

1 Submission type: Article

2 Running head: Season of fire for grassland restoration

3 **Season of prescribed fire determines grassland restoration outcomes after fire exclusion**

4 **and overgrazing**

5 ERIN N. NOVAK¹, MICHELLE BERTELSEN^{2,3}, DICK DAVIS², DEVIN M. GROBERT^{4,5}, KELLY G.

6 LYONS⁶, JASON P. MARTINA⁷, W. MATT MCCAW⁸, MATTHEW O'TOOLE², JOSEPH W. VELDMAN^{1,9}

7 ¹Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX

8 77843, U.S.A.

9 ²Lady Bird Johnson Wildflower Center, Austin, TX 78739, U.S.A.

10 ³Ecosystem Design Group, Austin, TX 78739, U.S.A.

11 ⁴Water Quality Protection Lands, City of Austin, Austin, TX 78739, U.S.A.

12 ⁵Department of Integrative Biology, University of Texas, Austin, TX 78712, U.S.A.

13 ⁶Department of Biology, Trinity University, San Antonio, TX 78212, U.S.A.

14 ⁷Department of Biology, Texas State University, San Marcos, TX 78666, U.S.A.

15 ⁸Land Management Program, Parks and Recreation Department, City of Austin, Austin, TX

16 78704, U.S.A.

17 Data Availability Statement: Data are available from the Dryad Digital Repository at

18 <https://doi.org/10.5061/dryad.mcvdnck06>.

⁹ Email: veldman@tamu.edu

19 *Abstract.* Fire exclusion and mismanaged grazing are globally important drivers of
20 environmental change in mesic C₄ grasslands and savannas. Although interest is growing in
21 prescribed fire for grassland restoration, we have little long-term experimental evidence of the
22 influence of burn season on the recovery of herbaceous plant communities, encroachment by
23 trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment
24 (seven burns between 2001 and 2019) in historically fire-excluded and overgrazed grasslands of
25 central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm
26 season, lightning season), fall burns (early cool season), winter burns (late cool season), or
27 unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we
28 identified old-growth grasslands to serve as reference sites. Herbaceous-layer plant communities
29 in all experimental sites were compositionally and functionally distinct from old-growth
30 grasslands, with little recovery of perennial C₄ grasses and long-lived forbs. Unburned sites were
31 characterized by several species of tree, shrub, and vine; summer sites were characterized by
32 certain C₃ grasses and forbs; and, fall and winter sites were intermediate in composition to the
33 unburned and summer sites. Despite compositional differences, all treatments had comparable
34 plot-level plant species richness (range 89-95 species 1000/m²). At the local-scale, summer sites
35 (23 species/m²) and old-growth grasslands (20 species/m²) supported greater richness than
36 unburned sites (15 species/m²), but did not differ significantly from fall or winter sites. Among
37 fire treatments, summer and winter burns most consistently produced the vegetation structure of
38 old-growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns
39 promoted the invasive grass *Bothriochloa ischaemum* by maintaining areas with low canopy
40 cover, summer burns simultaneously limited woody encroachment and controlled *B. ischaemum*
41 invasion. Our results support a growing body of literature that shows that prescribed fire alone,

42 without the introduction of plant propagules, cannot necessarily restore old-growth grassland
43 community composition. Nonetheless, this long-term experiment demonstrates that prescribed
44 burns implemented in the summer can benefit restoration by preventing woody encroachment
45 while also controlling an invasive grass. We suggest that fire season deserves greater attention in
46 grassland restoration planning and ecological research.

47 *Key words: Blackland Prairie, bud bank, Edwards Plateau, grassy biomes, King Ranch*
48 *Bluestem, novel ecosystems, regeneration, succession.*

49 **INTRODUCTION**

50 Prescribed fire—i.e., burning by land managers under specific conditions to induce desired
51 ecosystem responses—is an essential element of efforts to conserve and restore the biodiversity
52 of Earth’s mesic C₄ grasslands (including savannas and open-canopy grassy woodlands; Menges
53 and Gordon 2010, Veldman et. al 2015, Buisson et al. 2019). Management objectives for
54 prescribed fire in grasslands commonly include: maintenance of communities of plants that
55 evolved with fire (Bond and Keeley 2005, Simpson et al. 2016), control of woody plants to
56 prevent forest or shrubland encroachment (Miller et al. 2017), prevention of exotic plant
57 invasions (DiTomaso et al. 2006), improvement of habitat and forage for wildlife or livestock
58 (Main and Richardson 2002, Scasta et al. 2016), and consumption of fuels to reduce hazardous
59 wildfire risk (Reidy et al. 2016, Starns et al. 2019). To achieve these objectives, prescribed fire
60 managers establish fire regimes (e.g., frequency, intensity, and seasonality of fire) that may
61 closely resemble, or deviate substantially from, the historical fire regimes under which old-
62 growth grassland communities developed and species evolved (Ryan et al. 2013, Veldman et al.
63 2015). Among the aspects of fire regimes that we should expect to be critically important for
64 grassland restoration, but is often overlooked, is the season of fire (Pyke et al. 2010).

65 Several lines of evidence suggest that fire season should influence grassland restoration. Fire
66 season is integral to fire behavior via interactions with weather and plant phenology; burning
67 during seasons with high temperatures, low humidity, and high proportions of dead fuel offers
68 the greatest control of woody plants (Taylor et al. 2012). Fire season can influence community
69 composition by altering the productivity and relative abundances of C₄ grasses, C₃ grasses, and
70 forbs (Howe 1994, Ansley et al. 2010, Dickson et al. 2019). At the organismal level, many grass
71 and forb species are stimulated to flower, and produce higher proportions of viable seed, in
72 response to fires in a particular season (Outcalt 1994, Fidelis and Blanco 2014). In humid
73 tropical and subtropical climates, such a correspondence between reproductive effort and fire
74 season suggests a long evolutionary history between grassland species and lightning-ignited fires
75 (Simon et al. 2009, Maurin et al. 2014), which historically occurred during seasons commonly
76 referred to as the growing season, rainy season, or warm season (e.g., Ramos-Neto and Pivello
77 2000, Noss et al. 2015). While this evidence suggests a need to consider prescribed fire season in
78 restoration efforts, we lack long-term experimental evidence of whether burning in particular
79 seasons can restore grasslands toward an old-growth ecosystem state after chronic overgrazing
80 and fire exclusion. To date, long-term experiments on the effects of different fire seasons have
81 been limited to old-growth grasslands that were not in need of restoration (e.g., Towne and
82 Craine 2014), reconstructed grasslands planted on former agricultural land (Howe 2011, Dickson
83 et al. 2019), or study designs that did not assess restoration in reference to old-growth grassland
84 communities (Taylor et al. 2012, Boughton et al. 2013).

85 Many grasslands exist as hybrid ecosystems (*sensu* Hobbs et al. 2009), characterized by biotic
86 and abiotic attributes that deviate from historical (i.e., old-growth) conditions, but that have not
87 been completely destroyed by intensive land uses such as tillage agriculture, afforestation, or

88 mining (Buisson et al. 2019). Therefore, in addition to studies on how prescribed fire can
89 conserve old-growth grasslands (Towne and Craine 2014) and manage reconstructed grasslands
90 after wholesale destruction (Howe 2011, Dickson et al. 2019), we also need to determine how
91 fire influences the many hybrid grasslands that fall between the extremes of old-growth and
92 novel ecosystem states (Hobbs et al. 2009, Buisson et al. 2019). Two ubiquitous drivers of
93 environmental change that create hybrid grasslands are mismanagement of domestic livestock
94 and fire exclusion (Buisson et al. 2019). Consequences of overgrazing include declines in
95 perennial herbaceous plant species (Van De Koppel et al. 1997), increased abundance of
96 shortgrass species relative to tallgrass species (Fuhlendorf and Smeins 1997), invasion by exotic
97 species (McIntyre et al. 2003), and reduced ecosystem flammability (Hempson et al. 2019). Fire
98 exclusion causes grasslands to become encroached by trees and shrubs (Ladwig et al. 2018),
99 which leads to the loss of fire- and light-dependent savanna plants and animals (Briggs et al.
100 2002, Abreu et al. 2017, Diaz-Toribio et al. 2019), and further reduces ecosystem flammability
101 (Nowacki and Abrams 2008).

102 If historical fire-vegetation relationships are disrupted, recovery of old-growth grassland
103 structure and plant community composition can be challenging. During the early stages of woody
104 encroachment, prescribed fire successfully reduces tree and shrub abundance (Ruth et al. 2007,
105 Policelli et al. 2019), but severe woody encroachment inhibits fire spread through altered
106 microclimates and loss of herbaceous fuel (Nowacki and Abrams 2008, Scott et al. 2012). Even
107 if prescribed fire can be applied without mechanical thinning and herbicide application, the rate
108 of recovery of herbaceous plant communities is often very slow (Nerlekar and Veldman 2020)
109 and communities may never return to the composition of old-growth grasslands (Geiger and
110 McPherson 2005, Scott et al. 2012). An apparent hurdle to community recovery, characteristic

111 plant species of old-growth grasslands tend to be poor at colonizing from seed, and instead
112 depend on clonal growth, bud banks, and underground storage organs for persistence (Benson
113 and Hartnett 2006). Thus, restoration of community composition, without sowing seeds or
114 transplants, requires the spread of remnant plant populations on-site, or in some cases may rely
115 on dispersal from nearby populations (Limb et al. 2014, Fensham et al. 2016).

116 A key function of prescribed fire in grassland restoration is to stimulate reproduction of
117 herbaceous plants—native grasses in particular—and open space for establishment via seed or
118 clonal spread (Benson and Hartnett 2006, Myers and Harms 2009). Unfortunately, through
119 similar mechanisms, prescribed fire can also create a window for exotic grass invasions
120 (Setterfield et al. 2005, Keeley 2015). As such, fire-adapted invasive grasses pose a critical
121 challenge to the use of prescribed fire in grassland conservation and restoration (Reed et al.
122 2005). Well-documented examples of fire-adapted invasive grasses that exclude native species,
123 alter fire regimes, and perpetuate invasive grass-fire cycles (Fusco et al. 2019), include
124 *Andropogon gayanus* in Australia (Rossiter et al. 2003), *Imperata cylindrica* in the southeastern
125 United States (Holzmueller and Jose 2010), and *Bromus tectorum* in the western United States
126 (Balch et al. 2013). *Bothriochloa ischaemum* (King Ranch Bluestem) is another problematic fire-
127 adapted, invasive grass, which is now widespread in central Texas. Because of its high tolerance
128 to grazing and resistance to drought, this perennial C₄ bunchgrass, native to temperate and
129 subtropical Eurasia, was introduced in the early 1900s to serve as livestock forage (Wied et al.
130 2020). Whereas prescribed fires in the winter promote *B. ischaemum* invasion (Gabbard and
131 Fowler 2007, Havill et al. 2015), short-term studies suggest that summer fires can reduce *B.*
132 *ischaemum* abundance (Simmons et al. 2007, Reemts et al. 2018). In light of the phenological
133 and evolutionary importance of season of fire (Miller et al. 2019), we anticipate that long-term

134 application of prescribed fire in the warm season, when *B. ischaemum* is in a fire-sensitive
135 phenological stage (Ruckman et al. 2012), will control this invasive grass during restoration.

136 In this study, we used a long-term prescribed fire experiment (2001-2019) to assess the
137 influence of burn season on the restoration of historically overgrazed and fire-excluded
138 grasslands in central Texas. We considered three primary suites of response variables that are
139 commonly targeted in grassland and savanna restoration: native herbaceous-layer plant
140 community composition and diversity, vegetation structure (e.g., herbaceous and woody canopy
141 cover), and susceptibility to invasion by exotic grasses. Because assessment of management
142 outcomes through comparison to reference ecosystem states is the standard in restoration ecology
143 (McDonald et al. 2016; Gann et al. 2019), we identified some of the few remaining old-growth
144 grasslands in our study region to serve as reference sites (Veldman et al. 2015, Buisson et al.
145 2019). We hypothesized that: (1) experimental sites burned in the summer (within the lightning
146 fire season) would support the greatest compositional similarity to old-growth grassland plant
147 communities, followed by sites burned in winter and fall, while communities on unburned sites
148 would be least similar; (2) herbaceous-layer species richness and diversity, independent of
149 season of burn, would be greater in burned grasslands compared to unburned (fire-excluded)
150 sites; (3) fire in any season would maintain the open vegetation structure of old-growth
151 grasslands, whereas unburned sites would be dominated by trees and shrubs; (4) prescribed fire
152 in the summer would limit invasion of *B. ischaemum* relative to prescribed fire in the fall and
153 winter. We expect our results to raise awareness of the value of prescribed fire season to
154 grassland restoration, to highlight the challenge of restoring the plant community composition of
155 old-growth grasslands after fire exclusion and overgrazing, and demonstrate that long-term

156 manipulation of prescribed fire season can control an invasive C₄ grass during grassland
157 restoration.

158 **METHODS**

159 *Study System*

160 We conducted this study in savanna-grasslands of central Texas, on the eastern edge of the
161 Edwards Plateau, abutting the Blackland Prairie ecoregion (Gould et al. 1960). Old-growth
162 grasslands of the region are composed of flammable C₄ grasses, including *Andropogon gerardii*,
163 *Bothriochloa laguroides*, *Bouteloua curtipendula*, *Bouteloua dactyloides*, *Schizachyrium*
164 *scoparium*, and *Sorghastrum nutans* (Landers 1987). Common tree species, listed in decreasing
165 order of fire tolerance (i.e., bark thickness and resprouting capacity), include *Quercus stellata*,
166 *Quercus fusiformis*, *Prosopis glandulosa*, *Ulmus crassifolia*, and *Juniperus ashei* (Landers
167 1987). The climate is humid subtropical (mean annual temperature of 19.6 °C, mean annual
168 precipitation of 880 mm) with warm summers (June-September), mild to cool falls (October-
169 December), cool winters (January-early March), and mild springs (late March-May); intra-annual
170 precipitation is bimodal, with peak rainfall in May-June and October (NWS 1981-2010;
171 Appendix S1: Fig. S1). Lightning is frequent (>1.0 flash/km²/month) from April through
172 September, suggestive of spring and summer as the fire seasons (Appendix S1: Fig. S1; Balch et
173 al. 2017) under which the region's grassland plants evolved (Noss et al. 2015).

174 Prior to colonization in the mid-1800s, by immigrants from central Europe and the southern
175 United States, the region's grasslands were maintained by frequent fires (ignited by lightning and
176 Native Americans) and large herbivores, including *Bison bison* and extinct Holocene megafauna
177 (Smeins et al. 1997). Native American influence on fire regimes was minimal prior to the mid-
178 Holocene and apparently grew in importance into the late Holocene (Cordova and Johnson

179 2019). Presumably, Native Americans used fire outside the spring-summer lightning season, but
180 the degree of modification of fire regimes, and the extent to which a wider range of fire seasons
181 influenced herbaceous and woody plant dynamics is unclear. While Native Americans certainly
182 influenced vegetation dynamics through fire, many fire-adapted taxa of contemporary grasslands
183 were present, even if not dominant, in the region by 18 to 10 kya (Larson et al. 1972, Cordova
184 and Johnson 2019) and thus predate extensive human influence (Noss et al. 2015).

185 During the past 150 years, fire exclusion, overgrazing, woody encroachment, and urbanization
186 has dramatically changed most grasslands of central Texas. This period of change began with
187 European land-use practices that fragmented landscapes with fences and heavy grazing by
188 livestock (primarily sheep, goats, and cattle), and ultimately reduced perennial C₄ bunch grasses
189 and limited fire frequency and spread (Smeins 1980). Chronic fire exclusion and overgrazing
190 promoted encroachment by woody species, especially *Juniperus ashei* (Jessup et al. 2003) and
191 increased the abundance of short-grass, often C₃, species (Fuhlendorf and Smeins 1997).

192 *Study Locations*

193 Locations for this study were the Lady Bird Johnson Wildflower Center, in southwest Austin
194 (30°11'N, 97°52'W), and the City of Austin Water Quality Protection Lands, immediately south
195 of Austin in the counties of Travis and Hays (30°5'N, 97°56'W). Beginning in 1995 and
196 culminating in 2002, the Wildflower Center acquired 115 ha of former ranchland that was
197 managed for many decades with fire exclusion and cattle grazing but lacked any known history
198 of intensive soil disturbance (e.g., tillage agriculture). At the time of acquisition, grasslands at
199 the Wildflower Center were undergoing encroachment by woody species (*Juniperus ashei*,
200 *Quercus fusiformis*, and *Prosopis glandulosa*) and invasion by exotic grasses (*Bothriochloa*
201 *ischaemum*, in particular, but also *Sorghum halepense* and later *Dichanthium sericeum*).

202 Populations of native perennial C₄ bunchgrasses and long-lived forbs were reduced to a few
203 scattered individuals. Soils at the Wildflower Center are 35-50 cm deep, well-drained mollisols
204 (Speck Clay Loam) and vertisols (Crawford Clay; Soil Survey 2020). Old-growth grassland sites,
205 which we identified as reference communities, were located on the Water Quality Protection
206 Lands, 4 to 17 km southwest of the Wildflower Center. Between 1998 and 2019, the city of
207 Austin acquired 11,500 ha over a portion of the Edwards Aquifer to protect the quality and
208 quantity of groundwater recharge. Like the Wildflower Center, the portions of the Water Quality
209 Protection Lands included in this study were former ranchland (heavily grazed until 2000;
210 McCaw et al. 2018), with old-growth grasslands reduced to several small sites. The City of
211 Austin currently manages the Water Quality Protection Lands with prescribed fire to restore
212 grasslands and limit woody encroachment. The soils of the old-growth grassland study sites on
213 Water Quality Protection Lands are 25-100 cm deep, well-drained mollisols (Rumple-Comfort,
214 rubbly association gravelly clay loam, with minor components of Tarpley; Soil Survey 2020).

