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Abstract—The appropriate choice of mode combinations is
crucial to the accuracy of modal dispersion characterization
techniques. We compute quasi-orthogonal launch modes that
minimize the noise error in modal dispersion vector measurements
using the mode-dependent signal delay method.

I. INTRODUCTION

Space division multiplexing (SDM) and multimode or
multicore fibers (MMFs) can provide a significant link capacity
upgrade that can satisfy near-to-mid-term data traffic demands
[1]. SDM MMFs are designed to exhibit modal dispersion
(MD) comparable to polarization-mode dispersion (PMD) [2].
Several experimental methods have been proposed for MD
characterization. They are similar to PMD characterization
techniques for single-mode fibers (SMFs) [3]. For instance, MD
can be estimated by measuring the Jones transfer matrix of
MMFs using swept-wavelength interferometry [3],[4].
However, this requires a complex experimental setup based on
a coherent optical receiver [3],[4]. In contrast, the mode-
dependent signal delay method can be used to measure the MD
of SDM MMFs using a simpler experimental setup based on
direct detection [5], [6].

The MD of an N-mode MMF can be geometrically
represented by a vector (the so called MD vector) [7], [8] in a
generalized N2 — 1 dimensional Stokes space. The MD vector
can be defined in terms of the principal modes (PMs) and the
corresponding differential mode group delays (DMGDs) [7],
[8].

For the measurement of the N? — 1 elements of the MD vector
using the mode-dependent signal delay method, it is necessary
to launch pulses using mode combinations corresponding to
N? — 1 linearly-independent Stokes vectors [4], [5]. Recently,
we proposed optimal launch mode combinations that minimize
the noise error in the estimation of the MD vector [9], [10]. In
this paper, we revisit this topic proposing an alternative,
simplified optimization procedure for computing optimal launch
modes. More specifically, we will show that, by maximizing the
volume of the parallelotope formed in Stokes space by the unit
vectors representing the launch states of the mode-dependent
signal delay method, we simultaneously achieve the signal-to-
noise ratio (SNR) optimization of the MD vector.

II. MATHEMATICAL MODEL

In [10] we showed that, in order to minimize the noise error in
the estimation of the MD vector, ideally one should select an
orthonormal set of Stokes vectors as launch states. Then, the
errors of the MD vector components would be uncorrelated.
Due to the incomplete coverage of the Poincaré sphere
for N > 2, however, it is not possible to find a set of N2 — 1
orthonormal Stokes vectors that correspond to the launch pulses
[7], [8]. Therefore, we have to select a set of N2 — 1 oblique
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unit vectors that form a parallelotope in the generalized Stokes
space. We want to maximize the volume of the parallelotope
while restraining the vectors in the valid portion of the Poincaré
sphere. The volume of the parallelotope is given by
V = ./det[SST], (D
where we defined the auxiliary matrix S whose rows are the
unit vectors in Stokes space S, ..., Syz_, corresponding to the
launch modes and det(.) denotes the determinant of a matrix.
Due to the monotonicity of the logarithmic function, we adopt
the objective function Z £ InV instead of (1). We use the
gradient ascent method [11] for maximization of the objective
function E. Assume that p  denotes a column vector formed by
the coordinates of Sy, ..., Syz_; We start from an initial guess of
the parameter vector p, and take successive steps py in the
direction of the gradient of the objective function VEy until we
reach a local maximum
Pr+1 = P + Uik VE, (2)
where py is the adaptive step size. For the analytical calculation
of the components of VZ,, we use Jacobi’s formula for the
derivative of the determinant of a matrix to obtain
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where we defined the matrix A 2 S~1 and Tr[.] represents the
trace operator.
Suppose that only the m — th Stokes vector depends on p;.
Then, only one element of the main diagonal of the matrix
A 3S/0p; is non-zero
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In the following, we use two different gradient ascent
algorithms to compute optimal sets of N2 — 1 quasi-orthogonal
Stokes vectors §; that correspond to feasible combinations of
propagating modes.
In the first algorithm, we parametrize the j-th unit Jones
vector |s;) using 2N — 2 hyperspherical coordinates, i.e.,
Is;) = [cos(¢;1),sin(¢;1) cos(¢;,) 11, -
sin(¢j,) -+ sin(@jy_z) sin(P;y_q ) €¥N-1]"
From this expression, we calculate the corresponding Stokes vector
$; and its derivatives with respect to ¢, and 6;,,. Furthermore, we
define the vector p that contains the coordinates ¢;,, and 6;,, of all
N? — 1 Stokes vector. Then, we perform unconstrained optimization
ina(N? —1) X (2N — 2) real space using the method of gradient
ascent.
In the second algorithm, we parametrize the j-th Jones vector

