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Abstract  53 

Plants are subject to tradeoffs among growth strategies such that adaptations for optimal growth 54 

in one condition can preclude optimal growth in another. Thus, we predicted that a plant species 55 

that responds positively to one global change treatment would be less likely than average to 56 

respond positively to another treatment, particularly for pairs of treatments that favor distinct 57 

traits. We examined plant species abundances in 39 global change experiments manipulating two 58 

or more of the following: CO2, nitrogen, phosphorus, water, temperature, or disturbance. Overall, 59 

the directional response of a species to one treatment was 13% more likely than expected to 60 

oppose its response to a another single-factor treatment. This tendency was detectable across the 61 

global dataset but held little predictive power for individual treatment combinations or within 62 

individual experiments. While tradeoffs in the ability to respond to different global change 63 

treatments exert discernible global effects, other forces obscure their influence in local 64 

communities. 65 

 66 
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irrigation, nitrogen, resource strategies, warming 68 

 69 

  70 

mailto:adam.langley@villanova.edu


 

 4 

Introduction 71 

Plants face multiple simultaneous environmental and climatic changes that will intensify 72 

in the future, and predicting plant response remains a great challenge for ecologists. Researchers 73 

have tried to predict plant responses to global change based on phylogeny (Edwards et al. 2007) 74 

and traits (Lavorel & Garnier 2002), but success has been idiosyncratic (Kimball et al. 2016). 75 

Thousands of ecosystem manipulations have tested plant responses in the field, but each 76 

experiment can manipulate only a limited number of factors, most commonly just one or two 77 

(Song et al. 2019). Finding consistent patterns in plant species responses to different global 78 

change drivers would enhance our ability to leverage existing experimental results and 79 

extrapolate to other drivers in other ecosystems.  80 

Plants are subject to tradeoffs among strategies that may determine how they respond to 81 

environmental change (Grime 1977; Chapin et al. 1987; Tilman 1990; Viola et al. 2010; Díaz et 82 

al. 2016) which could lend predictability to plant responses. Because optimizing strategies for 83 

responding to one environmental condition often compromises optimizing for another, plants 84 

may exhibit differential abilities to respond to different global change drivers (Craine 2009). For 85 

example, in late successional grasslands, a plant species may either compete well for nitrogen 86 

(N) or for light (Tilman 1990) but not both owing to differences in allocation required to 87 

optimize acquisition of each resource. Patterns suggestive of tradeoffs have been observed in 88 

individual global change experiments. For example, in a brackish marsh, C3 sedges responded 89 

positively to elevated carbon dioxide (CO2) but negatively to added N, while the opposite was 90 

true for C4 grasses owing to tradeoffs in plant physiology and allocation, (White et al. 2012) 91 

compounded by competition between grasses and sedges (Langley & Megonigal 2010). 92 

Therefore, the species responses to each treatment, elevated CO2 and N, tended to be inversely 93 
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related. Similarly, plants may specialize for optimal growth at a particular level of one resource. 94 

For instance, optimizing growth at high water availability may incur a cost in terms of drought-95 

tolerance (Luo et al. 2008). If these tradeoffs play a strong role in determining species responses, 96 

we would expect species responses to different global change treatments to oppose one another 97 

(blue circles in Fig. 1) for combinations of treatments that favor distinctive, or mutually 98 

exclusive, traits. 99 

Alternatively, plant species may not exhibit tradeoffs in response to global change 100 

treatments. For instance, some plants exhibit plasticity depending on environmental conditions 101 

(Agrawal 2001; White et al. 2012) that allows them to adapt to any change in resource 102 

availability, environmental conditions, or combination thereof (Tilman 1982). Or, as many 103 

global change treatments increase resource availability, species adapted to high rates of resource 104 

acquisition may be expected to respond positively to any resource addition regardless of 105 

tradeoffs among acquisition strategies (Chapin et al. 1987). Species that elude the constraints of 106 

tradeoffs and perform well under a wide variety of environmental conditions have been referred 107 

to as “Hutchinsonian demons” (Kneitel & Chase 2004; Cadotte et al. 2006), or “superspecies” 108 