215 *Experimental Design*

216 In 2001, the Wildflower Center established a prescribed fire experiment by randomly
217 assigning 24 degraded grassland sites (hereafter, “experimental sites”; mean 0.6 ha per site with
218 sites stratified by soil type across a 28 ha area) to one of four treatments: summer burns (June-
219 September), fall burns (October-December), winter burns (January-March), or unburned (fire
220 exclusion, unmanaged control). For each set of six experimental sites assigned to the summer,
221 fall, and winter treatments, all sites were burned in 2001, 2002, 2004, 2008, 2013, 2015, and
222 2017, during their respective prescribed fire seasons. At the time of sampling (2019), this
223 equated to a mean fire frequency of 0.39/yr and mean fire return interval of 2.7 yr for the burned
224 sites. Based on observed fire weather for the three most recent years (2013, 2015, and 2017),

225 summer burns occurred within ranges of 33-38°C, 35-57% relative humidity (RH), and surface
226 wind speeds of 3-14 km/h; fall burns occurred at 17-26°C, 34-62% RH, and surface wind speeds
227 of 3-11 km/h; winter burns occurred at 12-21°C, 23-44% RH, and surface wind speeds of 5-13
228 km/h. Although the experimental sites are of restoration interest to the Wildflower Center, there
229 have been no restoration interventions (such as seed additions or herbicide control of exotics)
230 other than prescribed fire.

231 *Selection of Old-growth Grasslands*

232 In central Texas, plant communities are rare that fit the descriptions of the historical
233 grasslands of the Edwards Plateau and Blackland Prairie ecoregions (Landers 1987) and conform
234 to the concept of old-growth grasslands (Veldman et al. 2015). Because the Wildflower Center
235 does not support any old-growth grasslands, in April 2019, prior to sampling the experimental
236 sites, we surveyed the Water Quality Protection Lands to identify sites that could serve as
237 reference communities for assessment of restoration outcomes in the experiment. To target our
238 surveys, we first mapped areas where land managers knew of populations of the long-lived
239 perennial C₄ grasses *Andropogon gerardii*, *Bouteloua curtipendula*, *Schizachyrium scoparium*,
240 or *Sorghastrum nutans* (Landers, 1987). With those areas as starting points, we found six sites
241 that met the following criteria. All sites: 1) burned at least once since 2007, 2) were dominated
242 by one or more of the aforementioned native perennial C₄ grasses, 3) had low cover of exotic
243 invasive grasses (visually estimated to be <10%), 4) lacked dense trees and shrubs indicative of
244 chronic fire exclusion, 5) occurred on well-drained clay soils that were comparable to those of
245 the Wildflower Center, and 6) were large enough to accommodate a 20 × 50-m sampling plot.

246 The City of Austin began conducting prescribed burns on these old-growth grassland sites
247 between 2007 and 2010, with a mix of winter and summer burns. Then from 2010 to 2017, all

248 burns were conducted in the summer. From 2007 to the time of sampling in 2019, mean fire
249 frequency for the old-growth sites was 0.18/yr with mean fire return interval of 6.8 yr. Four out
250 of the six old-growth grassland sites last burned in the summer 2017, two years prior to
251 sampling; of the other two sites, one was last burned in the summer of 2015 and the other in
252 2010. Typical ranges for fire weather during summer burns was 32-37°C, 30-41% RH, and
253 surface wind speeds of 11-16 km/h.

254 According to the ecological site descriptions (i.e., soil-vegetation associations) of the United
255 States Department of Agriculture, Natural Resource Conservation Service (USDA-NRCS), the
256 experimental sites at the Wildflower Center are classified as mix of Redland (USDA 2013a) and
257 Deep Redland (USDA 2013b), while the old-growth sites on the Water Quality Protection Lands
258 are classified as a mix of Gravelly Redland (USDA 2013c), Low Stony Hill (USDA 2013d), and
259 Redland (USDA 2013a). A *post hoc* reading of these ecological site descriptions (after sampling
260 and analysis of herbaceous plant communities) suggests that the old-growth grassland sites that
261 we selected are indeed among the best remaining, and geographically closest, examples of the
262 reference ecosystem for the experimental sites at the Wildflower Center. The four ecological site
263 descriptions (USDA 2013a-d) are extremely similar in herbaceous plant community
264 composition, topography, soil characteristics, and ecological dynamics, including responses to
265 fire and grazing. Our old-growth grassland sites span a range of conditions that overlap with the
266 composition and vegetation structure of all four descriptions, and are not clearly better matches
267 to any one description compared to the others (USDA 2013a-d). We view this as consistent with
268 the standards of the Society for Ecological Restoration (Gann et al. 2019), which suggests
269 identification of multiple reference sites that cover the range of variation that occurs in the
270 reference ecosystem. As further evidence that our old-growth grasslands are appropriate

271 reference sites, we note that the Wildflower Center supports small remnant populations of the
272 grass species that dominate the old-growth grassland sites (Appendix S1: Table S1), and that
273 these same species are listed as the dominant tall- and midgrasses in the Redland, Deep Redland,
274 Gravelly Redland, and Low Stony Hill ecological site descriptions (USDA 2013a-d).

275 *Field Sampling*

276 At both the Wildflower Center and Water Quality Protection Lands, we sampled the
277 herbaceous-layer community and woody canopy cover in both spring (30 April – 23 May) and
278 fall (7 October – 1 November) of 2019; during the fall sampling only, we also quantified
279 invasive grass cover and measured the woody plant community (i.e., density of trees, shrubs, and
280 vines). In each site, we established a 20 × 50-m plot (hereafter 1000 m²), which contained ten
281 evenly spaced 1 × 1-m subplots (hereafter 1 m²) and two 50-m transects spaced 10 m apart
282 (Appendix S1: Fig. S2; modified from Peet et al. 1998). At the Wildflower Center, we used
283 ArcGIS version 10.6.1 to center the plots in each experimental site, and thereby maximize the
284 distance between the edges of the plot and boundary of the treatment area. For old-growth
285 grasslands at the Water Quality Protection Lands, we randomly positioned plots in larger sites
286 and oriented the plots to fit within smaller sites.

287 To characterize grassland plant community composition, richness, and diversity, we identified
288 all herbaceous-layer plants (i.e., graminoids, forbs, shrubs, vines, and small trees <1.3 m tall) that
289 were rooted in each of the ten 1-m² subplots. After sampling subplots, we recorded the presence
290 of additional herbaceous-layer species within the full 1000 m² plot. To measure invasion by
291 exotic grasses, during fall sampling, we used a gridded quadrat to visually estimate the percent
292 cover of *B. ischaemum* rooted within each 1-m² subplot. We identified all grass species
293 following Gould (1975) and all other species following Diggs et al. (1999). To verify species

294 identities, we collected specimens to compare with the collection at the S.M. Tracy Herbarium at
295 Texas A&M University.

296 To assess vegetation structure, we estimated the percent cover of live herbaceous material
297 (i.e., green material, not species-specific, excluding woody species) rooted in or overhanging
298 each 1-m² subplot. We measured canopy cover of trees and shrubs with a spherical canopy
299 densiometer held at 1.3 m above each 1-m² subplot (Lemmon 1956). To determine the stem
300 density of shrubs and small trees (≥ 1.3 m tall and < 5 cm diameter at breast height of 1.3 m,
301 DBH), as well as small woody vines (≥ 1.3 m long and < 2.5 cm diameter, Gerwing et al. 2006),
302 we counted stems that occurred in two 50×2 -m belt transects. To determine basal area, we first
303 measured the DBH of all trees 5 to 10 cm DBH, and woody vines ≥ 2.5 cm in diameter in two 50
304 $\times 4$ -m transects. For trees ≥ 10 cm DBH, we sampled the entire 1000 m². Because *Juniperus*
305 *ashei* and *Prosopis glandulosa* branch extensively below 1.3 m, we recorded the diameter at root
306 collar for these species, instead of DBH (adapted from USDA 2015).

307 *Statistical Analyses*

308 For all analyses, we treated the $n = 6$ plots per treatment as statistical replicates. For
309 compositional analyses, we combined the fall and spring data to determine the presence of each
310 species in the ten 1-m² subplots and the 1000-m² plot. We then scored the within-plot frequency
311 of each species on a scale of 0 to 11: a score of 0 indicated the species was absent; a rank of 1
312 indicated the species was present in the 1000-m² plot, but not in any 1-m² subplots; and ranks of
313 2 to 11 correspond to the frequency of a species in the 1-m² subplots (i.e., species present in all
314 ten subplots scored an 11). We chose to use within-plot frequency instead of cover-based
315 abundances because we wanted our community measures to emphasize the presence of locally
316 rare species, which are important in restoration and tend to be down-weighted in cover-based

317 abundance estimates. Also, we used frequency, instead of cover, because cover by species varies
318 throughout the year with phenology, and because cover underrepresents species that invest in
319 belowground biomass (Pausas et al. 2018). For data collected on multiple subplots or transects
320 within each plot (e.g., small stem density), or measured in both spring and fall (e.g., woody
321 canopy cover), we calculated the arithmetic mean of the multiple measurements to represent each
322 plot in the analyses. The one exception to this approach was our logistic modeling of the local-
323 scale relationship between canopy cover and invasive grass cover, in which we retained the data
324 from 1-m² subplots and treated plots as statistical blocks (see description of *B. ischaemum*
325 analyses below).

326 To visualize compositional differences among experimental sites in relation to old-growth
327 grasslands, we ordinated sites based on their herbaceous-layer species with non-metric
328 multidimensional scaling (NMDS). We performed the NMDS in R v. 3.6.2 (R Core Team 2019)
329 using the *Vegan* package (Oksanen et al. 2019), based on Bray-Curtis dissimilarity and using $k =$
330 3 dimensions. To identify the species driving the separation of sites in the ordination, we used
331 the *envfit()* function in *Vegan* to select significant species with $p < 0.001$, based on
332 randomizations with 999 permutations. To interpret how plant functional types were distributed
333 among treatments, we classified the significant species by duration (annual/biennial or perennial)
334 and placed them in one of the following groups: forbs, C₃ graminoids (i.e., grasses and sedges),
335 C₄ graminoids, trees, shrubs, or vines (Gould, 1975, Diggs et al. 1999).

336 To determine the potential for fire treatments to restore historical plant communities, we
337 calculated the mean compositional similarity between each experimental plot at the Wildflower
338 Center and each of the six old-growth grassland plots at the Water Quality Protection Lands, as 1
339 – (Bray-Curtis Dissimilarity Index). To determine reference values for this similarity metric

340 (i.e., expected beta-diversity of fully restored grasslands), we calculated the mean similarity of
341 each old-growth plot to the other five old-growth grasslands. To compare plant diversity among
342 treatments, we analyzed herbaceous-layer species richness at the 1-m² and 1000-m² scales and
343 calculated Shannon-Wiener and Simpson's (1-D) diversity indices, based on within-plot
344 frequency scores (0-11) for each species. We assessed the effects of fire treatments on vegetation
345 structure in analyses of herbaceous cover, canopy cover of trees and shrub, tree basal area (≥ 5
346 cm DBH), and small stem density (≥ 1.3 m tall and < 5 cm DBH). We tested for main effects of
347 treatments using ANOVA and Tukey's Honestly Significant Difference (HSD) post-hoc
348 comparison in R v. 3.6.2 (R Core Team 2019). Prior to analysis, we applied square root
349 transformations to woody canopy cover, tree basal area, and small stem density data, which were
350 not normally distributed.

351 To assess the effects of seasonal burn treatments on exotic grass invasion, we used a series of
352 analyses. To start with, just as for the diversity and structural variables, we compared cover of *B.*
353 *ischaemum* among treatments with ANOVA and Tukey's HSD. To determine if summer fires
354 reduce grass invasion by altering the relationship between canopy cover and *B. ischaemum*, we
355 performed linear regressions for all experimental sites ($n = 24$), summer burn plots individually
356 ($n = 6$), and other experimental treatments combined (i.e., fall, winter, and unburned, $n = 18$). To
357 understand the apparently different canopy-grass relationship in summer sites versus the other
358 treatments, we used logistic regression to model the probability of invasion by *B. ischaemum* in
359 1-m² subplots as a function of canopy cover. This approach let us assess the canopy-invasion
360 relationship at the local scale at which tree-grass interactions occur (Hoffmann et al. 2012), and
361 thus detect relationships that might be obscured at the plot scale (1000 m²). To set a threshold for
362 invasion, we produced a frequency histogram of *B. ischaemum* cover in 1-m² subplots for all

363 treatments combined ($N = 240$). We visually inspected the distribution, which was zero inflated
364 and roughly bimodal, to establish a cutoff between subplots with high cover ($\geq 25\%$) versus those
365 with low cover or absence ($< 25\%$ cover) of *B. ischaemum* (Appendix S1: Fig. S3). We created
366 logistic regression models to predict high invasive grass cover in subplots of each experimental
367 fire treatment, with canopy cover as a fixed effect and plot ($n = 6$ per treatment) as a random
368 effect. We fit these mixed effects models in R v. 3.6.2 (R Core Team 2019) using the `glmer()`
369 function from the *Lme4* package (Bates et al. 2015).

370 **RESULTS**

371 *Herbaceous-Layer Community Composition and Diversity*

372 The historically fire-excluded and overgrazed grasslands at the Wildflower Center, regardless
373 of experimental fire treatments during 2001-2019, were compositionally distinct from old-
374 growth grasslands on the Water Quality Protection Lands. Across these locations, we recorded a
375 total of 253 herbaceous-layer species, of which 34 were present only in old-growth grasslands
376 and 71 were present only in the experimental sites (Appendix S1: Table S1). In our ordinations
377 of plant communities, old-growth grasslands were separated from the experimental sites along
378 NMDS axis 1 (Fig. 1a). Significant species associated with old-growth grasslands in the
379 ordination were: perennial C₄ grasses, *Andropogon gerardii*, *Bouteloua curtipendula*, *Bouteloua*
380 *rigidiseta*, *Schizachyrium scoparium*, and *Sorghastrum nutans*; perennial forbs, *Brickellia*
381 *cylindracea*, *Convolvulus equitans*, *Glandularia bipinnatifida*, *Hedyotis nigricans*, *Lespedeza*
382 *texana*, *Liatris mucronata*, *Rhynchosia senna*, *Stillingia texana*, and *Wedelia texana*; and annual
383 forbs, *Chamaesyce serpens*, *Evax verna*, *Galium virgatum*, *Hedeoma acinoides*, *Hymenopappus*
384 *tenuifolius*, *Tetraneuris linearifolia*, and *Warnockia scutellarioides*, (Figs 1b-c).

385 Among the seasonal fire treatments, NMDS axis 2 separated the unburned sites from the
386 summer sites (Fig. 1a), with the fall and winter sites appearing intermediate in composition. The
387 position of significant species and functional types along NMDS axis 2 (with many forb species
388 associated with summer sites and species of tree, shrub, and vine associated with unburned sites)
389 suggests that NMDS axis 2 reflects a fire-intensity and light-availability gradient (Fig. 1b-c). The
390 species at the summer burn end of NMDS axis 2 were: a perennial C₃ grass, *Nassella*
391 *leucotricha*; an annual C₃ grass *Sphenopholis interrupta*; annual forbs, *Agalinis heterophylla*,
392 *Gaura brachycarpa*, *Geranium carolinianum*, *Lepidium virginicum*, *Rudbeckia hirta*, and
393 *Triodanis perfoliata*; perennial forbs, *Ambrosia psilostachya*, *Bouchetia erecta*, *Evolvulus*
394 *sericeus*, and *Sida abutifolia*. At the unburned end of axis 2, characteristic species of the
395 herbaceous layer were: small shrubs and trees (<1.3 m tall individuals), *Berberis trifoliolata*,
396 *Celtis laevigata*, *Diospyros texana*, *Forestiera pubescens*, *Juniperus ashei*, *Quercus fusiformis*,
397 and *Sideroxylon lanuginosum*; perennial climbing vines, *Cissus incisa*, *Matelea reticulata*, and
398 *Smilax bona-nox*; an annual C₃ sedge, *Carex planostachys*; and an annual forb, *Parietaria*
399 *pensylvanica*. Consistent with the equidistant separation of old-growth grasslands and
400 experimental sites along NMDS axis 1 (Fig. 1a), none of the experimental treatments were
401 superior at improving compositional similarity to the reference old-growth grasslands (mean
402 similarities to old growth of 0.43 to 0.46; Fig. 2).

403 At the 1000-m² scale, plant diversity of all experimental sites was similar to old-growth
404 grasslands: we found no significant differences in herbaceous-layer species richness (Fig. 3a),
405 Shannon-Wiener diversity (Appendix S1: Fig. S4a), or Simpson's diversity (Appendix S1: Fig.
406 S4b). Likewise, mean local-scale species richness (mean richness in 1-m² subplots) in fall and
407 winter sites did not differ significantly from either unburned sites or old-growth grasslands (Fig.

408 3b). By contrast, local-scale species richness was higher in both old-growth grasslands (mean 20
409 species/m²; $p=0.015$) and summer sites (mean 23 species/m²; $p<0.001$) compared to unburned
410 sites (mean 15 species/m²; Fig. 3b).

411 *Vegetation Structure*

412 In two key aspects of vegetation structure—herbaceous ground cover and woody canopy
413 cover—sites that were burned, regardless of season, were similar to old-growth grasslands (Fig.
414 4a,b). Unburned sites had far lower herbaceous cover (mean 27%) and higher woody canopy
415 cover (mean 67%) compared to old-growth grasslands (means of 70% and 9%, for herbaceous
416 and canopy cover, respectively, Fig. 4a,b). Among fire treatments, only summer sites
417 consistently approximated old-growth grassland structure for all variables (i.e., herbaceous
418 cover, woody canopy cover, tree basal area, and small stem density) while also differing
419 consistently from the woody-dominated unburned sites (Fig. 4a-d). For winter sites, tree basal
420 area (mean 2.5 m²/ha) was similar to old-growth grasslands (mean 2.7 m²/ha) and lower than
421 unburned sites (mean 22.6 m²/ha), but small stem density was intermediate to (i.e., not
422 significantly different from) unburned and old-growth sites. Of note, among the burned sites, the
423 fall treatment had the greatest variation in all structural variables, and did not differ significantly
424 from unburned sites or old-growth sites in basal area or small stem density (Fig. 4c,d).

425 *Invasive Grass Cover*

426 Cover of the invasive grass, *Bothriochloa ischaemum*, was low in summer and unburned sites
427 (mean 6% and 10%, respectively), and highest in winter sites (mean 51%; Fig. 5); cover in fall
428 burned sites (mean 23%) was not significantly different from any other treatment. Linear
429 regression of *B. ischaemum* cover in relation to woody canopy cover indicated that summer

430 burns produced a very different canopy-grass relationship than we observed across other
431 treatments. Whereas *B. ischaemum* cover declined as a function of canopy cover across winter,
432 fall, and unburned sites combined, summer burns constrained both woody canopy cover and
433 invasive grass cover (Fig. 6).

