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ABSTRACT

The paper considers a multi-access channel scenario,
where several users communicate with a base station,
and investigates power allocation is a game-theoretic
framework. The communication metric is the inverse
signal-to-interference-plus-noise ratio (SINR) at the base
station, which, for low SINR reflects communication de-
lay. Each user faces a trade-off between the latency of
the signal received by the base station, and the price
that the user pays for using a specific amount of power
that causes interference in the system. The equilibrium
is derived in closed form and its uniqueness is proven. It
is shown that the resulting strategy allows each user to
maintain uninterrupted communication. For compari-
son purposes, we construct a specific three user network
scenario, and study the SINR and throughput metrics.
In that setting, we show that, unlike the latency metric,
SINR and throughput may give rise to multiple equilib-
ria, which may cause destabilization of communication.

1. INTRODUCTION

In recent years there has been increased interest in wire-
less networks in which mobile devices (nodes, users) act
in a selfish manner, i.e., they independently select their
resource allocation strategies to optimize their individ-
ual performance objectives. As such resource allocation
and power control problems are multi-objective, they
have been studied under a game theoretic framework [1].
In [2-4], game theory has been used to study a fad-
ing multi-access channel (MAC) scenario, and in [5-8]
to study an orthogonal frequency division multiplexing
(OFDM) scenario. In all those works [2-8], the user com-
munication utility (UCU) is throughput.

In this paper, different from prior works, we study the
multi-user non-cooperative power control transmission
problem with communication latency as UCU. Latency
is an important metric in many applications, including
video streaming, and high speed communications. La-
tency as UCU was considered in [9-11] to address an anti-
jamming power control scenario. However, the math-
ematical treatment of the anti-jamming power control
problem is significantly different than that of the multi
user non-cooperative power control problem considered
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here. In the aforementioned works the latency was taken
to be equal to the inverse SINR [10,11], or to an age-of-
information metric, modeled by an affine function of the
inverse SINR, [9].

According to Little’s Law of queueing theory, in a
stable system, the average number of packets in a queue
equals the product of the packet arrival rate and the av-
erage time packets spent in the queue (latency). Thus,
in steady state, for a fixed queue length, the latency
is proportional to the inverse arrival rate, or to the in-
verse throughput. At low SINR, the throughput can be
approximated by the SINR, therefore, in that case, in
steady state and for a fixed queue length, the latency is
proportional to 1/SINR [10].

In this paper, based on the above justification, we
model latency by the inverse SINR. We consider a flat-
fading MAC scenario in a single cell network, and pro-
pose closed-form, optimal power control strategies of
users in a game-theoretical framework using the latency
metric. Each user faces a trade-off between the latency
of the signal received by the base station, and the power
that the user uses (user cost), which causes interference
in the system. The equilibrium is derived in closed form
via a fixed point algorithm, whose convergence is proven.
Further, it is shown that the latency metric yields a
unique equilibrium for any set of values for network
parameters, and provides each user with uninterrupted
communication. As a comparison, for a three user net-
work, it is shown that the SINR and throughput metrics
may give rise to multiple equilibria, which may lead
to destabilization of the communication. An intuitive
explanation of this important difference is as follows. In
each case, finding the Nash equilibrium (NE) is reduced
to a system of equation/inequalities defined based on
whether the equilibrium is achieved with inner/boundary
strategies of a set of feasible strategies. In general, such
system may have multiple solutions. For SINR and
throughput metrics, these equation/inequalities are lin-
ear while in latency they are non-linear, and its this
non-linearity that makes the solution unique.
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2. COMMUNICATION MODEL

We consider a time-slotted flat-fading MAC in a single
cell network, in which n mobile terminals (users) are si-
multaneously sending data to a base station. Let the
strategy of user ¢ be the user’s transmit power level
P;, with P; € [0,P;] and let (P;, P_;) be a strategy
profile, a set consisting of one strategy for each user,
where P_; denotes the strategies of all the users ex-
cept user i. The SINR of user i at the base station is
SINRZ(PZ,P_Z) = Azhlpl/(N + Zj;ﬁi thj), Where hl is the
path gain of user 4 to the base station; \; is the spreading
gain, and can be defined as W/r;, with W denoting the
available bandwidth, and r; the transmission rate [12];
and N is the variance of the additive white Gaussian
noise (AWGN), which causes degradation of the received
signal at the base station. Note that, in contrast to [4],
we introduce an upper bound on the user power, i.e.,
{P;}, to make scenario more realistic. Of course, the
unlimited power resource case is the limit of the case
considered here.

