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Abstract
The unprecedented growth in edge resources (e.g., scienti�c instru-
ments, edge servers, sensors) and related data sources has caused
a data deluge in scienti�c application communities. The data pro-
cessing is increasingly relying on algorithms that utilize machine
learning to cope with the heterogeneity, scale, and velocity of the
data. At the same time, there is an abundance of low-cost com-
putation resources that can be used for edge-cloud collaborative
computing viz., “volunteer edge-cloud (VEC) computing”. However,
lack of trust in terms of performance, agility, cost, and security
(PACS) factors in edge resources is proving to be a barrier for wider
adoption of VEC. In this paper, we propose a novel “VECTrust”
model for support of trusted resource allocation algorithms in VEC
computing environments for scienti�c data-intensive work�ows.
Our VECTrust features a two-stage probabilistic model that de�nes
trust of VEC computing cluster resources by considering trust-
worthiness in metrics relevant to PACS factors. We evaluate our
VECTrust model’s ability to provide dynamic resource allocation
based on PACS factors, while also enhancing edge-cloud trust in a
VEC computing testbed. Further, we show that VECTrust is able
to create a uniform and robust probability distribution of salient
PACS factor related metrics within diverse bioinformatics work-
�ows execution over batches of work�ows.
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1 Introduction
Application work�ows today tend to handle huge data generated
through networked smart edge devices (e.g., biosensors, imaging
instruments) and rely on real-time processing capabilities in cloud
platforms. However, cloud computing costs can become a barrier for
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Figure 1:KubeEdge-based architecture for the orchestration of edge and cloud
nodes, where the cloud nodes are used for MLmodel training and edge nodes
are used for ML model inference in scienti�c application data processing.

handling scienti�c application work�ows, especially when there is a
signi�cant amount of data-related computation tasks involved. New
paradigms of cloud computing such as volunteer cloud computing
(VCC) [1] are emerging to leverage volunteer contributions of large-
scale cloud resources to reduce costs.

Although VCC provides bene�ts in terms of cost, the propri-
etary/sensitive nature of certain scienti�c applications necessitates
partial data processing to be performed at the edge resources i.e.,
closer to the application user sites. Leveraging emerging technolo-
gies such as KubeEdge [2], VCC solutions can be extended to on-
demand provision and use an abundance of low-cost edge resources
through edge-cloud collaborative computing on a best-e�ort basis
viz., “volunteer edge-cloud (VEC) computing”. In addition to pro-
viding cost bene�ts similar to VCC, the VEC paradigm is suitable
for the latest generation of compute/data intensive work�ows that
use machine learning (ML) models to perform heavy training on
cloud nodes and light-weight inference on edge nodes.

Figure 1 shows how a KubeEdge-based architecture can be used
for the orchestration of edge-cloud resources for compute/data in-
tensive applications that use ML models. Speci�cally, KubeEdge [2]
can help in e�cient automation of tasks at volunteer edge nodes
and cloud nodes using Docker containers [3], similar to how Ku-
bernetes [4] clusters are managed in predominantly cloud nodes.
Integration of VEC with KubeEdge cluster management technology
particularly supports small and low-latency computation tasks (in-
cluding data pre-processing, data quality/privacy checks, ML model
inferencing for work�ow predictions) at edge nodes that can save
burden on network bandwidth connectivity to cloud nodes, while
also performing collaborative use of large cloud node resources for
heavy computation tasks (e.g., parallel processing for ML model
training, huge data movement).

However, a major challenge for wider adoption of the VEC com-
puting paradigm in scienti�c application work�ows relates to en-
suring that the volunteer edge resources can be trusted in terms
of the performance, agility, cost, and security (PACS) factors, on
par with nodes within public clouds. A suitable VEC architecture
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should present well-de�ned security protocols, policies, and or-
chestration mechanisms similar to those in public cloud resources
to meet application requirements. It also has to deal with the dy-
namic and unwarranted nature (i.e., volunteer edge resources can be
withdrawn or face availability issues routinely) of VEC resources
that disrupt the trust (e.g., in terms of the cost or scalability of
edge resources) in the execution of time-critical scienti�c applica-
tions. While trust modeling in cloud computing is a well-researched
topic [5] [6], there are limited works on trust modeling in a VEC
context. In the VCC context, reputation-based trust is considered
assuming capable/homogeneous resources, and resources charac-
terization is performed for extended time periods. In contrast, an
e�ective VEC trust model uniquely needs to: (a) obtain a wide range
of data about the containerized edge resources or virtual machines
(VMs), and (b) use model-based decisions based on a quick analysis
of edge nodes (that can sometimes be austere) resource character-
ization data – to select trustworthy VEC resources and optimize
edge-cloud con�gurations based on PACS factors.

In this paper, we address the above VEC trust model development
challenges by proposing a “VECTrust model” for enabling trusted
and optimized resource allocation algorithms in VEC computing
for data/compute-intensive scienti�c application work�ows. Our
VECTrust features a two-stage probabilistic model that de�nes trust
of VEC computing resources in terms of PACS factors. A proba-
bilistic model is an ideal choice for modeling trust because edge
resources can have dynamic behavior towards PACS factors given
their voluntary nature and may not exclusively be dedicated to
VEC cluster computing. Since the edge resources are voluntary,
the edge node provider can alter con�gurations (increase/decrease
capacity or remove availability) on resources by chance. Moreover,
geographically distributed VEC resources can fail due to latency
issues which can be random in nature and can only be characterized
probabilistically. Our two-stage model helps in capturing random-
ness in PACS factors at geographically co-located VEC resources
and also helps in comparing di�erent VEC clusters. We leverage
Dirichlet [7] distribution because we need multivariate probabilistic
distribution of trust towards PACS at the local intra-cluster stage
(i.e., when selecting edge nodes in a single location) and a global
inter-cluster stage (i.e., when selecting edge nodes at same or dif-
ferent locations) for dynamic selection of most suited edge/cloud
resources to increase the trust levels.

