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Abstract
Bone healing has been traditionally described as a four-phase process: inflammatory response, soft callus formation, hard 
callus development, and remodeling. The remodeling phase has been largely neglected in most numerical mechanoregulation 
models of fracture repair in favor of capturing early healing using a pre-defined callus domain. However, in vivo evidence 
suggests that remodeling occurs concurrently with repair and causes changes in cortical bone adjacent to callus that are 
typically neglected in numerical models of bone healing. The objective of this study was to use image processing techniques 
to quantify this early-stage remodeling in ovine osteotomies. To accomplish this, we developed a numerical method for radi-
odensity profilometry with optimization-based curve fitting to mathematically model the bone density gradients in the radial 
direction across the cortical wall and callus. After assessing data from 26 sheep, we defined a dimensionless density fitting 
function that revealed significant remodeling occurring in the cortical wall adjacent to callus during early healing, a 23% 
average reduction in density compared to intact. This fitting function is robust for modeling radial density gradients in both 
intact bone and fracture repair scenarios and can capture a wide variety of the healing responses. The fitting function can also 
be scaled easily for comparison to numerical model predictions and may be useful for validating future mechanoregulatory 
models of coupled fracture repair and remodeling.
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1  Introduction

The fracture healing process is commonly described as a 
four-phase concept: inflammation phase, soft callus forma-
tion phase, hard callus formation phase, and bone remod-
eling phase (Claes et al. 2012; Pivonka and Dunstan 2012; 
Einhorn and Gerstenfeld 2015; Ghiasi et al. 2017). Numeri-
cal simulations have been used to predict mechanobiologi-
cal processes in the regions of fracture healing. Numerous 
finite element (FE) models have been developed to analyze 
local mechanical responses to varying loading conditions 

(Ament and Hofer 2000; Claes et al. 2002; Lacroix and 
Prendergast 2002; Shefelbine et al. 2005; Simon et al. 2011; 
Steiner et al. 2013, 2014; Wilson et al. 2017; Wang and 
Yang 2018; Pietsch et al. 2018; Ghiasi et al. 2019; Engel-
hardt et al. 2021). Such models have been used to study dif-
ferent factors that impact the healing process, for example 
the mechanics of the fixation hardware, or outcomes fol-
lowing inverse dynamization (Wehner et al. 2014; Wilson 
et al. 2017). Some studies have also emphasized that the 
initial phase of healing is critical for modeling of the healing 
process (Ghiasi et al. 2019). Recently, we applied a mecha-
noregulatory model of fracture healing to show that the rate 
of healing depends on the geometry of the fracture and that 
all fracture types experience a small healing delay with tor-
sional instability (Ren and Dailey 2020). We also showed 
that modifying a strain-based mechanoregulatory model of 
fracture healing to include a geometric proximity function 
can successfully restrict callus formation to the region near 
the fracture line and achieve simulation domain independ-
ence (Schwarzenberg et al. 2021b).
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These techniques hold promise to predict outcomes under 
different mechanical or biological conditions and in response 
to new treatment strategies, but they all share a key limita-
tion: the cortical wall is assigned static mechanical prop-
erties and included in the mechanical loading simulations, 
but it is excluded from the mechanoregulatory healing algo-
rithms. These models neglect remodeling activity during 
fracture healing because this last stage of fracture healing 
is often described conceptually as having limited overlap 
with the repair phase. However, in vivo data suggest that 
remodeling of the cortical wall occurs concurrently with soft 
callus development and mineralization. For example, pre-
vious reports generated from nanoindentation testing have 
provided highly localized evidence of decreasing bone den-
sity in the radial direction through the cortical bone toward 
the callus (Manjubala et al. 2009; Preininger et al. 2011). 
This evidence indicates the remodeling phase of secondary 
bone fracture healing is associated with structural changes 
in both the callus and the adjacent cortical bone throughout 
the healing process and that these effects should be included 
in early-stage fracture repair models.