(sensu Tilman, 1982). Such “demonic” species would be expected to increase in abundance in 109 

response to multiple environmental changes, while displacing other species that are specifically 110 

attuned to certain conditions (Mozdzer & Megonigal 2012). Instead of being strictly shaped by 111 

tradeoffs in resource acquisition or tolerance, plant communities may contain a subset of species 112 

that respond positively to most or all global change treatments and other species that respond 113 

negatively to any kind of perturbation. In this case we would observe a positive relationship 114 

between species responses to different global change treatments (red traingles in Fig. 1). 115 

The degree to which species’ responses to different treatments correspond may also 116 

depend on the specific combination of treatments. In global change studies, many common 117 
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treatments increase resource availability (CO2, nutrients, water), while drought reduces resource 118 

availability, and warming alters conditions and has equivocal influences on resource availability. 119 

Plant species may respond consistently to resource additions but respond differently to other 120 

treatment types such as disturbances. We may expect that addition of soil resources (N, P, water) 121 

would favor the same plant species, as there is some overlap in the mechanisms to acquire those 122 

different soil resources. Synthesizing across studies that examine a variety of treatment 123 

combinations will help elucidate where consistent patterns in plant response may occur.  124 

Our goal was to answer the questions: (1) Do individual species responses to one global 125 

change treatment relate to their responses to a second treatment? (2) Does the relationship 126 

depend on the particular treatment combination? To answer these questions, we used plant 127 

species abundance data from 39 in-situ experiments that exposed ecosystems to two or more 128 

single-factor global change treatments in separate plots. We examined the relationships between 129 

species abundance responses to 18 different treatment combinations. If plant species responses to 130 

different drivers tend to be inversely related, then tradeoffs in the ability of a plant species to 131 

tolerate or take advantage of different global change treatments should shape future community 132 

composition. Alternatively, if species responses to different treatments are positively related, 133 

relatively few species that respond strongly to many global change treatments will tend to 134 

dominate future communities and govern ecosystem responses to global change. 135 

 136 

Methods 137 

Datasets for this analysis were obtained from the CoRRE (Community Responses to 138 

Resource Experiments) database (Komatsu et al. 2019); corredata.weebly.com). The database 139 

includes communities dominated by herbaceous species, as tree species abundance responses are 140 

extremely difficult to extrapolate from decade-scale experiments (Franklin et al. 2016). For this 141 
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analysis, we selected studies from the database that individually manipulated at least two global 142 

change drivers for three or more years. We included eight treatments that were commonly 143 

imposed with other treatments in the same experiment: elevated CO2, nitrogen addition, 144 

phosphorus addition, multiple nutrient addition, water addition, drought, warming, and 145 

disturbance. To create a disturbance category with replication robust enough to include in our 146 

analyses, we lumped burning, mowing, and clipping on the basis that each treatment removes 147 

plant biomass, though we acknowledge that these disturbances differ in many other ways. Our 148 

analysis included only single-factor treatments (e.g. warming or nitrogen) from experiments 149 

manipulating multiple factors and did not include combined treatments (e.g. treatments 150 

manipulating both warming and nitrogen). 151 

 152 

Treatment effects 153 

For each experiment, we estimated mean abundance across all years for each species in 154 

the control (C) and treatment (T) plots from raw abundances for each plot in each treatment year. 155 

Methods of assessing abundance varied among studies including percent cover, point intercept, 156 

and biomass. To assess treatment effects across sites we estimated an effect size, E, as (T-157 

C)/(T+C) where T is the mean species abundance in the treatment and C is that of the control. 158 