|s;) = (sjv)i:]:l using 2N real parameters Xxj, = iR(sj,,) and
Vv = S(sjv). Now, the parameter vector p contains the
coordinates x;;, and yj, of all N 2 — 1 Stokes vectors. The
optimization takes place ina (N? — 1) x 2N real space, where
we impose N2 — 1 unit length constraints (sj|sj) =1,j=
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1,..,N?—1. We use the modified update rule pgs; =
proj[px + uxVEy], where proj(.) denotes the gradient portion
tangential to the constraints (projected gradient ascent).

III. RESULTS AND DISCUSSION

Fig. 1 shows that the volume of the parallelotope decreases
compared to the volume of the unit hypercube as the number of
MMF modes increases. Different initial conditions are used for
the gradient ascent algorithm: the blue, green, and red curves
correspond to starting vectors proposed by Yang and Nolan [6],
vectors selected from mutually unbiased bases (MUBs) [12],
and symmetric, informationally-complete, positive operator
valued measure (SIC-POVM) [13] vectors, respectively. SIC-
POVM vectors produce the best optimization results due to
their equal pairwise angular separations in Stokes space. This
symmetry helps the optimization algorithm to converge rapidly
to a better set of quasi-orthogonal vectors. For a 100-mode
optical fiber, the volume reduction penalty is 9.7 dB.
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Fig. 1 Parallelotope volume decrease compared to the volume of the

unit hypercube vs. the number of modes. (Initial conditions: Red: SIC-

POVM vectors; Green: Vectors from MUBs; Blue: Yang and Nolan’s

vectors. Methods: Points: unconstrained optimization; Lines:

projected gradient ascent algorithm).
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One way to quantify the obliqueness of a vector set is by
calculating the dot product of each pair of vectors in the set
(Gram matrix). Fig. 2 (a), (b) show examples of density plots
of the absolute value of the Gram matrix before and after
optimization. In this example, we use vectors selected from
MUBs as initial conditions. Optimization yields nearly
mutually perpendicular vectors, i.e., their Gram matrix is
approximately a unit matrix.
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(a)
Fig. 2 Density plots of the Gram matrix for N = 7 using vectors from
MUBE: as initial conditions. (a) Before and (b) after optimization.

(b)
Fig. 3 shows the number of iterations required for

convergence by the unconstrained gradient ascent algorithm vs.
the number of fiber modes.
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Fig. 3 Comparison of required iterations to achieve convergence vs.
the number of modes using SIC-POVM vectors as initial conditions

(Condition: € = 1072).

Finally, Fig. 4 shows that using gradient ascent in order to
maximize the volume of the parallelotope leads to a set of
Stokes vectors that nearly, though not fully, minimize the
noise-based cost function described in [9] , [10]. Therefore,
volume maximization constitutes a practical alternative to that
noise minimization. This approach offers a slight gain in
computational efficiency for large N’s.
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Fig. 4 SNR penalty (dB) vs number of fiber modes for SIC POVM
vectors as an initial condition (Symbols: Blue: set of vectors given by
volume maximization; Red: given by noise minimization).
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IV. SUMMARY

We computed quasi-orthogonal launch mode combinations to
be used in the mode-dependent signal delay method for MD
measurements. As an orthonormality metric, we used the
volume of the parallelotope formed by the Stokes vectors
corresponding to the launch states. Volume optimization
translates into a nearly optimal SNR in the MD vector
estimation.
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