The key barrier to developing new mechanoregulatory 
models that can consider coupled repair and remodeling is 
the lack of available validation data. The validation strategy 
used for most recent mechanoregulation models has focused 
on the global structural mechanics of the limb and qualita-
tive comparison of model predictions to histological analysis 
of tissue in the callus. For example, the assessment of a 
model’s performance in predicting the spatial and temporal 
development of tissues in the callus is usually based on only 
the general trends of mechanical data (e.g., torsional rigid-
ity) (Ren and Dailey 2020; Schwarzenberg et al. 2021b) or 
temporal data (e.g., bridging time, interfragmentary motion) 
(Lacroix and Prendergast 2002; Isaksson et al. 2006; Weh-
ner et al. 2014; Pietsch et al. 2018). Ideally, the localized 
tissue composition and distribution should also be inves-
tigated to assess whether tissue growth and differentiation 
criteria within the algorithms are functioning correctly. The 
historical gold standard for assessing mechanical properties 
within tissue samples has been nanoindentation testing. This 
method has been used to probe the microscale properties 
of bone and callus and identify gradients in porosity and 
density (Manjubala et al. 2009; Preininger et al. 2011; Mora-
macías et al. 2017). However, these physical measurement 
techniques involve time-consuming destructive postmortem 
testing with specialized equipment and the resulting data 
cannot be obtained in vivo, or for large regions of tissue, 
or in large numbers of samples. Regrettably, these limita-
tions mean that generalizable quantitative data describing 
remodeling across the cortical wall into callus does not cur-
rently exist.

Accordingly, the purpose of this study was to develop a 
numerical technique for quantifying structural remodeling 

adaptations at the bone-callus boundary in sheep by investi-
gating the radiodensity data from micro–computed tomogra-
phy (µCT) scans. We hypothesized that measurable cortical 
remodeling happens early in the healing period, in conjunc-
tion with bridging of the external callus in secondary frac-
ture healing.

2 � Methods

2.1 � Animal specimen information

Twenty-six adult female Swiss alpine sheep (2–3 years old, 
weighing 59–87 kg) were part of two previously completed 
research studies with two different tibial osteotomy models 
stabilized by medial plating (Schwarzenberg et al. 2021a). 
Group 1 consisted of data from twelve animals with a 17 mm 
tibia defect augmented with autografts and stabilized with 
a 13-hole stainless steel plate (broad straight veterinary 
3.5 mm LCP, 172 mm in length, with 3.5 mm bicortical 
screws; DePuy Synthes®). Sheep in group 1 were sacrificed 
12 weeks after surgery. Group 2 consisted of data from four-
teen animals with a 3 mm gap tibia defect stabilized with 
a 12-hole stainless steel plate (broad straight veterinary 
3.5 mm locking compression plate (LCP), 159 mm in length, 
with 3.5 mm bicortical screws; DePuy Synthes®). Sheep in 
group 2 were sacrificed 9 weeks after surgery. All experi-
ments were conducted at the Musculoskeletal Research Unit 
in Zürich, Switzerland, according to the Swiss laws of ani-
mal protection and welfare and authorized by the local gov-
ernmental veterinary authorities (License No. ZH 183/17).

2.2 � Micro‑computed tomography (μCT) scanning

After animal sacrifice, both intact and operated tibiae 
were excised, stripped of soft tissue, and all hardware was 
removed, taking care not to disrupt the callus. Samples were 
then wrapped in saline-soaked gauze, and µCT scanned 
using an XtremeCT II Micro-CT scanner (Scanco Medical 
AG, Bruettisellen, Switzerland) with an X-ray voltage of 
68 kVp and X-ray current of 1470 µA. The resulting scans 
had an isotropic resolution of 60.7 µm.

2.3 � Image segmentation

A region of interest (ROI) was selected at three different 
locations of each operated limb diaphyseal segment scan: 
10 mm from the most proximal aspect of the tibia, 10 mm 
from the most distal aspect of the tibia, and just proximal 
to the fracture line at the level of maximum callus radius 
(Fig. 1). The midshaft ROI started with the first tomogram 
showing the complete cortical cross-sectional proximal to 
the osteotomy. The proximal and distal ROI were above and 
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below the most proximal and distal screw holes. Sampling 
slices from the intact limb were also taken at the correspond-
ing levels. At each sampling location (region of interest), a 
total of 20 slices were selected for analysis.

