mamdani system, since it uses a weighted average
or weighted sum of a few data points rather than compute
a centroid or center of gravity of a two-dimensional area.
We used the Mamdani inference system since we primarily
aim to assess CSU’s cloud platform preferences by translating
and validating their intuition and human reasoning with the
knowledge of experts as discussed in [S][29].

4) Defuzzification

During defuzzification, the fuzzy output from the inference
engine is mapped to a crisp value that provides the most
accurate representation of the fuzzy set [5]. The fuzzy outputs
are represented as Fo; (01 = b, p, a, g, e) for the first level and
Fo2 (02 = AWS,GENI, MU) for the second level and, they
share the same gaussian membership function. The system in-
volves five types of defuzzification methods for interpretations
of rules namely: a) centroid, b) center of gravity, c) bisector of
the area, d) largest of maximum, and e) smallest of maximum.
We use the centroid method to obtain the crisp outputs from
our fuzzy inference engine [30] which is represented in below
equation -

25:1 zp - Ue(2p)
211;1 uc(zp)
The centroid method as shown in Equation 8 and Figure 5

uses the center of mass, which is represented as z, in a fuzzy
output distribution to determine a single scalar value. The
membership of the fuzzy sets is presented in u., whereas the
value of the membership is represented as z,. Finally, the crisp
output from the defuzzifier is an approximation that is used to
represent the PACS-index of a CSP based on the evaluation
of the first-level factors by the CSU. The CSUs can then use
theses indexes of a CSP to review if the PACS of the CSP is
sufficient enough for their needs through the second level of
fuzzy inference.

Crisp Fuzzy Output = (8)

5) Creating Rule knowledge Base:

Fuzzy logic inference works in synchronization with rules
given by users as well as base set of rules. To collect base
set of rules, we created an online real time data collection
approach following below methodologies:

o User identifies themselves as expert or non-expert work-

flow users.

« Rule data is collected only for expert users.

o Rules are created to assess different available CSPs on

a predefined scale e.g., 1-100, for non-functional PACS
criteria as well as sub-factors affecting them.

Two sets of rules used in our evaluation of cloud PACS in
linguistic terms are listed in Table V. One of these rule set is
applied at the fist level of inference, while the second set is
applied at the second level of inference. The full abbreviation
of each variable used in established rules is presented in Table
Iv.

TABLE IV: Abbreviations used in fuzzy rules.

Parameter Abbreviation | Parameter Abbreviation
Performance P Auto-Scaling AS
Agility A Capacity CT
Cost C Compute CcC
Security S GPU GC
Availability AV Storage SC
Reliability RL RAM RC
Response Time RT Compliance CE
Throughput TP Access Controls AC
Automation AN Auditability AY
Flexibility FY Encryption EN

TABLE V: Rules
Linguistic Form.

for evaluating the CSPs’ PACS using a

Rule Rules description for CSP inference

IF (P ~ ¢) — CSP = AWS
IF (P ~ g) — CSP = GENI
IF (P ~ p) — CSP = MU
IF (A ~ e) — CSP = AWS
IF (A ~ g) — CSP = GENI
IF (A ~ p) — CSP = MU
IF (C =~ p) — CSP = AWS
IF (C =~ a) — CSP = GENI
IF (C ~ ) — CSP ~ MU
10 IF (S ~ ¢) — CSP & AWS
11 IF (S ~ a) — CSP &~ MU
12 IF (S = a) — CSP = GENI

Rules description for CSPs PACS inference from

No. subfactors

IF(AV=e) AN(TP=g) - P=e

IFRL~e) N(RTxg) »>PX=e

IFRT~p) AN(AVmre) —>PX=g

IF(AN~e) AN (FY =g > AX=e

IFEFY =g ANAS~g—>A=g

IFAS=p) A(CT=p) — AXp

IF(CC=p AN(GC=a) —>C=e

IF(GC=~aARC=a) —>C=X=a

IF (SC~ g) AN (CC~Db)—=C
IF (CE ~e) A (AY =~ a) — S

0 IF (AC ~ a) A (EN ~a) — S

1 IF (AY ~ b) A (EN = p) — S

6) Validating Gaussian Membership with CSUs Rule Base:
Through validation from multiple iteration from users, we
consider that the membership function for CSPs follow gaus-
sian membership function. For simplicity, we assume that the
sub-factors contributing to PACS criteria of any CSP follows
gaussian membership which is justified as most of the human
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Fig. 5: Sample process showing multiple rule interpretations using mamdani inference system; The input PACS variables are assumed to follow gaussian
membership function and the CSPs membership function is shown on a trapezoidal function.

