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Abstract—The appropriate choice of mode combinations is 

crucial to the accuracy of modal dispersion characterization 

techniques. We compute quasi-orthogonal launch modes that 

minimize the noise error in modal dispersion vector measurements 

using the mode-dependent signal delay method. 

I. INTRODUCTION  

Space division multiplexing (SDM) and multimode or 

multicore fibers (MMFs) can provide a significant link capacity 

upgrade that can satisfy near-to-mid-term data traffic demands 

[1]. SDM MMFs are designed to exhibit modal dispersion 

(MD) comparable to polarization-mode dispersion (PMD) [2]. 

Several experimental methods have been proposed for MD 

characterization. They are similar to PMD characterization 

techniques for single-mode fibers (SMFs) [3]. For instance, MD 

can be estimated by measuring the Jones transfer matrix of 

MMFs using swept-wavelength interferometry [3],[4]. 

However, this requires a complex experimental setup based on 

a coherent optical receiver [3],[4]. In contrast, the mode-

dependent signal delay method can be used to measure the MD 

of SDM MMFs using a simpler experimental setup based on 

direct detection [5], [6].  

   The MD of an N-mode MMF can be geometrically 

represented by a vector (the so called MD vector) [7], [8] in a 

generalized 𝑁2 − 1 dimensional Stokes space. The MD vector 

can be defined in terms of the principal modes (PMs) and the 

corresponding differential mode group delays (DMGDs) [7], 

[8].  

   For the measurement of the 𝑁2 − 1 elements of the MD vector 

using the mode-dependent signal delay method, it is necessary 

to launch pulses using mode combinations corresponding to 

𝑁2 − 1 linearly-independent Stokes vectors [4], [5]. Recently, 

we proposed optimal launch mode combinations that minimize 

the noise error in the estimation of the MD vector [9], [10]. In 

this paper, we revisit this topic proposing an alternative, 

simplified optimization procedure for computing optimal launch 

modes. More specifically, we will show that, by maximizing the 

volume of the parallelotope formed in Stokes space by the unit 

vectors representing the launch states of the mode-dependent 

signal delay method, we simultaneously achieve the signal-to-

noise ratio (SNR) optimization of the MD vector. 

II. MATHEMATICAL MODEL  

In [10] we showed that, in order to minimize the noise error in 

the estimation of the MD vector, ideally one should select an 

orthonormal set of Stokes vectors as launch states. Then, the 

errors of the MD vector components would be uncorrelated. 

   Due to the incomplete coverage of the Poincaré sphere 

for N > 2, however, it is not possible to find a set of 𝑁2 − 1  
orthonormal Stokes vectors that correspond to the launch pulses 

[7], [8]. Therefore, we have to select a set of  𝑁2 − 1   oblique 

unit vectors that form a parallelotope in the generalized Stokes 

space. We want to maximize the volume of the parallelotope 

while restraining the vectors in the valid portion of the Poincaré 

sphere. The volume of the parallelotope is given by 

𝑉 = √det [𝐒𝐒𝑇], (1) 

where we defined the auxiliary matrix 𝐒 whose rows are the 

unit vectors in Stokes space ŝ1, … , ŝ𝑁2−1, corresponding to the 

launch modes  and det(. ) denotes the determinant of a matrix.   

   Due to the monotonicity of the logarithmic function, we adopt 

the objective function Ξ ≜ lnV  instead of (1). We use the 

gradient ascent method [11] for maximization of the objective 

function Ξ. Assume that 𝐩  denotes a column vector formed by 

the coordinates of ŝ1, … , ŝ𝑁2−1. We start from an initial guess of 

the parameter vector 𝐩0  and take successive steps 𝐩k  in the 

direction of the gradient of the objective function ∇Ξk  until we 

reach a local maximum 

𝐩𝑘+1 = 𝐩𝑘 + 𝜇𝑘∇Ξ𝑘  , (2) 

where 𝜇k is the adaptive step size. For the analytical calculation 

of the components of ∇Ξ𝑘 , we use Jacobi’s formula for the 

derivative of the determinant of a matrix to obtain  
𝜕Ξ

𝜕𝑝𝑖

= Tr [𝐀
∂𝐒

𝜕𝑝𝑖

]  , (3) 

where we defined the matrix 𝐀 ≜ 𝐒−1 and Tr[. ] represents the 

trace operator. 

   Suppose that only the 𝑚 − th Stokes vector depends on 𝑝i. 

Then, only one element of the main diagonal of the matrix 

𝐀 ∂𝐒 ∂𝑝i⁄  is non-zero 
∂Ξ

𝜕𝑝𝑖
=

𝜕𝑠̂𝑚
𝑇

𝜕𝑝𝑖
∙ 𝐀𝑚 , 𝑖 = 1, … , 𝑀 (4) 

    In the following, we use two different gradient ascent 

algorithms to compute optimal sets of     𝑁2 − 1 quasi-orthogonal 

Stokes vectors 𝑠̂𝑖  that correspond to feasible combinations of 

propagating modes.  

