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Active acoustic metamaterials consisting of paired sensor-driver unit cells offer a promising path towards

the practical realization of exciting transformation acoustics devices. The design of these cells is founded in a

microscopic acoustic model that describes materials as collections of subwavelength polarized sources which

respond to the local conditions of pressure and particle velocity. The current ability to express the polarizabilities

that characterize these sources in terms of the effective macroscopic acoustic properties is limited to only

a few simple cases and is not applicable to inhomogeneous bulk media of arbitrary geometries. Here, we

address this challenge and derive general closed-form expressions relating the bulk modulus to the monopole

polarizability and the mass density tensor to the dipole polarizability. Furthermore, we use these expressions

to adapt transformation acoustics to the microscopic model. We demonstrate the accuracy of our approach by

comparing the fields scattered by several devices, including cylindrical cloaks with steep property gradients and

anisotropy, with the fields scattered by the devices’ realizations with polarized sources.

DOI: 10.1103/PhysRevB.104.134304

I. INTRODUCTION

Transformation acoustics has enabled the design of devices

that exhibit remarkable behavior, but in turn have demanding

material property requirements, such as steep gradients and

anisotropy [1–3]. The ability to physically realize these de-

vices is limited, as the prescribed property distributions cannot

be obtained with conventional materials. The development of

passive metamaterials, artificial materials composed of sub-

wavelength engineered unit cells, has expanded the accessible

design space beyond what nature offers. Wide control over

the bulk modulus and mass density, even into the negative

regime, has been demonstrated with passive acoustic meta-

materials composed of cavity resonators [4], tubes with side

holes [5], coated beads [6,7], membranes [8,9], and space-

coiling structures [10,11]. Anisotropy and spatially varying

properties can be achieved by tuning the geometries of these

components [12–15]. However, most passive metamaterials

require resonances to realize the acoustic properties specified

by transformation acoustics. Therefore, they are narrow band

and unsuitable for ubiquitous acoustics applications such as

noise mitigation, sonar, and ultrasound imaging, which re-

quire the manipulation of broadband sound. In addition, the

reliance on resonance, undesirable coupling of properties, and

general challenges in manufacturing are substantial obstacles

to precise control of the properties and constrain the operating

conditions [16–18].

The shortcomings of passive acoustic metamaterials are

reflected in the transformation acoustics devices demonstrated

so far. Despite being one of the most sought after transforma-

tion acoustics structures, omnidirectional cloaking shells have
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only been accomplished in cases of reduced geometric and

material complexity, as in carpet cloaks [19–21], and through

approximations of the prescribed material properties that are

suitable only for devices of less than several wavelengths in

diameter [14,22,23].

Active metamaterials, which feature a programed response

dependent on the external conditions, may provide a path

to overcome many of the inherent constraints of passive

structures. Particularly promising are unit cells consisting of

sensor-driver pairs, which were first conceived for manip-

ulating electromagnetic fields [24], but were later applied

to control acoustic and elastic waves [25–36]. Sensor-driver

cells sense the impinging external field and generate a co-

herent acoustic field in response. Consequently, it has been

shown [33,34] that media based on these types of cells

could be realized by leveraging a microscopic model of mat-

ter or source-driven homogenization theory [37–41]. In this

model, the behavior of a continuous material can be rep-

resented by the collective response of numerous pointlike

sources placed in a background medium and separated by

significantly subwavelength distances. These sources generate

either monopole or dipole fields and are characterized by

their polarizabilities, which relate the source amplitudes to

the local fields. In the case of acoustics of typical materials,

the monopole moment depends on the local acoustic pressure

and the dipole moment depends on the local particle velocity.

The polarizabilities of these sources depend on the macro-

scopic acoustic properties of bulk modulus and mass density,

respectively.

For application in active metamaterials, a sensor-driver

cell is equivalent to a polarized microscopic source, and the

electronic transfer function from the sensor input to the driver

output is proportional to the polarizability. In principle, the

monopole and dipole transfer functions of the active cell

could be tuned independently to yield desired macroscopic
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properties [33–36]. However, one major obstacle here is that

there is no general method for determining the polarizabilities

that correspond to a given set of macroscopic material prop-

erties, especially in scenarios involving inhomogeneous bulk

media of arbitrary geometries. Previous works have mostly

focused on Willis media, with analytical solutions only having

been found in a few limited cases, such as homogeneous

materials implemented with one-dimensional (1D) periodic

lattices [42], homogeneous one cell thick metasurfaces [43],

and subwavelength resonators [43,44].