434 To further examine the relationship between fire season, woody canopy cover, and *B.*
435 *ischaemum* invasion, we constructed a logistic regression model to relate the odds of high
436 invasive grass cover ($\geq 25\%$) in subplots of 1 m^2 (Appendix S1: Fig. S3) to canopy cover.
437 Independent logistic models (Table 1) for fall, winter, and unburned sites, all showed significant
438 negative relationships between woody canopy cover and odds of high *B. ischaemum* cover. By
439 contrast, no such relationship with canopy existed for summer burned sites; the significant
440 negative intercept in the summer burn model indicates consistently low odds of invasion, even
441 where there is no canopy cover (Table 1).

442 DISCUSSION

443 After 18 years and seven prescribed fires in historically fire-excluded and overgrazed
444 grasslands, burning in any of three seasons (i.e., summer, fall, or winter) produced the vegetation
445 structure of old-growth grasslands, but did not restore plant community composition. Grasslands
446 destroyed by afforestation or tillage agriculture are typically slow to recover in the absence of
447 introduced propagules (Nerlekar and Veldman 2020). But, because our experimental sites had no
448 known history of intensive soil disturbance and began the experiment in 2001 with generally
449 open vegetation structure, we hypothesized that burning would move plant community
450 composition closer to that of old-growth grasslands. Contrary to our hypothesis, our
451 compositional results gave no indication of old-growth grassland community recovery in
452 response to summer burns, nor any other treatment (Figs. 1, 2). These results are consistent with

453 a growing body of literature on the limitations of grassland restoration without the addition of
454 propagules, whether with prescribed fire (Laughlin et al. 2008) or without (Cava et al. 2018).
455 This lack of community recovery is often attributed to propagule limitation: previous studies
456 have concluded that long-lived perennial bunch grasses and forbs, which characterize old-growth
457 grasslands, have such poor colonization potential (Buisson et al. 2019) that even nearby remnant
458 populations of old-growth species may contribute little to community recovery (e.g., Turley et al.
459 2017). In our study, the experimental sites are isolated from the nearest old-growth grasslands
460 and seeds of conservative grassland species would have to disperse long distances. Despite the
461 failure of prescribed fire to restore species composition, we found that prescribed fire is able to
462 reduce woody encroachment, and that fire season was important to restoring local-scale species
463 richness and limiting invasive grass cover.

464 Season of burn influenced local-scale species richness and the characteristic plant functional
465 types in the experimental sites. Summer burning was the only fire treatment that resulted in
466 local-scale (1 m^2) species richness that was both greater than unburned sites and equivalent to
467 old-growth grasslands (Fig. 3b). Because summer burns controlled both woody plants and
468 invasive grasses (Figs. 4-6), we suggest reduced competition as a mechanism for high local-scale
469 species richness (e.g., Myers and Harms 2009). Indeed, several previous studies in North
470 American grasslands found summer burns to promote forb richness by controlling woody
471 encroachment and limiting the abundances of dominant grasses (Engle et al. 1998, Towne and
472 Kemp 2008, Howe 2011). Such effects on richness did not extend to the plot scale (1000 m^2 ; Fig.
473 3a): all treatments, including unburned sites, supported herbaceous-layer plant diversity that was
474 equivalent to old-growth grasslands (Appendix S1: Fig. S4). Although richness within plots was
475 similar, community composition and characteristic plant functional types were quite different.

476 Old-growth grasslands were characterized by perennial C₄ grasses such as *Bouteloua*
477 *curtipendula*, *Bouteloua rigidiseta*, *Schizachyrium scoparium*, and *Sorghastrum nutans*, whereas
478 experimental fire sites were characterized by the C₃ grasses *Nassella leucotricha* and
479 *Sphenopholis interrupta* (Fig. 1b). Certain long-lived forbs with underground storage organs
480 (Zaloumis and Bond 2011), such as *Liatris mucronata* (corm) and *Stillingia texana* (woody
481 taproot and rhizomes), only occurred in old-growth grasslands (Fig. 1b, Appendix S1: Table S1).
482 Experimental sites sorted along an apparent fire-intensity gradient of light-demanding
483 herbaceous species in summer burn sites to shade-tolerant woody species in unburned sites, with
484 fall and winter sites intermediate in composition (Fig. 1b,c). Such sorting of species by fire- and
485 shade-tolerance is well-documented across other grassland-woodland boundaries (e.g.,
486 Cavender-Bares and Reich 2012). The importance of C₃ grass species at the summer burn end of
487 NMDS axis-1 (Fig. 1c) is reminiscent of other seasonal prescribed fire studies, which indicate
488 summer fires promote C₃ grasses by limiting the dominance of C₄ grasses (Howe 1994, Engle et
489 al. 1998, Howe 2011).

490 Prescribed fire in any season limited woody encroachment, but summer and winter burns most
491 consistently maintained the vegetation structure of old-growth grasslands. As in many studies on
492 the use of prescribed fire to restore vegetation structure (e.g., Ruth et al. 2007, Scott et al. 2012,
493 Bassett et al. 2020), our results show that fire in any season produces herbaceous cover and
494 canopy cover similar to old-growth grasslands, while fire exclusion (i.e., unburned treatment)
495 resulted in woody dominance and reduced herbaceous cover (Fig. 4). For tree basal area and
496 small stem density, only summer burns maintained these two structural attributes at the low
497 levels of old-growth grasslands and significantly lower than unburned sites (Fig. 4c,d). Some
498 prior studies on seasonal burning for control of woody species have found summer burns to be

499 more effective than winter burns (Taylor et al. 2012), while other studies show no difference in
500 season (Cronan et al. 2015). We found that like summer burns, winter (late cool season) burns
501 also maintained canopy cover and tree basal area at the levels of old-growth grasslands (Fig.
502 4b,c). Although ambient temperatures during winter burns are much lower than during summer
503 burns, fuel moisture tends to be uniformly low in the winter due to little live (green) fine fuel in
504 the herbaceous layer. High fire intensity, which is strongly related to ambient temperatures and
505 fuel moisture content (Twidwell et al. 2009, Rissi et al. 2017), would explain why both summer
506 (high temperatures) and winter burns (cool temperatures but low fuel moisture) reliably
507 maintained low canopy cover and tree basal area, whereas the combined cool temperatures and
508 higher moisture conditions of fall burns did not (see differences in ranges, Fig. 4). In addition to
509 higher temperatures, several authors propose that spring and summer burns decrease post-fire
510 resprouting by top-killing trees when belowground carbohydrate reserves are low (Drewa 2003,
511 DiTomaso et al. 2006). This hypothesis offers a plausible explanation for why summer burns in
512 our experiment, but not winter or fall burns, maintained small stem density at levels that were
513 significantly lower than unburned sites (Fig. 4d).

514 We found that prescribed fires in the summer simultaneously maintained low woody canopy
515 cover and controlled invasion by an exotic invasive grass, *Bothriochloa ischaemum* (Fig. 4-6). In
516 general, *B. ischaemum* invasion is constrained by canopy cover (Fig. 6; Gabbard and Fowler
517 2007), which means that when prescribed fire limits woody plants, it also produces sunny
518 conditions suitable for invasion. Thus, *B. ischaemum*, like other invasive fire-adapted C₄ grasses
519 (e.g., Reed et al. 2005), poses a major challenge to the use of prescribed fire to restore
520 communities of fire-dependent native grasses and forbs (Buisson et al. 2019). Previous short-
521 term studies showed that a single late summer fire (September and October) could reduce *B.*

522 *ischaemum* by 10 to 88% (Simmons et al. 2007, Reemts et al. 2018). Menke and Trlica (1981)
523 and Ruckman et al. (2012) proposed that summer burns decrease *B. ischaemum* populations
524 because fires occur at a time when belowground carbohydrate stores are low and aboveground
525 biomass investment is high (i.e., during periods of flowering). High fire intensity offers another
526 explanation for why *B. ischaemum* is limited by summer fires. Havill et al. (2015) found that *B.*
527 *ischaemum* rose to higher internal temperatures and had greater sensitivity to increased soil
528 temperatures at a shallower depth than the native C₄ bunch grass, *S. scoparium*. Whatever the
529 mechanism may be, our study offers the first long-term experimental evidence that summer
530 burns can control *B. ischaemum* while maintaining the vegetation structure of old-growth
531 grasslands. By analyzing the relationship between woody canopy cover and invasive grass cover
532 at both the 1000 m² and 1 m² scales, we confirmed that low mean *B. ischaemum* cover in summer
533 sites (Fig. 5) was not merely an artifact of mean canopy cover at the plot-scale (Fig. 6), but due
534 to reduced probability of dense invasive grass cover at the local-scale at which tree-grass
535 interactions occur (Table 1, Hoffmann et al. 2012).

536 Although our results point toward the benefits of summer fires, future research on grassland
537 restoration in central Texas should also consider spring burns. Prescribed fires in late March
538 through May would correspond with a seasonal transition period of high precipitation, frequent
539 lightning, and ample quantities of dead fine fuel (Appendix S1: Fig. S1; Noss et al. 2015).
540 Unfortunately, where C₄ bunchgrass abundance is low, due to overgrazing and woody
541 encroachment, grasslands often lack the dead fine fuel needed to carry a spring fire through a
542 fuel bed of green C₃ graminoids and forbs. Thus, active restoration of C₄ grasses appears to be a
543 prerequisite for spring prescribed fires. Once fuels permit, we should expect spring fires to have
544 seasonal effects on restoration of community compositions that are distinct from the summer,

545 fall, and winter fires tested in this experiment. For example, restoration studies in other North
546 American grasslands found that spring fires increase the abundance of C₄ grass species (Howe
547 1994, Howe 2011), whereas summer fires increase the abundance of cool-season C₃ grasses and
548 forbs (Engle et al. 1998). Consistent with this pattern, our summer burn sites were characterized
549 by two C₃ grasses (Fig. 1c) and with limited invasion by an exotic C₄ grass (Fig. 5). If future
550 research shows spring fires can help restore community composition of old-growth grasslands, it
551 may be necessary to intersperse occasional summer burns to control invasive grasses.

552 CONCLUSION

553 Our results show that after 18 years and seven prescribed fires in historically fire-excluded
554 and overgrazed grasslands of central Texas, burning in different seasons (i.e., summer, fall,
555 winter) produced different herbaceous-layer plant communities, and resulted in different levels
556 of control of woody plants and invasive grasses. Of the seasons tested, summer burns restored
557 vegetation structure, local-scale species richness, and invasive grass abundance to levels that
558 closely approximated old-growth grasslands. Because interactions between fire season and plant
559 phenology differ among ecosystems, we view our results not as an endorsement of summer fires
560 *per se*, but as a demonstration that the strategic use of fire in particular seasons can benefit
561 restoration. Nonetheless, it is notable that the timing of our summer burns corresponded with the
562 lightning season, and thus the fire season under which old-growth grassland species would have
563 evolved (Noss et al. 2015). In addition to the importance of fire season, our results underscore
564 the conservation value of old-growth grassland plant communities: even after cessation of
565 grazing and reintroduction of fire over 18 years, the historically overgrazed and fire-excluded
566 grasslands in this study did not recover their former species composition. Efforts to restore plant
567 community composition in grasslands of Central Texas, like many other tropical and subtropical

568 grasslands globally, will need to combine prescribed fire with sowing of native perennial C₄
569 grasses and long-lived forbs (Buisson et al. 2019). As such efforts proceed, we recommend that
570 ecologists and land managers give appropriate consideration to fire season and that
571 environmental policymakers recognize the critical role prescribed fire plays in grassland
572 conservation and restoration.

573 **ACKNOWLEDGEMENTS**

574 Erin Noel Novak (8 June 1995 – 9 October 2020) wrote an earlier version of this manuscript
575 with JWV for her graduate thesis. During her studies, she received guidance from members of
576 her graduate committee, L.A. Fitzgerald, A.M Lawing, and W.E. Rogers. In recognition of her
577 work, she posthumously received the degree of Master of Science in Ecosystem Science and
578 Management from Texas A&M University on 10 December 2020. In Erin’s memory, and to
579 fulfill her desire to share her research with other ecologists and practitioners, JWV and her co-
580 authors revised her manuscript in preparation for publication.

581 We thank the Lady Bird Johnson Wildflower Center and the City of Austin Water Quality
582 Protection Lands for permission to conduct this study. We are thankful to S. Windhager and the
583 late M. Simmons for establishing the long-term prescribed fire experiment at the Wildflower
584 Center. For assistance with vegetation sampling, we thank E. Dohnalik, A. Reyes, G. Vielleux,
585 and V. Vogelman. ENN was grateful to A. Nerlekar, for advice and support during this research,
586 and to R. Shudde, for helpful assistance with statistical analyses. A.M. Lawing and H. Landel
587 provided helpful feedback on previous versions of the manuscript. ENN was supported by a
588 Merit Fellowship and a Sid Kyle Graduate Assistantship from Texas A&M University. JWV
589 was supported by USDA-NIFA Sustainable Agricultural Systems Grant no. 2019-68012-29819,

590 USDA-NIFA McIntire-Stennis Project no. 1016880, and the National Science Foundation under
591 award no. DEB-1931232.

592 LITERATURE CITED

593 Abreu, R. C. R., W. A. Hoffmann, H. L. Vasconcelos, N. A. Pilon, D. R. Rossatto, and G.
594 Durigan. 2017. The biodiversity cost of carbon sequestration in tropical savanna. *Science*
595 *Advances* 3: e1701284.

596 Ansley, R. J., T. W. Boutton, M. Mirik, M. J. Castellano, and B. A. Kramp. 2010. Restoration of
597 C₄ grasses with seasonal fires in a C₃/C₄ grassland invaded by *Prosopis glandulosa*, a fire-
598 resistant shrub. *Applied Vegetation Science* 13:520-530.

599 Balch, J. K., B. A. Bradley, C. M. D'Antonio, and J. Gomez-Dans. 2013. Introduced annual grass
600 increases regional fire activity across the arid western USA (1980-2009). *Global Change*
601 *Biology* 19:173-183.

602 Balch, J. K., B. A. Bradley, J. T. Abatzoglou, R. C. Nagy, E. J. Fusco, A. L. Mahood. 2017.
603 Human-started wildfires expand the fire niche across the United States. *Proceedings of the*
604 *National Academy of Sciences of the United States of America* 114: 2946-2951.

605 Bassett, T. J., D. A. Landis, and L. A. Brudvig. 2020. Effects of experimental prescribed fire and
606 tree thinning on oak savanna understory plant communities and ecosystem structure. *Forest*
607 *Ecology and Management* 464:118047.

608 Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models
609 using lme4. *Journal of Statistical Software*, 67:1-48.

610 Benson, E. J., and D. C. Hartnett. 2006. The role of seed and vegetative reproduction in plant
611 recruitment and demography in tallgrass prairie. *Plant Ecology* 187:163-177.

612 Bond, W. J., and J. E. Keeley. 2005. Fire as a global 'herbivore': the ecology and evolution of
613 flammable ecosystems. *Trends in Ecology & Evolution* 20:387-394.

614 Boughton, E. H., P. J. Bohlen, and C. Steele. 2013. Season of fire and nutrient enrichment affect
615 plant community dynamics in subtropical semi-natural grasslands released from agriculture.
616 *Biological Conservation* 158:239-247.

617 Briggs, J. M., G. A. Hoch, and L. C. Johnson. 2002. Assessing the rate, mechanisms, and
618 consequences of the conversion of tallgrass prairie to *Juniperus virginiana* forest.
619 *Ecosystems* 5:578-586.

620 Buisson, E., S. Le Stradic, F. A. O. Silveira, G. Durigan, G. E. Overbeck, A. Fidelis, G. W.
621 Fernandes, W. J. Bond, J. M. Hermann, G. Mahy, S. T. Alvarado, N. P. Zaloumis, and J. W.
622 Veldman. 2019. Resilience and restoration of tropical and subtropical grasslands, savannas,
623 and grassy woodlands. *Biological Reviews* 94:590-609.

624 Cava, M. G. B., N. A. L. Pilon, M. C. Ribeiro, and G. Durigan. 2018. Abandoned pastures
625 cannot spontaneously recover the attributes of old-growth savannas. *Journal of Applied
626 Ecology* 55:1164-1172.

627 Cavender-Bares, J., and P. B. Reich. 2012. Shocks to the system: community assembly of the
628 oak savanna in a 40-year fire frequency experiment. *Ecology* 93:S52-S69.

629 Cordova, C.E. and W.C. Johnson. 2019. An 18 ka to present pollen-and phytolith-based
630 vegetation reconstruction from Hall's Cave, south-central Texas, USA. *Quaternary Research*
631 92:497-518.

632 Cronan, J. B., C. S. Wright, and M. Petrova. 2015. Effects of dormant and growing season
633 burning on surface fuels and potential fire behavior in northern Florida longleaf pine (*Pinus*
634 *palustris*) flatwoods. *Forest Ecology and Management* 354:318-333.

635 Diaz-Toribio, M. H., S. Carr, and F. E. Putz. 2020. Pine savanna plant community disassembly
636 after fire suppression. *Journal of Vegetation Science* 31:245-254.

637 Dickson, T. L., B. A. Hayes, and T. B. Bragg. 2019. Effects of 34 years of experimentally
638 manipulated burn seasons and frequencies on prairie plant composition. *Rangeland Ecology*
639 & Management 72:82-91.

640 Diggs, G. M., B. L. Lipscomb, R. J. O'Kennon, W. F. Mahler, and L. H. Shinners. 1999.
641 Shinners' and Mahler's Illustrated Flora of North Central Texas. Botanical Research Institute
642 of Texas, Fort Worth, TX.

643 DiTomaso, J. M., M. L. Brooks, E. B. Allen, R. Minnich, P. M. Rice, and G. B. Kyser. 2006.
644 Control of invasive weeds with prescribed burning. *Weed Technology* 20:535-548.

645 Drewa, P. B. 2003. Effects of fire season and intensity on *Prosopis glandulosa* Torr. var.
646 *glandulosa*. *International Journal of Wildland Fire* 12:147-157.

647 Engle, D. M., R. L. Mitchell, and R. L. Stevens. 1998. Late growing-season fire effects in mid-
648 successional tallgrass prairies. *Journal of Range Management* 51:115-121.

649 Fensham, R. J., D. W. Butler, R. J. Fairfax, A. R. Quintin, and J. M. Dwyer. 2016. Passive
650 restoration of subtropical grassland after abandonment of cultivation. *Journal of Applied*
651 *Ecology* 53:274-283.

652 Fidelis, A., and C. Blanco. 2014. Does fire induce flowering in Brazilian subtropical grasslands?
653 *Applied Vegetation Science* 17:690-699.