We further validate our VECTrust model in terms of success in
work�ow executions on trusted resources while simultaneously per-
forming optimization considering PACS factors. Towards this aim,
we conduct experiments in a VEC computing testbed featuring di-
verse bioinformatics work�ows (in terms of computing andmemory
requirements) as well as KubeEdge and Docker technologies. We
choose bioinformatics work�ows for evaluation because they are
popular in the scienti�c community given the recent rapid advance-
ments in next-generation sequencing (NGS) technologies. Moreover,
resource requirements for the bioinformatics work�ows vary de-
pending on the type of analysis required on raw NGS data and
involve small-scale data quality analysis and privacy-preservation
steps, which can be done at edge resources before large compu-
tations in the cloud resources. We compare our VECTrust model
against three baseline models: (i) reliability-based trust-aware re-
source allocator algorithm [8] on voluntary cloud resources, (ii)
K-nearest neighbor resource selection in voluntary edge resources,
and (iii) random selection of resources on voluntary edge resources.
By periodically measuring the resource utilization probability dis-
tribution during the execution of diverse bioinformatics work�ows,
we observe whether eligible resources are utilized e�ectively at the
local intra-cluster and global inter-cluster stages. In other words,

we show that the VECTrust model is able to assess trusted resources
and use them continuously as the workload on the cluster increases,
which in e�ect creates a uniform resource utilization pattern on
resources with relatively higher trust.

The remainder of this paper is organized as follows: In Section
II, we describe related works. Section III describes the VEC com-
puting trust problem and our VECTrust solution approach. Section
IV presents details of our VECTrust model components and their
implementation. Section V presents the performance evaluation.
Section VI concludes the paper.

2 Related Work
Trust Models in Cloud Computing: Resource trust modeling
in cloud computing has been an area of keen interest among re-
searchers. Miscellaneous trust models have been proposed which
are based on e.g., auditing, static policies. Surveys such as [9] discuss
and compare comprehensive cloud-to-cloud trust paradigms from
a federation perspective. In [10], authors address the auditability in
clouds via technical and policy-based approaches. Whereas in [11],
authors propose a trust-based auditing method where users pro-
vide their own security preferences aligned with the cloud provider
policies. In [12], authors propose a trust-aware framework to verify
and evaluate the security controls established by cloud providers.
These works provide important foundations to identify the fac-
tors needed for trust assessment and subsequent trust-based clas-
si�cation within a federated cloud environment. Towards trust
quanti�cation within a cloud environment, there have been works
such as [5] [6] that consider multiple variables and ML models for
trust prediction by conducting trust data mining and knowledge
discovery. To avoid training requirements and cold-start issues
around su�cient data availability in previous ML model-based
approaches, there have been alternate and state-of-the-art trust
modeling approaches proposed that can be organized either under
the reputation-based category or the probability-based category.

Reputation-based TrustModels: In cloud environments, trust
between individual entities is typically facilitated by reputation
management based on various parameters such as e.g., history, con-
text, collection, representation, and aggregation [10, 13]. Focus typi-
cally is on single-source trust quanti�cation, where policies such as
QoS parameters and audit assessment and/or accountability factors
such as security, reliability, and availability are used as fundamen-
tal variables. Other studies such as [6] used ML models to predict
reputation primarily based on QoS, and use QoS-based trust values
in cloud resource brokering. Trust and reputation modeling under
scenarios with incomplete information has also been an area of re-
search. For example, authors in [14] developed a multi-dimensional
framework viz., PeerTrust for classifying and comparing trust and
reputation systems, and their suitability for a given application
even when adequate information is unavailable about a target peer.

A state-of-the-art work on reputation-based trust determination
particularly relates to VCC and uses the trust values within a knap-
sack problem formulation for resource allocation [8]. This work
proposes three algorithms for task scheduling on voluntary nodes
while leveraging a semi-markov [15] process for trust prediction
of voluntary nodes. Their approach focuses on selecting the most
trusted resources within a cloud environment while optimizing
resource allocations for task execution. However, their trust de-
termination approach requires a long history of underlying task
executions and considers stable resources on a cluster for optimiza-
tion based only on the performance factor amongst PACS factors.
In comparison, our VECTrust approach relies on relatively small
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Figure 2: VEC system overview showing scienti�c work�ows being submitted to a cluster of edge-cloud resources. Edge clusters are created using resources from
individual edge node servers. Work�ows are transferred to public or private cloud nodes as per the trade-o� between requirement of trust and compute resources
on the edge and cloud node sides.

(recent task execution) data amongst volatile voluntary edge re-
sources and determines a trust function by considering all of the
PACS factors.

Probability-basedTrustModels: For reputation values to hold
for a longer time, probabilistic-based trust models have been ex-
plored in the context of data-intensive workload management
within cloud federations [16, 17]. Among these works, the work
in [16] is notable because it is applicable for e�cient allocation
of federated resources without considering the trust/reputation of
the underlying resources. However, such trust-agnostic resource
management are not suitable for a VEC system due to the unique
challenges such as heterogeneity of volunteer edge resources, and
uncertainty of their resource availability due to possible alterna-
tions in con�gurations (increase/decrease capacity or remove avail-
ability) on resources by chance. The work in [17] assumes that
resource trustworthiness is subjective and proposes a framework
based on Analytic Hierarchy Process (AHP) and Fuzzy Simple Addi-
tiveWeighting (FSAW) to determine trust between service providers
and users based on the users’ perception. However, their approach
relies entirely on the application requirement parameters consid-
ered by the users and thus ignores the uncertain or unknown factors
of the resource provider, which is commonly the case in a VEC sys-
tem.