In this work, we address the challenge of obtaining expres-

sions for the polarizabilities necessary to model bulk media

of arbitrary geometry and macroscopic acoustic properties,

in particular the inhomogeneous, highly anisotropic media

required by transformation acoustics. While we are motivated

by the physical realization of active metamaterials, we focus

here on establishing a more general theory applicable to active

and passive media rather than the specifics of such an imple-

mentation. First, in Sec. II, we develop a model of a unit cell

composed of three collocated polarized sources and analyze

its interactions with the impinging local acoustic field. Then,

we relate the cell’s response to an external plane wave with

the scattered field from a subwavelength anisotropic cylinder.

This leads to expressions for the polarizabilities as functions

of the macroscopic properties of the cylinder and, ultimately,

the effective properties of a homogenized metamaterial con-

sisting of a lattice of cylinders. Although the polarizability

relationships we obtained are for a two-dimensional (2D)

space, the expressions in a three-dimensional (3D) space can

be obtained by substitution of the cylinder-based model with

a sphere-based one. Lastly, we write a system of equations to

determine the source amplitudes of a lattice of unit cells given

the source polarizabilities and the external field. In Sec. III,

we demonstrate the ability to model a finite homogeneous slab

of given bulk modulus and isotropic mass density as a lattice

of unit cells. The results are validated through comparisons

with finite element method (FEM) simulations using COMSOL

MULTIPHYSICS. Finally, in Sec. IV, we adapt the transfor-

mation acoustics equations to directly provide closed-form

expressions for the polarizabilities and simulate several om-

nidirectional free space cloaks, highlighting the capability to

accurately represent the most challenging material properties

prescribed by transformation acoustics.

II. UNIT CELL MODEL

In the microscopic acoustic model [42], a material can be

represented as a lattice of subwavelength sources that each

generate a response to the local conditions based on their

polarizability. Here, we consider square and hexagonal lat-

tices of unit cells in a 2D space, and define a single cell in

an inviscid background fluid as a group of collocated line

sources whose amplitudes depend on the local pressure and

particle velocity. The sources include one monopole and two

dipoles aligned along the Cartesian axes. The dipoles can be

further decomposed as a pair of fully out of phase monopoles

separated by an infinitesimal distance 2δ, as illustrated in

Fig. 1(a). We will show next that this cell structure can realize

the most demanding acoustic material parameters required by

(a)

(b)

(c) (d)

FIG. 1. Diagram of modeling a continuous material as a lattice

of unit cells. (a) The unit cells consist of three polarized sources,

one monopole and two dipoles, in each of the Cartesian directions.

(b) Each cell is equivalent to a subwavelength anisotropic cylinder of

uniform macroscopic bulk modulus κcyl and diagonal mass density

tensor components ρcyl,v with v ∈ {x, y}. (c) The array of cylinders

and background fluid are homogenized as a continuous block of

material with effective macroscopic properties. (d) The relationships

of the mass densities of (b) and (c) obtained in FEM simulations.

transformation acoustics including high mass anisotropy and

large gradient bulk modulus and density profiles.

The response of a unit cell is characterized by a scalar

monopole polarizability α(m) and tensor dipole polarizability

α
(d ), which relate the amplitude of the acoustic response to

the local conditions of pressure ploc and particle velocity ūloc,

respectively. Works concerning Willis media include cross po-

larizabilities between the monopole and dipole components,

but we are only concerned with typical media, so they will be

neglected here. Additionally, there are several normalizations

of the monopole and dipole moments that have been previ-

ously used, such as by the macroscopic properties [42] or a

unit volume [43], but we simply consider amplitudes of line

sources to be defined later in Eqs. (3). We write the monopole

amplitude A(m) and dipole amplitudes A(d )
x and A(d )

y dependent

on the local conditions as

A(m) = α(m) ploc,

[

A(d )
x

A(d )
y

]

=

[

α(d )
x 0

0 α(d )
y

][

uloc,x

uloc,y

]

. (1)

As typically considered in the microscopic model, the local

conditions, ploc and ūloc, include the external fields and acous-

tic responses of other cells, but not the response of the cell for

which Eqs. (1) are written. The dipole polarizability tensor
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here is diagonal, indicating that a dipole oriented along the v

axis (where v is either x or y) is sensitive to the particle ve-

locity component along the same v axis, namely the principal

axes of the cell coincide with the Cartesian axes. In the case

where α(d )
x �= α(d )

y , the cell is anisotropic. The nondiagonal

α
(d ) will be discussed in Sec. IV.