654 Fuhlendorf, S. D., and F. E. Smeins. 1997. Long-term vegetation dynamics mediated by
655 herbivores, weather and fire in a *Juniperus-Quercus* savanna. *Journal of Vegetation*
656 *Science* 8:819-828.

657 Fusco, E. J., J. T. Finn, J. K. Balch, R. C. Nagy, and B. A. Bradley. 2019. Invasive grasses
658 increase fire occurrence and frequency across US ecoregions. *Proceedings of the National
659 Academy of Sciences of the United States of America* 116:23594-23599.

660 Gabbard, B. L., and N. L. Fowler. 2007. Wide ecological amplitude of a diversity-reducing
661 invasive grass. *Biological Invasions* 9:149-160.

662 Gann , G.D., T. McDonald, B. Walder, J. Aronson, C.R. Nelson, J. Jonson, J.G. Hallett, C.
663 Eisenberg, M.R. Guariguata, J. Liu, F. Hua, C. Echeverría, E. Gonzales, N. Shaw, K. Decleer,
664 K.W. Dixon. 2019. International principles and standards for the practice of ecological
665 restoration. *Restoration Ecology* 27:S1-S46.

666 Geiger, E. L., and G. R. McPherson. 2005. Response of semi-desert grasslands invaded by non-
667 native grasses to altered disturbance regimes. *Journal of Biogeography* 32:895-902.

668 Gerwing, J. J., S. A. Schnitzer, R. J. Burnham, F. Bongers, J. Chave, S. J. DeWalt, C. E. N.
669 Ewango, R. Foster, D. Kenfack, M. Martinez-Ramos, M. Parren, N. Parthasarathy, D. R.
670 Perez-Salicrup, F. E. Putz, and D. W. Thomas. 2006. A standard protocol for liana censuses.
671 *Biotropica* 38:256-261.

672 Gould, F. W. 1975. The grasses of Texas. Texas A&M University, Texas Agricultural
673 Experiment Station, College Station, TX.

674 Gould, F. W., G. O. Hoffman, and C. A. Rechenthin. 1960. Vegetational areas of Texas. Texas
675 Agricultural Experiment Station Leaflet 492. Texas A&M University, College Station, TX.

676 Havill, S., S. Schwinning, and K. G. Lyons. 2015. Fire effects on invasive and native warm-
677 season grass species in a North American grassland at a time of extreme drought. *Applied
678 Vegetation Science* 18:637-649.

679 Hempson, G. P., S. Archibald, J. E. Donaldson, and C. E. R. Lehmann. 2019. Alternate grassy
680 ecosystem states are determined by palatability-flammability trade-offs. *Trends in Ecology &*
681 *Evolution* 34:286-290.

682 Hobbs, R. J., E. Higgs, and J. A. Harris. 2009. Novel ecosystems: implications for conservation
683 and restoration. *Trends in Ecology & Evolution* 24:599-605.

684 Hoffmann, W. A., E. L. Geiger, S. G. Gotsch, D. R. Rossatto, L. C. R. Silva, O. L. Lau, M.
685 Haridasan, and A. C. Franco. 2012. Ecological thresholds at the savanna-forest boundary:
686 how plant traits, resources and fire govern the distribution of tropical biomes. *Ecology*
687 *Letters* 15:759-768.

688 Holzmueller, E. J., and S. Jose. 2011. Invasion success of cogongrass, an alien C₄ perennial
689 grass, in the southeastern United States: exploration of the ecological basis. *Biological*
690 *Invasions* 13:435-442.

691 Howe, H. F. 1994. Response of early-flowering and late-flowering plants to fire season in
692 experimental prairies. *Ecological Applications* 4:121-133.

693 Howe, H. F. 2011. Fire season and prairie forb richness in a 21-y experiment.
694 *Ecoscience* 18:317-328.

695 Jessup, K., P. Barnes, and T. W. Boutton. 2003. Vegetation dynamics in a *Quercus-Juniperus*
696 savanna: An isotopic assessment. *Journal of Vegetation Science* 14:841-852.

697 Keeley, J. E. 2015. Attacking invasive grasses. *Applied Vegetation Science* 18:541-542.

698 Ladwig, L. M., E. I. Damschen, and D. A. Rogers. 2018. Sixty years of community change in the
699 prairie-savanna-forest mosaic of Wisconsin. *Ecology and Evolution* 8:8458-8466.

700 Landers, R. 1987. Native vegetation of Texas. *Rangelands Archives* 9:203-207.

701 Larson, D.A., V.M. Bryant, and T.S. Patty. 1972. Pollen analysis of a central Texas bog.

702 American Midland Naturalist 88: 358-367.

703 Laughlin, D. C., J. D. Bakker, M. L. Daniels, M. M. Moore, C. A. Casey, and J. D. Springer.

704 2008. Restoring plant species diversity and community composition in a ponderosa pine-

705 bunchgrass ecosystem. Plant Ecology 197:139-151.

706 Lemmon, P. E. 1956. A spherical densiometer for estimating forest overstory density. Forest

707 Science 2:314-320.

708 Limb, R. F., D. M. Engle, A. L. Alford, and E. C. Hellgren. 2014. Plant community response

709 following removal of *Juniperus virginiana* from tallgrass prairie: testing for restoration

710 limitations. Rangeland Ecology & Management 67:397-405.

711 Main, M. B., and L. W. Richardson. 2002. Response of wildlife to prescribed fire in southwest

712 Florida pine flatwoods. Wildlife Society Bulletin 30:213-221.

713 Maurin, O., T. J. Davies, J. E. Burrows, B. H. Daru, K. Yessoufou, A. M. Muasya, M. van der

714 Bank, and W. J. Bond. 2014. Savanna fire and the origins of the 'underground forests' of

715 Africa. New Phytologist 204:201-214.

716 McCaw, W. M., D. M. Grobert, S. B. Brown, S. Strickland, G. A. Thompson, and L. M. Ball.

717 2018. Seasonal patterns and drivers of Ashe Juniper foliar live fuel moisture and relevance to

718 fire planning. Fire Ecology 14: 50-64.

719 McDonald, T., J. Jonson, and K. W. Dixon. 2016. National standards for the practice of

720 ecological restoration in Australia. Restoration Ecology 24:705-705.

721 McIntyre, S., K. M. Heard, and T. G. Martin. 2003. The relative importance of cattle grazing in

722 subtropical grasslands: does it reduce or enhance plant biodiversity? Journal of Applied

723 Ecology 40:445-457.

724 Menges, E. S., and D. R. Gordon. 2010. Should mechanical treatments and herbicides be used as
725 fire surrogates to manage Florida's uplands? A review. *Florida Scientist* 73:147.

726 Menke, J. W., and M. J. Trlica. 1981. Carbohydrate reserve, phenology, and growth cycles of 9
727 Colorado range species. *Journal of Range Management* 34:269-277.

728 Miller, J. E. D., E. I. Damschen, Z. Ratajczak, and M. Ozdogan. 2017. Holding the line: three
729 decades of prescribed fires halt but do not reverse woody encroachment in grasslands.
730 *Landscape Ecology* 32:2297-2310.

731 Miller, R. G., R. Tangney, N. J. Enright, J. B. Fontaine, D. J. Merritt, M. K. J. Ooi, K. X.
732 Ruthrof, and B. Miller. 2019. Mechanisms of fire seasonality effects on plant populations.
733 *Trends in Ecology & Evolution* 34:1104-1117.

734 Myers, J. A., and K. E. Harms. 2009. Local immigration, competition from dominant guilds, and
735 the ecological assembly of high-diversity pine savannas. *Ecology* 90:2745-2754.

736 National Weather Service (NWS). 1981-2010. Monthly climate normals for Austin-Bergstrom
737 Airport, Texas. <https://w2.weather.gov/climate/xmacis.php?wfo=ewx> (accessed 13 December
738 2020)

739 Nerlekar, A. N., and J. W. Veldman. 2020. High plant diversity and slow assembly of old-growth
740 grasslands. *Proceedings of the National Academy of Sciences of the United States of
741 America* 117:18550-18556.

742 Noss, R. F., W. J. Platt, B. A. Sorrie, A. S. Weakley, D. B. Means, J. Costanza, and R. K. Peet.
743 2015. How global biodiversity hotspots may go unrecognized: lessons from the North
744 American Coastal Plain. *Diversity and Distributions* 21:236-244.

745 Nowacki, G. J., and M. D. Abrams. 2008. The demise of fire and "mesophication" of forests in
746 the eastern United States. *Bioscience* 58:123-138.

747 Oksanen, J. F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R.
748 B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2019.
749 vegan: Community Ecology Package. R package version 2.5-6. [https://CRAN.R-
750 project.org/package=vegan](https://CRAN.R-project.org/package=vegan)

751 Outcalt, K. W. 1994. Seed production of wiregrass in central Florida following growing-season
752 prescribed burns. International Journal of Wildland Fire 4:123-125.

753 Pausas, J. G., B. B. Lamont, S. Paula, B. Appenzato-da-Gloria, and A. Fidelis. 2018. Unearthing
754 belowground bud banks in fire-prone ecosystems. New Phytologist 217:1435-1448.

755 Peet, R. K., T. R. Wentworth, and P. S. White. 1998. A flexible, multipurpose method for
756 recording vegetation composition and structure. Castanea 63:262-274.

757 Policelli, N., P. Picca, and I. E. G. Villafane. 2019. Is prescribed fire a suitable management tool
758 to reduce shrub encroachment in palm savannas? Restoration Ecology 27:109-119.

759 Pyke, D. A., M. L. Brooks, and C. D'Antonio. 2010. Fire as a restoration tool: a decision
760 framework for predicting the control or enhancement of plants using fire. Restoration
761 Ecology 18:274-284.

762 Ramos-Neto, M. B., and V. R. Pivello. 2000. Lightning fires in a Brazilian savanna national
763 park: Rethinking management strategies. Environmental Management 26:675-684.

764 R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for
765 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

766 Reed, H. E., T. R. Seastedt, and J. M. Blair. 2005. Ecological consequences of C₄ grass invasion
767 of a C₄ grassland: a dilemma for management. Ecological Applications 15:1560-1569.

768 Reemts, C. M., W. M. McCaw, T. A. Greene, and M. T. Simmons. 2018. Short-term control of
769 an invasive C₄ grass with late-summer fire. Rangeland Ecology & Management.

770 Reidy, J. L., F. R. Thompson, C. Schwope, S. Rowin, and J. M. Mueller. 2016. Effects of
771 prescribed fire on fuels, vegetation, and Golden-cheeked Warbler (*Setophaga chrysoparia*)
772 demographics in Texas juniper-oak woodlands. *Forest Ecology and Management* 376:96-106.

773 Rissi, M. N., M. J. Baeza, E. Gorgone-Barbosa, T. Zupo, and A. Fidelis. 2017. Does season
774 affect fire behaviour in the Cerrado? *International Journal of Wildland Fire* 26:427-433.

775 Rossiter, N. A., S. A. Setterfield, M. M. Douglas, and L. B. Hutley. 2003. Testing the grass-fire
776 cycle: alien grass invasion in the tropical savannas of northern Australia. *Diversity and*
777 *Distributions* 9:169-176.

778 Ruckman, E. M., S. Schwinning, and K. G. Lyons. 2012. Effects of phenology at burn time on
779 post-fire recovery in an invasive C₄ grass. *Restoration Ecology* 20:756-763.

780 Ruth, A. D., D. L. Miller, S. Jose, and A. Long. 2007. Effects of reintroduction of fire into fire
781 suppressed coastal scrub and longleaf pine communities along the lower gulf coastal plain.
782 *Natural Areas Journal* 27:332-344.

783 Ryan, K. C., E. E. Knapp, and J. M. Varner. 2013. Prescribed fire in North American forests and
784 woodlands: history, current practice, and challenges. *Frontiers in Ecology and the*
785 *Environment* 11:E15-E24.

786 Scasta, J. D., E. T. Thacker, T. J. Hovick, D. M. Engle, B. W. Allred, S. D. Fuhlendorf, and J. R.
787 Weir. 2016. Patch-burn grazing (PBG) as a livestock management alternative for fire-prone
788 ecosystems of North America. *Renewable Agriculture and Food Systems* 31:550-567.

789 Scott, K., S. A. Setterfield, M. M. Douglas, C. L. Parr, J. Schatz, and A. N. Andersen. 2012.
790 Does long-term fire exclusion in an Australian tropical savanna result in a biome shift? A test
791 using the reintroduction of fire. *Austral Ecology* 37:693-711.

792 Setterfield, S. A., M. M. Douglas, L. B. Hutley, and M. A. Welch. 2005. Effects of canopy cover
793 and ground disturbance on establishment of an invasive grass in an Australia savanna.
794 *Biotropica* 37:25-31.

795 Simmons, M. T., S. Windhager, P. Power, J. Lott, R. K. Lyons, and C. Schwope. 2007. Selective
796 and non-selective control of invasive plants: The short-term effects of growing-season
797 prescribed fire, herbicide, and mowing in two Texas prairies. *Restoration Ecology* 15:662-
798 669.

799 Simon, M. F., R. Grether, L. P. de Queiroz, C. Skema, R. T. Pennington, and C. E. Hughes.
800 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ
801 evolution of adaptations to fire. *Proceedings of the National Academy of Sciences of the
802 United States of America* 106:20359-20364.

803 Simpson, K. J., B. S. Ripley, P. A. Christin, C. M. Belcher, C. E. R. Lehmann, G. H. Thomas,
804 and C. P. Osborne. 2016. Determinants of flammability in savanna grass species. *Journal of
805 Ecology* 104:138-148.

806 Smeins, F. E. 1980. Natural role of fire on the Edwards Plateau. Pages 4-16 in L.D. White,
807 editor. *Prescribed range burning in the Edwards Plateau of Texas: Proceedings of a
808 Symposium held October 23, 1980 at Junction, Texas.* Texas Agricultural Extension Service,
809 College Station, TX.

810 Smeins, F. E., Fuhlendorf, S. D., and Taylor, C. A. 1997. Environmental and land use changes: a
811 long-term perspective. In C.A. Taylor, editor. *Juniper Symposium Proceedings*, Texas
812 Agricultural Experiment Station Technical Report. Texas A&M Research and Extension
813 Center, San Angelo, TX. <https://texnat.tamu.edu/library/symposia/juniper-ecology-and->
814 management/environmental-and-land-use-changes-a-long-term-perspective/

815 Soil Survey Staff, Natural Resources Conservation Service, United States Department of
816 Agriculture. Web Soil Survey.

817 <https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx> (accessed 15 September
818 2020).

819 Starns, H. D., S. D. Fuhlendorf, R. D. Elmore, D. Twidwell, E. T. Thacker, T. J. Hovick, and B.
820 Luttbeg. 2019. Recoupling fire and grazing reduces wildland fuel loads on rangelands.
821 *Ecosphere* 10:e02578.

822 Taylor, C. A., D. Twidwell, N. E. Garza, C. Rosser, J. K. Hoffman, and T. D. Brooks. 2012.
823 Long-Term Effects of Fire, Livestock Herbivory Removal, and Weather Variability in Texas
824 Semiarid Savanna. *Rangeland Ecology & Management* 65:21-30.

825 The Plant List. 2013. Version 1.1. <http://www.theplantlist.org/> (accessed 21 August 2020).

826 Towne, E. G., and J. M. Craine. 2014. Ecological Consequences of Shifting the Timing of
827 Burning Tallgrass Prairie. *PLoS ONE* 9: e103423.

828 Towne, E. G., and K. E. Kemp. 2008. Long-term response patterns of tallgrass prairie to frequent
829 summer burning. *Rangeland Ecology & Management* 61:509-520.

830 Turley, N. E., J. L. Orrock, J. A. Ledvina, and L. A. Brudvig. 2017. Dispersal and establishment
831 limitation slows plant community recovery in post-agricultural longleaf pine savannas.
832 *Journal of Applied Ecology* 54: 1100-1109.

833 Twidwell, D., S. D. Fuhlendorf, D. M. Engle, and C. A. Taylor. 2009. Surface fuel sampling
834 strategies: linking fuel measurements and fire effects. *Rangeland Ecology &*
835 *Management* 62:223-229.

836 USDA Forest Service. 2015. Forest Inventory and Analysis National Core Field Guide Volume
837 I: Field Data Collection Procedures for Phase 2 Plots (Version 7.0). USDA Forest Service,
838 Arlington, VA.

839 USDA Natural Resource Conservation Service. 2013a. Ecological site description for Redland
840 29-35 PZ (R081CY361TX). <https://edit.jornada.nmsu.edu/catalogs/esd/081C/R081CY361TX>
841 (accessed 16 March 2021).

842 USDA Natural Resource Conservation Service. 2013b. Ecological site description for Deep
843 Redland 29-35 PZ (R081CY358TX)
844 <https://edit.jornada.nmsu.edu/catalogs/esd/081C/R081CY358TX> (accessed 16 March 2021).

845 USDA Natural Resource Conservation Service. 2013c. Ecological site description for Gravelly
846 Redland 29-35 PZ (R081CY359TX)
847 <https://edit.jornada.nmsu.edu/catalogs/esd/081C/R081CY359TX> (accessed 16 March 2021)

848 USDA Natural Resource Conservation Service. 2013d. Ecological site description for Low Stony
849 Hill 29-35 PZ (R081CY360TX) <https://edit.jornada.nmsu.edu/catalogs/esd/081C/R081CY360TX>
850 (accessed 16 March 2021)

851 Van De Koppel, J., M. Rietkerk, and F. J. Weissing. 1997. Catastrophic vegetation shifts and soil
852 degradation in terrestrial grazing systems. *Trends in Ecology & Evolution* 12:352-356.

853 Veldman, J. W., E. Buisson, G. Durigan, G. W. Fernandes, S. Le Stradic, G. Mahy, D.
854 Negreiros, G. E. Overbeck, R. G. Veldman, N. P. Zaloumis, F. E. Putz, and W. J. Bond. 2015.
855 Toward an old-growth concept for grasslands, savannas, and woodlands. *Frontiers in Ecology
856 and the Environment* 13:154-162.

857 Wied, J. P., H. L. Perotto-Baldvieso, A. A. T. Conkey, L. A. Brennan, and J. M. Mata. 2020.

858 Invasive grasses in South Texas rangelands: historical perspectives and future directions.

859 Invasive Plant Science and Management 13:41-58.

860 Zaloumis, N. P., and W. J. Bond. 2011. Grassland restoration after afforestation: No direction

861 home? Austral Ecology 36:357-366.