An automated segmentation algorithm was developed in 
MATLAB 2021a (The MathWorks, Inc., Natick, Massachu-
setts, USA) to define the outer boundary of the callus as well 
as the area enclosed by the pericortical boundary of the pre-
existing cortical bone. The detailed workflow can be seen in 
Fig. 2. Post-segmentation data processing was carried out on 
all 2D tomograms located within each ROI. The process for 
segmentation of cortical bone and callus was based in part 
on previously reported methods (Buie et al. 2007; Morgan 
et al. 2009; Bissinger et al. 2017). To complete this task, 

the algorithm required two initial estimates of the segmen-
tation thresholds. The selection of these thresholds affects 
the cortical bone and callus boundaries of the output mask 
and requires subsequent refinement. First, the soft tissue 
region was excluded using connected-component labeling. 
Noise was then reduced by applying a median filter. Next, 
the original dataset was re-thresholded and masked with the 
detected boundaries of the bone-callus region. Dilation and 
erosion operations were then used to determine the bone 
and callus boundary. The initial estimates of the segmenta-
tion thresholds were then refined by minimization of spline 
energy to achieve smoothness of the detected tissue bounda-
ries for each sheep. A locally convex boundary criterion was 
also used to correct any boundary defects caused by small 

Fig. 1   a Coronal slice view from a micro-CT scan of an ovine tibial 
osteotomy at 9  weeks post-op. In this study, radiodensity gradients 
were sampled in the direction indicated by the red arrow. b Three 
regions of interest (ROI) were identified for sampling in each intact 

and each operated limb: proximal, distal, and at the level of the frac-
ture. c Each ROI consisted of 20 axial slices that were analyzed to 
measure radial radiodensity profiles in the cortical wall and callus 
region
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regions of lower-density cortical bone. Finally, a mask of the 
callus, cortical bone, and non-bone regions was created by 
combining the output of the previous steps.

The slice extraction and segmentation processes were 
repeated at all three levels of height in both the intact and 
operated tibiae.

2.4 � Radiodensity data sampling and curve fitting

The process for radiodensity sampling is illustrated in Fig. 3. 
In each 2D tomogram within the region of interest, the cen-
troid of the cortical bone was calculated from the endocorti-
cal boundary (red boundary) in the mask geometry. A polar 
array of sampling lines was created in 1-degree increments 
throughout the entire 360-degree angle range, with each line 
having its origin at the centroid and extending through the 
cortical wall and callus. The radiodensity values along the 
profile lines were sampled in 60 µm increments in the radial 
direction, a distance equal to the in-plane resolution of the 
scan. Pixel data were retrieved from the grayscale image 
using a bicubic interpolation technique. Data quality was 
checked for each profile line and individual profile lines were 
excluded from the data set if the callus was not present or too 
thin (thickness smaller than 10 mm, measured in the radial 
direction along a profile sampling line). Radial sampling was 
repeated using the same procedure for all 20 slices in each 
ROI and pooled to create a point cloud that defined the radi-
odensity profile line for each ROI in each animal (Fig. 1c).

In this animal model, medial plating produced asymmet-
ric callus formation, as can be clearly seen in Fig. 3c. Cor-
tical wall thickness was also not constant across all radial 
profile lines. To enable a combined curve-fitting analysis of 
the profilometry samples from within each region of interest, 

a registration and scaling procedure was defined to create a 
consistent dimensionless coordinate system for the corti-
cal wall and for the callus, when present. Each profile line 
was registered to set its linear coordinate system to zero 
at the bone-callus boundary, or the pericortical boundary 
if intact. Negative linear coordinates corresponding to the 
cortical wall were normalized to the local cortex thickness 
of each profile line (Fig. 3c, d), such that r = −1 was the 
endocortical boundary and r = 0 was the pericortical bound-
ary. For the positive linear coordinates, the normalization 
procedure depended on whether callus was present. For the 
intact limbs, positive coordinates were normalized to the 
local cortex thickness (Fig. 5b). For the operated limbs with 
callus, positive coordinates were normalized to the doubled 
local callus thickness, producing r = 0.5 at the outer bound-
ary of the callus mask and ensuring data sampling beyond 
the callus into the soft tissue zone (Fig. 5c). The resulting 
average number of sampling points per region of interest 
was 170,340.

To enable comparisons between the treated and untreated 
limbs of all animals, the sampled radiodensity values were 
also normalized to the median cortical bone density of the 
intact diaphysis of each animal. Within each animal, all local 
radiodensity values sampled from the profile lines were 
normalized to this baseline median cortical bone density, 
regardless of limb (intact or operated) and ROI location 
(proximal, midshaft, and distal).