Our analysis will pursue the following steps. First, as an

intermediary to determine the relationship between the macro-

scopic properties and the microscopic polarizabilities, we will

show that each unit cell scatters sound identically, even in the

near field, to an acoustically small cylinder of radius a ≪ λ,

where λ is the wavelength. This important observation will

allow us to replace the cell sources with a homogeneous

cylinder with mass density and bulk modulus expressed in

terms of the source polarizabilities and lattice geometry. The

equivalency of the sources and cylinder is shown in Fig. 1(b)

at both the lattice and unit cell level. Second, using homoge-

nization techniques, we will relate the properties of cylinders

in a lattice surrounded by background fluid to the properties of

a continuous material, as in Fig. 1(c). Finally, we will directly

determine the polarizabilities from the effective macroscopic

properties.

To compare the behavior of a cell and cylinder, we ana-

lyze the simple case of a plane wave of arbitrary direction

incident on a single unit cell. The relationship found in this

study should then be valid for any general field, including the

complex field scattered by a large lattice of cells, because in

linear acoustics all complex fields can be decomposed into

a superposition of plane waves. Throughout this work we

assume a harmonic regime and e jωt time variation, where ω is

the angular frequency. The pressure pext and particle velocity

ūext of an incident plane wave propagating at the angle ϕ

relative to the x axis are expressed as

pext = P0e− jk0 (x cos ϕ+y sin ϕ),

ūext = k̂
P0

z0

e− jk0 (x cos ϕ+y sin ϕ), (2)

where P0 is the pressure amplitude and z0 is the characteristic

impedance of the background fluid. The wave vector of this

plane wave is determined by the background fluid wave num-

ber k0 and the unit vector k̂ = x̂ cos ϕ + ŷ sin ϕ, with x̂ and ŷ

being the Cartesian basis vectors.

The general acoustic pressure expressions of the waves

launched by the monopole and dipole sources are written in

terms of Hankel functions [45],

p(m) = A(m)H
(2)
0 (k0r),

p(d )
v

=
A(d )

v

k0δ

[

H
(2)
0 (k0rv+) − H

(2)
0 (k0rv−)

]

= A(d )
v

(2 cos θv )H
(2)
1 (k0r), (3)

where r and θv are the polar coordinates of the location where

the fields are evaluated relative to the center of the cell. The

angle θv is relative to the orientation of the dipole pointing

along the v axis with v ∈ {x, y} [see Fig. 1(a)]. The acoustic

pressure launched by the dipole can be written as the summed

pressures of two monopole sources located at ±δ along the

axis, shown in the second line of Eq. (3), or as the simplified

expression shown beneath. Although the simplified version is

enough for the theoretical analysis of this section, the first

form is more useful in the numerical simulations and in view

of the physical realization of the dipoles. In the above expres-

sions, the distances between the monopole sources forming

the dipole and the location where the fields are evaluated are

denoted rv+ and rv−.

The total pressure puc launched by the isolated unit cell

responding to the plane wave given in Eq. (2) can then be

written as the sum of the source components,

puc = p(m) + p(d )
x + p(d )

y , (4)

where the monopole and dipole acoustic pressures are given

by Eq. (3) in which A(m) and A(d )
v

are provided by Eq. (1) with

ploc = pext and ūloc = ūext. We parametrize θv in one variable

θ such that θx = θ and θy = θ − π
2

to obtain the expressions

of the monopole and dipole pressures appearing in the above

equation as

p(m) = α(m)P0H
(2)
0 (k0r),

p(d )
x = α(d )

x

P0

z0

cos ϕ(2 cos θ )H
(2)
1 (k0r),

p(d )
y = α(d )

y

P0

z0

sin ϕ(2 sin θ )H
(2)
1 (k0r). (5)

We will now compare puc with the scattered field from the

plane wave of Eq. (2) incident on an anisotropic cylinder of

radius a, relative bulk modulus κcyl, and relative mass density

tensor ρcyl. In this work, the relative material properties are

normalized to the properties of the background fluid. It has

recently been shown that the acoustic pressure scattered by

this anisotropic cylinder can be written as an infinite sum of

Bessel-like functions [46]. For acoustically small cylinders,

where a ≪ λ, only the first three terms corresponding to the

monopole and dipole moments dominate and the scattered

pressure field assumes the closed-form expression

pcyl = B0P0H
(2)
0 (k0r)