Metrics with only the control abundance in the denominator, such as log response ratio or 159 

percent simulation, are incalculable for many rare species. In contrast, E allows us to assess 160 

treatment effects when species are gained or lost due to treatments (i.e., where species are absent 161 

in the treatment or control plots). It ranges from -1 to 1, where negative values represent reduced 162 

abundance in the treatment compared to control, and positive the opposite (for distribution of E 163 

by treatment see Appendix S1: Fig. S1). For species that occur in both treatment and control 164 

plots, E is perfectly correlated with other treatment effect metrics (Spearman’s rho=1 for log 165 
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response ratio and percent stimulation; Appendix S1: Fig. S2) and our results are very similar to 166 

those using log response ratio (see Supplement).     167 

 In many (32%) cases, species occurred in one treatment group (T or C) but not the 168 

others. These results could arise from treatment effects on plant presence or from stochasticity in 169 

distribution of rare species. To account for both possibilities, we ran the analyses on two 170 

different versions of the dataset. We first ran the analyses with the full dataset to include 171 

potentially important treatment effects on rare species. Then, we ran the analyses with a 172 

restricted dataset excluding species that were absent from either all control plots or all treatment 173 

plots for each treatment type at a site.  174 

We categorized species in terms of their responses to the two treatments (Fig. 1). Species 175 

with positive responses to one treatment but negative responses to another fell into Quadrants II 176 

and IV (mixed responders), suggesting tradeoffs. Species with positive responses to both 177 

treatments (dual winners) or negative responses to both treatments (dual losers) fell into 178 

Quadrants I and III, respectively. We calculated the proportion of species in each group (dual 179 

winners, dual losers and mixed) for each pair of treatments in each study. One species in one 180 

experiment could account for more than one datapoint, if the experiment applied more than two 181 

treatments. Because most of our results rely on the number of species falling into the different 182 

quadrants, results are identical between log response ratio and E when omitting species absent 183 

from either all treatment or all control plots.  184 

  185 

Null Model 186 

         All methods of assessing treatment effects compare response variables in treatment 187 

groups to that in the controls. Because each treatment effect from different treatments within a 188 

given experiment is referenced to the same control value, comparing treatment effects to one 189 
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another incurs some degree of mathematical dependence. For instance, if we estimate E (or any 190 

other effect size metric) for an experiment that manipulates both warming and N addition, the 191 

same control value is used in the calculation of both treatment effects. As a result, variability 192 

across control values tends to yield a positive relationship between the two treatment effects. To 193 

account for this mathematical dependency, we constructed a null model to determine if our 194 

estimated relationships between treatment effects differed from what one would expect with the 195 

same numerical properties of the dataset but with no relationship between treatment effects. To 196 

do this, we randomly reshuffled the treatment assignments among all control and treatment plots 197 

within each experiment. For instance, if in a given experiment, plot 1 was a control, plot 2 was 198 

fertilized and plot 3 was warmed, we randomized such that one permutation of the null dataset 199 

may have plot 1 as warmed, 2 as fertilized and 3 as control such that any real relationship among 200 

treatment effects would be eliminated. We generated 999 pemutations of these null datatsets and 201 

calculated species abundances, effect sizes, and the proportion of species falling into each 202 

quadrant (Fig. 1) for each permutation as described above for the actual data. 203 

 204 

Analysis of species responses to pairs of treatments 205 

         We assessed whether the distribution of plant species across the four possible quadrants 206 

of response (Fig. 1) differed from expected distributions when there is no relationship between 207 

treatment effects (i.e., from the simulated communities). A positive difference between the 208 

observed proportion and the mean proportion in the simulated communities (observed – expected 209 

proportion >0) indicates that a study had more species in a quadrant than would be expected if 210 

there were no relationship among treatment effects.  211 

To test whether the proportion differed from the expectation for individual treatment 212 

combinations in individual studies, we compared the distribution of permuted proportions to the 213 
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observed proportions of mixed responders and calculated a two-tailed p-value based on whether 214 