Other notable works such as [18] and [19] propose a collaborative
trust model based on the Beta distribution [20] and compare their
model against random and deterministic resource selection strate-
gies. Other probabilistic approaches such as [1] propose VCC trust
by using the priority of tasks and behavioral changes as trustwor-
thiness metrics. In addition, prior works [7] and [20] have shown
that both conservative and optimistic probabilistic strategies are ef-
�cient for trust assessment in VCC, respectively. Thus, probabilistic
trust models are promising for e�cient VEC resource provisioning
with an edge-cloud federated environment. Our work builds on
these prior probability-based trust models and we present a novel
probability-based trust modeling scheme for resource allocation
in a VEC system for scienti�c application work�ow management.
Speci�cally, our approach uses a Dirichlet-based probability dis-
tribution which can model multiple variables simultaneously. Our

two-stage distribution model allows us to characterize edge node
metrics such as CPU/RAM utilization, network interfaces, TCP/FTP
connections dynamically as well as provide a framework to use both
intra-cluster and inter-cluster PACS factors for trust assessment.

3 Background and Terminology
In this section, we �rst present an overview of a VEC system for
data-intensive scienti�c work�ows. Following this, we provide a
background on the assumptions and underlying theoretical models
relevant for the purposes of performing trusted resource allocation
in VEC environments.

3.1 VEC System Overview
A VEC system is comprised of multiple geographically distributed
clusters, with each cluster having a set of co-located voluntary
diverse edge resources. As shown in Figure 2, the VEC clusters
interact with public cloud resources through KubeEdge [2] for man-
agement of resource-intensive stages of the scienti�c work�ows.
The system leverages VEC edge resources for execution of small
work�ows and for initial data quality check or privacy-preservation
stages of large work�ows that are to be scheduled over cloud nodes
to incorporate user work�ow preferences. KubeEdge is an ideal
technology for integrating edge resources and in particular VEC
resources which are

• voluntary in nature i.e., the availability of resources is not
guaranteed.

• heterogeneous in nature.
• limited in size.
• can be geographically distributed.
• can change behavior in respect to PACS dynamically.

The emergence of latest technologies such as KubeEdge and
Docker [3] have created opportunities for novel resource manage-
ment strategies in VEC systems that work collaboratively with
cloud platforms to support data/compute-intensive scienti�c work-
�ows in domains such as bioinformatics. Speci�cally, VEC systems
equipped with KubeEdge and Docker can leverage (a) resource
allocation for ML model training and analytics based on heavy
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computation operations of work�ows in cloud node resources, and
(b) resource allocation model inference and execution of critical
decisions about the quality and privacy of data sources at edge node
resources.

Similar toML-basedwork�ows, the execution ofmany of compute-
intensive bioinformatics work�ows can be based on results of
smaller analytics work�ows such as e.g., screening to evaluate
if bigger computation tasks are required to be executed. For exam-
ple, as shown in Figure 2, a large bioinformatics work�ow such as
PGen [21] [22] which analyzes large next-generation sequencing
(NGS) data will not be executed on the cloud node resource if a
smaller subset of its initial pipeline for example FastQC does not
produce good results at the VEC edge node resources.

Table 1 provides details on the various exemplar bioinformatics
work�ows used in our VEC system implementation. We remark
that - although we use bioinformatics work�ows that are exemplar,
our work is broadly applicable to any other scienti�c work�ows
that can be executed in a VEC system using container technology
such as Docker. In the following, we provide additional background
on the bioinformatics work�ows used in our work. Scienti�c work-
�ows typically involve a pipeline of processes for accomplishing a
scienti�c objective usually expressed as smaller computation tasks
that are dependent on output from previous tasks in the hierar-
chy. These work�ows have a pre-de�ned structure with stages
such as data acquisition, re�nement, pre-processing, processing,
and storage. The primary motive of these work�ows is to provide
an easy-to-use environment for individual researchers to expedite
the research insights by automating the analytics pipelines within
computation work�ows. Given that NGS technology has improved
dramatically in recent years, costs have dropped and the number
and range of sequencing applications have increased exponentially.
A wide variety of high-throughput sequencing can be generated
from RNA or DNA molecules through NGS library construction.
In order to e�ciently utilize the large-scale NGS data for analysis,
many diverse (in terms of computing and memory requirements)
work�ows can be created. Often these work�ows are data/compute-
intensive and might need several days to �nish execution even with
considerable scale of VEC resources. However, many of these work-
�ows have common initial stages which are relatively lightweight
and can be used to assess if the larger/heavy workloads should be
executed or not.

An exemplar scienti�c work�ow that is enabled by data from
NGS is the PGen [21] work�ow. The work�ow allows users to
identify single nucleotide polymorphisms (SNPs) and insertion-
deletions (indels), perform SNP annotations and conduct copy num-
ber variation analyses on multiple resequencing datasets. The work-
�ow has initial common processing stages which can be assessed
using FastQC and Alignment work�ow as noted in Table 1. These
smaller work�ows are essentially composed of e.g., data quality
check tools to assess data being analyzed in PGen work�ow and typ-
ically take very small time and resources for execution. Since these
smaller work�ows can be used in a disjoint manner with the larger
work�ow, they are ideal to demonstrate VECTrust capabilities.

For the purposes of our work, we leverage three small bioinfor-
matics work�ows as shown in Table 1 using the Pegasus WMS [23]
and have further centralized the input data location using Cy-
Verse [24]. The analysis pipelines for these work�ows are split
into multi-steps and parallel processes to gain the most e�ciency.
The work�ow describes the dependencies among the tasks as a
directed acyclic graph (DAG), where nodes are tasks and edges
are the task dependencies. Each computing task can optionally be
assigned a number of cores and memory that they can e�ciently
utilize to run on the edge node or cloud node computation sites.

