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Abstract— We consider a single carrier communication system
subjected to multi-jammer interference, and study optimal power
control in the framework of game theory. The Nash and Stackel-
berg equilibria are derived in closed form. Conditions involving
the background noise variance and the transmission cost are
established for determining whether the equilibria are unique.
It is proven that in the case of multiple equilibria, the user has
the same payoff at each equilibrium, which reflects the stability
of the communication. Also, consistent with the literature on
single-jammer scenarios, it is shown that when the jammers are
in a Stackelberg game, although they act as followers, they gain
in payoffs as compared to the Nash game.

Index Terms— Multi-jammer, equilibrium strategies.

I. INTRODUCTION

S WIRELESS networks are vulnerable to jamming

attacks, anti-jamming strategies are of considerable inter-
est. Jamming problems are multi-objective problems, dealing
with different agents (users and jammers), with each agent
having its own objective [1]. Non-cooperative game the-
ory (GT) is a natural framework to study such problems
and capture different agents’ behaviors [1]. According to the
Nash game (NG) framework, the agents choose their strategies
simultaneously to maximize their payoffs, while according to
the Stackelberg game (SG), the agents choose their strategies
sequentially.

A classical power control (PC) anti-jamming game with
the signal to interference plus noise ratio (SINR) as user
communication utility (UCU) - referred to here as a PC-SINR
game - was studied in [2], [3], where a jammer acting as an
agent in an NG was referred to as a regular-type jammer,
while a jammer acting as a follower in an SG was referred to
as smart-type. The latter term reflects the jammer’s ability to
quickly learn the user’s transmission strategy and accordingly
adjust its own. Several works have addressed the PC-SINR
game with different types of uncertainty, such as uncertainty
on the type of jammer strategy (NG or SG) [4], the channel
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fading gain and agent transmission cost [5], or the presence
of observation noise [6]. The aforementioned works [3]—[6]
involve only two agents, i.e., one user and one jammer. The
multi-agent scenario has also been considered. A multi-user
relay-assisted PC problem with one jammer was studied in [7].
A multi-user PC problem with one jammer was investigated
in [8]. In [9], single user communication supported by relay
nodes facing a single jammer was studied. A PC game with
one jammer acting as the leader and several users acting as
followers was studied in [10]. The special cases of a single user
and two jammers NG and a multi-jammer NG with latency as
UCU were studied in [11] and [12], respectively.

In this letter we generalize the single jammer PC-SINR
problem [2], [3] to the multi-jammer case under both the NG
and SG frameworks. In addition to the novelty of our analysis
of that scenario, we prove that under SG, the jammers gain in
payoffs as compared to NG. This warrants the characterization
of SG jammers as smart-type, a term that was initially coined
in the single-user single-jammer scenario [2], [3]. The main
contributions of this letter are as follows: (1) We derive
the Nash equilibrium (NE) and Stackelberg equilibrium (SE)
in closed form in a multi-jammer PC-SINR game; (2) We
establish the condition on the network parameters for the
equilibrium to be unique; (3) We prove that when multiple
equilibria arise, the user has the same payoff for each of them
which reflects the stability of the communication; (4) We prove
that, although in the SG the jammers act as followers they gain
in payoffs as compared to the NG. This supports the use of
the term “smart-type jammer” in the multi-jammer scenario.

II. COMMUNICATION MODEL

We consider a network with a user that needs to com-
municate with a receiver in the presence of K jammers.
Each jammer intends to degrade the user’s communication by
generating interference. The strategy of the user is to adjust
its transmission power P, with P &€ [0,?], and for the k-th
jammer, to adjust its jamming power .J;,, with J,, € [0, Jy], for
k€ Dg ={1,...,K}. Here, P and J}, are the total power
budgets of the user and the k-th jammer, respectively. Also,
let J = (J1,...,Jk) ! be the vector of jammers’ strategies,
arranged by the jammer’s index. The SINR at the receiver
equals

SINR(P,J) = hP/(N+ > giJi) = hP/N(J), (1)
k€D
where h is the source-destination fading channel gain, g, is the

jammer-destination channel gain (or interference channel gain)

I'We use bold fonts to denote vectors.
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associated with the k-th jammer, N is the background noise
variance, and A/(J) is the total noise power, which equals

NI EN+ DY g

k€EDk

)

As commonly assumed in jamming games literature [2]—[4],
[8], [9], [11], [12], the network parameters (channel gains,
power costs, noise variance) are assumed to be known. Such
knowledge can be available in a stationary network environ-
ment and an agents’ allocation, which allows the estimation
of such parameters based on past observations.