862

SUPPORTING INFORMATION

863 Additional supporting information may be found online at:

864 <http://onlinelibrary.wiley.com/doi/10.1002/ecs2.XXXX/full>

865 DATA AVAILABILITY STATEMENT

866 Data are available from the Dryad Digital Repository at:

867 <https://doi.org/10.5061/dryad.mcvdnck06>.

868

869 **TABLES**

870 TABLE 1. Results of logistic regressions that modeled the probability of high local-scale invasive
 871 grass cover (i.e., *Bothriochloa ischaemum* cover $\geq 25\%$ in 1-m² subplots) as a function of canopy
 872 cover (trees and shrubs ≥ 1.3 m measured above each 1-m² subplot) in the prescribed fire
 873 experiment. For each fire treatment, there were $n = 6$ sites per treatment and 10 subplots per site.
 874 In the models, we treated site ($n = 6$) as a random effect, enabling us to focus on local-scale
 875 relationships between grass invasion and woody canopy cover. To describe the range of
 876 inference of these models, the minimum (min) and maximum (max) values for canopy cover and
 877 invasive grass cover are listed for the 60 subplots (in $n = 6$ sites) per model.

878

Model Parameters		Range of values in $N = 60$, 1-m ² subplots		
Woody canopy cover	Intercept	Woody canopy cover (% min – max)	Invasive grass cover (% min – max)	
Logistic Model:				
Summer	-0.176	-2.389**	0 – 97	0 – 87
Fall	-0.059*	-0.145	0 – 97	0 – 97
Winter	-0.108**	1.602	0 – 92	0 – 99
Unburned	-0.064**	0.069	0 – 98	0 – 90

879 *Note:** $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$

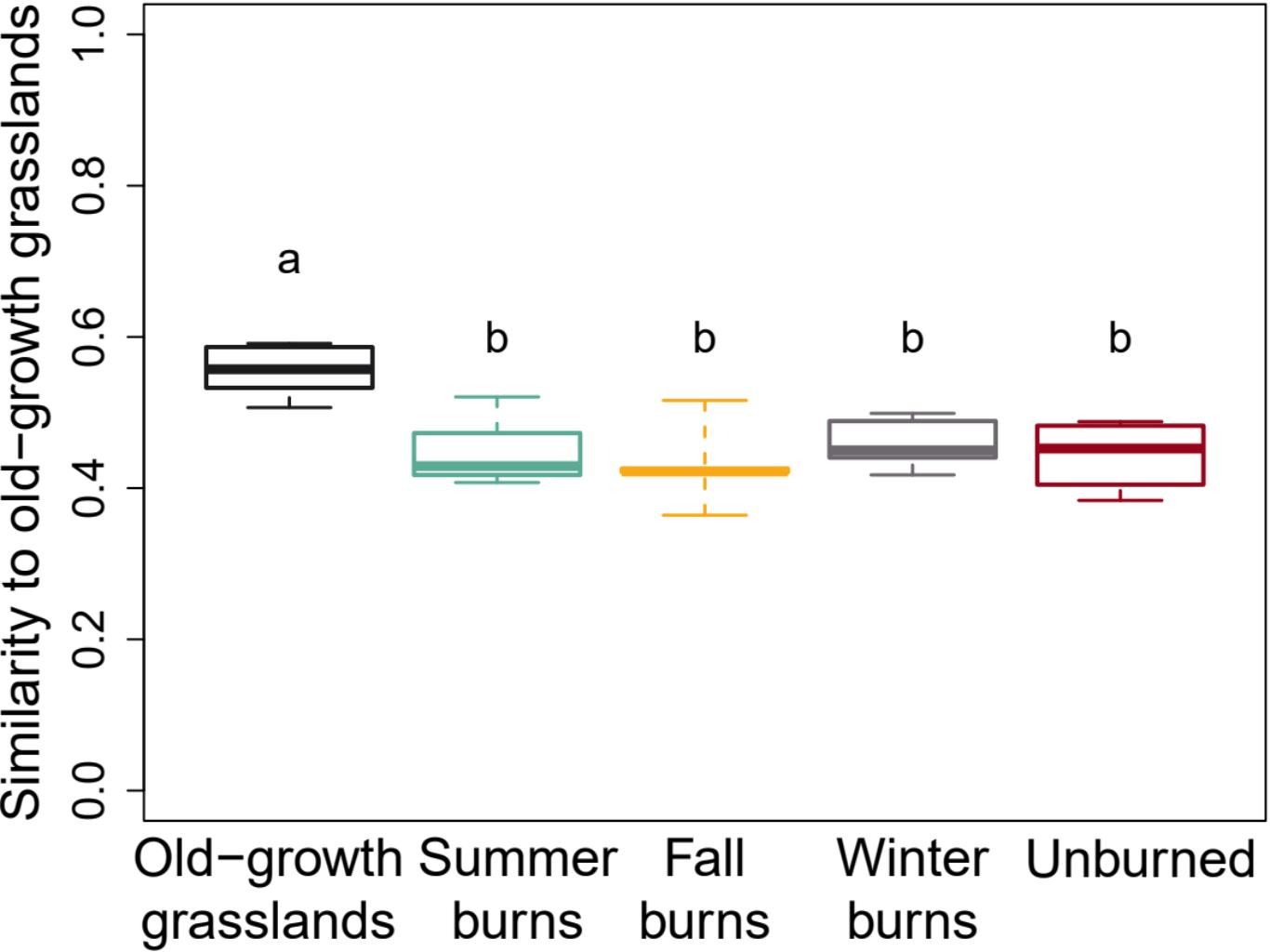
880

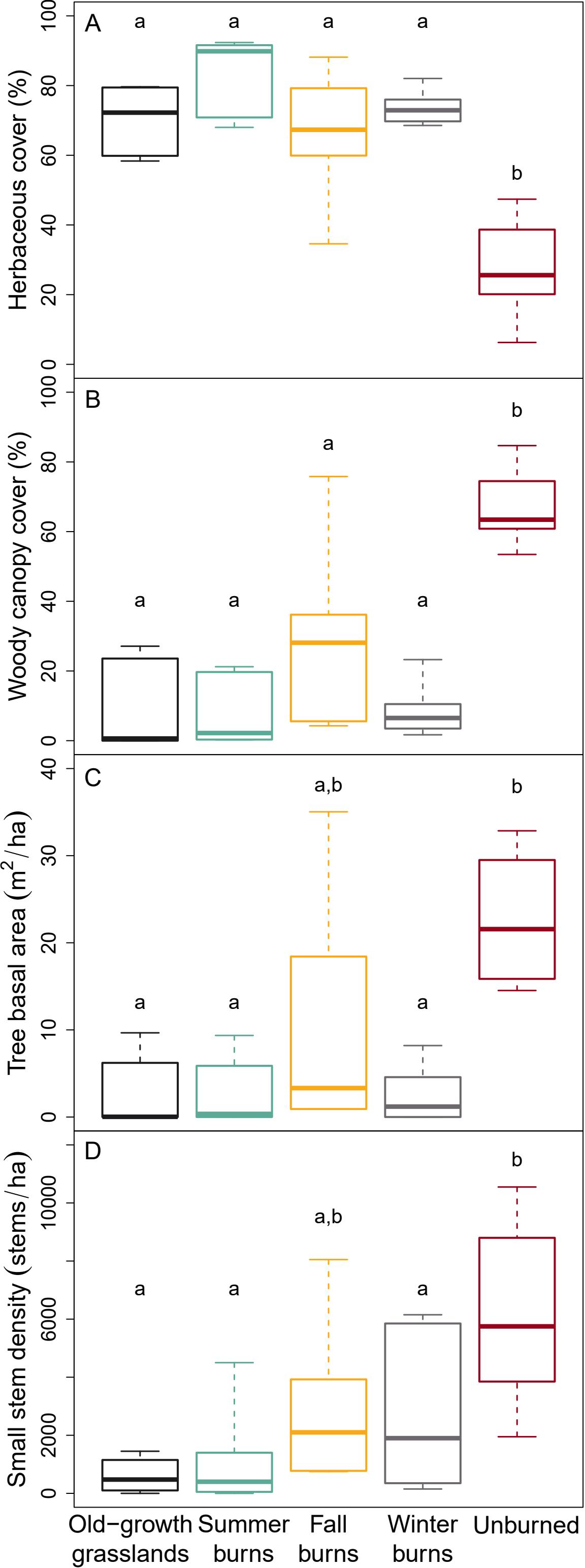
881 **FIGURE CAPTIONS**

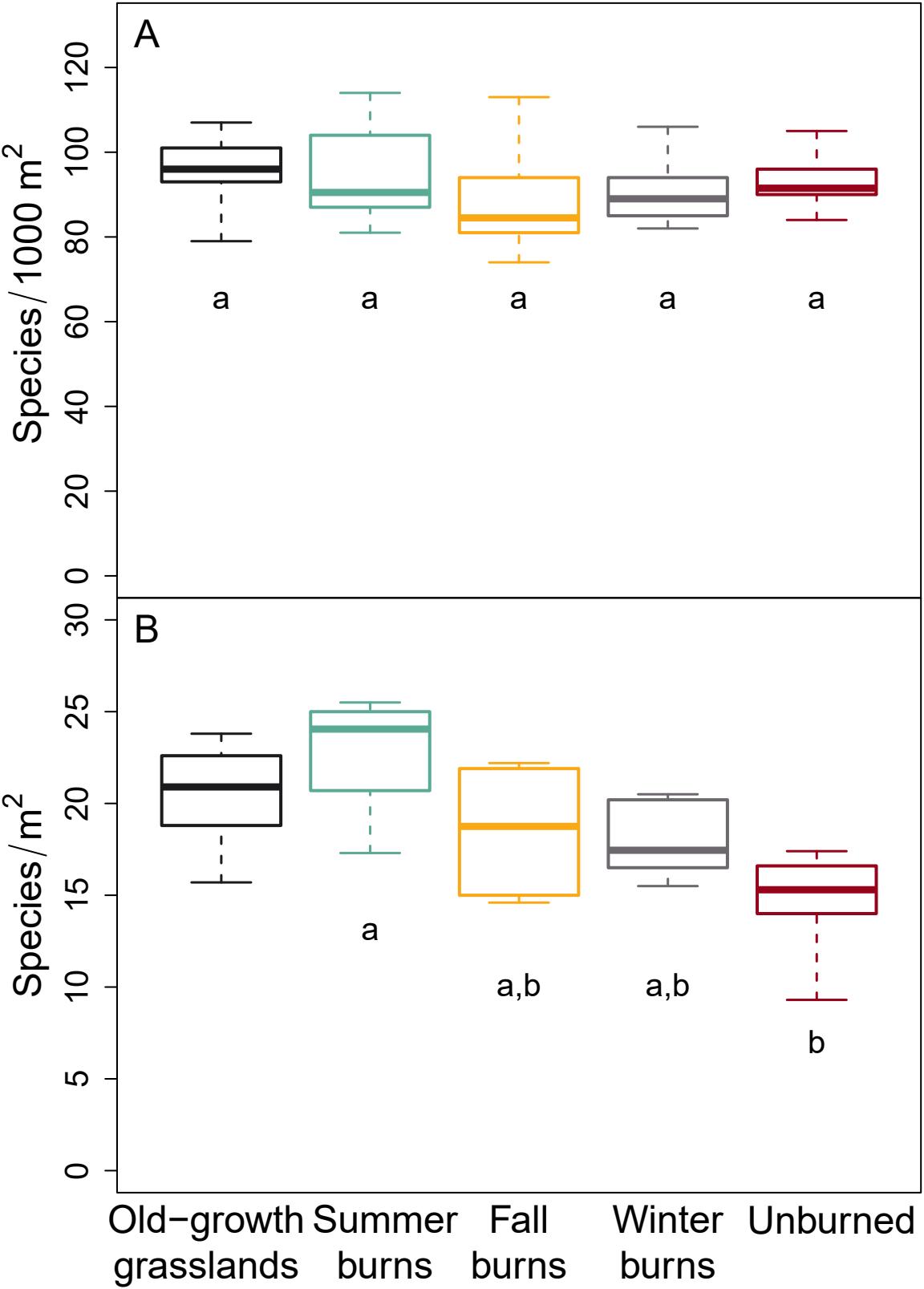
882 FIG. 1. Non-metric multidimensional scaling (NMDS, $k = 3$ dimensions, stress = 0.091) of plant
883 communities in an 18-yr prescribed fire experiment and old-growth grasslands ($n = 6$ sites per
884 treatment). (a) Ordination of sites based on herbaceous layer species composition; ellipses depict
885 95% confidence for treatment centroids. (b) Characteristic taxa, with significant species factors
886 (i.e., $p < 0.001$ based on 999 permutations), plotted to show their relationships to the sites in each
887 treatment; see (a) for symbols. (c) Characteristic taxa classified by duration and functional type;
888 for comparison to treatments, the 95% confidence ellipses are repeated from (a).

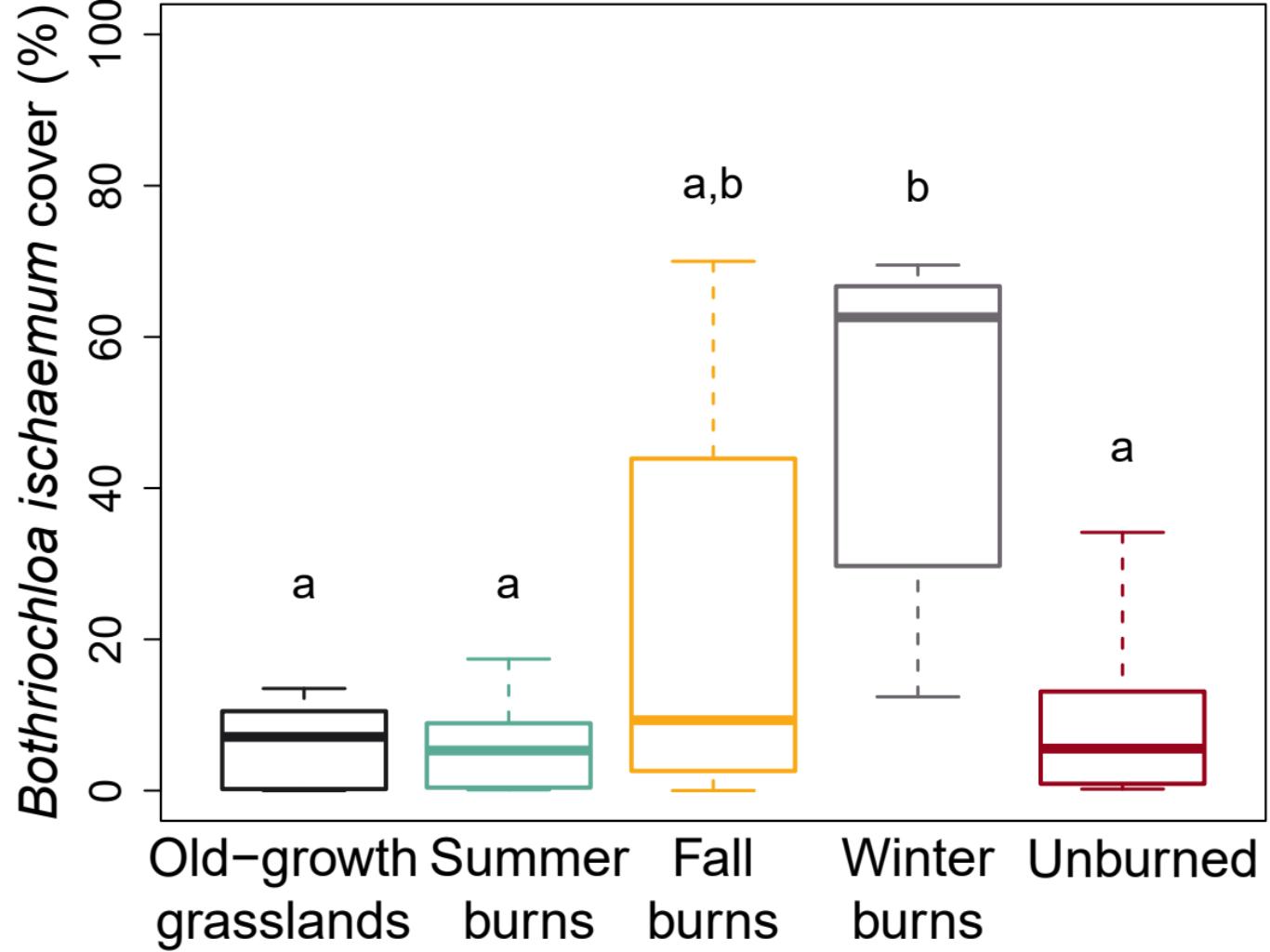
889 FIG. 2. Compositional similarity (i.e., $1 - \text{Bray Curtis Dissimilarity}$) between herbaceous layer
890 plant communities in the prescribed fire experiment and old-growth grasslands ($n = 6$, 1000-m^2
891 sites per treatment). For reference, data is also plotted for mean similarity of each of old-growth
892 site ($n = 6$) to the other five old-growth sites. Boxplots display quartiles. Letters indicate
893 significant differences in means at $p < 0.05$ (ANOVA and Tukey's HSD pairwise comparisons).