+ B1,xP0 cos ϕ(2 cos θ )H
(2)
1 (k0r)

+ B1,yP0 sin ϕ(2 sin θ )H
(2)
1 (k0r), (6)

where

B0 = j(k0a)2 π

4

[

1 −
1

κcyl

]

,

B1,v = (k0a)2 π

4

[

1 − ρcyl,v

1 + ρcyl,v

]

. (7)

Remarkably, the expressions of the coefficients B0, B1,x, and

B1,y for the acoustically small anisotropic cylinder assume the

same exact form as for an acoustically small isotropic cylinder

[47]. In fact, when ρcyl,x = ρcyl,y, Eqs. (6) and (7) reduce to the

expression derived for an isotropic cylinder [47].

By comparing the scattered field expressions for the unit

cell in Eqs. (4) and (5) and subwavelength anisotropic cylinder

in Eq. (6), we can relate the polarizabilities to the coefficients

B0 and B1,v ,

α(m) = B0,

α(d )
v

= z0B1,v, (8)
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giving us a direct relationship between the polarizabilities and

the macroscopic cylinder properties.

We have now established that a subwavelength cylinder can

serve as an analog of the unit cell formed by polarized sources

shown in Fig. 1(a). Therefore, an array of these cells scatters

sound like an array of cylinders [Fig. 1(b)]. Because the cylin-

ders are highly subwavelength, the first order approximation

presented in Eq. (6) is sufficient to characterize their response

regardless of their orientation and proximity in an array. Next,

we homogenize the lattice of cylinders and background fluid

such that it is equivalent to a continuous material of relative

effective properties κeff and ρeff,v , as shown in Fig. 1(c).

Since the compliance of mixes of two fluids is the average

of the fluid compliances [46], we obtain a closed-form rela-

tionship between κeff and κcyl, namely

κ−1
cyl = f −1

(

κ−1
eff − 1

)

+ 1, (9)

where f is the filling fraction. Homogenizing the mass density

is more involved. One standard approach is to send plane

waves in the x and y directions through a lattice of cylinders

and to obtain the effective densities along these axes from

reflection and transmission coefficient simulations [13,48].

This numerical method produces the mapping between the

effective and cylinder mass densities along the x and y axes,

ρcyl,v = g(ρeff,v ), (10)

where v represents any of the Cartesian axes x or y. The

mapping g is shown in Fig. 1(d) with solid lines for two

cylinder lattices (square and hexagonal). We conducted the

simulation in COMSOL with highly subwavelength cylinders

packed at a maximum density in the specified arrangement.

This simulation approach has been described in detail in [13]

and has been used successfully to design and characterize

various metamaterial devices [15,20,29]. A closed-form ex-

pression of the mapping in Eq. (10) can be obtained by fitting

the numerically simulated g [49]. The result is independent of

the cylinder radius, given that the unit cells are subwavelength

and the filling fraction is fixed.

We note that the component ρcyl,v depends only on ρeff,v

and not on the mass density component in the direction per-

pendicular to v. This can be explained by Eqs. (7), where it is

evident that the strength of the dipole along the direction v for

an acoustically small anisotropic cylinder depends only on the

mass density component along v.

Combining Eqs. (7) to (10), we can finally write the polar-

izabilities directly as functions of the effective macroscopic

properties:

α(m) = j f −1(k0a)2 π

4

(

1 −
1

κeff

)

,

α(d )
v

= z0(k0a)2 π

4

[

1 − g(ρeff,v )

1 + g(ρeff,v )

]

. (11)

Now, we develop a method for finding the amplitudes of

the numerous interacting sources in the lattice that represents a

continuous material. The response of a single source is derived

from both the external waves and the contributions of all of the

other sources. The amplitudes of the sources in the ith unit cell

in a set of N total cells can be written as

A
(m)
i = α

(m)
i

⎡

⎢

⎢

⎢

⎣

pext +

N
∑

n = 1

n �= i

(

p(m)
n + p(d )

n,x + p(d )
n,y

)