Curve fitting techniques were then used to mathematically 
model the collective radial density profile using the sam-
pling points collected at each ROI. To develop an appropri-
ate fitting function for measuring local structural changes, 
we started with the simplest case, an intact cortical wall fit 
with a double sigmoid function:

Fig. 2   Regions of cortical bone and callus were identified using an 
automated segmentation method developed in MATLAB 2021a. This 
method requires two global threshold inputs, which are used to ini-

tialize the splines that define the endosteal, pericortical, and callus 
boundaries, and subsequently refined as shown
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where in general for a sigmoid function, the parameters a 
sets the width of the transition zone from a function value 
of 0 to a function value of 1, and the parameter b sets the 
center of this transition zone. The performance of the basic 
double sigmoid was critically evaluated using goodness of 
fit statistics and visual inspection, and additional logical and 
piecewise-defined terms were sequentially added in stages to 
improve the fit, as described in the Results below. Piecewise 
functions were always split at r = 0 , the normalized coordi-
nate representing the pericortical boundary.

Two curve-fitting methods were used to obtain fit-
ting parameters. The nonlinear least-squares method was 

(1)f (r) =
1

1 + e−a1(r−b1)
∗

1

1 + e−a2(r−b2)

implemented via the MATLAB Curve Fitting Toolbox 
(R2021a). In addition to this standard curve-fitting tech-
nique, a multi-objective optimization method was intro-
duced to fit the parameters of piecewise-defined fitting 
functions. The additional constraints were introduced 
to preserve continuity of piecewise-defined functions 
at r = 0, the pericortical boundary. These conditions 
included a requirement for position and slope continuity 
of as described in Eq. 2. This multi-objective optimiza-
tion method can be formulated to find the coefficients 
of f (r) , minimizing the residuals (sum of the squares), 
of all the data points:

Fig. 3   a A polar array of radial profile lines was created from the cor-
tical centroid through the cortical wall and callus, if present, and radi-
odensity values were sampled from the underlying scan data. b For 
intact bones, each profile line was registered to set its linear coordi-
nate system to zero at the pericortical boundary and sampling points 
were extended up to one cortical thickness into the surrounding soft 

tissue. c For samples with callus, profile lines were registered to zero 
at the bone-callus boundary and sampling points were extended to 
double the local callus thickness. d Resulting compiled profilometry 
sampling data for one animal at the level of the callus in the operated 
limb. All radiodensity values were normalized to the median cortical 
bone density of the intact tibia for that animal
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where ri and rk are the set of data points in the cortical wall 
or external to the cortical wall, n and m are the total number 
of data points of the cortical wall or the callus. The minimi-
zation problem was solved using the MATLAB Optimiza-
tion Toolbox (R2021a).

Goodness of fit for all curve fits was evaluated using the 
resulting R2 values for all animals. Note that while linear 
regression-based curve fitting techniques can produce R2 
with a significance level (p value) (Morgan et al. 2009; 
Freedman et al. 2018), nonlinear regression and optimiza-
tion-based methods cannot and are typically reported with 
only the R2 (Preininger et al. 2011; Scheuren et al. 2020).

After the final fitting parameters were obtained for each 
sheep, the resulting fit function, f (r) , was evaluated to cal-
culate the slope at the bone-callus interface and quantify the 
extent to which remodeling had produced a smooth func-
tionally graded interface at the bone-callus boundary. The 
radiodensity slope is the derivative of the fitting function at 
the bone callus boundary. For intact bone not bounded by 
callus, an additional custom MATLAB script was also used 
to calculate the average density value in the cortical wall 
plateau, which was reported as the mean cortical density of 
each fitted curve.

2.5 � Statistical analysis

All statistical analyses were performed using SPSS Statis-
tics 27 (IBM Corp; Armonk, New York, USA). A value of 
P = 0.05 was used as the threshold for statistical significance. 
A two-tailed paired-sample t test was used to analyze if the 
fitting function constants and the evaluated slope of the fit-
ting function at the pericortical boundary were significantly 
different between the operated and contralateral limbs. A 
two-tailed unpaired samples t test was used to compare fit-
ting parameters between the 3 mm and 17 mm osteotomy 
groups.

3 � Results

3.1 � Choice of curve fitting function

The fitting results of the baseline double sigmoid func-
tion (Eq. 1) are shown in Fig. 4a. This function provided a 

(2)

min
a,b,g,d

m∑
i=1

(yi − fr<0
(
ri
)
)2

min
a,b,g,d,c

n∑
k=1

(yk − fr>0
(
rk
)
)2

s.t. fr<0(0) − fr>0(0) = 0

fr<0
�(0) − fr>0

�(0) = 0

reasonable approximation for the intact cortical wall, but it 
was not able to capture the increasing slope of the density in 
the radial direction for intact cortical bone and it missed both 
the cortical and callus plateaus in the data for the operated 
tibia. Considering all six regions of interest (proximal, mid-
shaft, and distal for intact and operated bones), the baseline 
fit produced R2 ≥ 0.71 for intact bones and R2 ≥ 0.82 for 
operated bones.