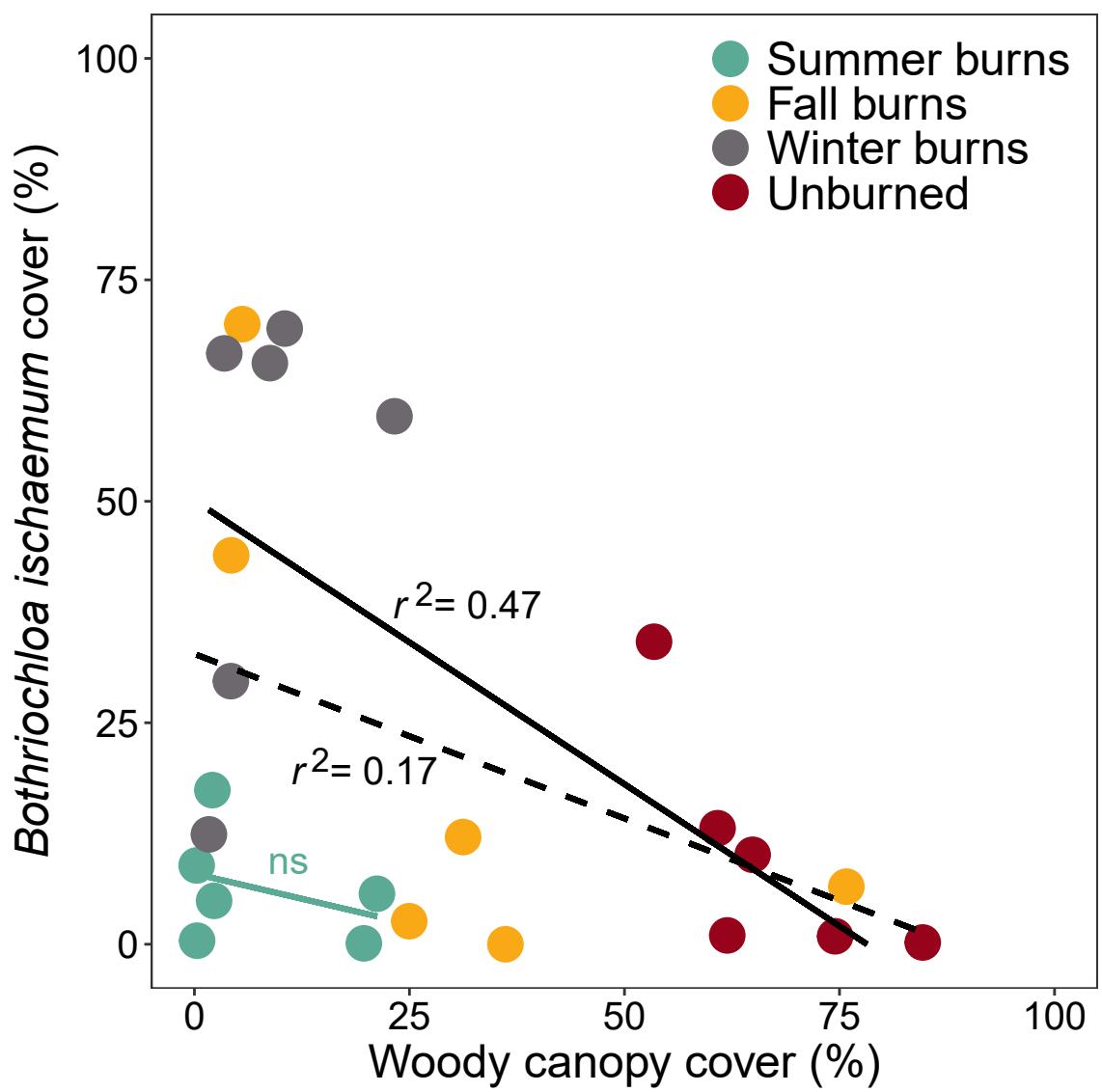
894 FIG. 3. Herbaceous-layer plant species richness in the prescribed fire experiment and old-growth
895 grasslands ($n = 6$ per treatment) at the (a) 1000-m^2 and (b) 1-m^2 scales. Boxplots display
896 quartiles. Letters indicate significant differences in means at $p < 0.05$ (ANOVA and Tukey's
897 HSD).

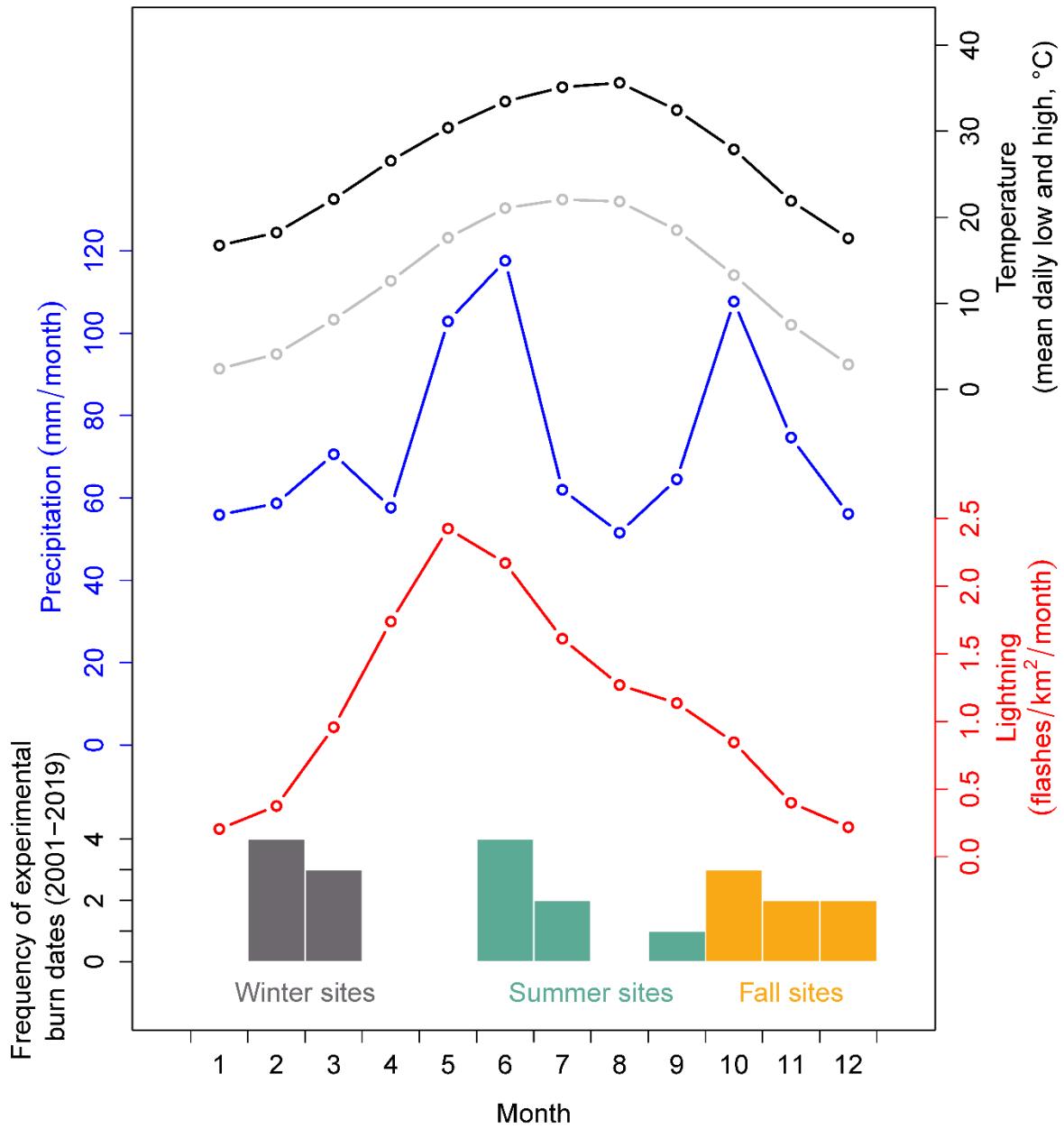

898 FIG. 4. Vegetation structure in the prescribed fire experiment and old-growth grasslands ($n = 6$
899 per treatment). (a) Mean cover of herbaceous plants (graminoids and forbs). (b) Mean woody
900 canopy cover (trees and shrubs ≥ 1.3 m). (c) Mean tree basal area (≥ 5 cm diameter). (d) Mean
901 small stem density (woody plants ≥ 1.3 m tall and < 5 cm diameter). Boxplots represent


902 quartiles. Letters indicate significant differences in means at $p < 0.05$ (ANOVA and Tukey's
903 HSD).

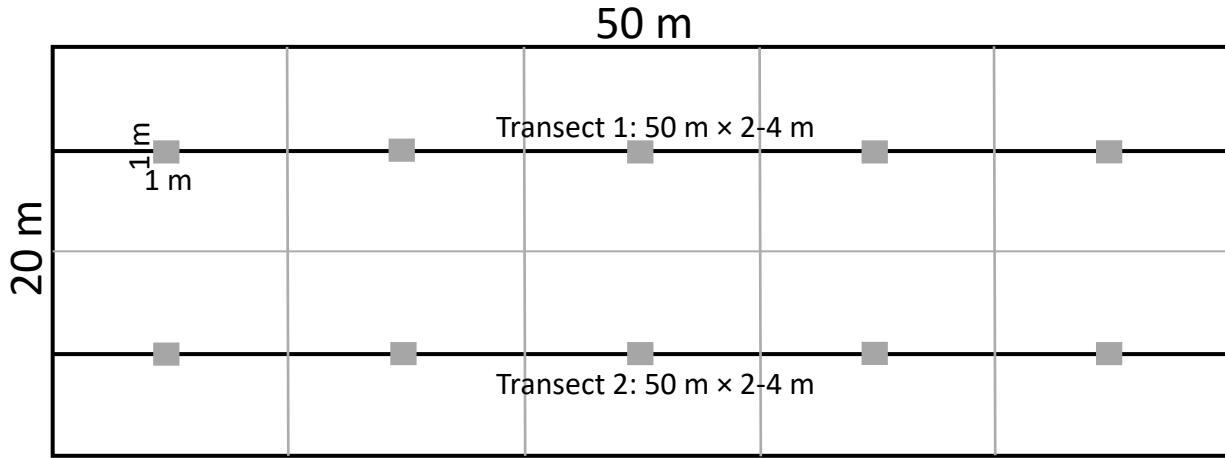

904 FIG. 5. Cover of the invasive grass, *Bothriochloa ischaemum*, in the prescribed fire experiment
905 and old-growth grasslands ($n = 6$ sites per treatment). Boxplots represent quartiles and letters
906 indicate differences in means at $p < 0.05$ (ANOVA, Tukey's HSD).


907 FIG. 6. Relationship between cover of the invasive grass, *Bothriochloa ischaemum*, and woody
908 canopy cover (trees and shrubs ≥ 1.3 m) in the prescribed fire experiment ($n = 6$ sites per
909 treatment). Displayed as a dashed black line, the regression equation for all four treatments
910 combined was: $B. ischaemum$ cover = $-0.37(\text{canopy cover}) + 32.77$, $n = 24$, $r^2 = 0.17$, $p = 0.046$.
911 Excluding the summer treatment (non-significant trend line, $n = 6$) and displayed as a solid black
912 line, the regression equation for the fall, winter, and unburned sites combined was: $B. ischaemum$
913 cover = $-0.64(\text{canopy cover}) + 50.10$, $n = 18$, $r^2 = 0.47$, $p = 0.0017$.

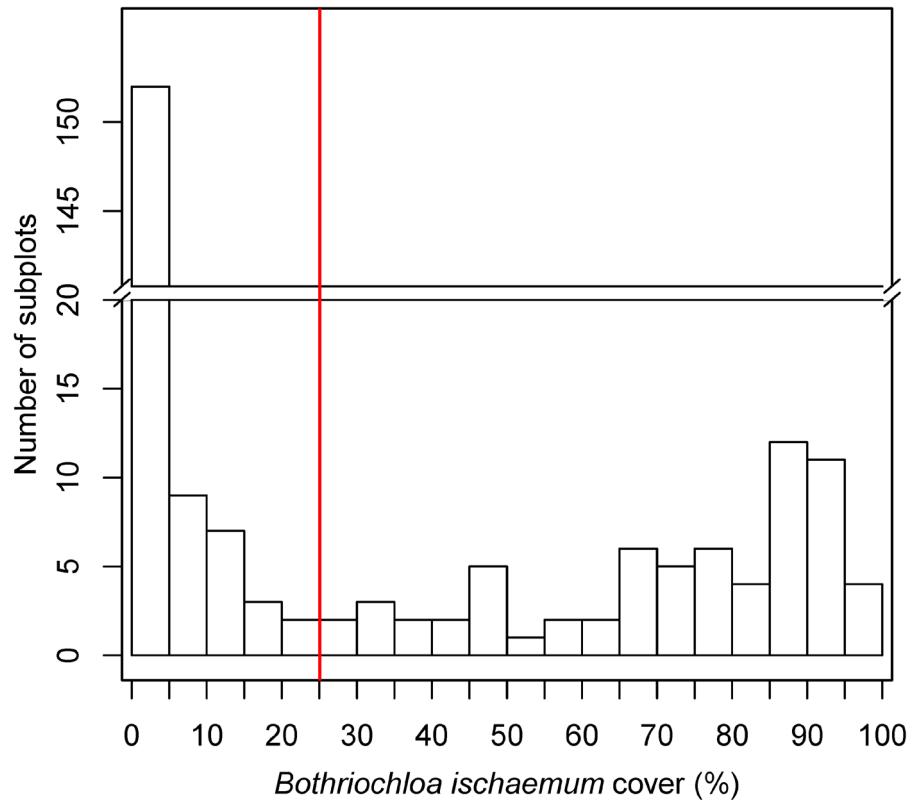




Supporting Information


Novak, E.N., M. Bertelsen, D. Davis, D.M. Grobert, K.G. Lyons, J.P. Martina, W.M. McCaw, M. O'Toole, and J.W. Veldman. Season of prescribed fire determines grassland restoration outcomes after fire exclusion and overgrazing. *Ecosphere*.

Appendix S1


This file contains supporting figures (Fig. S1-S4) that we cited in the methods and results sections of the main text. It also provides a comprehensive species list (Table S1) of all taxa that we observed during sampling of herbaceous-layer plant communities.

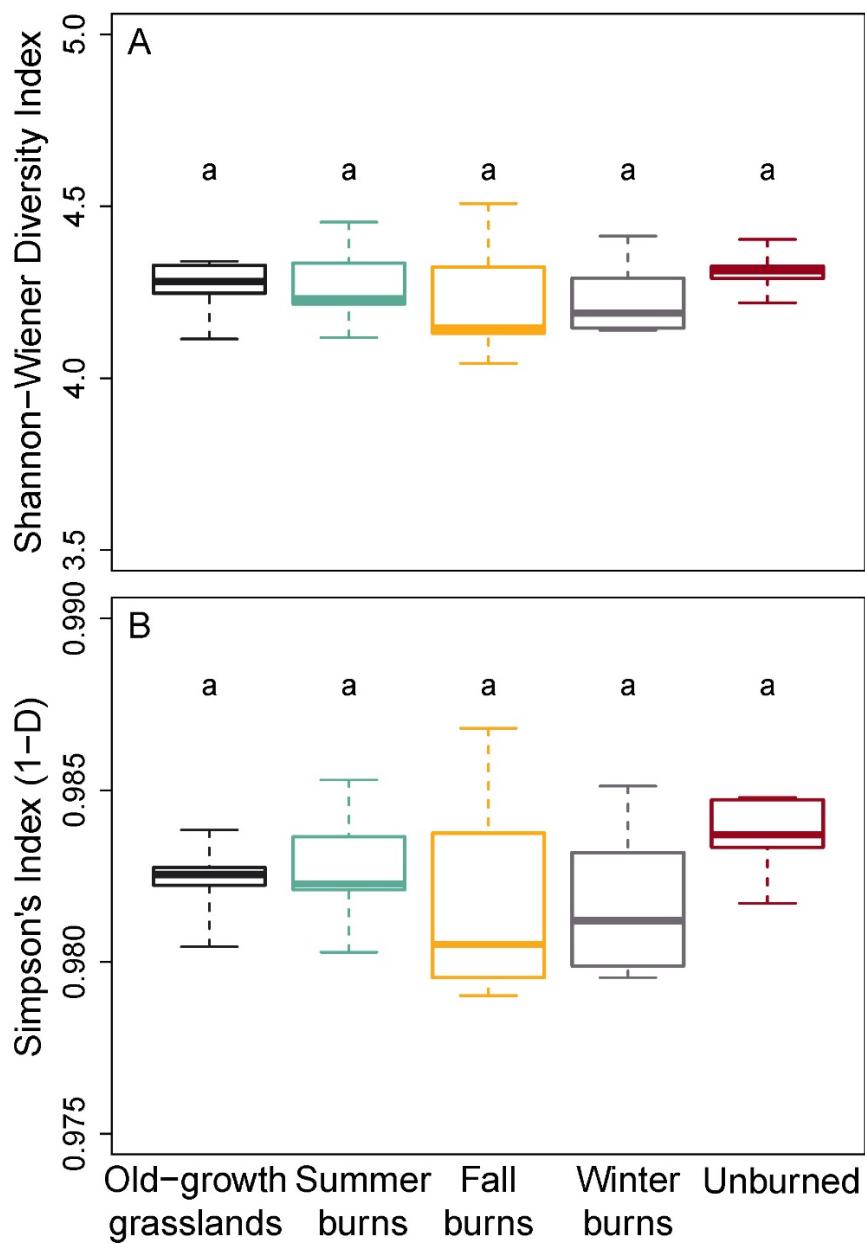

Figure S1. Season of experimental prescribed fire treatments in relation to climatic variables for central Texas grasslands. Temperature: monthly mean daily high (black) and low (gray) temperatures for Austin-Bergstrom Airport, Texas (NWS, 1981-2010). Precipitation: mean monthly precipitation (blue) for Austin-Bergstrom Airport, Texas (NWS, 1981-2010). Lightning: mean monthly lightning flash density for the Blackland Prairie and Edwards Plateau ecoregions of Texas (1998-2013, Albrecht et al. 2016). Frequency of experimental burn dates: the distribution by month of prescribed fires conducted in the summer, fall, and winter burn sites at the Lady Bird Johnson Wildflower Center. From 2001 to 2019, sites of each seasonal treatment burned seven times, with a mean fire return interval of 2.8 yr (range 1-5 yr).

Figure S2. Diagram of the sampling design, showing the 1000-m² plot, with ten 1-m² subplots and two 50-m transects spaced 10 m apart (modified from Peet et al. 1998).

Figure S3. Frequency histogram of *Bothriochloa ischaemum* cover in all 1-m² subplots ($N = 240$) of the experimental prescribed fire sites (10 subplots per site, $n = 6$ sites per treatment). The vertical red line indicates the cutoff we used to define subplots with high cover ($\geq 25\%$) versus those with low cover or absence ($< 25\%$) for the logistic regression (Table 1). Note the break in the y-axis from 20 to 140.

Figure S4. Herbaceous layer plant species diversity in the prescribed fire experiment ($n = 6$) and old-growth grasslands ($n = 6$) at the 1000-m² scale. For the Shannon-Wiener (a) and Simpson's (b) diversity indices, we used the within-plot frequency scores (0-11) of each species to represent abundances (see *Methods*). Boxplots display quartiles. Means of treatments did not differ at $p < 0.05$ (ANOVA and Tukey's HSD).

Table S1. Taxa recorded in old-growth grasslands (City of Austin Water Quality Protection Lands, $n = 6$) and experimental prescribed fire sites (Lady Bird Johnson Wildflower Center, $n = 6$ per treatment), ordered alphabetically by family and species. Column values in bold are the frequency of occurrence (0-6) at the 1000-m² scale. Column values in italics are the mean within-plot frequencies (0 to 11, calculated as the frequency in ten 1-m² subplots plus presence in the 1000-m² plot, see Methods). Nomenclature for grasses (Poaceae) followed Gould (1975) and for all other families Diggs (et al. 1999). When nomenclature in Gould (1975) or Diggs et al. (1999) differ from the currently accepted names in The Plant List (2013), we list the accepted names as synonyms. Taxa in bold font were associated with old-growth grasslands and had significant species factors ($p < 0.001$ based on 999 permutations) in the non-metric multidimensional scaling (Fig. 1).