We should note that even with that knowledge, each agent
still has uncertainty about the SINR, since it depends on the
choice of power used by the other agents.

The user payoff is taken to be the difference between the
user’s SINR and cost of transmission power, i.e.,

vy (P, J) = SINR(P,J) — Cy P, 3)
where Cy is the transmission cost per unit of power applied by
the user. The user and k-th jammer (k € D) as its adversary
are antagonists with respect to SINR which is reflected via
opposite signs of SINR into the payoff to the k-th jammer as
follows:

UJ’]C(P, (Jk,,],k)) = —SINR(P, J)—C‘]’ka, (4)
where C', is the jamming cost per unit of jamming power,
and J_j = (Jl, ey Jk—h Jk+1, ey JK)

A. Auxiliary Assumptions and Notations

Let us denote by J"= (JF, ..., Jk) with k € Dy, the
vector of the jammers’ strategies corresponding to boundary
feasible values, i.e.,

for j € Dg.

j‘) Sk_17
Jfé{J / )

0, k<j

_Thus, J' = 0 £ (0,...
(J1,e oy JK)-

Let Vi be the sum of background noise and the interference
generated by the jammers’ strategies J* !, i.e.,

,0) and JET = J £

k
Ne 2N = N+ Tigi. ©)
i=1

It can be seen that N = Ny < ... < Ng < Ngi1 £ .
Finally, let us, without loss of generality, index the jammers
in increasing order based on the ratio

Cr = Cyy/(hgr), @)

i.e.,

Co20<Ci<...<Ck <Cky1 & . ®)
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ITI. NASH EQUILIBRIUM
Each of the agents wants to maximize its payoff. For a
non-zero sum game, (P, J) is an NE [1] if and only if for all
(P, J) it holds that
v (P, J) < vy (PJ),
vrk(Py (Jks I k) < 05k(P; (Jk, J k), k € Dk

©)
(10)

Let us denote this non-zero sum game with known network
parameters by I'x.

Proposition 1: In game U there is at least one NE.

Proof: By (3), vy(P,J) is linear in P, while, by (4),
vy (P, J) is concave in Ji, and the result follows [1], since
each set of feasibly strategies is compact. [ ]

By (9) and (10), (P, J) is NE if and only if each strategy
is the best response to the others, i.e., they are solution of the
best response equations, i.e.,

P = argmax{vy(P,J) : P € [0, P]}, (11)
Jy = argmax{vy (P, (Jx, J—x)) : Jr € [0, J]}, k € Dk.
(12)

Note that for a fixed P > 0, (10) can be viewed as defining
an NE in a sub-game involving only jammers as agents, where

each jammer wants to maximize its payoff. Let us denote this
sub-game by I';(P).

A. Solution of the Sub-Game T ;(P)

In this section we find an NE of sub-game I' ;(P) and the
total noise power associated with the NE.

Proposition 2: For a fixed P > 0, sub-game T j(P) has an
unique NE, and it is equal to J(P) = (J1(P),...,Jk(P)),
where

(a) if

N2 Cioy <P < N2 ,Ch k€ Dgy, (13)
then
J(P)2J*, (14)
(b) if
NE Cp < P < NiCy, k € D, (15)
then
jja j < k — 1)
1 [P .
J](P)é _< —__Nk—1>a j:k7 ]EDK7
9k Ch
0 j>k+1,
(16)

where in both (a) and (b), k, to be denoted by k(P), is uniquely
defined based on (13) and (15).

Remark 1: We note that formulas (13)-(16) identify the
Jjammers that implement boundary feasible strategies.

Proof of Proposition 2: By (4), we have that

Ovgk(P, (Je,J k)  hgpP
DJn = NI

—Cji. A7)
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By (7) and (17), the best response Ji to J_j is given by

- P
T NI =7, SA\/=

P
& =N, N0 <[ <Ny,

[ P
) Cr —N( )|Jk—07

where N'(J)|j=2 = N + 32,4 9505 + grz.
Let J be an NE. By (8) and (18), there is a k such that

Jp=

(18)

Jj, j<k-1,
J=Jor J; = €[0,Tk), j=k, for j € Dg.
0 j>k+1

19)

Substituting the first equation of (19) into (18) implies that
such J* is an NE if and only if (13) holds, and (a) follows.
Substituting the second equation of (19) into (18) implies
that (19) is an NE if and only if (15) holds, and J = J(P)
with J(P) given by (16). This implies (b). [ |

In the following corollary we calculate the total noise power
caused by the jammers implementing the NE strategies J(P)
and establish its properties.