Several alternative methods were then investigated and 
critically evaluated with respect to their ability to capture the 
essential features of the bone density profile curves. First, 
a logical linear term and a constant were added to the dou-
ble sigmoid function of Eq. 1 to account for the observed 
nonzero density gradient in the cortical wall ( r < 0) and 
nonzero background radiodensity:

where c is the linear slope applied only within the cortical 
wall and d is the background density constant. Adding a 
logical linear term and a constant (Eq. 3) produced a good 
fit with R2 ≥ 0.78 for the intact bones, but this fitting func-
tion failed to capture the remodeling behavior evidenced by 
a decrease in density in the cortical wall at the bone callus 
boundary (Fig. 4b), with R2 ≥ 0.85 for the operated bones.

To improve the fit for samples with callus, an additional 
sigmoid term was added using a logical constraint to restrict 
its application to radial coordinates external to the pericorti-
cal boundary ( r ≥ 0):

where the constants g1 and g2 in the sigmoid terms allow for 
non-unity in the upper sigmoid plateau and the constants d1 
and d2 allow for nonzero background radiodensity on both 
the internal and external bounds of the fitting function. In 
this piecewise definition, the cortical function ( r < 0) is a 
generalized double logistic function, and the callus function 
is a single logistic function. The piecewise logistic function 
(Eq. 4) provided a better fitting quality ( R2 ≥ 0.91 for inact, 
R2 ≥ 0.93 for operated), but when fit using a nonlinear least-
squares minimization, the function was not continuous at the 
bone callus interface (Fig. 4c).

For both the intact and operated tibiae, the best fitting 
method was to use the multi-objective optimization method 
(Fig. 4d) to identify the parameters of the fitting function 
shown in Eq. 4 with constraints defined by Eq. 2. This 
produced continuous fit functions with goodness of fit sta-
tistics showing R2 ≥ 0.86 for all 26 intact tibiae and R2 ≥ 
0.88 for all 26 operated tibiae. In all samples, all six fitting 

(3)

f (r) =
1

1 + e−a1(r−b1)
∗

1

1 + e−a2(r−b2)
+ d +

{
cr r < 0

0 r ≥ 0
.

(4)

f (r) =

{
1

1+e −a1(r−b1)
∗ (g1 +

(1−g1)

1+e−a2(r−b2)
) + cr + d1, r < 0

g2

1+e −a3(r−b3)
+ d2, r ≥ 0
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Fig. 4   Profilometry data sampled at the level of the fracture for intact 
tibiae (black, left) and operated tibiae (red, right). Fit curves from 
the three tested fitting equations in panels (a)–(c), with all parame-
ters obtained following a least-squares minimization approach using 

the Curve Fitting Toolbox in MATLAB. Fit curves in panels (c) and 
(d) both use Eq. 4, but additional continuity constraint at r = 0 was 
achieved in (d) using multi-objective optimization
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parameters had 95% confidence intervals that did not include 
zero. The fitting parameters for all 26 animals at each of 
the six sampled ROIs can be seen in the Supplementary 
Table. Although the achieved R2 values were slightly lower 
with multi-objective optimization of Eq. 4 compared to the 
nonlinear least-squares method, the additional constraints 
introduced with Eq. 2 in the optimization-based method pre-
served the function’s continuity at r = 0, which was highly 
desirable.

The performance of the final fitting function (Eq. 4 with 
multi-objective optimization constraints defined by Eq. 2) 
is shown for a different animal in Fig. 5. This single func-
tion successfully captured several observed characteristics of 
both the intact and operated limbs. Specifically, in the intact 
tibiae, it captured the observed increase in radiodensity in 
the radial direction from the endosteal to the pericortical 
boundary (Fig. 5a). For the operated limb, the fit curve cap-
tured the overall decrease in radiosity in the cortical wall 
and the localized remodeling at the pericortical boundary 
bounded by callus (Fig. 5b).

