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Abstract

We establish data-driven versions of the System Level Synthesis (SLS) parameterization of linear

systems. In particular, optimization over achievable closed-loop finite-horizon system responses

of linear-time-invariant dynamics can be posed using only data from past trajectories without ex-

plicitly identifying a system model. We first show an exact equivalence between the traditional

and data-driven SLS parameterizations under the idealized assumption of noise-free trajectories.

This is then extended to the case with process noise, where techniques from robust SLS are used to

characterize and bound the effects of noise on closed-loop performance. Furthermore, we use tools

from matrix concentration to show that simple trajectory averaging suffices to mitigate the impact

of noise. We end with numerical experiments demonstrating the soundness of our methods.

Keywords: Data-driven control, model-free control, system level synthesis

Modern systems are increasingly dynamic and heterogeneous. These factors complicate mod-

elling and by extension render impractical the techniques from traditional robust and optimal con-

trol, which assume the availability of accurate models. Fortunately, contemporary systems are inher-

ently data-rich, meaning that data-driven control is possible, practical, and perhaps even necessary.

In the case where the underlying system is linear, approaches in data-driven control include

identify-then-control Dean et al. (2019); Mania et al. (2019), policy gradient Fazel et al. (2018);

Malik et al. (2019); Furieri et al. (2020), adaptive methods based on robust control Dean et al.

(2018), and online-learning Simchowitz et al. (2020); Hazan et al. (2020). For a more extensive

overview of recent developments please see Matni et al. (2019) and Recht (2019) for a control-

theoretic and machine learning angle, respectively.

This work is motivated by results presented in De Persis and Tesi (2019); Coulson et al. (2019a,

2020, 2019b); van Waarde et al. (2020); Rotulo et al. (2019). Broadly, these paper leverage the

behavioral framework of Willems and Polderman (1997) which, under the assumption of persis-

tence of excitation, allows for the observed input/output data to exactly parameterize the achievable

system trajectories. For example, in Coulson et al. (2019a) it is shown that trajectory tracking in

output-feedback based model-predictive-control (MPC) Garcia et al. (1989); Borrelli et al. (2017)

can be posed as an optimization problem over a library of past system trajectories; follow-up work

establishes connections to distributionally robust programming Coulson et al. (2020) and allow for

real-time implementations Coulson et al. (2019b). Similarly, in Rotulo et al. (2019); De Persis and

Tesi (2019) it is shown that data-driven synthesis of linear quadratic regulators can be achieved

through semi-definite programs without identifying an explicit system model. To the best of our

knowledge, the effect of noise is not characterized in the aforementioned works.

Contributions In this paper we establish data-driven versions of the System Level Synthesis (SLS)

Anderson et al. (2019) parameterization of achievable closed-loop system responses for LTI sys-
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tems over finite horizon. SLS is central to breakthroughs in distributed optimal control Wang et al.

(2019b), robust and distributed MPC Amo Alonso and Matni (2019); Wang et al. (2019a), and

learning-enabled control Dean et al. (2019, 2018): our goal is to take an initial step in extending

its advantages to the purely data-driven, model-free setting. We first consider the idealized setting

of noise-free trajectories and show an exact equivalence between the traditional and our data-driven

formulations of SLS. We then consider the case of systems driven by process noise, and use tools

from robust SLS Matni et al. (2017) to characterize the behavior and bound the performance degra-

dation of using noisy trajectory data for closed-loop control. Furthermore, we use matrix concen-

tration Tropp (2012) to show that a simple trajectory averaging technique suffices to mitigate the

impact of noise.

Paper structure We define the problem statement in Section 1. A data-driven SLS parameteriza-

tion is then formulated in Section 2 for the case of LTI systems with no driving noise; this is extended

to the noisy setting in Section 3. In Section 4 we derive sub-optimality bounds with norm-bounded

assumptions on the noise and characterize the sample complexity. Section 5 contains numerical

examples and we end in Section 6 with conclusions and discussion of future work.

Notation We use x[i,j] as shorthand for the signal [x>(i) x>(i+ 1) · · · x>(j)]>. Define

HL(σ[0,T−1]) =






σ(0) σ(1) · · · σ(T − L)
σ(1) σ(2) · · · σ(T − L+ 1)
...

...
. . .

...
σ(L− 1) σ(L) · · · σ(T − 1)




 , R =






R0,0

R1,1 R1,0

...
. . .

. . .

RT−1,T−1 · · · RT−1,1 RT−1,0






We say that the Hankel matrix HL(σ[0,T−1]) is of order L, and when context is clear we overload

notation and simply write HL(σ). A linear, causal operator R defined over a horizon of T has

matrix representation, as shown above: here Ri,j ∈ R
p×q is a matrix of compatible dimension. We

denote the set of such linear causal operators by LT,p×q
TV and drop the superscript T, p × q when

it is clear: then, an operator R ∈ LT,p×q
TV acts on a signal σ[0,T−1] through multiplication, i.e.,

y[0,T−1] = Rσ[0,T−1]. We slightly overload notation, and use MATLAB-like syntax to extract block

matrices, rows, and columns from linear operators: R(i, j), R(i, :), and R(:, j) denote the (i, j)-th
block matrix, i-th block row, and j-th block column of R, respectively, all indexing from 0.