   In the first algorithm, we parametrize the j-th unit Jones 

vector |𝑠𝑗〉 using 2𝑁 − 2 hyperspherical coordinates, i.e.,  

|𝑠𝑗〉 = [cos(𝜙𝑗1) , sin(𝜙𝑗1) cos(𝜙𝑗2) ei𝜃𝑗1 , …, 

                          sin(𝜙𝑗1) ⋯ sin(𝜙𝑗𝑁−2) sin(𝜙𝑗𝑁−1) ei𝜃𝑗𝑁−1]T 

   From this expression, we calculate the corresponding Stokes vector 

𝑠̂𝑗  and its derivatives with respect to 𝜙𝑗𝑣  and 𝜃𝑗𝑣 . Furthermore, we 

define the vector 𝐩 that contains the coordinates 𝜙𝑗𝑣  and 𝜃𝑗𝑣  of all 

𝑁2 − 1 Stokes vector. Then, we perform unconstrained optimization 

in a (𝑁2 − 1) × (2𝑁 − 2) real space using the method of gradient 

ascent.  

   In the second algorithm, we parametrize the j-th Jones vector  

|𝑠𝑗〉 = (𝑠𝑗𝑣)
𝑣=1

𝑁
 using 2N real parameters  𝑥𝑗𝑣 = ℜ(𝑠𝑗𝑣)  and 

𝑦𝑗𝑣 = ℑ(𝑠𝑗𝑣). Now, the parameter vector 𝐩  contains the 

coordinates 𝑥𝑗𝑣  and 𝑦𝑗𝑣 of all 𝑁2 − 1  Stokes vectors . The 

optimization takes place in a (𝑁2 − 1) × 2𝑁 real space, where 

we impose 𝑁2 − 1  unit length constraints 〈𝑠𝑗|𝑠𝑗〉 = 1, 𝑗 =
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1, … , 𝑁2 − 1. We use the modified update rule 𝐩𝑘+1 =
proj[𝐩𝑘 + 𝜇𝑘∇𝛯𝑘], where proj(.) denotes the gradient portion 

tangential to the constraints (projected gradient ascent). 

III. RESULTS AND DISCUSSION 

Fig. 1 shows that the volume of the parallelotope decreases 

compared to the volume of the unit hypercube as the number of 

MMF modes increases. Different initial conditions are used for 

the gradient ascent algorithm: the blue, green, and red curves 

correspond to starting vectors proposed by Yang and Nolan [6], 

vectors selected from mutually unbiased bases (MUBs) [12], 

and symmetric, informationally-complete, positive operator 

valued measure (SIC-POVM) [13] vectors, respectively. SIC-

POVM vectors produce the best optimization results due to 

their equal pairwise angular separations in Stokes space. This 

symmetry helps the optimization algorithm to converge rapidly 

to a better set of quasi-orthogonal vectors. For a 100-mode 

optical fiber, the volume reduction penalty is 9.7 dB. 

 
Fig. 1 Parallelotope volume decrease compared to the volume of the 

unit hypercube vs. the number of modes. (Initial conditions: Red: SIC-

POVM vectors; Green: Vectors from MUBs; Blue: Yang and Nolan’s 

vectors. Methods: Points: unconstrained optimization; Lines: 

projected gradient ascent algorithm). 

   One way to quantify the obliqueness of a vector set is by 

calculating the dot product of each pair of vectors in the set 

(Gram matrix). Fig. 2 (a), (b) show examples of density plots 

of the absolute value of the Gram matrix before and after 

optimization. In this example, we use vectors selected from 

MUBs as initial conditions. Optimization yields nearly 

mutually perpendicular vectors, i.e., their Gram matrix is 

approximately a unit matrix. 

  
(a) (b) 

Fig. 2 Density plots of the Gram matrix for 𝑁 = 7 using vectors from 

MUBs as initial conditions. (a) Before and (b) after optimization. 

   Fig. 3 shows the number of iterations required for 

convergence by the unconstrained gradient ascent algorithm vs. 

the number of fiber modes. 

 
Fig. 3 Comparison of required iterations to achieve convergence vs. 

the number of modes using SIC-POVM vectors as initial conditions 

(Condition: 𝜖𝜉 = 10−2 ). 

Finally, Fig. 4 shows that using gradient ascent in order to 

maximize the volume of the parallelotope leads to a set of 

Stokes vectors that nearly, though not fully, minimize the 

noise-based cost function described in [9] , [10]. Therefore, 

volume maximization constitutes a practical alternative to that 

noise minimization. This approach offers a slight gain in 

computational efficiency for large N’s. 

 
Fig. 4 SNR penalty (dB) vs number of fiber modes for SIC POVM 

vectors as an initial condition (Symbols: Blue: set of vectors given by 

volume maximization; Red: given by noise minimization). 

IV. SUMMARY 

We computed quasi-orthogonal launch mode combinations to 

be used in the mode-dependent signal delay method for MD 

measurements. As an orthonormality metric, we used the 

volume of the parallelotope formed by the Stokes vectors 

corresponding to the launch states. Volume optimization 

translates into a nearly optimal SNR in the MD vector 

estimation. 
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