Each parameter of the fitting function was included to 
capture the observable features of the profilometry data in 
different regions of the fitted curve and at transitions between 
regions. The resulting constants can then be associated with 

physical features related to the bone-callus radial density 
function. The magnitudes of parameters a1 and a2 define the 
width of the region of density change at the pericortical and 
endocortical boundaries of cortical bone. The parameters 
b1 and b2 define the location of the center of the transition 
of the pericortical and endocortical boundaries of cortical 
bone. Parameter a3 defines the width of the region of density 
change at the outer boundary of the callus, while parameter 
b3 sets the location of the center of the transition between 
callus and the surrounding soft tissue. The linear term c in 
the cortical bone zone ( r ≤ 0) defines the increasing density 
of cortical bone from the endosteal to pericortical boundary. 
The constant d1 captures the average density of cortical bone 
and the term d2 compensates for the noise of the data outside 
the callus. Finally, g1 and g2 capture the cortical density at 
the pericortical boundary of the injured limb.

3.2 � Cortical tissue alterations in operated limbs

In addition to profilometry sampling at the level of the frac-
ture, we also analyzed cortical bone at the proximal and 
distal ends of the diaphysis of the intact and operated limbs. 
The resulting profilometry curves of all animals combined 
are shown in Fig. 6. Comparing the operated group to their 

Fig. 5   Profilometry sampling 
points sampled at the midshaft 
of the intact tibia (a) and oper-
ated tibia (b) using the method 
of Fig. 4d in a different animal. 
The radial coordinate registra-
tion procedure allowed consist-
ent referencing of key physi-
cal locations across different 
animals: endocortical boundary, 
pericortical boundary, and cal-
lus outer boundary (if present). 
The density normalization 
procedure eliminated baseline 
differences in bone properties 
between animals by scaling 
all sampling data points to the 
median cortical bone density for 
the intact tibia in each animal
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matched intact tibiae at both the distal and proximal ends of 
the bones, there were several changes in the cortical walls 
of the operated tibiae, both at the level of the fracture and at 
the proximal and distal ends of the bone. Table 1 shows the 
comparisons between the operated and intact limbs based 
on two summary parameters derived from the fitting func-
tions—density slope at the pericortical boundary and mean 

cortical wall density. Each parameter was evaluated at the 
proximal, midshaft, and distal ROIs in both the intact and 
operated limbs. Both parameters were significantly different 
between operated and intact for all ROIs, although the corti-
cal density decreases in the operated limb were 10× larger 
at the midshaft than at the proximal and distal ends of the 
bone. Considering all animals, sampling at the proximal and 

Fig. 6   Profilometry curves were 
fitted from data sampled at the 
same levels at the proximal 
end (a) or distal end (b) end of 
intact tibiae (black curves) and 
operated tibiae (red curves). 
Profilometry curves were also 
fitted from data sampled at the 
midshaft of all intact tibiae 
(c, black curves) and operated 
tibiae (d, red curves)

Table 1   Comparison of 
profilometry curve fitting 
parameters between operated 
and contralateral groups

p values from Student’s paired t test, significance at p < 0.05

Location Radiodensity profilom-
etry parameters

Limb Estimate 95% confidence inter-
val (CI) of difference

p value

Proximal Slope at Periosteal Operated − 7.65 ± 0.34 (− 1.12; − 0.737) *0.003
Surface (r = 0) [HU/-] Contralateral − 8.31 ± 0.64
Mean Cortical Wall Operated 3019 ± 17.3 (− 61.3; − 20.4) *< 0.001
Density (r < 0) [HU] Contralateral 3073 ± 14.5

Midshaft Slope at Periosteal Operated − 0.063 ± 0.002 (6.91; 12.2) *< 0.001
Surface (r = 0) [HU/-] Contralateral − 12.1 ± 0.16
Mean Cortical Wall Operated 2718 ± 8.71 (− 492; − 445) *< 0.001
Density (r < 0) [HU] Contralateral 3328 ± 3.26

Distal Slope at Periosteal Operated − 7.10 ± 0.40 (0.371; 3.44) *0.010
Surface (r = 0) [HU/-] Contralateral − 8.94 ± 0.48
Mean Cortical Wall Operated 3004 ± 21.6 (− 91.2; − 43.5) * < 0.001
Density (r < 0) [HU] Contralateral 3094 ± 14.9
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distal ends of the bone showed that the mean cortical density 
was 1.3% and 2.2% lower, respectively, in the operated limbs 
compared to intact (p < 0.001).