⎤

⎥

⎥

⎥

⎦

,

A
(d )
i,v = α

(d )
i,v

⎡

⎢

⎢

⎢

⎣

uext,v +

N
∑

n = 1

n �= i

(

u(m)
n,v + u(d )

n,xv + u(d )
n,yv

)

⎤

⎥

⎥

⎥

⎦

, (12)

where p(m)
n , p(d )

n,x, and p(d )
n,y are the acoustic pressures produced

by the monopole and dipoles oriented along the x and y di-

rections of the nth cell at the position of the ith cell. They

are given by Eqs. (3), in which r is the distance between

the centers of the ith and nth cell. Similarly, u(m)
n,v represents

the v component of the particle velocities produced by the

monopole source and u(d )
n,wv

represents the v component of the

particle velocity produced by the dipole oriented along the w

axis of the nth cell at the position of the ith cell. Here, both

v and w can be either of the x and y axes. The expressions of

these velocities are given below:

u(m)
n,v =

A(m)
n

jz0

(r̂ · v̂)H
(2)
1 (k0r),

u(d )
n,wv

=
jA(d )

n,w

k0z0

{

(r̂ · v̂)k0 cos θw

[

H
(2)
0 (k0r) − H

(2)
2 (k0r)

]

− (θ̂w · v̂)
2

r
sin θw

[

H
(2)
1 (k0r)

]

}

. (13)

In these equations, the v component of the particle velocity

is found from the dot product of the Cartesian basis vector v̂

with the source velocity vector, which is expressed using the

polar basis vectors r̂ and θ̂w.

This allows for a system of equations to be written from

which all of the source amplitudes can be solved for given

their polarizabilities and the external impinging field. A gen-

eral expression of this system is

Ek =

3N
∑

j=1

Ck jA j, (14)

where Ck j is a square matrix of dimension 3N that encom-

passes the source interactions, Ek is a column matrix of the

external field sensed at each source, and A j is a column

matrix of the source amplitudes we want to determine. The

source amplitudes are ordered such that every set of three

(one monopole and two dipoles) corresponds to the same unit

cell. Consequently, 3×3 submatrices along the diagonal of Ck j

represent interactions of sources within the same unit cell. In

our model, we assume that there is no intracell feedback or,

in other words, the response of a cell is not coupled with its

own field. As a result, these submatrices will each be set as

the identity matrix.

In summary, a continuous material of arbitrary geometry

with effective properties κeff and ρeff can be modeled by an

array of subwavelength-spaced unit cells. Once the appropri-

ate polarizabilities are calculated via Eqs. (11), the system
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FIG. 2. Scattering from a plane wave obliquely incident on acoustically short and tall slabs (outlined in black) of κeff = 3 and ρeff = 2 is

compared between an FEM and source model simulation. The amplitudes of the sources in the cell lattice are shown for slab sections of equal

dimension. The error of the source model scattered field amplitude is plotted relative to the maximum pressure in the simulated region.

of equations shown in Eq. (14) can be solved to determine

the response to a given external field. Our demonstrations of

this approach will utilize both square and hexagonal lattices

of cells, but any unit cell with sufficiently subwavelength

dimension is viable. We will demonstrate the modeling of

continuous media with rectangular and circular geometries.

III. HOMOGENEOUS ISOTROPIC SLAB

To evaluate our source model and the relationship we

found between their polarizabilities and macroscopic acoustic

properties, we compared our simulations of scattered pressure

fields using an array of unit cells to FEM simulations of a

continuous material. For the source model, the scattered field

is the sum of all the source responses with amplitudes found

from solving the system in Eq. (14). In the FEM simulation, it

is simply the total field subtracted by the incident field.

Our first demonstration is a plane wave incident on a

homogeneous isotropic slab. Oblique incidence of 30◦ was

chosen so that both dipole orientations would be excited and

the relative material properties κeff = 3 and ρeff = 2 were se-

lected to produce significant reflected and transmitted waves.

The geometry was defined in terms of the wavelength λ

of the plane wave in the background fluid. We examined

two slab geometries, both of width w = 0.6λ, but differing

heights of h = 2λ and h = 8λ so that scattering dominated by

diffraction/edge effects could be compared to more uniform

scattering. The slabs were modeled by cells with highly sub-

wavelength spacing of λ/50 in a square array. Because the

slab is homogeneous, all of the unit cells share the same set

of polarizabilities and, because the mass density is isotropic,

α(d )
x = α(d )

y .