3.2 Assumptions
The VEC system model assumptions for the purposes of our work
are as follows:

• Small virtual machines at di�erent geographic locations can
be considered as volunteer edge resources.

• Only small work�ows which can be executed within a rea-
sonable time period (i.e., < 1 hours in a VEC system) are
considered for this work. Bigger work�ows that adopt VCC
can bene�t from the scope of our VEC work in cases where
they support functions for lightweight steps such as data
quality checks and pre-processing for privacy-preservation
of datasets.

• Time for the �ow of controls within a VEC system is assumed
to be negligible because the time to execute the considered
work�ows are on the order of minutes while times of control
�ows are typically on the order of seconds.

• We assume varying degrees of trustworthiness arises when
VMs inside individual edge nodes could be hosted on the
same or di�erent physical server resources.

3.3 Dirichlet Distribution
The Dirichlet distribution de�nes a probability density function
(i.e., PDF) for a vector input having the same characteristics as
the multinomial parameter \ of which the density needs to be
computed. The distribution has the support (the set of points where
it has non-zero values) over the parameters of \ i.e., G: such that
the elements are:

G1 .....G: , where G8 n (0, 1) and
 ’
8=1

G8 = 1

where  is the number of elements in \ . Its probability density
function is de�ned as:

⇡8A (\ |U) = 1
⌫4C0(U)

 ÷
8=1

\U8�18

where ⌫4C0(U) =
Œ 
8=1 (U8 )

�(Õ 8=1 U8 ) and U = (U1, .....U: )

In the context of our work, \ and its elements correspond to
either the number of VMs within a cluster or the number of clusters
within a VEC depending on the stage of the solution. The Dirichlet
distribution is parameterized by a vector U , which has the same
number of  elements as our multinomial parameter \ . So Dir(\ |U)
can be interpreted as the PDF associated with multinomial distri-
bution \ , given that the distribution has parameter U . For example,
as shown in Figure 3, the distribution is uniform (represented by
color shades) across the de�ned three parameters {G1, G2, G3} when
the U parameters for the distribution are uniform and comparable.
It can also be veri�ed that the distribution tends to concentrate
towards the parameters having a higher U value. The probability
density (PD) is concentrated and larger when the U values are larger,
which indicates a more probabilistically deterministic solution. The
distributions in Figure 3 showcase the spread of PD getting con-
centrated as U navigates from {1,1,1} through {5, 5, 5} to {10, 10,
10} suggesting that [G1, G2, G3] are increasingly having the same
probability of occurrence. While U of {1,2,4} suggests the probabil-
ity biasing towards G3. Hence if \ multinomial shown in Figure 3
represented by [G1, G2, G3] is considered as three virtual machines
in a VEC cluster, then U of {10, 10, 10} suggests highest con�dence
that the machines show equal PD; while U of {1, 1, 1} also means
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Table 1: Exemplar bioinformatics work�ows used in our VEC system implementation.

Work�ow
Name

Work�ow Description {vCPU, RAM(GB),
Data(GB)} Requirements

FactQC FastQC Quality Check work�ow is used conduct the quality control checks on raw
sequencing data so that we can remove some low score data before the next step
analysis.

{1, 0.8, 5}

AlignmentAlignment work�ow is used to arrange the reads of DNA or RNA to a reference
genome so that we can know which genes expressed or discovery of new, unannotated
transcripts.

{1, 1.2, 10}

RNA-
Seq

RNA-Seq analysis allow us to identify the di�erential expressed genes by performing
the pair-wise comparison of experimental groups/ conditions of sequencing data.

{2, 1.5, 10}

the machines have equal PD but there is less con�dence on this
equal distribution. In contrast, U of {1, 2, 4} suggests G3 has highest
probability distribution with a good level of con�dence.

Figure 3: Sample Dirichlet distribution for a system with three parameters
{G1,G2,G3 } at di�erent parameterized values of U . The distribution in the �g-
ures show variation in probability distribution across the parameters as their
corresponding U varies.

4 VECTrust Model
In this section, we �rst give an overview of our VECTrust solu-
tion components. We then discuss details about our approach of
intra-cluster and inter-cluster trust modeling. Lastly, we detail the
integration of our VECTrust model with a resource allocator algo-
rithm to optimally orchestrate work�ows on trusted VEC resources
considering PACS factors.

4.1 Overview
Our proposed VECTrust uses a cloud resource broker model that
orchestrates VEC resources based on a centralized probability-based
trust propagation model. We utilize the Dirichlet distribution across
the edge computing resources to create PDFs while considering
PACS factors. As shown in Figure 4, the PDFs are generated at the
intra-cluster stage and then again at the inter-cluster stage to guide
a resource allocator for scheduling work�ows at the most suitable
VMs. Note that we adapt the popular K nearest neighbor (KNN)
based resource allocation in VECTrust for mapping tasks to optimal
resources. At the intra-cluster stage, the VMs within a cluster act
as the parameter (\ ) of that cluster for PDF generation. At the inter-
cluster stage, the number of clusters in the VEC resources acts as
the primary parameter for the PDF generation.

Figure 5 shows the �rst stage of our proposed VECTrust model
that evaluates the trustworthiness of resources (i.e., VMs within

a cluster) through direct interactions between VMs and the dedi-
cated local cluster management server (LCMS). Each of the LCMS
contributes to the cluster’s PACS factors data that is collected at a
central cluster management server (CCMS). Hence, the trustwor-
thiness of resources is assessed at a local cluster level as well as at a
more global level when compared with other clusters amongst VEC
resources. This approach in VECTrust is di�erent from the tradi-
tional trust frameworks [18], where reputation and trustworthiness
are evaluated through direct and indirect interactions between two
volunteer hosts within a community. In VECTrust, the interaction
or feedback between any VM and the LCMS is direct. The LCMS
collects data about a VM only from that VM, unlike other methods.
However, the collected data from each VM informs the LCMS about
its interactions with other VMs based on their shared bandwidth.
This process consolidates the responsibility of trust assessment at
the LCMS. It then shares the generated PDFs and raw data of VMs
within its cluster with the CCMS for further processing at the global
level. This multi-stage hierarchical architecture of the VECTrust
model allows easy integration of new layers of edge devices such
that any LCMS can act as the CCMS for the layers below, thus
providing seamless scalability to our solution.