All animals also showed evidence of remodeling in the 
cortical wall bounded by callus (Fig. 6d). The preexisting 
increase in radiodensity toward the pericortical boundary 
that can be seen in the intact bones (Fig. 6a) disappeared 
in the operated bones (Fig. 6c). At the pericortical bound-
ary bounded by callus, these changes corresponded to a 
23.4% drop on average from the peak density of the native 
cortical wall. Overall, comparing the intact and operated 
groups at the midshaft, there were statistically significant 
differences in all obtained radiodensity profile fitting func-
tion parameters except for g1 (p ≤ 0001; see Supplementary 
Table S2). The slope of the fitted density profile curve at the 
pericortical boundary was also significantly reduced in oper-
ated limbs compared to intact at all three ROIs (p ≤ 0.007; 
see Table S2). There were no significant differences in fit 
parameters sampled at the midshaft between animals with 
3 mm osteotomies and 17 mm osteotomies (all p > 0.05; see 
Table S1 for fitting parameters in each animal).

4 � Discussion

This study presents a scalable mathematical method for non-
invasive quantification of tissue mineralization density of the 
cortical tissue matrix and callus within an ovine tibial shaft. 
The results show that remodeling alterations occur not only 
in the callus tissue due to mineralization but also in the cor-
tical tissue adjacent to the repair zone throughout the heal-
ing process. The findings are consistent with expectations 
from destructive physical testing and confirm the presence 
of a decreasing gradient in mineral density of the cortical 
bone at the vicinity of a fracture during secondary healing 
(Manjubala et al. 2009; Preininger et al. 2011). We previ-
ously showed that at sacrifice, most of these osteotomies 
had achieved a structural rigidity comparable to intact tibiae 
(Schwarzenberg et al. 2021a). This profilometry curve fit-
ting data shows that in sheep, significant adaptive changes 
have occurred in cortical bone bounded by callus, concurrent 
with structural bridging as early as 9 or 12 weeks post-op. 
It should be noted that the remodeling of cortical bone was 
measurable not only near the fracture site, but also to a lesser 
extent at the proximal and distal end of the operated limbs. 
The methods described herein could be used to measure 
remodeling as a temporal in vivo outcome measure from 
imaging only. These measures could be useful as an indica-
tor of healing speed by establishing the status of a fracture 
on the continuum of mechanical and structural adaptations 
that arise during healing. This technique could also be a 
valuable complement to existing microCT-derived quantita-
tive measures such as cortical thickness, bone volume, and 

bone mineral density that are currently being used in animal 
models and clinical studies of diseases such as osteoporo-
sis or osteogenesis imperfecta (Campbell and Sophocleous 
2014; Seeman 2015; Molthen et al. 2016).

This study is also interesting because it suggests that con-
trary to popular opinion, remodeling is not an afterthought of 
fracture repair. In the literature, remodeling of woven bone 
is frequently described as the fourth and final stage of frac-
ture healing, occurring for the purpose of resorbing the callus 
after bridging is complete (Marsell and Einhorn 2011; Loef-
fler et al. 2018; Bahney et al. 2019; Anani and Castillo 2021). 
This study reveals a second feature of remodeling—changes 
to the cortical wall—that occurs early in the healing process 
and may be independent of the progress of callus bridging. 
Support for this observation comes from our inclusion of both 
normal- and delayed-healing cases (3 mm gap and 17 mm 
gaps with autograft, respectively). In our previous work, we 
found that 17 mm gaps were notably slower to heal, having the 
lowest postmortem torsional rigidity even though the animals 
were sacrifice at 12 weeks rather than the standard 9 weeks for 
3 mm gaps (Schwarzenberg et al. 2021a). Despite the slower 
rate of bridging, when we evaluated cortical remodeling just 
proximal to the osteotomy line using the profilometry data, 
we found no statistically significant differences in any of the 
remodeling parameters between the 3 mm and 17 mm ani-
mals. Despite their slower healing, animals in the 17 mm 
group experienced cortical remodeling on par with the 3 mm 
animals. This suggests that the cortical wall remodeling could 
be happening concurrently with the earliest stages of healing. 
Our scans were taken at a single timepoint only, so we cannot 
definitively establish the timeframe for initiation of cortical 
remodeling. However, our findings suggest that mechanistic 
studies focused on the timing and mechanobiological drivers 
of this effect may be warranted.