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
Acanthaceae	<i>Dyschoriste linearis</i> (Torr. & A.Gray) Kuntze	3 1.0	1 0.3	1 0.5	0 0.0	1 0.2
	<i>Ruellia nudiflora</i> (Engelm. & A.Gray) Urb.	1 0.2	3 0.5	2 0.7	3 1.7	3 0.8
Agavaceae (Asparagaceae) ⁺	<i>Yucca rupicola</i> Scheele	2 0.8	0 0.0	0 0.0	0 0.0	0 0.0
Anacardiaceae	<i>Rhus lanceolata</i> (A. Gray) Britton	3 0.5	3 0.7	1 0.2	5 1.2	3 0.8
	<i>Rhus trilobata</i> Nutt.	3 0.5	1 0.2	0 0.0	0 0.0	2 0.5
	<i>Toxicodendron radicans</i> (L.) Kuntze	0 0.0	3 0.7	4 1.2	3 0.7	4 1.2
Apiaceae	<i>Chaerophyllum tainturieri</i> Hook. & Arn.	6 5.0	4 2.8	5 3.0	6 4.8	6 4.2
	<i>Daucus pusillus</i> Michx.	4 1.2	5 3.7	6 2.3	5 1.8	3 0.5
	<i>Polytaenia texana</i> (J.M. Coulter. & Rose) Mathias & Constance	0 0.0	3 0.7	3 2.8	3 2.7	5 0.8
	<i>Spermolepis inermis</i> (Nutt. ex DC.) Mathias & Constance	6 7.0	6 7.0	6 5.5	6 6.2	4 2.2
	<i>Torilis arvensis</i> (Huds.) Link	5 1.2	5 2.5	6 4.2	6 2.2	6 2.3
Aquifoliaceae	<i>Ilex decidua</i> Walter	0 0.0	1 0.2	0 0.0	0 0.0	1 0.5

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
	<i>Ilex vomitoria</i> Aiton	3 0.7	1 0.2	3 0.5	4 0.8	4 0.7
Asclepiadaceae (Apocynaceae) ⁺	<i>Asclepias asperula</i> (Decne.) Woodson	4 0.8	6 1.8	5 1.0	6 1.5	5 0.8
	<i>Asclepias oenotheroides</i> Schltdl. & Cham.	1 0.2	2 0.3	0 0.0	1 0.2	0 0.0
	<i>Matelea biflora</i> (Raf.) Woodson	2 0.3	3 0.8	3 0.5	2 0.5	1 0.2
	<i>Matelea reticulata</i> (Engelm. ex A.Gray) Woodson	4 0.7	3 0.5	4 1.0	1 0.2	6 2.2
Asteraceae (Compositae) ⁺	<i>Achillea millefolium</i> L.	0 0.0	0 0.0	0 0.0	1 0.2	1 0.2
	<i>Ambrosia psilostachya</i> DC.	2 0.5	6 4.0	5 5.5	6 3.7	4 1.2
	<i>Artemisia ludoviciana</i> Nutt.	1 0.2	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Aster ericoides</i> L., synonym of <i>Sympyotrichum ericoides</i> (L.) G.L.Nesom	3 1.3	5 2.0	4 1.7	6 2.8	5 1.2
	<i>Brickellia cylindracea</i> A.Gray ex A.Gray & Engelm.	4 0.8	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Calyptocarpus vialis</i> Less.	1 0.2	1 0.2	2 0.8	1 0.3	3 0.8
	<i>Centaurea melitensis</i> L.	0 0.0	3 1.5	3 0.7	0 0.0	0 0.0
	<i>Centaurium texense</i> (Griseb.) Fernald, unresolved name, probable synonym of <i>Zeltnera texensis</i> (Griseb.) G. Mans. ex J.S. Pringle	1 0.2	3 0.5	1 0.2	1 0.2	3 0.7
	<i>Chaetopappa asteroides</i> (Nutt.) Nutt. ex DC.	1 0.5	3 3.0	2 0.8	1 0.3	3 0.5
	<i>Cirsium texanum</i> Buckley	6 3.5	6 3.3	6 2.2	6 2.3	6 1.7

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Conyza canadensis</i> (L.) Cronquist, synonym of <i>Erigeron canadensis</i> L.	5	1.0	1	0.3	2	0.7	4	1.0	4	0.8
	<i>Coreopsis tinctoria</i> Nutt.	1	0.3	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Engelmannia peristenia</i> (Raf.) Goodman & C.A.Lawson	0	0.0	2	0.5	0	0.0	0	0.0	0	0.0
	<i>Erigeron tenuis</i> Torr. & A.Gray	0	0.0	0	0.0	0	0.0	2	0.3	2	0.5
	<i>Eupatorium incarnatum</i> Walter, synonym of <i>Fleischmannia incarnata</i> (Walter) R.M.King & H.Rob.	0	0.0	0	0.0	1	0.2	2	0.7	3	0.7
	<i>Evax prolifera</i> Nutt. ex DC., synonym of <i>Diaperia prolifera</i> (Nutt. ex DC.) Nutt.	0	0.0	0	0.0	0	0.0	0	0.0	1	0.2
	<i>Evax verna</i> Raf., synonym of <i>Diaperia verna</i> (Raf.) Morefield	6	2.8	0	0.0	2	0.7	0	0.0	0	0.0
	<i>Gaillardia pulchella</i> Foug.	2	1.8	6	3.8	6	4.5	6	4.5	6	4.7
	<i>Gamochaeta pensylvanica</i> (Willd.) Cabrera, synonym of <i>Gnaphalium pensylvanicum</i> Willd.	0	0.0	4	2.0	6	2.5	6	2.3	3	1.0
	<i>Grindelia squarrosa</i> (Pursh) Dunal	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Gutierrezia texana</i> (DC.) Torr. & A.Gray	5	5.7	5	2.0	6	4.5	4	1.3	6	1.7
	<i>Helenium amarum</i> (Raf.) H.Rock, unresolved name, possible synonym of <i>Helenium tenuifolium</i> Nutt.	0	0.0	3	0.5	2	0.3	0	0.0	0	0.0
	<i>Helianthus annuus</i> L.	1	0.2	0	0.0	1	0.3	2	0.3	0	0.0
	<i>Heterotheca subaxillaris</i> (Lam.) Britton & Rusby	2	0.3	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Hymenopappus tenuifolius</i> Pursh	5	2.7	1	0.2	0	0.0	0	0.0	1	0.2

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Krigia cespitosa</i> (Raf.) K.L.Chambers	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Lactuca ludoviciana</i> (Nutt.) Riddell	2	0.7	0	0.0	4	1.5	2	0.5	4	1.0
	<i>Liatris mucronata</i> DC.	4	2.5	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Lindheimera texana</i> A.Gray & Engelm.	4	1.3	1	0.3	2	0.5	1	0.2	3	0.7
	<i>Lygodesmia texana</i> (Torr. & A.Gray) Greene ex Small	5	1.3	3	1.7	3	1.2	2	0.3	2	0.7
	<i>Pinaropappus roseus</i> (Less.) Less.	4	1.3	0	0.0	0	0.0	1	0.2	2	0.5
	<i>Pyrrhopappus carolinianus</i> (Walter) DC.	0	0.0	0	0.0	0	0.0	1	0.2	0	0.0
	<i>Pyrrhopappus pauciflorus</i> (D.Don) DC.	3	1.2	1	0.2	2	0.5	3	0.5	2	0.7
	<i>Ratibida columnifera</i> (Nutt.) Wooton & Standl.	1	0.2	3	0.7	1	0.2	3	1.7	4	1.2
	<i>Rudbeckia hirta</i> L.	6	5.2	6	10.7	6	9.0	6	9.0	6	4.5
	<i>Solidago canadensis</i> L.	0	0.0	1	0.2	0	0.0	0	0.0	2	0.3
	<i>Solidago nemoralis</i> Aiton	1	0.3	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Sonchus asper</i> (L.) Hill	2	0.5	2	0.8	2	0.5	3	0.7	0	0.0
	<i>Sonchus oleraceus</i> (L.) L.	2	0.8	0	0.0	1	0.3	0	0.0	0	0.0
	<i>Tetraneuris linearifolia</i> (Hook.) Greene	5	1.7	1	0.5	1	0.7	0	0.0	1	0.2
	<i>Verbesina virginica</i> L.	1	0.2	1	0.2	0	0.0	1	0.2	2	0.5
	<i>Wedelia texana</i> (A.Gray) B.L.Turner	6	4.2	5	1.5	2	0.3	3	0.7	5	1.0

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
Berberidaceae	<i>Berberis trifoliolata</i> Moric., unresolved name, probable synonym of <i>Mahonia trifoliolata</i> (Moric.) Fedde	4 1.0	4 0.7	6 2.2	4 0.7	6 3.8
	<i>Nandina domestica</i> Thunb.	0 0.0	0 0.0	0 0.0	0 0.0	1 0.2
Brassicaceae	<i>Arabis petiolaris</i> (A.Gray) A.Gray	1 0.2	3 0.8	4 0.7	4 0.8	2 0.5
	<i>Draba cuneifolia</i> Nutt.	1 0.3	0 0.0	1 0.2	0 0.0	0 0.0
	<i>Lepidium virginicum</i> L.	5 1.7	4 2.8	3 1.0	3 1.3	0 0.0
	<i>Lesquerella recurvata</i> (Engelm. ex A. Gray) S. Watson, synonym of <i>Physaria recurvata</i> (Engelm. ex A. Gray) O'Kane & Al-Shehbaz	5 2.0	5 3.0	2 0.8	1 0.7	3 1.0
Cactaceae	<i>Echinocereus reichenbachii</i> (Terscheck) J.N.Haage	1 0.2	0 0.0	1 0.2	0 0.0	0 0.0
	<i>Opuntia engelmannii</i> Salm-Dyck ex Engelm.	4 1.2	3 0.7	3 1.0	5 1.5	6 1.7
	<i>Opuntia leptocaulis</i> DC., synonym of <i>Cylindropuntia leptocaulis</i> (DC.) F.M.Knuth	0 0.0	0 0.0	3 0.5	1 0.2	4 0.8
	<i>Opuntia macrorhiza</i> Engelm.	5 1.0	6 2.2	4 1.7	5 2.0	6 2.0
Campanulaceae	<i>Triodanis coloradoensis</i> (Buckley) McVaugh	1 0.2	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Triodanis perfoliata</i> (L.) Nieuwl.	5 2.7	6 5.8	6 6.3	6 7.2	6 2.3
Caryophyllaceae	<i>Arenaria benthamii</i> Fenzl ex Torr. & A.Gray	1 0.5	1 0.3	2 1.0	0 0.0	0 0.0
	<i>Silene antirrhina</i> L.	0 0.0	1 0.3	0 0.0	0 0.0	0 0.0
Cistaceae	<i>Lechea tenuifolia</i> Michx.	3 1.2	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Commelina erecta</i> L.	1 0.2	4 1.2	3 1.0	2 0.7	3 0.7

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
Commelinaceae	<i>Tradescantia hirsutiflora</i> Bush	0	0.0	1	0.2	0	0.0	0	0.0	0	0.0
	<i>Tradescantia subacaulis</i> Bush	0	0.0	0	0.0	1	0.2	1	0.2	0	0.0
Convolvulaceae	<i>Convolvulus equitans</i> Benth.	6	3.8	6	3.3	4	1.3	3	0.7	3	0.7
	<i>Dichondra recurvata</i> Tharp & M.C. Johnst.	3	2.2	6	3.8	4	1.3	4	1.5	5	1.7
	<i>Evolvulus sericeus</i> Sw.	3	2.5	6	8.8	6	4.5	6	4.7	5	3.0
Crassulaceae	<i>Sedum nuttallianum</i> Raf., unresolved name, possible synonym of <i>Sedum nuttallii</i> Torr. & E.James ex Eaton	0	0.0	0	0.0	1	0.2	0	0.0	0	0.0
Cucurbitaceae	<i>Cucurbita foetidissima</i> Kunth	0	0.0	1	0.2	1	0.2	1	0.2	0	0.0
	<i>Ibervillea lindheimeri</i> (A.Gray) Greene	1	0.2	3	1.0	4	0.8	2	0.5	6	1.3
Cupressaceae	<i>Juniperus ashei</i> J.Buchholz	2	0.5	2	0.5	4	1.7	3	0.7	6	3.3
Cyperaceae	<i>Carex austrina</i> Mack.	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Carex muehlenbergii</i> Willd.	0	0.0	1	0.3	0	0.0	0	0.0	0	0.0
	<i>Carex planostachys</i> Kunze	2	0.7	3	0.7	3	2.2	2	0.8	6	3.8
	<i>Cyperus retrorsus</i> Chapm.	0	0.0	0	0.0	0	0.0	0	0.0	1	0.2
	<i>Cyperus strigosus</i> L.	1	0.3	1	0.2	0	0.0	1	0.2	0	0.0
	<i>Scleria oligantha</i> Michx.	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
Ebenaceae	<i>Diospyros texana</i> Scheele	6	1.3	6	1.7	6	2.0	5	1.2	5	2.2
Euphorbiaceae	<i>Acalypha phleoides</i> Cav.	0	0.0	0	0.0	3	1.2	1	0.5	0	0.0

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Chamaesyce serpens</i> (Kunth) Small, synonym of <i>Euphorbia serpens</i> Kunth	4	1.5	1	0.3	1	0.2	0	0.0	0	0.0
	<i>Croton fruticulosus</i> Torr.	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Croton monanthogynus</i> Michx.	6	7.3	6	7.5	6	6.5	6	6.0	6	5.2
	<i>Ditaxis humilis</i> (Engelm. & A.Gray) Pax	5	3.0	4	2.5	5	1.8	6	3.2	5	2.0
	<i>Ditaxis mercurialina</i> (Nutt.) J.M.Coult.	0	0.0	1	0.2	1	0.3	0	0.0	1	0.2
	<i>Euphorbia cyathophora</i> Murray	3	1.3	1	0.2	2	0.8	3	1.2	4	1.7
	<i>Euphorbia dentata</i> Michx.	1	0.2	1	0.3	0	0.0	3	1.0	2	0.5
	<i>Euphorbia marginata</i> Pursh	0	0.0	0	0.0	0	0.0	3	0.7	0	0.0
	<i>Euphorbia roemeriana</i> Scheele	3	1.0	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Euphorbia spathulata</i> Lam.	0	0.0	0	0.0	0	0.0	0	0.0	3	0.7
	<i>Phyllanthus polygonoides</i> Nutt. ex Spreng.	6	3.2	2	0.7	3	1.5	4	1.5	2	0.8
	<i>Stillingia texana</i> I.M. Johnst.	5	4.0	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Tragia brevispica</i> Engelm. & A.Gray	2	0.5	2	1.2	4	2.5	5	3.3	4	2.5
	<i>Tragia ramosa</i> Torr.	5	5.3	6	4.3	5	3.3	6	5.0	5	2.5
Fabaceae (Leguminosae)+	<i>Astragalus nuttallianus</i> DC.	0	0.0	5	2.7	0	0.0	0	0.0	0	0.0
	<i>Dalea aurea</i> C.Fraser	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Desmanthus acuminatus</i> Benth.	4	4.5	6	7.3	5	2.2	6	5.0	5	2.0

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Desmanthus velutinus</i> Scheele	1	0.7	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Desmodium psilophyllum</i> Schltdl.	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Eysenhardtia texana</i> Scheele	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Indigofera miniata</i> Ortega	2	1.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Lespedeza texana</i> Britton	5	2.5	0	0.0	1	0.3	0	0.0	1	0.2
	<i>Lupinus texensis</i> Hook.	2	0.7	1	0.2	0	0.0	0	0.0	0	0.0
	<i>Medicago lupulina</i> L.	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Medicago minima</i> (L.) L.	2	0.5	4	3.7	5	2.3	0	0.0	1	0.3
	<i>Melia azedarach</i> L.	0	0.0	0	0.0	0	0.0	1	0.2	0	0.0
	<i>Mimosa nuttallii</i> (DC.) B.L. Turner	5	2.2	3	0.5	4	1.0	5	0.8	6	1.7
	<i>Pediomelum rhombifolium</i> (Torr. & A.Gray) Rydb., synonym of <i>Psoralea rhombifolia</i> Torr. & A.Gray	0	0.0	2	0.5	0	0.0	0	0.0	0	0.0
	<i>Prosopis glandulosa</i> Torr.	4	0.7	5	0.8	3	0.5	6	1.0	3	0.5
	<i>Rhynchosia senna</i> Hook.	5	2.3	0	0.0	1	0.3	0	0.0	0	0.0
	<i>Senna lindheimeriana</i> (Scheele) H.S.Irwin & Barneby	5	1.2	3	1.2	2	0.5	2	0.7	1	0.2
	<i>Vicia ludoviciana</i> Nutt.	6	5.3	6	5.5	6	4.8	6	6.7	6	3.3
Fagaceae	<i>Quercus buckleyi</i> Nixon & Dorr	1	0.3	0	0.0	0	0.0	0	0.0	2	0.3
	<i>Quercus fusiformis</i> Small	5	1.3	6	1.8	5	1.8	5	1.3	6	4.3