4.2 Intra-cluster Trust Modeling
For each VEC cluster governed within the VECTrust model, one of
the VMs act as the LCMS for that cluster. As shown in Figure 5, the
LCMS monitors each of the VMs in the VEC cluster to collect data
from them for various parameters such as CPU/RAM utilization,
�rmware, network controllers, sensors, etc. These parameters con-
tribute towards trust assessment based on PACS factors of the VEC
resources.

4.2.1 Trust based on performance We assume that the performance
of a VM cannot be assessed based on the executed workload because
a large work�ow expects a relatively larger computation power.
Hence, the execution time of a work�ow cannot be a benchmark for
a VM’s performance. We remark that a VM with a better con�gura-
tion of �rmware should be more suited at executing a workload i.e.,
a better con�gured VM will execute the same work�ow in smaller
time compared to a poorly con�gured VM. Hence, we argue that
the optimal use of resources is a better indicator of performance.
Authors in [25] indicate that the optimal upper thresholds for CPU
utilization for a given set of workloads are between 70% and 90%.
We utilize these limits when ranking di�erent VMs for performance
at di�erent active workloads. Additionally, while monitoring a VEC
cluster, the proposed model considers only those VMs that have
active workloads. For the sake of PDF calculation, inactive VMs
in VEC resources are given the average percentage value of CPU
and RAM utilization of the active VMs. Thus, all VMs in VEC re-
sources have at least comparable CPU and RAM utilization, and
thus inactive VMs are also considered when the performance is



UCC’21, December 6–9, 2021, Leicester, United Kingdom Ashish Pandey, Prasad Calyam, Saptarshi Debroy*, Songjie Wang, Mauro Lemus Alarcon

Figure 4: Logical stages of Dirichlet probability distribution applied at intra-cluster and inter-cluster stages. Blocks in black color identify with factors at intra-
cluster stage, while blocks in green relate to factors for inter-cluster stage for probabilistic distribution.

Figure 5: At intra-cluster stage LCMS collects data from individual VMs geo-
graphically collocated and hosted within an edge cluster.

evaluated. With these values acting as the guiding parameters, we
create Dirichlet distribution (PDF) for the cluster with respect to
performance to identify best-performing VMs.

4.2.2 Trust based on agility Measuring agility of individual VMs
is a convoluted function of many factors that characterize the VMs
con�guration such as performance and robustness to workload.
Speci�c to a single VM, the robustness can also depend on its be-
havior measured by sensors (e.g., temperature, fan speeds, voltage,
battery state, power usage statistics) when the workload is varying
over time. Primary factors to assess the agility of the VMs can be: (i)
the ability of a VM to process multiple work�ows simultaneously,
(ii) the number of failed attempts to assign new work�ows to a
VM within a cluster on request, and (iii) quality of processors used,
which e�ects task parallelism. All these factors contribute towards
the calculation of the U values as discussed in Section III. More
speci�cally, we estimate the agility metric (U) of the nodes using
gamma function with the above-mentioned factors as described
in [19], where the reliability metric of an individual node is pre-
dicted by using a beta distribution on the success and failure rates
for weighted execution of high, medium and low priority tasks.

4.2.3 Trust based on cost In order to incorporate cost as a factor for
trusted computation, we reduce the cost of execution for work�ows
when executed on the VEC cluster. Since there is heterogeneity
of resources within di�erent clusters, di�erent resources can be
available at di�erent prices. We remark that VEC resources are
more economically viable compared to commercial cloud providers
as the former do not follow a standard cost structure. For cost-based
trust computation, we normalize the cost of resources within each

cluster on a scale from 1 to 10 and then subtract this value from 10
(the inverse is used since we do not want to use a VM which has a
high price). This normalized cost is then used as the U parameter in
the trust PDF computation. This ensures that the VMs with lower
costs have the highest U value, and consequently have higher trust.

4.2.4 Trust based on security Finally, we create discrete security
levels that provide a measure of security based on di�erent param-
eters. Some of these parameters are computer system, �rmware,
operating system, version/build, network interfaces (IPs, bandwidth
in/out), network parameters, TCP/UDP/FTP connections, etc. For
example, a large number of FTP connections in a VM might re�ect
an unsecure system and thus will belong to a lower security level.
We measure the trust of VMs as a function of these levels that
contribute to the U values in generating the PDFs of the cluster.
More speci�cally, we categorize security for all individual nodes as
either ‘good’ or ‘bad’ based on a threshold of TCP/FTP connections
over a �xed period of time immediately before the time of trust
calculation for scheduling tasks. We use the frequency of good
and bad categorization of a node over time as a core factor for its
trust estimation. We calculate the security metric (U) for each of
the nodes by using the gamma function with the above-mentioned
factors of good and bad, and our approach is similar to the reliability
metric calculation in [19]. The metrics for PACS factors for each of
the VMs are collected into the LCMS on an on-demand basis and
their linear function is used to calculate the normalized U values
(1 to 10) for di�erent PACS factors. The parameters are then used
to generate PDF distributions for the VEC cluster in LCMS and
subsequently communicated to the CCMS as needed.