The scattered fields in a 6λ by 6λ region found from both

simulation methods are shown on the left in Fig. 2. The

scattered fields generated by the source model closely match

those found through the FEM solution of the wave equation

for both geometries. This indicates that the dimension of the

unit cell was sufficiently small to model the geometry and

physics and that the polarizabilities were accurate represen-

tations of the macroscopic properties. The error is quantified

in the rightmost plots of Fig. 2, shown as the difference in

the pressure amplitudes of the FEM and source model results

relative to the maximum amplitude in the domain. The high

error points within the slab are a result of samples very near

to the sources, where the pressure approaches infinity. Other

error can be attributed to the approximations made when

deriving the scattering by a cylinder from an incident plane

wave. Namely, the response was assumed to be first order and

for a highly subwavelength cylinder. While the tested unit cell

dimension of λ/50 is subwavelength, it is not small enough

for there to be no noticeable mismatch between the actual and

approximated fields, especially when the error is compounded

by the interactions among all of the cells. Nevertheless, the

difference manifests in amplitude but not in phase and it is

expected to be much smaller than the differences imposed by

typical fabrication tolerances. Another way to view the error is

by checking for the conservation of energy. We calculated the

difference between the acoustic power entering and leaving

the source model simulation domain relative to the incident

power. The short slab had a 1.7% gain in power and the
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tall slab had a 3.2% gain. This clarifies that there is indeed

inaccuracy due to the approximated scattered fields rather than

wrongly chosen polarizabilities for the desired macroscopic

acoustic properties. Even so, with the intent of engineering

application and physical realization, the approximations that

were made and the chosen cell dimension are still a strong

demonstration of the model’s capabilities.

In the middle of Fig. 2 are plots of the source amplitudes in

the center 2λ tall sections of both slabs. Each pixel represents

a single source, with its position in the cell lattice defined

by its row and column. The amplitude distributions help to

visualize how the acoustic behavior is dominated by edge

effects in the shorter slab, but approaches uniformity in the

center of the taller slab.

While the results shown in this section are for only one

set of material properties in the vicinity of the background

fluid, this is not the limit of the capability of the source model.

The scattered fields can be solved for more complex property

distributions, as will be demonstrated for an acoustic cloak in

the following section.

IV. TRANSFORMATION ACOUSTICS AND CLOAKING

Transformation acoustics enables the derivation of the

bulk modulus and mass density distributions necessary to

physically replicate the effects of a desired coordinate trans-

formation. In view of the emerging active metamaterials with

sensor-driver unit cells, it is useful to develop an adaptation of

transformation acoustics to directly solve for the polarizabili-

ties, rather than the macroscopic acoustic properties. We start

with a general coordinate transformation given as

(x′, y′, z′) = (x′(x, y, z), y′(x, y, z), z′(x, y, z)),

J =

⎡

⎢

⎢

⎣

∂x′

∂x
∂x′

∂y
∂x′

∂z

∂y′

∂x

∂y′

∂y

∂y′

∂z

∂z′

∂x
∂z′

∂y
∂z′

∂z

⎤

⎥

⎥

⎦

, (15)

where the new primed coordinates are functions of the original

nonprimed coordinates and J is the Jacobian matrix of the

transformation. Using the linear acoustic constitutive relations

for an inviscid fluid, we can then solve for the bulk modulus

and mass density tensor necessary to replicate this transfor-

mation in the original coordinate system as

κ ′ = |J|−1κ,

ρ
′ = |J|−1JT

ρJ, (16)

where |J| is the determinant of the Jacobian and JT is its

transpose [50]. For the source model, we assume an isotropic

background fluid. Therefore, the mass density before trans-

formation is simply ρ = ρ0I, where I is the identity matrix.

Equation (16) can now be rewritten in terms of the relative

effective properties as

κ ′
eff = |J|−1,

ρ
′
eff = |J|−1JT J = Ĵ, (17)

with Ĵ being defined for conciseness. Finally, we express these

effective material properties in the principal axes, such that the

mass density and Jacobian tensors are diagonal. Employing

the superscript star (∗) to represent a tensor evaluated in a

coordinate system in which the tensor is diagonal (i.e., the

principal axis system), we use Eqs. (11) to substitute the

polarizabilities for the macroscopic properties. Consequently,

the transformation acoustics expressions become

α(m) = j f −1(k0a)2 π

4
(1 − |J|),

α(d )
v

= z0(k0a)2 π

4

[

1 − g(Ĵ∗
v

)

1 + g(Ĵ∗
v

)

]

. (18)

Therefore, each diagonal element of the dipole polarizability

tensor indexed by v is solved for independently.