Corollary 1: (a) The total noise power in the network
generated by the jammers using the NE strategies, J(P), is
N P)—1; Pel P)>
NP =4 o T )
P/Cﬁ(p), Pe I,,i(p),
where
Iy & [Ni_y Cr—1, N7 1 C), 1)
Tk £ [Ng_lék,Ngék), ke DK; (22)

(b) The intervals Ij, and I, have the following properties:

I, UT, = [N}, Cr_1,N2Cy), k € Di, (23)
Iy = [N2Ck,00) and Tre i1 =0, (24)
UM (I; UT;) = Ty £ [0, N2Cy); (25)

(c) N(J(P)) is continuous piece-wise increasing function
from Ny for P € [0,C1Ng) to Nk for P> N% Ck.

Proof: Note that I}, coincides with the set of user’s power
levels given by (13), while I, with the set of power levels (15).
Then, Proposition 2 implies (a). By (21) and (22), (b) follows.
Finally, (c) follows from (a), (b) and Proposition 2. [ |

B. Equilibrium Strategies in Closed Form and Uniqueness
Conditions

Theorem 1: In game Ty, NE is given by (P, J(P)), where
P is unique except in case (b), where a continuum of user’s
equilibrium strategies arises. Moreover, P = min{ﬁ,ﬁ} and
P is given as follows:

(a) if h/Cy < Ny then P =0,
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Fig. 1. (a) N(J(P)) and (b) V(P) as functions of P.

(b) if h/Cy = Ni_1 then P is any power level from
[le—lckflang—lck]’

(c) lka_l < h/CU < Ny, then ]5 = hQUk/CIQJ.
Note that (b) and (c) define k uniquely. Also, in case (b) of
multiple equilibria (with P > N. g_lﬁk,l) the user’s payoff,
vy, 1s equal to zero for any equilibria (see Eqn. (3)).

Proof: By (3), vy (P, J) is linear in P. Thus, P = BRy (J)
is the best response to J if and only if

0, h/Cy < N(J),
P=BRy(J)=<{€[0,P], h/Cy =N(J), (26)
ﬁ, h/Cy > N(J)

By (11) and (12), substituting J = J(P) into (26),
we obtain the fixed point equation P = BRy(J(P)) to
find user’s equilibrium strategy. By Proposition 2, Corollary 1
and (26), all solutions of this fixed point equation are given
by (a)-(c), and the result follows. [ |

To illustrate the continuous, piece-wise increasing structure
of function N (J(P)) let us consider a three-jammer network
with ¢ = (0.2,1,2), h = 0.8, N = 2, C; = (0.1,1,3)
and J = (1,1,1). This specific network will be used in
the remaining of this letter to illustrate the obtained results.
To cover all feasible P, we here additionally assume that
the user’s power resource is unlimited. Then, N(J(P)) is
constant within intervals Dy = [0,2.5], Dy = [3.02,6.05],
Ds = [12.8,19.2] and D, = [50.7,00). If Cy = 0.25 then
Cy = h/N(J(P)) for P € Dy. Each P € D5 represents the
user’s equilibrium strategy, with all of them having the same
payoft, equal to zero (see (3) and (26)). If besides its basic
goal to maximize its payoff the user has a secondary goal
to maximize its SINR, the user has to employ the maximal
feasible equilibrium strategy in Do, i.e., P = 6.05. Similarly,
we can consider the remaining intervals, where N (J(P)) is
constant.

IV. STACKELBERG EQUILIBRIUM

Suppose that between the user and the jammers there is a
hierarchical relation, i.e., the user is the leader and the jammers
are the followers. The SE of such scenario are found as the
solution of a two-level optimization problem with the user at
the top level and the jammers at the low level. The problem
can be solved by backward induction.