4.3 Inter-cluster Trust Modeling
The VECTrust model generates Dirichlet distribution for the PACS
factors at an inter-cluster stage as shown in Figure 6. For generating
the PDFs, \ parameters are represented by the number of clusters,
and U parameter used for the PACS factors is discussed below.

4.3.1 Trust based on performance The CCMS collects Dirichlet
distributions from each of the LCMS of the VEC clusters. A per-
formance normalization factor is calculated by a weighted average
of the performance PDFs by using the number of VMs in the indi-
vidual VEC clusters as weights. The normalized PDFs act as the U
value for the second stage of PDF using the Dirichlet distribution
for performance.
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4.3.2 Trust based on agility At the inter-cluster stage, the CCMS
aims to identify the most agile VEC cluster in its set of clusters.
The CCMS collects PDFs for agility from all the LCMSs and then
transforms them based on the number of probabilistically agile VMs
in each of the clusters. The time to add a new VM from a cluster
is also one of the factors to assess agility. These factors contribute
towards the U values for the clusters to generate PDFs at the inter-
cluster stage. In addition, trust in terms of the agility of a VEC
resource can change dynamically over its lifecycle. This is because
the maximum value of PDs (a discrete number generated when
creating PDFs) of a cluster can change over time which depends
on a number of factors, such as (a) addition time of a new VM, (b)
unexpected failures arising on adding new VMs in a cluster, and
(c) resource availability amongst the volunteers themselves. At any
time, the velocity of the addition of VMs from the cluster is a major
factor towards agility. The CCMS has time-series data of these PDFs
for agility, and a higher mean for agility at the cluster level and a
lower standard deviation in the PDFs over time indicates an agile
and robust cluster towards workloads. Similarly, a large standard
deviation indicates the cluster is not robust to cases with workload
increase or decrease.

Figure 6: At inter-cluster stage CCMS collects data from geographically dis-
tributed LCMSs of clusters and performs assessment based on PACS factors.

4.3.3 Trust based on cost The trust factors at the inter-cluster stage
are essentially based on the PDs generated from the LCMS servers
in the VEC resources. The PDs for cost from each of the clusters
are collected and normalized from 1 to 10. The normalized values
are then used as U for calculating the cost PDs at the inter-cluster
stage.

4.3.4 Trust based on security For security-based on trust at the
inter-cluster stage, the VECTrust model �rst identi�es the most
secure clusters in a given set. The CCMS collects security PDFs
from all LCMSs and transforms them based on the number of prob-
abilistically secure VMs in each of the clusters. These numbers are
weighted by the degree of security which is assessed using NIST
guidelines [26], and act as the U values for the clusters to generate
security PDF at the inter-cluster stage.

4.4 Resource Allocation Methodology
The approach of assessing VEC resources using probabilistic mod-
eling using Dirichlet distribution can dynamically capture dynamic
resource behavior. However, di�erent work�ows might have their
individual functional requirements speci�ed by the user in terms
of e.g., the number of vCPUs, RAM, and disk drive space. Such re-
quirements need to be met explicitly for the work�ows to perform
on par with user expectations. This is an optimization problem of
resource selection from available resources in order to ful�ll work-
�ow requirements and foster execution of the maximum number
of work�ows possible. One of our prior works [22] towards such
an optimization uses integer linear programming and the popular
KNN for heuristic optimization of resource selection for executing

work�ows. We have thus used the KNN algorithm to select speci�c
VM from the clusters which matche the requirements of a given sci-
enti�c work�ow to be executed. The application of this algorithm
ensures that the quantitative requirements for the work�ows as
stated by the users are necessarily ful�lled. Following this, trusted
scheduling of these work�ows is performed on the VEC clusters
based on the user PACS factor priorities as explained in Algorithm
1.

Algorithm 1: Trust-driven resource selection algorithm
based on PACS factors
Result: VEC edge node resource on a trusted cluster
while true do

Periodic incoming work�ow execution request;
5 02C>A  Get work�ow factor optimization;
8 is the required VM con�guration;
if factor then

8  KNN to �nd eligible VMs;
if i < =D;; then

PDFs at LCMSs for 5 02C>A ;
PDFs transfer from LCMSs to CCMS;
2%⇡�  PDF at CCMS for 5 02C>A ;
2;DBC4A  highest distribution from 2%⇡� ;
if i n 2;DBC4A then

Execute the worklfow on 2;DBC4A at 8 VM node
end

else
PDFs at LCMSs for 5 02C>A ;
PDFs transfer from LCMSs to CCMS;
2%⇡�  PDF at CCMS for 5 02C>A ;
2;DBC4A  highest distribution from 2%⇡� ;
Request new VM with i con�guration on 2;DBC4A ;

end
else

defaults to ‘Performance’ factor based trust;
end

end

Intra-cluster Trust computation: VECTrust takes the task
outcomes as input for a certain period of time from )B to )4 , where
)B is the start time and )4 is the end time, and estimates the trust
score for each volunteer host within a cluster. Essentially LCMS
monitors each of the VMs in the edge node cluster and collects PACS
factors data through Docker containers running as web services.
LCMS also calculates multiple Dirichlet distributions for each of
PACS factors for all VMs within a given cluster by using U values
that are normalized from 0 to 5 for a fair evaluation of the best
performing VMs in the cluster.