intuitions when validated for large number of people follows
gaussian distribution [31]. We then aggregate the fuzzy outputs
distribution from 1000 CSUs from PACS subfactors to extract
the performance, agility, cost and security index score that we
term as “PACS-index” for each CSP. This simulation process
for 1000 CSUs generates PACS-index values for each of the
candidate CSPs and approximately fit into gaussian models.
Thus, we get gaussian membership functions for each of the
PACS criteria with different ¢; and o; distribute on a scale from
1-100. We repeat the simulation again in second stage of the
Fuzzy modelling where the output is a CSP. The membership
function for the input variable in second stage i.e., PACS is
aggregated from the previous step.

7) Membership distribution

Once the fuzzy engineering model shown in Figure 2
is trained, the model returns a membership distribution for
selection of CSPs for a specific expert user inputs. To bias the
optimizer’s objective function towards a CSP using member-
ship distribution, we formulate below formula -

Membership Factor (mP) = (1 — MP) )

where, MP is the membership value of p" platform obtained
from the fuzzy engineering model. This formulation ensures
that the effective cost of instances from a platform with
higher membership distribution is reduced in the objective
function represented in Equation 2. Since the maximum value
of membership distribution for any CSP is 1, hence CSPs with
lower membership value will have lower reduction in effective
price, and thus this formulation holds validity for different
distributions.

V. PERFORMANCE EVALUATION
A. Experiment Testbed Setup

We evaluate the OnTimeFLC framework architecture as
shown in Figure 4, where we integrated FIS into the KB-
Commons web portal to collect user specifications and fuzzy
input. We also implemented the optimizer engine middleware
that was hosted on an independent GENI [7] node machine as
a web service. Pegasus [22], HTCondor [23], pyGlidein [24]
and Cyverse iCommand were installed and configured on the

independent GENI node. Application workflows as shown in
Table VI were created using Pegasus and configured in the
node machine as illustrated in Figure 4. Cyverse iCommand
and Pegasus APIs were used to fetch and stage the user data
from Cyverse portal to CSPs for processing the workflows.

B. Fuzzy Model Accuracy Evaluation

Herein, we evaluate accuracy of the multi-level fuzzy en-
gineering model and its ability in evaluating cloud platforms
from users perspective by validations. For the evaluation of
the fuzzy model, we assume that the user is an expert user.
We create the fuzzy model system and create rules defining
behaviors of our three base cloud service providers i.e.,
MU (private cloud), GENI (community cloud), AWS (public
cloud).
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Fig. 6: Average performance measurement for CSPs using the fuzzy model
with simulation on 1000 CSUs for 10 iterations.

The PACS-index of CSPs can be calculated based on the
level of satisfaction a CSU receives from a given CSP. More
specifically, we ensure the validity for each of these PACS-
index for CSPs by applying the theorem as given by [18]. As
per the theorem suggested in [18], we sample inputs from only
those CSUs who are experts i.e., their crisp input for cloud
platform services align with true service level agreements
from cloud platforms. Such a process of identifying expert
CSUs needs external independent third party validation. For
our solution, we verify expert users by cross-checking there



TABLE VI: Application workflows used in evaluation experiments.