In the first step of the two-level game, in response to user’s
strategy P, the jammers implement their equilibrium strategies
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J(P) in the sub-game T';(P). In the second step of the
two-level game, the user, taking into account such jammers’
behaviour, selects the optimal P to maximize the user’s payoff
as follows:

max{V(P): P € [0, P]}, (27)
where
V(P) £ vy (P,J(P)) = hP/N(J(P)) - CuP. (28)
Then, (P, J(P)) is SE. Let us denote this SG by I's.
Proposition 3: In game I'g there is at least one SE.
Proof: The result follows from Corollary 1. [ ]

A. Auxiliary Notations and Results

By Proposition 2 and Corollary 1, the user’s payoff V (P)
can be written in closed form as follows:

V(P) = {KN(P)(P% P € Lyp), (29)
W) (P), P € lyp),
where
Wi (P) £ (h/Ny-1 = Cu)P, (30)
Wi(P) £ h\/CLP — CyP for k € Dg. (31)

Thus, V(P) is linear in I, py and concave in I ,;(p).

In the following proposition we establish monotonuous
properties for Wy (P) and W (P).

Proposition 4:  Function Wy (P) and W (P) have the
following monotonuous properties:

(a) If Ny—1 < h/Cy then Wy (P) increases for P > 0,
if Ny—1 = h/Cy then Wi (P) is constant for P > 0, and if
Ni—1 > h/Cy then Wi (P) decreases for P > 0;

(b) W i(P) is concave and achieves the maximum at P =
Py, where

Py, £ h*C/(4CP); 32)

(c) if h/(2Cy) < Ni_1 then Wi(P) decreases in Iy, if
Ni_1 < h/(2Cy) < Ny, then W (P) gets maximum in I}, at
P = Py, and if N, < h/(2Cy) then W (P) increases in I}.

Proof: By (30), Wi, (P) is linear in P and (a) follows.

By (31), WrP) — \/C, /(2/P) — Cy, and (b) follows.
By (22), P, € Tj if and only if Ny_1 < h/(2Cy) < Ny.
This jointly with (b) imply (c). [ ]
For Ny < h/Cy, let us denote by k, such index that W, (P)

gets its maximum either at inner point of I or at its left
boundary. By (6) and Proposition 4(c), k, is such that

Nk*fl < h/(QCU) < Nk*. (33)

For Ny < h/Cy let us denote by ke such index that
Wi, (P) is non-decreasing in [0, 00) for k < ko and Wj,(P) is
decreasing in [0, o0) for k > k. By (6) and Proposition 4(b),
such k, is defined as follows:

N}C.,l Sh/CU<Nk.. (34)
By (6), (33) and (34), we have that
ki < ke. 35)

IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 9, SEPTEMBER 2021

In the following proposition we find P € [0, 00), at which
V(P) is maximum.

Proposition 5: (a) If k, = ke then V (P) attains its maxi-
mum at P = Py .

(b) If ky < ke then V(P) attains its maximum within finite
set of power levels S, where

SE2(NZ Cr:k=k.+1,...

Kol (36)

Proof: Proposition 4, with Z;, given by (25), implies that

V(P) is increasing on Zj, U I, if N, < h/(2Cy). (37)

This, jointly with Proposition 4, (29) and Eqns.(33)-(35)
1mply (a). To get (b), we also has to take into account that
NZ 1Ck is the upper bound of interval I, and, thus, by
Proposition 4 and (34), V(P) attains a local maximum within
I at P = N2 | Cy, and (b) follows. ]

Let us illustrate the piece-wise linear structure of payoff
V(P) for the specific three-jammer network considered in
Section III-A with Cy € {0.1,0.2}. Fig. 1(b) shows that
V(P) can have several local maxima (Proposition 4 and
Proposition 5). The global maximum depends on Cy and
P. For example, let P € {40,60}. For C;y = 0.2, in both
cases the maximum is achieved at P = 6.05. Meanwhile, for
Cy = 0.1 the maximum is achieved at P = 30 and P = 60
for P = 40 and P = 60, respectively.

B. Stackelberg Equilibrium in Closed Form

In this section we derive SE in closed form and establish a
condition for uniqueness.