the observed value was more extreme than 95% of the 999 permuted values. To test whether the 215 

observed proportion differed from the expectation across all studies and all treatment 216 

combinations, we conducted a paired-sample t-test across all 78 experiment-treatment 217 

combinations.  218 

 219 

Results 220 

We observed more dual winners (Quadrant I) and dual losers (Quadrant III) than mixed 221 

responders (Quadrants II and IV) for the simulated data (Fig. 2) owing to the mathematical 222 

dependency of the treatment effects. When accounting for this pattern in the simulated data, the 223 

number of mixed responders in the actual data was 13% greater than expected (966 species 224 

observed, 854 expected). This greater-than-expected proportion of species responding positively 225 

to one treatment but negatively to another was statistically significant across all studies and all 226 

treatment combinations (Fig. 3; t=4.82, df=77, p<0.001; Appendix S1: Fig S4). The number of 227 

dual winners was 14% lower than expected (t=-4.36, df=77, p<0.001), and the number of dual 228 

losers matched expectations (t=1.15, df=77, p=0.3). Sub-setting the data to exclude species that 229 

were absent in treatment or control plots did not change the results (mixed responders were 13% 230 

greater than expected and dual winners were 15% lower than expected, Appendix S1: Fig S3). 231 

There tended to be more mixed responders than expected across most treatment 232 

combinations (blue patches in Fig. 4 and Appendix S1: Fig. S5), again suggestive of tradeoffs in 233 

species’ ability to respond. Of the 11 treatment combinations that had enough replicates to do t-234 

tests, only two individual treatment combinations were significant: N x Irrigation and N x P. We 235 

detected a far higher proportion than expected in one treatment combination where we expected 236 

strong tradeoffs (N x CO2), but this was not significant (p=0.3). We detected fewer mixed 237 



 

 11 

responders than expected for one treatment combination (CO2 x Temperature; pink patch in Fig. 238 

4) but this was also nonsignificant (p=0.1).  239 

We also observed more mixed responders than expected for 56 of 78 treatment 240 

combinations in individual studies (Appendix S1: Fig. S6); 49 when omitting species absent 241 

from either all treatment or all control plots, (Appendix S1: Fig S7). However, we found no 242 

significant deviations from the proportions expected in individual studies, though we did find 243 

marginally significant trends (0.05<p<0.10) in seven cases, all in the same direction as the 244 

overall trend (Appendix S1: Fig. S6).  245 

 246 

Discussion 247 

We addressed the question, do individual species responses to one global change 248 

treatment relate to their responses to a second treatment? After accounting for mathematical 249 

dependency among treatment effects across the entire dataset, we found that species exhibited 250 

more mixed responses (negative to one driver and positive to the other, Quadrants II and IV from 251 

Fig. 1) to different treatments than would be expected if there were no relationship among 252 

treatment responses. The excess of mixed responders was afforded by a deficit of dual-winners, 253 

not dual-losers. Lower occurrence of dual winners than expected indicates that “demonic” 254 

species (responding positively to multiple drivers) should be relatively less common compared to 255 

other categories of response. These patterns are consistent with tradeoffs influencing plant 256 

responses to different global change drivers, especially for plants that respond positively to at 257 

least one treatment. However, we found little evidence of a strong influence of tradeoffs for 258 

individual treatment combinations or within individual experiments. While tradeoffs may have a 259 

detectable influence in shaping plant responses on average across many global change 260 

experiments, they do not confer explanatory power in the responses of individual communities.  261 
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 Extending from this first result, we asked if the nature of the relationship among 262 

treatment responses depended on the particular treatments imposed. Pooling across experiments 263 

that tested the same two drivers, we found two combinations exhibited strong evidence of 264 

tradeoffs, N x Irrigation and N x P (Fig. 4). These are two treatment combinations for which we 265 

did not expect strong tradeoffs as some of the same plant strategies (greater allocation to 266 