Workflow| Workflow Description Resources Data(Gb), vCPU,
Name RAM(GDb), Network(Gbps), Clock
FactQC FastQC Quality Check workflow is used conduct the quality control checks on raw sequencing data | {3, 4, 5, 0.5, 1}; {4, 8, 10, 1, 1.2}
so that we can remove some low score data before the next step analysis.
RNA- RNA-Seq analysis allow us to identify the differential expressed genes by performing the pair-wise {10, 12, 20, 2, 1.2}; {10, 16, 25, 4,
Seq comparison of experimental groups/ conditions of sequencing data. 1.4}
PGen PGen workflow [2] allow users to identify the single nucleotide polymorphisms (SNPs: a substitution {20, 20, 50, 8, 1.4};
of a single nucleotide that occurs at a specific position in the genome) and insertion-deletion (indels: | {20, 24, 100, 12, 2}; {30, 28, 120,
an insertion or deletion of nucleotides from a sequence) and perform SNP annotation. 16, 2.2}
125 ¢ ' the Matlab Fuzzy Toolbox [32]. When this process is iterated
sl :i:?l‘;;"irlgi‘;‘;’“ 10 times, we get 10000 performance fuzzy values for each
1051 ~+ - Auto-Scaling CSP. The average of these fuzzy values for these three CSPs
A [T Capacity is shown in the Figures 6, 7 and 8 as straight horizontal
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Fig. 7: Average agility measurement for CSPs using the fuzzy model with
simulation on 1000 CSUs for 10 iterations.
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Fig. 8: Average cost measurement for CSPs using the fuzzy model with
simulation on 1000 CSUs for 10 iterations.

choices to align with a large number of CSUs. To validate
the effectivity of our proposed solution, we simulate 1000
CSUs iteratively 10 times with inherent biases for subfactors
as shown in Table IV towards three CSPs namely AWS, GENI
and MU.

Figures 6, 7 and 8 shows our simulation towards Perfor-
mance, Agility and Cost benchmarking of three concerned
CSPs. Each data point in Figures 6, 7 and 8 represents
the average approval in % towards specific sub-factor of
the CSPs. We simulate the process 10 times, and we find
the fuzzy output distribution toward PACS of CSPs from
the fuzzy inputs in each iteration. For example, considering
only performance, each CSU in each iteration results in one
fuzzy output so we get 1000 performance fuzzy values using
centroid defuzzification (note that the membership functions
are gaussian) for each CSP. We remark that we have created
the fuzzy models to simulate defuzzification methods using

their preferences towards sub-factors.
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Fig. 9: Percentage of workflows with improved execution time (i.e., lesser

time) when fuzzy engineering was used ‘with’ OnTimeFLC resource broker
vs. OnTimeFLC was used ‘without’ fuzzy inference inputs.

C. OnTimeFLC evaluation:

We now describe the evaluation results of our pro-
posed framework OnTimeFLC’s efficiency in composing cost-
effective templates solutions for any given user requirements
and preferences. We evaluate the efficiency of fuzzy model
to improve application workflows execution time performance
at different resource specifications as shown in Table VI. We
compose, allocate and compare template solution performance
for the user specifications for two cases:(i) Fuzzy model with
expert user was considered to improve execution performance
of workflows by selection of CSPs using OnTimeFLC and,
(i) Only OnTimeFLC’s core ILP optimizer engine. The ex-
periments were repeated (10 times) iteratively for each spec-
ification to calculate average execution time for workflows.
Figure 9 corresponds to our experimental results that show
the time to execute the workflow reduced in 98% of the cases
with OnTimeFLC including fuzzy engineering. We remark that
the rate of improvement in efficiency is highly dependent on
expertise of user as the fuzzy model suggests CSPs considering
users PACS rating of CSPs.



VI. CONCLUSION

In this paper, we proposed a novel middleware (i.e., On-
TimeFLC) based on fuzzy engineering to utilise expertise
of users for better cloud resource selection. The method is
composed of a multi-level fuzzy model based on factors of
performance, agility, cost and security (PACS) which aids
a resource broker based on integer linear programming in
composing multi-cloud solution templates. We validated that
the proposed fuzzy engineering approach by simulating deci-
sion making and expertise utilization of users in improving
selection of appropriate CSPs. We also showed how OnTime-
FLC can help with the resource management in a science
gateway deployment viz., KBCommons to help bioinformatics
researchers/educators. Our resource brokering experiment fea-
tured a dataset of more than 300 instance from multiple CSPs
i.e., corresponding to three CSP resources including AWS
(public cloud), GENI (community cloud) and MU (private
cloud).

Future work can include live system deployment to capture
real user preferences towards CSPs and validations through an
independent auditor. Further, machine learning can be used to
improve rule creations for our fuzzy inference system.
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