Inter-cluster Trust computation: Such a trust computation
is used for behavior detection. The VECTrust model continuously
monitors new work�ows to be scheduled. It tries to schedule work-
�ows on the best performing cluster with a suitable matching VM
by estimating the trust score of each of the clusters dynamically
before making a decision of scheduling. When a new work�ow exe-
cution request comes into the queue with demand for any of PACS
factors, then the CCMS uses KNN to �nd the eligible VM resources
that ful�ll the work�ows’ CPU and RAM requirements. The CCMS
collects data from each of LCMS in the VEC system and normalizes
maximum PD from each of LCMS for PACS factors in the range
of 0 to 10. Subsequently, it uses these normalized densities as U
values for the second level of Dirichlet for the clusters. The VEC
cluster with the highest PD value represents the most ideal cluster
for assigning the work�ow and the VM with the highest PD within
that cluster is the best suited VM for executing the work�ow. The
CCMS ranks these clusters and eligible VMs inside them according
to their PD values. The selected VM is then assigned the work�ow
using KubeEdge. While the work�ows are executing, the CCMS
and LCMS periodically collect Dirichlet distribution data to assess
the uniformity of probability distribution with performance as the
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Table 2: VM/Worker nodes description at the GENI Edge Nodes.

Resource Name Core RAM Disk
XOSmall 1 1GB 10GB

XOMedium 1 3GB 25GB
XOLarge 2 6GB 50GB

primary factor. Lesser value of the standard deviation of 0;?⌘0 val-
ues suggests better utilization of resources, while a higher standard
deviation suggests certain resources are under-performing or idle.

5 VECTrust Evaluation
In this section, we �rst describe the testbed setup to evaluate our
VECTrust model in terms of PACS factors. Following this, we show
bene�ts of our VECTrust approach in comparison with state-of-
the-art approaches in the context of resource selection, and their
impact on the execution times of the application work�ows.

5.1 Testbed Setup
For the scienti�c workload on the VEC computing resources, we
have used the three bioinformatics work�ows: (a) FastQC, (b) Align-
ment, and (c) RNA-Seq work�ows listed in Table 1. Each work�ow
requires a diverse amount of resources, which are provisioned in
the testbed environment for the corresponding expected execution.
The testbed resources for evaluation of our proposed VECTrust
model are obtained from the NSF-funded GENI [27] infrastructure
and the GCP [28], similar to the architecture described in Figure 1.
As shown in Figure 7, three clusters of resources are created across
three geographically di�erent locations (RENCI, NCSU & Texas
A&M), which are controlled via KubeEdge instance in GCP. Each
edge cluster contains three di�erent VM con�gurations namely: (a)
XOLarge, (b) XOMeduim and (c) XOSmall as shown in Table 2. All
VMs which are part of the VEC testbed have public IPs as they host
RESTful web services via Docker containers for communication
and data transfer tasks.

The XOLarge VMs within the cluster act as LCMS for the cluster.
The CCMS is created on an independent GCP VM instance having
2 cores and 4GB RAM. KubeEdge is installed on all the nodes such
that the CCMS acts as the master node and the 9 VMs across the
GENI cloud infrastructure act as worker nodes. Each VM has a
web service that reports PACS factors information relevant to a
VM to its LCMS and CCMS. This information is utilized to create
Dirichlet distributions which govern trust calculations that direct
the scheduling of work�ows on a worker node over VEC computing
resources.

5.2 Evaluation Methodology
Our experiments’ goal is to evaluate the VECTrust model’s e�ec-
tiveness and e�ciency by measuring its impact in terms of PACS
factors during repeated and pre-determined order of execution
of work�ows on the VEC testbed. Towards this goal, work�ows
are submitted with one of the PACS factor intents related to trust.
The trusted resource allocation for cost is not considered for the
purposes of this work because: (a) we consider voluntary edge
resources that do not incur any cost, and (b) the cost quantita-
tively depends on the price of cloud resources, which can be easily
determined and varies depending on the cloud platform our VEC-
Trust is deployed. We compare VECTrust’s e�ciency in trusted
resource allocation for work�ow execution on VEC resources by
executing di�erent number of work�ows against three competing
resource provisioning strategies: (i) Random selection of VM re-
sources, which represents the most common resource selection as

per availability, (ii) KNN algorithm used for selection, which is a
popular algorithm for recommendation systems [22], and (iii) Unob-
trusive utilization-reliability aware scheduling algorithm (* 2)ADBC )
[8], which uses a semi-markov process [15] for reliability-based
trust prediction of voluntary nodes and is based on formulating the
resource scheduling problem as a knapsack problem.

5.2.1 Trust based on Performance For evaluating trusted work�ow
execution based on performance in VEC resources, we create 12
work�ow batches as shown in Figure 8 with di�erent number of
work�ows mentioned in Table 1. Each batch comprises of a set of
work�ows (e.g., 5, 10, 15, and so on) in a �xed order. This implies
that - when a batch is executed, the same work�ow is added to the
testbed at any time C , irrespective of the scheduling algorithm. This
ensures the same arrival pattern or intervals between workloads on
the testbed for a fair comparison between the resource allocation
algorithms. A new work�ow is added in 5 minute intervals, which
is the average execution time for our slowest work�ow i.e., FastQC.

The results in Figure 8(a) show that * 2)ADBC performs better
than KNN since it uses reliability as well as knapsack formulation
to �nd nodes, while KNN only uses mapping of resource required
compared with resources available in nodes. However, our proposed
VECTrust model performs better than both the state-of-the-art
approaches as our trust model identi�es higher performing VEC
clusters as well as higher performing VMs in those clusters while
considering the reliability of nodes. Although* 2)ADBC performance
is comparable with VECTrust, recall that our VECTrust model relies
only on a short history of underlying volunteer edge resources to
capture volatile �uctuations in resource performance during the
allocation process.

5.2.2 Trust based on Agility In order to evaluate trusted work�ow
execution based on agility, we add work�ows with relatively higher
resource requirements which trigger the CCMS to add new VMs
in one of the VEC clusters. We iterate this process multiple times
(i.e., 5 times) for each of the work�ows using VECTrust and three
other competing approaches: (i) KNN (cluster with VMs closest to
the work�ow requirement is selected for adding a new VM), (ii)
Random and, (iii)* 2)ADBC .