absorptive rooting and mycorrhizal surface area) should afford enhanced ability to acquire water 267 

and nutrients. Still, at a finer scale, tradeoffs can exist among specializations for N, P, or water 268 

acquisition. For instance, deeper rooting may favor water acquisition while shallower roots 269 

should enhance N acquisition (Kulmatiski et al. 2020). Moreover, mycorrhizal status may reflect 270 

a specialty for P vs. N acquisition (Read & Perez-Moreno 2003). These tradeoffs could 271 

counteract and override a simpler above vs. belowground allocation tradeoff. We observed 272 

evidence for tradeoffs in the CO2 x N treatment combination, as expected, but had low cross-273 

experiment replication (Fig. 4). More perplexing was the lack of stronger negative relationships 274 

within certain opposing treatment combinations such as drought vs. irrigation (Fig. 4). One 275 

would expect the plant species that take advantage of added water to differ in growth response 276 

from those that can tolerate drought. Perhaps variation along other dimensions of plant strategy 277 

supersede the expected tradeoff (Viola et al. 2010). 278 

Although the existence of tradeoffs between resource acquisition and tolerance of 279 

conditions has a solid foundation in plant physiology and is broadly accepted in plant ecology 280 

(Chapin et al. 1987; Bazzaz & Bazzaz 1996; Tilman 2000; Craine 2009), these tradeoffs are not 281 

easily demonstrable experimentally. For instance, optimizing xylem vessel elements for high 282 

transpiration rates, which are associated with rapid growth, should render plants more susceptible 283 

to cavitation during drought (Tyree & Ewers 1991). This physiological constraint should 284 

engender tradeoffs between growth rate in wet conditions and ability to tolerate drought. 285 
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However, comparison of grasses revealed no evidence for a tradeoff (Fernández & Reynolds 286 

2000). In fact, the relationship between xylem safety and efficiency appears weak across species 287 

globally (Gleason et al. 2016). Such tradeoffs that arise from physical and biological constraints 288 

must act on some level but do not strongly influence plant response to global change treatments.  289 

Resource tradeoffs, which likely exist, may be obscured by other types of tradeoffs or 290 

other experimental noise. Patterns of community structure across a global scale result from 291 

multidimensional axes of competing tradeoffs (Hutchinson 1951), wherein the dominant axes 292 

likely involve large-scale strategies of dispersal and perhaps not smaller-scale strategies of 293 

resource acquisition (Kneitel and Chase 2004). The generally weak, largely resource-based 294 

tradeoffs uncovered herein may give way to larger-scale tradeoffs such as competition-295 

colonization tradeoffs (Cadotte et al. 2006), growth-defense tradeoffs (Lind et al. 2013), 296 

competition-defense tradeoffs (Viola et al. 2010), or tradeoffs between different types of 297 

colonization (Yu & Wilson 2001) that may not be manifested on plot-scale experiments. 298 

Furthermore, patterns in plant abundance arising from tradeoffs in resource acquisition or 299 

condition tolerance may be negated by other forces in ecosystems. Revisiting the marsh example 300 

described in the introduction, our analysis detected the largest deviation from expected patterns 301 

and showed evidence of tradeoffs at the SERC site, though it was individually nonsignificant 302 

(Fig. S6). This marsh has low herbivore pressure and does not exhibit long-term patterns of plant 303 

succession, obviating non-resource tradeoffs such as the colonization-competition tradeoff or the 304 

growth-defense tradeoff that may hold great importance elsewhere. Therefore, resource tradeoffs 305 

should be strong here, and early evidence indicated they were (Langley & Megonigal 2010). 306 