A free space cylindrical cloaking shell is a good trans-

formation acoustics device to demonstrate the capability

of microscopic modeling, as steep property gradients and

anisotropy are required. One set of solutions can be found

from a coordinate transformation in the radial direction from

r to r′ [2],

r′ =
R2 − R1

R2

r + R1, φ′ = φ, (19)

where R1 is the inner radius and R2 is the outer radius of the

shell. The resultant radially varying mass density and inverse

bulk modulus are according to Eq. (16) and [2]

ρ ′
r =

r′

r′ − R1

, ρ ′
φ =

r′ − R1

r′
,

(κ ′)−1 =

(

R2

R2 − R1

)2
r′ − R1

r′
. (20)

The density is anisotropic, with principal components ρ ′
r in

the radial direction and ρ ′
φ in the tangential direction.

Since these material properties are already determined in

the principal axes, we can directly apply Eqs. (18) to obtain

the polarizabilities along the principal axes in which |J| =

(κ ′)−1, Ĵ∗
r = ρ ′

r , and Ĵ∗
φ = ρ ′

φ , according to Eq. (17).

In view of the numerical simulations that follow, we ex-

press the dipole polarizability tensor in a Cartesian system of

coordinates (x′, y′) by properly rotating the polar coordinates

by angle φ [51,52]. We obtain the nondiagonal dipole polariz-

ability tensor

α̂
(d ) = Q−1

α
(d )Q, Q =

[

cos φ sin φ

− sin φ cos φ

]

, (21)

where Q is the rotation matrix. The physical significance of

the nondiagonal elements of α̂
(d ) is that the dipoles are not

aligned along the principal directions of anisotropy and must

be sensitive to the particle velocity in all directions, not just

along their axes.

The acoustic cloak was simulated using the same source

model as the slab simulation of the previous section, but with

anisotropic and spatially varying polarizabilities. The chosen

geometry was a scatterer of radius R1 = 0.6λ encapsulated

by a cloak of radius R2 = 2R1, both modeled with hexago-

nally packed source cells [see Fig. 1(a)] spaced λ/50 apart.

This packing method was employed to better approximate

the curved geometry. A scatterer with κeff = 50 and ρeff = 50

was selected so that there would be high contrast between

the cloaked and uncloaked pressure fields. The position of the
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(a) (b)

(c)

(e) (f )

(d)

FIG. 3. Demonstration of the source modeling of a cloaked scat-

terer in a background plane wave in the x direction. The cloak and

scatterer are represented with source cells marked by solid circles

with spacing of λ/50 for (a) the full geometry and (b) a zoomed in

view. The total pressure is shown for (c) the scatterer and (d) the

cloaked scatterer. The normalized scattered pressure magnitude is

also shown for (e) the scatterer and (f) the cloaked scatterer.

source cells used to model the scatterer (blue) and cloak (red)

are shown with solid circles in Figs. 3(a) and 3(b).

The results of the simulation for an incident plane wave in

the x direction are displayed in Figs. 3(c)–3(f). In Fig. 3(c),

the total pressure field for the uncloaked scatterer is shown.

A high amplitude reflection region and low amplitude trans-

mission region are clearly visible, with radial scattering above

and below. In contrast, only the background plane wave is

present outside the cloaking shell in Fig. 3(b). The absence of

scattering indicates that the prescribed anisotropy and steep

material gradients were accurately represented. Also support-

ing this is the high curvature of the waves around the inner

cloak boundary, which should be expected for the density

approaching infinity. In Figs. 3(e) and 3(f), the normalized

amplitudes of just the scattered fields are plotted to highlight

the effectiveness of the cloak.