Theorem 2: In game T's, SE is given by (P, J(P)), where
P is unique except in two particular cases (b) and (d) given
below. In particular,

(a) if h/Cy < Ng then P =0,

(b) if h/Cy = Ny then P is any power level from
[07 min{N{?Ulvﬁ}]’

(c) if h/Cy > Noy and ky = ke then P = min{P, Py, },

(d) if h/Cuy > Ny and ks < ke then P = argmax{V (P) :

P € P}, where P = ([0, P] N S) U {P} is the finite set of
power levels.
PROOF: Since N(J(P)) > Ny, by (28), V(P) =
hP/N( ( )) v P < (h/N()—CU)P Thus, if h/N() < Cy,
then, V(P) < 0 = V(0) for P > 0, and (a) follows.
If h/Ng = Cly, then, by Corollary 1, V(P) = (h/Ny —
Cy)P = 0 for P < C; Ng and V(P) < 0 otherwise, and
(b) follows. (c) and (d) follow from Proposition 5 and (37).

C. Jammers as Followers Benefit in Payoffs

By the definition of NE and SE we have that the user acting
as the leader in SG benefits in payoff as compared to the user
in NG. In the following proposition, we prove that jammers
acting as followers in SG also benefit in payoffs as compared
with jammers in NG.

Proposition 6: Let (Py,JN) and (Ps,Jg) be equilibrium
in 'y and Ug, respectively. Then (a) Ps < Py, (b) Js < J N,
(c) ’UJJg(PN, Jn) < 1}J71§(P57 Js) for k € Dg.
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Fig. 2. (a) User’s equilibrium strategies, (b) user’s equilibrium payoffs,
(c) jammers’ equilibrium strategies and (d) jammers’ equilibrium payoffs as
functions of Cy;.

Proof: By Theorem 1 and Theorem 2, we have that:
(i) Pv = Pg = 0 for h/CU < Ny, (ii) for h/CU > Ny
and k, = k,, since C/(4C%) < C/C?, then Ps < Py
and (iii) for h/Cy > Ny and k. < ke, since the Py belongs
to be inner of I, while Ps belongs to left boundary of I,
then Ps < Py. This implies (a). By Proposition 2, J(P)
is non-decreasing in P, and, so, (a) implies (b). By (17),
gkhP/N(J(P)) = N(J(P))Cyy for Jp € (0,Jy). Since
the right side A/ (J(P)) is increasing in P, then its left side
gehP/N (J(P)) is also increasing in P. Thus, the k-th jam-
mer payoff vy (P, J(P)) = —hP/N(J(P)) — CyiJi(P),
k € Dk, is non-increasing in P as the sum of two non-
increasing functions, and (c) follows from (a). [ |

V. DISCUSSION OF THE RESULTS

Let us illustrate our results for the three-jammer network
of Section III-B and the corresponding single-jammer game,
ie., K = 1, with P = 10. Via Theorem 1 and Theorem 2,
the user is inactive in both games, I'yy and I'g, for large
transmission cost, Cy > 1(= h/Ny) (see Fig. 2). At the
threshold Cyy = h/Ny, multiple user’s equilibria arise for
both games, which are reflected by a jump at user’s strategy.
Namely, each (P,0) with P € [0,C1NZ] is an equilibrium
corresponding to a unique user’s payoff equal to zero and the
k-th jammer payoff equal to —PCY. In that case, the user’s
payoff is insensitive to the user’s equilibrium strategy, while
the jammers’ payoffs are sensitive. A decrease in Cy; leads to
an increase in user’s as well as jammers’ strategies. It leads

to an increase in the user’s payoff and in a decrease in the
jammers payoffs. In SE, each agent applies smaller power as
compared to NE, while the payoff of each agent is greater or
equal to that in NE. This result supports the term smart-type
jammer in this multi-jammer scenario; the term was originally
coined for the jammer acting as follower in single jammer
PC-SINR game [2]. Finally, note that an increase in the
number of jammers leads to a decrease in the user’s payoff
and an increase in jammers’ payoffs, since each jammer might
apply smaller jamming power to achieve the tradeoff between
a decrease in the SINR at the receiver and involved jamming
cost.

VI. CONCLUSION

We have considered a scenario in which a user commu-
nicates with a receiver in the presence of any number of
jammers as a power control game. We have derived all Nash
(regular-type jammers) and Stackelberg (smart-type jammers)
equilibria in closed form. We have shown that in the case of
multiple equilibria, the user has the same payoff for each equi-
librium, which indicates the stability of the suggested solution.
We have also shown that, smart-type jammers, although they
act as followers, gain in payoffs as compared to regular-type
jammers.
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