However, this site is subject to more frequent flooding from accelerating rates of sea level rise 307 

that strongly controls plant community composition (Langley & Hungate 2014). Tradeoffs 308 

among plant resource acquisition strategies were manifested by the few dominant species 309 
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responding very differently to the addition of different resources, but ultimately those tradeoffs 310 

have been overwhelmed by an unmanipulated factor, increased flooding. This example from a 311 

tractably depauperate community illustrates how resource tradeoffs can hold importance under 312 

certain situations, or over short periods of time, but may not shape communities in the longer 313 

term, particularly when subject to strong change in other background variables. Indeed strong 314 

background change has been observed across many of these same studies (Langley et al. 2018), 315 

and can obscure the influence of underlying resource tradeoffs.  316 

 Deciphering evidence of tradeoffs is complicated by the mathematical dependence 317 

between treatment effects (Appendix S1: Fig. S8), because all treatment responses are compared 318 

to the same control values to estimate treatment effects. One control plot that has low abundance 319 

of a species, perhaps just by chance, will yield greater treatment effects for the treatment plots 320 

that are referenced to it. Had we not accounted for this inherent covariation with the null model, 321 

we would have concluded that treatment effects were all positively related (Appendix S1: Fig. 322 

S8, Table S3). Studies that have not accounted for mathematical dependence of treatment effects 323 

(e.g., Viola et al. 2010; Lind et al. 2013) should be reanalyzed by comparing results to null 324 

expectations.  325 

Our study suggests that resource tradeoffs shape plant responses to global change 326 

treatments but exert a generally weak influence within individual sites, even for pairs of 327 

treatments expected to favor different species. Specialization in resource acquisition strategies 328 

among species is not as important as we expected for determining plant responses to different 329 

global change treatments. Continued increases of resource availability, expected with widespread 330 

global change drivers such as CO2 enrichment and N deposition, should further weaken tradeoffs 331 

that do exist. For instance, atmospheric CO2 has already reached higher concentrations than 332 

Earth has experienced for millions of years. Further increases that treatments impose will have 333 
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diminishing effects, even for relatively CO2-sensitive plants. Perhaps preindustrial resource 334 

levels, which were likely more strongly limiting, would yield stronger resource tradeoffs. 335 

Nonetheless, these findings help place resource- and condition-driven tradeoffs into the context 336 

of other forces acting to control plant community shifts in the context of current global change.  337 
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Figure captions 417 

Figure 1. Illustration of potential species responses to two different global change treatments. 418 

Each species (symbol) falls into one quadrant according to how it responds to the treatments: 419 

positively to both (Quadrant I), negatively to both (Quadrant III), or positively to one and 420 

negatively to the other (Quadrants II and IV, are pooled as “mixed responders”).  421 

Figure 2. Species responses to pairs of treatments. Each point represents a species in one 422 

treatment combination in one experiment. Point size indicates the species’ relative abundance in 423 

the control plots. Points are transparent, and high densities of symbols darken for visibility of 424 

overlapping points. Text indicates the number of species in that quadrant across all studies and 425 

treatment combinations, both observed (O) and expected (E) from the simulated data.  426 

Figure 3. Difference in proportion of mixed responders (species in Quadrants II and IV; see Fig. 427 

1) between the observed and simulated communities, for all 78 studies in our dataset. 428 

Observations right of the dashed line at zero indicate studies and treatment combinations in 429 

which more than the expected proportion of species responded positively to one treatment and 430 

negatively to the other. The solid vertical line indicates the mean difference across all 78 studies.  431 

Figure 4. The proportion of mixed responders (species increasing in one treatment and 432 

decreasing in another) for key treatment combinations, above what was observed in the 433 

simulated communities. Blue cells indicate higher than expected proportions of mixed 434 

responders for that treatment combination, suggestive of tradeoffs. Grey cells indicate treatment 435 

combinations where the distribution of species did not differ from the distribution observed in 436 

the simulated communities. Number of studies for each treatment combination are in 437 

parentheses. T-test results (p<0.1 or NS if nonsignificant) are also shown in the cells if there 438 

were >2 studies. NA indicates that combination lacked enough studies to analyze. 439 
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Fig. 3 454 
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Fig. 4 459 
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