As shown in Table 3, the average time to add a VM in the VEC
cluster suggested by VECTrust is lesser compared to the other
competing approaches. The best drop in time from the second-best
competing solution was for RNASeq at 79%. This is because of the
VECTrust use of the PD for agility during identi�cation of the VEC
cluster where a newVM can be added faster. Note that the VECTrust
consistently outperforms* 2)ADBC since the latter estimates trust
of resources using a large history of work�ow execution, which is
not available in the voluntary edge cluster resources that can be
intermittent in availability, and subject to possible alternations in
con�gurations. In addition, * 2)ADBC can only assess and add an
already known node in a cluster without considering the trust of
the cluster itself, whereas VECTrust always adds nodes to trusted
clusters.

5.2.3 Trust based on Security In order to compare security based
on trusted execution between the competing algorithms, we use
the NIST guidelines [26] to evaluate the risk of scheduling work-
�ows. The NIST guidelines help us to quantitatively evaluate the
security of individual edge nodes on a scale of 1 to 10 in terms of
their vulnerabilities during work�ow execution in the VEC sys-
tem. Using these quantitative values, we correspondingly generate
security PDs for each cluster for di�erent baselines and compare
them to assess resulting di�erential security postures. To calculate
the security risk in the three competing model cases, a batch of 20
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Figure 7: KubeEdge testbed using a GCP VM instance acting as the CCMS, and GENI nodes acting as smaller remote edge clusters.
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Figure 8: (a) Performance comparison when work�ows are executed with di�erent batch sizes on the same VEC resources with: (i) VECTrust, (ii) KNN, and (iii)
Random selection algorithms; (b) Security risk comparison with a 20 work�ow batch that is used to execute on the VEC computing resources; the average security
risk is calculated at 5 minute time intervals; (c) Cluster utilization e�ciency comparison using standard deviation of resource utilization PDs for the scenarios: (i)
VECTrust, (ii) KNN (iii) Random selection (iv) and* 2)ADBC .

Table 3:Agility comparison between di�erent trust models for di�erent work-
�ows with new VM additions, averaged over 5 repetitions.

Work�ow VECTrust KNN Random U2Trust % Drop
FastQC(small)
time in secs.

125 144 175 150 86%

Alignment
(medium) time
in secs.

140 172 185 165 84%

RNASeq (large)
time in secs.

154 193 210 197 79%

work�ows are executed. When new work�ows are added with 5
minutes intervals to the VEC system, the security PD of the iden-
ti�ed VM for execution is considered as the security risk for the
competing baselines.

As shown in Figure 8(b), the average security risk for schedul-
ing with VECTrust is less compared to other approaches as the
VECTrust model assigns work�ows on relatively more secure VMs.
* 2)ADBC performs similar to KNN as both methods rely on �nding
the right node for work�ow execution and do not consider secu-
rity risks. In contrast, our VECTrust performs better than these
approaches as it searches for secure nodes based on their PD for
resource allocations of application work�ows.

5.2.4 Cluster Utilization E�iciency We also measure the e�ciency
of the e�ective cluster utilization by comparing the Dirichlet dis-
tributions of resource utilization periodically (i.e., at 10 minute
intervals) while a batch of 20 work�ows is added to the VEC system
at 5 minute intervals. As shown in Figure 8(c), the standard devia-
tion of the PDFs for VECTrust is lower and has minor variations
at all times measured. In contrast, the random selection algorithm
shows the maximum standard deviation and has relatively more
variance at all times. This is because the VECTrust model identi�es
better performing VEC edge nodes and schedules more work�ows
on those nodes repeatedly, thus reducing risks of failures and delays
in work�ow execution. For longer time of execution (⇡60 minutes),
we can see that the* 2)ADBC performs similar to VECTrust because
resource scheduling becomes critical when the number of tasks
increase in the queue and* 2)ADBC focuses on improving utilization
of the system resources using knapsack modeled scheduling.

We remark that* 2)ADBC will perform similar or better than VEC-
Trust in voluntary cloud environments where resources are larger
and static in nature with less chance of con�guration alteration.
Further, larger number of work�ows with very diverse resource
requirement can be better scheduled using knapsack algorithms
used in * 2)ADBC . However, VECTrust is a better solution for VEC
computing environments where resources are generally volatile
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in terms of their PACS factors (as shown in results in Table 3 and
Figures 8(a) - (c)).

6 Conclusion
In this paper, we proposed a trust modeling approach viz., VEC-
Trust for a new paradigm of voluntary edge cloud (VEC) computing
which is ideal for executing scienti�c work�ows that use machine
learning for model training in cloud nodes and model inference at
edge nodes. These work�ows leverage edge node resources that
are jointly orchestrated with cloud node resources using emerging
cluster management technologies such as KubeEdge. The proposed
VECTrust features a two-stage probabilistic model and de�nes trust
in terms of performance, agility, cost, and security (PACS) factors
for the execution of large work�ows that are commonly seen in sci-
enti�c application domains such as bioinformatics. Our KubeEdge
based testbed for VECTrust evaluation uses resources from GCP
and GENI platforms, wherein geographically distributed clusters
comprising of at least three VMs each were created to simulate a
VEC system. We show through our evaluation experiments that our
VECTrust model increases trust based on PACS factors in resource
allocation in a VEC system when compared to state-of-the-art ap-
proaches, when executing data/compute-intensive work�ows. VEC-
Trust also continuously improves resource balancing across a VEC
system by allocating resources that create a uniform probabilistic
distribution.

Future work can include dynamic capture of a given set of work-
�ows’ characteristics in terms of PACS factors for pertinent de-
velopment of trust models. Particularly, this will help in dynamic
machine learning-based optimization within VEC trust models to
cater to diverse work�ows requirements and, handle diverse job
arrival and cluster scheduling patterns in very large VEC systems.
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