Latency is here modeled by the inverse SINR [10].
The user faces a trade-off between a reduction in latency
of the signal received by the base station and the price
that user pays for using a specific amount of power that
causes interference in the system [4]. The latter price is
a linear function of the power level of the user, i.e., C; P;
for user i, with C; > 0 being the price per unit power
level. Then, the payoff to the user i is defined as

Vi(P,, P_;) = —1/SINR;(P;, P_;) — CiPi. (1)

Let us introduce the following notation to avoid bulkiness
in the formulas: Pi = hiPi7 ﬁl & hzﬁz and C; = Cz/hz
Then, in this notations, payoff (1) can be presented as
follows:

Vi(pisp-i) = —(N + ij)/()\ipi) —cipi- (2)

J#i
We assume that each of the users has complete informa-
tion about all the network parameters {c;, \;,p;} and N.

We look for a NE. Recall that p = (p1,...,p,) is an NE
if and only if the following inequalities hold:

‘/7,(]5172)—7,) S‘/l(plap—l)vlzlaana (3)

for any p; € [0,p;] and j =1,...,n.
Each of the users wants to maximize its payoff. Denote
this non-zero sum game by I'y.

Finally, note that, by (3), p is a NE if and only if each
of these strategies is the best response to the others, i.e.,

bi = argmax{‘/i(piap—i) HYZBS [Oaﬁi]}7 1= 17 sy N (4)

Proposition 1 In the game 'y, there exists at least one
NE.
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PRrROOF: By (2), we have that = —2(N +

>2i05)/(Nipd) < 0. So, Vi(pi,p—i) is concave in Di-
Thus, by [1], there exists at least one NE. [

2*Vi(pi,p—i)
Op?

3. NASH EQUILIBRIUM

In this section we prove uniqueness of the equilibrium
and find it in closed form. First be provide a lemma on
the root of an auxiliary equation. In Theorem 1, that
root enters the total power expression of each user.

Lemma 1 (a) The following fized point equation has
the unique positive root

where
F() 2 Y min {£:(0), 5.} (

and

fi(x) & (V144N +2) —1)/(2e:\).  (7)

(b) The root of Eqn. (5) can be found via the fized point

algorithm. Namely,
g1 = F(x;) fori=0,1,... and o = 0.

This sequence {x;} converges to the unique fized
point x,.

(c) Egn. (5) is equivalent to
Br.) =1, ®)

where ®(x) = F(x)/z. Since ®(z) is non-increasing
on x this root also can be found via the bisection
method.

PrOOF: Note that

dle(;) =1/(\/1+4c:M(N +2)) >0 9)
and
d2df;(2x) = —2¢;Mi/V/ (1 +4e\(N +2))3 < 0. (10)

Thus, f;(x) is strictly increasing and concave. Also,

N+ < P; + \iciP;
N +2 >, + hicip-.

min {f;(z),p;} = {fi(m)’ (11)

79

Then, F(x) given by (6) has the following properties:
(p-i) F(z) is concave as the sum of concave functions
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and (p-ii) F'(z) is positive and strictly increasing in [0, Z
where T £ max{p, + p; max;(\;c;) — N, 0}, and F(z) is
constant for z > Z. Since the left side of Eqn.(5) is equal
to zero for x and linearly increasing for x > 0, by (p-i)
and (p-ii) we have that Eqn.(5) has the unique root, and
(a) follows.