It should be expected that the performance deteriorates as

the lattice period of the source cell medium and/or the material

parameter gradients increase with respect to the wavelength

of the external field. This effect was assessed by varying

FIG. 4. Polar plots of the scattered pressure from a cloaked scat-

terer at a radius of 20λ for varying (a) cloak thickness and (b) unit

cell dimension.

the cloak thickness and unit cell dimension. The results are

shown in Fig. 4 as polar plots of the scattered field am-

plitudes at r = 20λ. Decreasing the thickness of the cloak

steepens the property gradients and reduces the number of

cells if spacing is held constant. This results in a highly

discretized property curve and a less effective cloak, as shown

by the scattered pressure trend in Fig. 4(a). Additionally, a

thin cloak may be more heavily impacted by boundary ef-

fects, as seen in other homogenized media such as wired

electromagnetic metamaterials [53,54]. The polarizabilities of

the sources on the boundaries of the structure could poten-

tially be adjusted to account for this and better match the

desired material properties. The number of unit cells can be

reduced directly by increasing the unit cell dimension, with

similar effect on the performance, as shown in Fig. 4(b).

The relationships used to calculate the polarizabilities will

lose accuracy as the dimension approaches the scale of the

wavelength.

An alternate method of studying the effects of the source

model is to design a cloak for a single incident wave frequency

f0 and then evaluate its performance over a frequency range.

We used the geometry shown in Fig. 3 and as a performance

metric chose the ratio of the scattered power with the cloak

Pcloaked to that without the cloak P0. While the macroscopic

material properties are independent of the incident frequency

(assuming no dispersion), the source polarizability amplitudes

are not, as their calculation in Eq. (11) includes a k0 term.

We examined cloak performance for both the cases of con-

stant polarizabilities designed for f0 and varying, frequency

dependent polarizabilities. The results are plotted in Fig. 5. It

is clear from the steep increase in scattering that, for a cloak to

operate outside a very narrow frequency band, it is necessary

for the polarizabilities to vary, as their amplitude must depend

on frequency. When this is true, the performance approaches

the ideal zero scattering as the unit cell dimension becomes

increasingly small compared to the wavelength and the first

order approximation employed in our derivations becomes

more accurate. It should also be noted that the frequency

independence of the required polarizability phases violates

causality and practical implementation will be constrained to

some bandwidth. In general, the parametric studies shown

in Figs. 4 and 5 provide useful guidelines for the physical

realization of such a cloak with active unit cells and insight
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0.6 0.8 1 1.2 1.4 1.6
0
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FIG. 5. Cloak performance, quantified by the cloaked scattered

power relative to the uncloaked scattered power, is plotted as a

function of the frequency of the incident plane wave. The cloak

geometry was fixed, but the polarizabilities were either constant or

varying with frequency.

into how the performance will compare to the ideal continuous

design.

V. CONCLUSION

We derived an analytical method to relate the polariz-

abilities of media composed of polarized sources separated

by significantly subwavelength distances to the macroscopic

acoustic properties of acoustically equivalent continuous ma-

terials. We considered bulk transformation acoustics media in

which the high mass density anisotropy and the steep gradi-

ents of bulk modulus and mass density are accurately modeled

by collections of unit cells composed of one monopole and

two dipole sources whose amplitude and phase is determined

by the local acoustic pressure and particle velocity. The po-

larizabilities of a single cell were first solved for in terms

of the relative bulk modulus κcyl and mass density ρcyl of a

subwavelength cylinder by equating the expressions for the

scattered fields from an incident plane wave. The cylinder

properties necessary for the desired effective properties κeff

and ρeff were then found from the homogenization of an array

of cylinders placed in a background fluid. Finally, the set of

polarizabilities could be determined directly from the effective

properties.

Remarkably, the source polarizabilities inside each cell are

related through closed-form expressions to the local effective

macroscopic material properties in the equivalent continu-

ous medium. This enabled the application of the source

model to transformation acoustics and derivations of the

source polarizabilities directly from the underlying coordinate

transformations.

The source model was validated by comparing the acous-

tic fields scattered by several continuous homogeneous and

inhomogeneous media and obtained in numerical simula-

tions performed with COMSOL MULTIPHYSICS with the fields

scattered by the media realizations with source lattices. In par-

ticular, a free space cloak was modeled to exhibit the ability

to accurately represent steep material property gradients and

anisotropy. The simulated cloak produced almost no scattered

field, indicating that the material properties and geometry

were accurately represented.

The relationships between the polarizabilities and macro-

scopic acoustic properties presented in this work will help

to enable the development of new active metamaterials using

the sensor-driver architecture. With a suitable physical imple-

mentation, the effective bulk modulus and mass density tensor

should be independently controllable in each unit cell across

2D and 3D bulk geometries. Ultimately, this would provide a

path towards realizing general reconfigurable acoustic devices

and exciting applications of transformation acoustics such as

cloaking.
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