The intended purpose of this investigation was to provide 
a useful set of validation data for the future development of 
mechanoregulatory models that include the cortical wall and 
address coupled remodeling at the cortical-callus boundary. 
The results confirm that significant changes do occur on the 
cortical side of the cortical-callus boundary and that not 
addressing these changes is a critical limitation in the cur-
rent computational models of bone fracture healing. These 
models usually assume a time-invariant value for cortical 
bone stiffness, which does not reflect the in vivo reality of 
a 23% drop in cortical radiodensity at the cortical-callus 
boundary. The normalized generalizable fitting function we 
reported could be used to assess whether mechanoregula-
tory models that include the cortical zone are capturing the 
appropriate magnitude of changes, and whether the distri-
bution of predicted material properties at the boundary and 
within the callus region are valid.

Investigators who are interested in applying our nor-
malized, dimensionless remodeling curve to validate their 
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dimensional mechanoregulation models may wish to use 
the following scaling procedure. First, observe that the fit-
ting curve cannot be used directly because the function has 
been normalized in both the radius coordinates ( r ) and radi-
odensity values ( y-axis). To dimensionalize the radial coor-
dinates, recall that the radial coordinates were normalized to 
the cortical wall thickness for r < 0 and to the doubled callus 
thickness for r > 0. To scale this function appropriately in r , 
identify the cortical wall thickness, t , and callus thickness, 
tc . The y coordinates in our fit curve were normalized to the 
median radiodensity [HU] of the intact limb for each animal. 
For the N = 26 sheep analyzed in this study, the resulting aver-
age intact tibia radiodensity was 3164 ± 10 HU. The apparent 
radiodensity [HU] must be scaled to bone mineral density by 
means of a linear conversion derived from a phantom scan. 
This density value can then be converted to a Young’s modu-
lus using a species-specific scaling law. For ovine cortical 
bone, we recommend the equation derived by Schwarzenberg 
et al. (2021b), which produces an average Young’s modulus, 
Eintact = 12.9 GPa for intact bone. After selecting Eintact and 
matching t and tc to the chosen computational model, the fol-
lowing scaled remodeling function can be used to validate the 
model predictions:

where the fitting constants ( a1, b1 , g1 , a2 , b2 , c , d1 , a3 , b3 , 
g2 , and d2 ) are drawn from Table S1. This dimensionalized 
remodeling curve will have radial coordinates r that are 
zeroed at the cortical-callus boundary, but are dimension-
ally scaled to match the physical size of the geometry in the 
computational model.

This study is not without limitations. First, the sheep imag-
ing data were only available at the time of sacrifice. As a result, 
no information about the temporal variations of local mechani-
cal properties of the cortical tissue is currently available for 
this study. However, due to the inclusion of both large-gap and 
small-gap healing models, the selected sheep groups represent 
a wide range of healing responses and callus sizes, suggesting 
that the numerical methods and resulting fitting function we 
have proposed are robust. Another key limitation is that we 
applied the segmentation algorithm to evaluate only a small 
fraction of the 2D tomograms that comprise the entire cortical 
wall and focused on gradients in the radial direction. Remod-
eling effects in the cortical wall also have an axial dependency 
on proximity to the fracture line, which has not been explored 
here. Additional work would be required to achieve profilom-
etry analysis of tissue density profiles in a more general 3D 
sense. Finally, it is important to note that the resolution of the 
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medical images themselves could also influence the curve 
fitting quality. In this study, we have used high-resolution of 
micro-CT scans that were obtained post-mortem. Applying 
these same techniques to in vivo computed tomography would 
likely require larger voxel sizes and may not provide enough 
data points for curve fitting purpose in the area of transition 
especially at the cortical-callus boundary. We recommend that 
future studies explore whether larger voxels are inferior for 
detection of remodeling effects in the cortical wall.

5 � Conclusions

This study showed that structural remodeling at the bone-callus 
interface can be detected in sheep using radiodensity profilometry 
from micro-CT scans. It also showed that the density of cortical 
bone adjacent to callus, which correlates with its elastic prop-
erties, is not constant during the early healing period and that 
this region represents an integral part of the process of coupled 
fracture repair and remodeling. The scalable function presented 
herein for mathematically representing density gradients in the 
cortical wall and callus may be useful for validating future mech-
anoregulatory models of fracture repair.
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tary material available at https://​doi.​org/​10.​1007/​s10237-​021-​01553-2.
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