(b) By (5), (p-i) and (p-ii), we have that F'(z) > x for
x € [0,x,). This jointly with (p-i) and (p-ii) imply that
0=u1x9 < F(zg) =21 < F(z1) = 22 < F(22) < .... Thus,
x; converges as increasing and upper bounded sequence.
Moreover, it converges to the fixed point z, since Eqn.
(5) has the unique root.

(c) First note that for @ > 0 and b > 0 we have that

(14 (b+/2)a)* —1—a(b+2z) = a(b+a(b+x/2)%) > 0.

Then,

dp(z) 1+ (b+z/2)a—/1+alb+a)
do x2y/1+a(b+ )

with ¢(z) = (v/1+a(b+z) —1)/z.
Thus, ¢(x) is decreasing. Assigning a = 4¢;\; and
b= N, this jointly with (6) and (7) imply the result. W

<0. (12)

In the following theorem, via solving the best re-
sponse equations we prove the uniqueness of equilibrium
as well as design it in closed form.

Theorem 1 In game 'y, the NE p is unique. Also,

where x is uniquely given by (5) or, equivalently, by (8).

Proor: We find an NE as solution of best response
By (2), we have that 78%(5;’_””') = (N +

¢;. Thus, for a fixed p_;, the best re-

equations.

Zj;éipj)/(/\ipzz) -

sponse p; is

N+ P N4> uPi <3,
. AiCi ’ AiCi -

pi =
N+ Zj;éi p;  _
—Y—— > D;-
)\ici

(14)

'z

Thus, if N+z < p;+\;c;p7, where x = Z?:1 pj, it holds
that A\;c;p? + p; = N + . Then it holds that p; = fi(x),
with f;(x) given by (7). If N +x > p; + \ic;p7, then
pi = D;. This and (11) imply that p; is given by (13).
Summarizing (13) implies (5) with F'(z) given by (6),
and the result follows from Lemma 1. [ |

The complexity of designing the NE of the game I'f,,
by Lemma 1(c) and Theorem 1, is k = logy(pn/e), where
€ is the tolerance of the bisection algorithm.

The following proposition establishes the monotonous
property of the users’ strategies and the corresponding
latency.

Proposition 2 In game Ty, the equilibrium strategies
as well as the corresponding latency are mon-decreasing
as the background noise variance, N, increases.

PRrROOF: Note that F(x), given by (7), is non-decreasing
on N. Thus, by (p-i), (p-ii) and (5), x, is increasing.
Therefore, by (7) and (13), the equilibrium strategies
are also increasing. By (14), pic; = (N+32,,;;)/(Aip:)
while p; < p;. Thus, the latency is proportional to user’s
equilibrium strategy, and the result follows . ]

Similarly to Proposition 2 we can prove that, as the
number of users increases, the applied power by the users
increases and so does the latency of their communication.

4. A COMPARISON SCENARIO USING
SINR AND THROUGHPUT METRICS

In the previous section we proved that the latency met-
ric, independent of the network parameters, always gives
rise to a unique equilibrium. In this section we present
an example showing that in contrast to the latency met-
ric, the SINR and throughput metrics may give rise to
multiple equilibria.

For SINR as UCU, the payoff to the user i equals

W (p’m ) - )\zpz N+ ij

J#i

— CiPi, (15)

and for throughput as UCU the payoff to the user i equals
W (pisp—i) =In(1+ Xipi /(N + > p;)) — eipi. (16)
J#i

Let us consider a network consisting of three users, and
for simplicity, set each user’s power level price to coincide
with the spreading gain, i.e., ¢; = \;. Let us also assume
that the background noise is not high, i.e., N < 1, which
will motivate at least some of the users to be active. Also,
let the power resources be unlimited, i.e., p; = co.

Let us denoted by I's and 't the games with payoffs
as given in (15) and (16), respectively. In the following
two propositions, the NE of I'g and I'7 are derived under
the considered scenario.

Proposition 3 In game T's there are the following
seven equilibria: (i) (00,0,0), (0,00,0), (0,0,00), (i)
(N,N,0), (N,0,N), (NW 0) and (iii) (N/2,N/2,N/2)
where N =1 — N.