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
	<i>Quercus marilandica</i> (L.) Münchh.	0 0.0	0 0.0	0 0.0	0 0.0	1 0.2
	<i>Quercus stellata</i> Wangen.	0 0.0	0 0.0	1 0.2	2 0.5	4 1.2
Geraniaceae	<i>Erodium texanum</i> A. Gray	0 0.0	3 1.3	0 0.0	0 0.0	0 0.0
	<i>Geranium carolinianum</i> L.	2 1.2	6 5.8	6 4.3	6 4.8	5 2.8
Hydrophyllaceae (Boraginaceae)+	<i>Nama jamaicense</i> L., possible synonym of <i>Nama jamaicensis</i> L.	0 0.0	1 0.3	1 0.3	1 0.2	0 0.0
	<i>Phacelia congesta</i> Hook.	1 0.2	0 0.0	0 0.0	0 0.0	0 0.0
Iridaceae	<i>Herbertia lahue</i> (Molina) Goldblatt	0 0.0	1 0.3	2 0.5	2 0.5	1 0.3
	<i>Nemastylis geminiflora</i> Nutt.	3 2.2	1 0.5	2 0.7	5 1.3	2 0.5
	<i>Sisyrinchium angustifolium</i> Mill.	1 0.3	1 0.3	2 0.3	1 0.5	0 0.0
	<i>Sisyrinchium minus</i> Engelm. & A.Gray	0 0.0	0 0.0	1 0.3	0 0.0	0 0.0
Juncaceae	<i>Juncus dudleyi</i> Wiegand	0 0.0	0 0.0	0 0.0	0 0.0	1 0.2
Krameriaceae	<i>Krameria lanceolata</i> Torr.	3 0.7	2 0.3	0 0.0	1 0.2	2 0.3
Lamiaceae	<i>Hedeoma acinoides</i> Scheele	6 10.2	6 5.5	6 4.2	5 4.2	6 5.7
	<i>Marrubium vulgare</i> L.	0 0.0	0 0.0	1 0.3	0 0.0	0 0.0
	<i>Monarda citriodora</i> Cerv. ex Lag.	3 2.5	5 5.7	5 3.2	5 3.5	5 2.5
	<i>Salvia farinacea</i> Benth.	2 0.7	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Scutellaria drummondii</i> Benth.	5 2.2	5 3.5	3 1.8	6 2.0	5 1.8

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Stachys crenata</i> Raf., synonym of <i>Stachys agraria</i> Schltdl. & Cham.	2	0.5	3	1.0	2	0.7	2	0.7	0	0.0
	<i>Warnockia scutellarioides</i> (Engelm. & A.Gray) M.W.Turner	6	9.2	4	2.2	3	1.8	3	1.5	6	4.5
Liliaceae											
(Amaryllidaceae)+	<i>Allium canadense</i> L.	2	0.8	2	0.7	2	0.3	1	0.2	3	0.5
	<i>Allium drummondii</i> Regel	1	0.2	3	2.7	1	0.3	2	0.3	1	0.2
	<i>Cooperia pedunculata</i> Herb., synonym of <i>Zephyranthes drummondii</i> D.Don	3	0.7	4	1.0	3	0.5	5	2.0	4	0.8
	<i>Habranthus tubispathus</i> (L'Hér.) Traub	0	0.0	1	0.2	1	0.2	0	0.0	0	0.0
	<i>Nothoscordum bivalve</i> (L.) Britton	3	0.8	2	0.7	0	0.0	4	1.2	2	0.7
Linaceae	<i>Linum hudsonioides</i> Planch.	0	0.0	3	2.2	2	0.5	1	0.2	3	0.8
Malvaceae	<i>Abutilon fruticosum</i> Guill. & Perr.	2	0.3	2	0.3	1	0.2	1	0.2	0	0.0
	<i>Allowissadula holosericea</i> (Scheele) D.M.Bates*	0	0.0	1	0.2	0	0.0	1	0.2	0	0.0
	<i>Callirhoe pedata</i> (Nutt. ex Hook.) A.Gray	2	0.8	2	0.3	1	0.3	2	0.3	2	0.3
	<i>Modiola caroliniana</i> (L.) G.Don	1	0.2	0	0.0	1	0.2	0	0.0	0	0.0
	<i>Sida acutifolia</i> Mill.	5	3.3	6	8.5	6	5.8	5	3.0	5	2.2
Menispermaceae	<i>Cocculus carolinus</i> (L.) DC.	1	0.2	3	2.0	6	2.7	5	2.2	6	2.7
Nyctaginaceae	<i>Mirabilis albida</i> (Walter) Heimerl	0	0.0	0	0.0	0	0.0	2	0.5	0	0.0
	<i>Mirabilis linearis</i> (Pursh) Heimerl	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
	<i>Mirabilis nyctaginea</i> (Michx.) MacMill., synonym of <i>Oxybaphus nyctagineus</i> (Michx.) Sweet	1 0.2	1 0.2	2 0.3	0 0.0	1 0.2
Oleaceae	<i>Forestiera pubescens</i> Nutt.	1 0.3	3 0.8	6 3.5	4 1.3	6 6.3
	<i>Fraxinus texensis</i> (A.Gray) Sarg.	1 0.2	0 0.0	0 0.0	0 0.0	0 0.0
Onagraceae	<i>Gaura brachycarpa</i> Small	0 0.0	6 5.3	3 1.2	5 1.2	3 0.7
	<i>Gaura sinuata</i> Nutt. ex Ser.	4 1.7	1 0.3	1 0.2	1 0.8	0 0.0
	<i>Oenothera laciniata</i> Hill	0 0.0	1 0.3	1 0.2	0 0.0	0 0.0
	<i>Oenothera speciosa</i> Nutt.	0 0.0	3 0.7	3 0.7	4 1.5	1 0.2
Oxalidaceae	<i>Oxalis drummondii</i> A. Gray	1 0.3	2 1.0	2 0.7	1 0.3	2 0.8
	<i>Oxalis stricta</i> L., possible synonym of <i>Oxalis dillenii</i> Jacq.	6 5.3	6 6.5	6 7.2	6 4.7	6 5.5
Papaveraceae	<i>Argemone aurantiaca</i> Ownbey	1 0.2	0 0.0	0 0.0	0 0.0	0 0.0
Passifloraceae	<i>Passiflora affinis</i> Engelm.	1 0.2	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Passiflora lutea</i> L.	1 0.2	3 0.7	3 0.7	2 0.3	3 0.7
Phytolaccaceae	<i>Phytolacca americana</i> L.	0 0.0	1 0.2	0 0.0	2 0.3	0 0.0
	<i>Plantago helleri</i> Small	0 0.0	1 0.3	0 0.0	0 0.0	0 0.0
Plantaginaceae	<i>Plantago rhodosperma</i> Decne.	5 3.7	6 4.0	5 2.8	6 2.8	6 2.7
Poaceae	<i>Andropogon gerardii</i> Vitman	6 2.2	1 0.2	0 0.0	0 0.0	0 0.0
	<i>Aristida oligantha</i> Michx.	1 0.3	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Aristida purpurea</i> Nutt.	6 2.5	5 1.3	4 1.8	4 1.5	6 1.5

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Bothriochloa ischaemum</i> (L.) Keng	5	4.3	6	4.8	5	4.8	6	9.5	6	5.2
	<i>Bothriochloa laguroides</i> (DC.) Herter	5	4.5	6	2.2	6	4.2	6	6.8	6	2.2
	<i>Bouteloua curtipendula</i> (Michx.) Torr.	6	4.2	5	1.0	5	1.5	5	1.5	5	1.7
	<i>Bouteloua hirsuta</i> Lag., synonym of <i>Chondrosom hirsutum</i> (Lag.) Sweet	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Bouteloua rigidiseta</i> (Steud.) Hitchc.	6	1.8	1	0.2	3	0.7	1	0.2	0	0.0
	<i>Bromus catharticus</i> Vahl	0	0.0	1	0.3	2	1.0	0	0.0	1	0.2
	<i>Bromus japonicus</i> Thunb.	2	0.3	3	0.8	3	1.0	3	0.7	3	0.8
	<i>Buchloe dactyloides</i> (Nutt.) Engelm.	0	0.0	3	1.2	1	0.3	1	0.3	1	0.2
	<i>Desmazeria rigida</i> (L.) Tutin, synonym of <i>Catapodium rigidum</i> (L.) C.E.Hubb.	0	0.0	1	0.3	2	0.5	0	0.0	2	0.7
	<i>Dichanthelium oligosanthes</i> (Schult.) Gould, synonym of <i>Panicum oligosanthes</i> Schult.	6	3.8	6	4.8	6	5.8	6	7.7	6	5.2
	<i>Dichanthium sericeum</i> (R.Br.) A.Camus	5	2.3	5	2.5	2	0.8	4	0.8	2	0.3
	<i>Digitaria cognata</i> (Schult.) Pilg.	3	1.0	0	0.0	0	0.0	0	0.0	1	0.2
	<i>Elymus canadensis</i> L.	2	0.3	0	0.0	0	0.0	0	0.0	2	0.8
	<i>Eragrostis curtipedicellata</i> Buckley	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Eragrostis intermedia</i> Hitchc.	3	2.0	6	2.8	4	1.5	6	1.7	3	0.8
	<i>Eriochloa sericea</i> (Scheele) Munro ex Vasey	3	2.3	0	0.0	1	0.2	1	0.3	1	0.2

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Festuca versuta</i> Beal	2	0.3	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Hilaria belangeri</i> (Steud.) Nash	4	1.5	4	1.3	2	0.7	1	0.2	3	1.2
	<i>Hordeum pusillum</i> Nutt.	0	0.0	1	0.3	1	0.3	1	0.3	2	0.3
	<i>Leptochloa dubia</i> (Kunth) Nees	1	0.2	0	0.0	0	0.0	0	0.0	0	0.0
	<i>Limnodea arkansana</i> (Nutt.) Dewey	6	9.2	6	8.2	6	3.7	6	7.3	6	3.8
	<i>Lolium perenne</i> L.	0	0.0	0	0.0	2	0.5	0	0.0	0	0.0
	<i>Mnesithea cylindrica</i> (Michx.) de Koning & Sosef, synonym of <i>Coelorachis cylindrica</i> (Michx.) Nash	0	0.0	0	0.0	1	0.2	1	0.3	1	0.2
	<i>Nassella leucotricha</i> (Trin. & Rupr.) R.W.Pohl	6	5.3	6	9.5	6	7.0	6	5.7	6	4.3
	<i>Panicum coloratum</i> L.	0	0.0	0	0.0	0	0.0	1	0.2	0	0.0
	<i>Panicum hallii</i> Vasey	6	2.0	5	3.7	0	0.0	0	0.0	1	0.3
	<i>Paspalum dilatatum</i> Poir.	1	0.5	0	0.0	1	0.2	1	0.2	1	0.2
	<i>Paspalum setaceum</i> Michx.	0	0.0	1	0.7	1	0.2	0	0.0	1	0.2
	<i>Phalaris caroliniana</i> Walter	0	0.0	0	0.0	0	0.0	0	0.0	1	0.2
	<i>Schizachyrium scoparium</i> (Michx.) Nash	6	7.3	1	0.3	1	0.7	0	0.0	3	0.5
	<i>Sorghastrum nutans</i> (L.) Nash	6	4.7	1	0.2	0	0.0	0	0.0	0	0.0
	<i>Sorghum halepense</i> (L.) Pers.	0	0.0	3	0.5	2	1.3	6	1.3	0	0.0
	<i>Sphenopholis interrupta</i> (Buckley) Scribn.	0	0.0	5	6.3	4	3.7	6	3.7	4	1.3

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
	<i>Sporobolus compositus</i> (Poir.) Merr.	5 3.2	1 0.2	4 1.2	4 1.7	6 1.7
	<i>Vulpia octoflora</i> (Walter) Rydb.	0 0.0	4 2.3	3 0.5	2 0.5	2 0.7
Polemoniaceae	<i>Gilia incisa</i> Benth., synonym of <i>Giliastrum incisum</i> (Benth.) J.M.Porter	1 0.5	1 0.3	0 0.0	0 0.0	1 0.3
	<i>Phlox cuspidata</i> Scheele	0 0.0	0 0.0	1 0.3	0 0.0	0 0.0
	<i>Phlox roemeriana</i> Scheele	1 0.8	1 0.5	1 0.7	0 0.0	2 0.5
Ranunculaceae	<i>Anemone berlandieri</i> Pritz.	1 0.3	0 0.0	2 1.0	3 1.0	3 1.0
	<i>Clematis drummondii</i> Torr. & A.Gray	1 0.3	1 0.2	0 0.0	0 0.0	0 0.0
	<i>Delphinium carolinianum</i> Walter	0 0.0	1 0.2	0 0.0	0 0.0	2 0.3
Rosaceae	<i>Prunus mexicana</i> S. Watson	0 0.0	1 0.2	0 0.0	0 0.0	0 0.0
	<i>Rubus trivialis</i> Michx.	6 4.0	6 3.7	6 3.3	6 4.7	5 1.8
Rubiaceae	<i>Galium aparine</i> L.	0 0.0	0 0.0	1 0.3	3 0.7	1 0.5
	<i>Galium texense</i> A.Gray	3 1.2	2 1.0	3 2.0	1 0.3	3 1.3
	<i>Galium virgatum</i> Nutt.	6 7.7	6 3.7	6 3.8	6 4.5	6 4.0
	<i>Hedyotis nigricans</i> (Lam.) Fosberg, synonym of <i>Stenaria nigricans</i> (Lam.) Terrell	5 4.2	0 0.0	1 0.3	2 0.3	1 0.2
	<i>Richardia tricocca</i> (Torr. & A.Gray) Standl.	0 0.0	2 1.2	1 0.3	1 0.5	0 0.0
Rutaceae	<i>Zanthoxylum hirsutum</i> Buckley, synonym of <i>Zanthoxylum clava-herculis</i> subsp. <i>fruticosum</i> (A. Gray) Reynel	3 0.5	3 0.5	0 0.0	2 0.3	1 0.3

Family	Species	Old-growth grasslands	Summer Burns	Fall Burns	Winter Burns	Unburned
Sapotaceae	<i>Sideroxylon lanuginosum</i> Michx.	6 1.0	6 1.8	6 2.2	6 2.7	6 3.2
Scrophulariaceae						
(Orobanchaceae)+	<i>Agalinis heterophylla</i> (Nutt.) Small ex Britton	2 0.5	6 7.0	6 6.0	6 4.5	6 3.7
	<i>Castilleja indivisa</i> Engelm.	0 0.0	2 0.3	0 0.0	1 0.2	0 0.0
Scrophulariaceae						
(Plantaginaceae)+	<i>Nuttallanthus texanus</i> (Scheele) D.A. Sutton	2 0.7	4 2.2	3 1.2	0 0.0	1 0.3
Smilacaceae	<i>Smilax bona-nox</i> L.	6 2.3	6 2.8	6 5.2	6 4.8	6 6.7
Solanaceae	<i>Bouchetia erecta</i> DC. ex Dunal	4 1.7	6 7.7	6 5.0	6 4.8	6 3.0
	<i>Physalis cinerascens</i> (Dunal) Hitchc.	5 1.3	6 2.7	5 2.3	6 2.0	6 2.2
	<i>Solanum dimidiatum</i> Raf.	1 0.3	1 0.3	1 0.2	2 0.7	0 0.0
	<i>Solanum elaeagnifolium</i> Cav.	0 0.0	3 1.0	1 0.3	0 0.0	0 0.0
	<i>Solanum rostratum</i> Dunal	1 0.5	1 0.2	0 0.0	0 0.0	0 0.0
Ulmaceae						
(Cannabaceae)+	<i>Celtis laevigata</i> Willd.	6 1.5	5 1.3	6 2.5	6 2.0	6 3.3
Ulmaceae	<i>Ulmus crassifolia</i> Nutt.	4 1.2	6 2.5	5 3.0	6 2.3	5 5.5
Urticaceae	<i>Parietaria pensylvanica</i> Muhl. ex Willd.	5 3.8	5 2.2	5 5.0	6 4.0	6 7.5
Valerianaceae						
(Caprifoliaceae)+	<i>Valerianella amarella</i> (Lindl. ex A. Gray) Krok	3 0.8	0 0.0	0 0.0	0 0.0	0 0.0
	<i>Valerianella radiata</i> Dufr.	0 0.0	6 3.8	3 2.2	5 2.8	4 1.7
Verbenaceae	<i>Glandularia bipinnatifida</i> (Schauer) Nutt.	5 5.2	5 3.5	5 1.5	6 1.2	4 0.8

Family	Species	Old-growth grasslands		Summer Burns		Fall Burns		Winter Burns		Unburned	
	<i>Lantana urticoides</i> Hayek	0	0.0	3	0.5	0	0.0	0	0.0	1	0.2
	<i>Verbena halei</i> Small	3	0.5	3	0.7	4	1.0	5	1.5	3	0.5
	<i>Verbena xutha</i> Lehm.	0	0.0	2	0.5	1	0.5	0	0.0	0	0.0
Violaceae	<i>Hybanthus verticillatus</i> (Ortega) Baill.	0	0.0	1	0.2	0	0.0	1	0.2	0	0.0
Vitaceae	<i>Cissus incisa</i> (Nutt.) Des Moul. ex S.Watson	4	1.3	6	2.5	6	2.8	6	2.3	6	2.5
	<i>Parthenocissus heptaphylla</i> (Buckley) Britton ex Small, synonym of <i>Parthenocissus quinquefolia</i> (L.) Planch.	3	0.7	1	0.2	5	1.2	5	1.2	4	0.8
	<i>Parthenocissus quinquefolia</i> (L.) Planch.	3	0.7	4	0.7	5	0.8	4	1.0	3	0.7
	<i>Vitis cinerea</i> (Engelm.) Engelm. ex Millardet	0	0.0	2	0.5	0	0.0	0	0.0	2	0.7
	<i>Vitis monticola</i> Buckley	1	0.3	1	0.2	2	0.3	3	0.7	5	2.3
	<i>Vitis mustangensis</i> Buckley	4	1.0	3	0.7	3	1.0	6	1.2	3	0.7
	<i>Vitis vulpina</i> L.	0	0.0	0	0.0	0	0.0	0	0.0	1	0.3

[†]Family name from (The Plant List, 2013).

*Species absent from *Diggs et al. (1999)*; identity confirmed against specimens at the S.M. Tracy Herbarium, Texas A&M University.

Literature Cited

Albrecht, R. I., S. Goodman, D. Buechler, R. J. Blakeslee, and H. Christian. 2016. LIS 0.1 degree very high resolution gridded lightning monthly climatology (VHRMC) [1998-2013]. DOI: <http://dx.doi.org/10.5067/LIS/LIS/DATA302>

Diggs, G. M., B. L. Lipscomb, R. J. O'Kennon, W. F. Mahler, and L. H. Shinners. 1999. Shinners' and Mahler's illustrated flora of North Central Texas. Botanical Research Institute of Texas, Fort Worth, TX.

Gould, F.W. 1975. The grasses of Texas. Texas A&M University, Texas Agricultural Experiment Station, College Station, TX.

National Weather Service (NWS). 1981-2010. Monthly climate normals for Austin-Bergstrom Airport, Texas. (<https://w2.weather.gov/climate/xmacis.php?wfo=ewx>)

Peet, R. K., T. R. Wentworth, and P. S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. *Castanea* 63:262-274

The Plant List. 2013. Version 1.1. <http://www.theplantlist.org/> (accessed 21st August 2020).