PROOF: Since W} (p;, p_;) is linear in p;, there is at least
one NE. Moreover, since ¢; = A; and p; = oo, the best
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response of user i to a fixed p_; is given as follows:

0, 1<N+ij,

i
pi = { AW 1:N+ija (17)
J#i
oo, 1>N+ ij.
J#i

Since N < 1, by (17), p = (0,0,0) cannot be a NE. Also,
if p; = oo then, by (17), p; = 0 for j # i, and (i) follows.
The rest two cases where either two components of p are
positive, or three components of p are positive can be
considered similarly. [ ]

Proposition 4 In the game I's there are the following
equilibria: (i) if \; <1 then p withp; = N/\; andp; =0
for j #i, (i) if \i <1 and A\; <1 then p; = N X;/(1 —
AiNj), pj = N Xi/(1= X)), and py, = 0 where k & {i,j}
and Ay, = 1 — A\, (30) if Ny < 1 for all i or \; > 1 for
all i then py, = N X\i\j/D where {i, j, k} = {1,2,3} and
275_775]{ withDé)\lAgAg—)\l—)\g—)\g—F?.

ProOF: Since W (p;,p_;) is concave in p;, there is at
least one NE. Moreover, since ¢; = A; and p; = 0o, the

best response p; of the user ¢ to a fixed p_; is given as
follows:

0, 1<N+)\ipi+zpj7

J#i
p; = {20 1=N+Xipi + ZP;‘, (18)
i
00, 1>N+)\ipi+ij.
i

By (18), p; # oo for any ¢. Let p; > 0 and p; = 0 for
j #i. Then, by (18), 1 = N + A;p;. So, p; = (L —N)/\;.
Substituting p with such p; and p; = 0 for j # 7 into (18)
implies that such pisa NEif 1 < N+ (1— N)/\;. Since
N < 1, this implies (i). The remaining cases where either
two components of p are positive or three components of
p are positive can be considered similarly. ]

5. RESULTS

In this section we illustrate the difference in the users’
equilibrium strategies and associated UCU depending on
the type of metric used.

We consider a network of three users, with spreading
gains A\ = (3,4,5), equal power level prices C = (1,1,1)
and equal power budget p = (1,1,1) (Fig. 1). Then, in
game I'r (UCU is throughput), the NE is given as the
fixed point of (p1,p2,p3) = ([1—(N+p2+p3)/ A1)+, [1-
(N+p1+ps)/Aa]4, [1=(N+p1+p2)/As]+). In game I's
(UCU is SINR), the NE is: (1,1,1) for N <1, (0,1,1)
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Fig. 1. (a) Users’ strategies, (b) latency in game T'z,, (c) throughout
in game I'r and (d) SINR in I's.

for 1 < N <3,(0,0,1) for 3 < N <5 and (0,0,0) for
5 < N. Thus, an increase in background noise leads to a
decrease in the users’ equilibrium strategies in games I'g
and I'r. In game I'f, the users’ strategies increase as the
background noise increases. In games I'g and I'r, all the
users are non-active for N > 5, which results into infinite
latency. In I'y, all the users are active although latency
increases with an increase in N. We should note that
although game I'g gives the simplest strategies for the
users (either transmit or not), the corresponding SINRs
are in general discontinuous functions in the network pa-
rameters. This makes equilibrium strategies of I'g less
fair for the users as compared to those given by 't and
I'z, where throughput and latency vary continuously.

6. CONCLUSIONS

A fading MAC problem where several users communi-
cate with an receiver has been investigated in a game-
theoretical formulation. Equilibrium strategies have
been found in closed form for the inverse SINR com-
munication metric to reflect communication delay. It
has been established that the latency metric returns
a unique equilibrium and this equilibrium allows each
user uninterrupted communication for any network pa-
rameters. Thus, a decision made on such metric allows
for stability in communication. In contrast, SINR and
throughput communication metrics, reflecting commu-
nication reliability, depending on network parameters
may give rise to multiple equilibria, potentially causing
destabilization of communication.
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