1. Problem Statement

We consider finite-time optimal state-feedback control of the discrete-time LTI system

x(t+ 1) = Ax(t) +Bu(t) + w(t), for t = 0, 1, . . . , L− 1, (1.1)

where L > 0 is the control horizon, x ∈ R
n is the system state, u ∈ R

m is the control input, and

w ∈ R
n is the disturbance. We assume the pair (A,B) is controllable and by convention write the

initial conditions of system (1.1) into the disturbance as w(−1) = x(0).
When the system model (A,B) is known, the above problem can be efficiently solved for many

cases of interest by making suitable assumptions on the noise signal w[−1,L−2] and control objective.

This paper focuses instead on solving an optimal control problem when the model of system (1.1)

is unknown, but a collection of state and input trajectories (over a longer horizon T > L to be

specified in Section 2) {x(i)[0,T−1], u
(i)
[0,T−1]}Ni=1 are available. Moreover, our goal is to solve this task

without explicitly estimating the system model.

To make the discussion concrete, we focus on finite-horizon Linear Quadratic Gaussian (LQG)

control, wherein the disturbances are assumed to be independently and identically distributed as
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w(t)
iid∼ N (0, σ2I), the control policy at time t is given by a linear-time-varying function of past

states, i.e., u(t) = Kt(x[0,t]), and the cost function to be minimized is given by:

E

[
L−2∑

t=0

x>(t)Qx(t) + u>(t)Ru(t) + x>(L− 1)QFx(L− 1)

]

. (1.2)

We note that much of our analysis extends to other cost functions in a natural way.

2. Data Driven System Level Synthesis

We begin by considering the simplified setting in which there is no driving noise in system (1.1), i.e.,

w(−1) = x(0) and w(t) = 0 for all t ≥ 0. Our approach is to connect tools from behavioral control

theory, namely Willems’ Fundamental Lemma Willems and Polderman (1997); Markovsky and

Rapisarda (2008), with the System Level Synthesis (SLS) Anderson et al. (2019) parameterization

of closed-loop controllers.

2.1. Willems’ Fundamental Lemma

Tools from behavioral system theory Willems and Polderman (1997); Willems et al. (2005); De Per-

sis and Tesi (2019) provide a natural way of characterizing a dynamical system in terms of its in-

put/output signals. Central to Willems’ fundamental lemma is persistence of excitation, which is

stated as a rank condition on a Hankel matrix constructed from the control input signal u.

Definition 1 Let σ : Z → R
p be a signal. We say that its finite-horizon restriction σ[0,T−1] is

persistently exciting (PE) of order L if the Hankel matrix HL(σ[0,T−1]) has full rank.

The rank condition implies that T ≥ (p+ 1)L− 1 is a lower-bound on the horizon T . In what

follows, we assume that the order L and data horizon T are chosen such that this bound is satisfied.

Lemma 2 (Willems et al. (2005); De Persis and Tesi (2019)) Consider the system (1.1) with (A,B)
controllable, and assume that there is no driving noise. Let {x[0,T−1], u[0,T−1]} be the state and in-

put signals generated by the system. Then if u[0,T−1] is PE of order n+ L, the signals x?[0,L−1] and

u?[0,L−1] are valid trajectories L-length of system (1.1) if and only if

[

x?[0,L−1]

u?[0,L−1]

]

=

[HL(x[0,T−1])

HL(u[0,T−1])

]

g, for some g ∈ R
T−L+1

Lemma 2 states that if the underlying system is controllable and rankHn+L(u) = m(n + L),
then: (1) all initial conditions and inputs are parameterizable from observed signal data; and (2)

all valid trajectories, that is to say state/input trajectory pairs {x[0,L−1], u[0,L−1]} that are consistent

with the dynamics (1.1) lie in the linear span of a suitable Hankel matrix constructed from the

system trajectories. Our goal is to exploit this relationship to characterize valid closed loop system

responses of the unknown system (1.1) by establishing a connection to the SLS parameterization.

2.2. System Level Synthesis

Consider an L-length trajectory from system (1.1) expressed as block matrix operations

x[0,L−1] = ZAx[0,L−1] + ZBu[0,L−1] + w[−1,L−2] (2.1)

where A = IL ⊗ A, and B = IL ⊗ B, and where Z is the block-downshift operator, i.e., a matrix

with identity matrices along the first block subdiagonal and zeros elsewhere. If it is also the case
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that the system (2.1) satisfies the linear feedback control law u[0,L−1] = Kx[0,L−1] for a causal

linear-time-varying state-feedback control policy K ∈ LL,m×n
TV , then rewriting (2.1) we arrive at

x[0,L−1] = (I −Z(A+ BK))−1w[−1,L−2] = Φxw[−1,L−2] (2.2)

u[0,L−1] = K(I −Z(A+ BK))−1w[−1,L−2] = Φuw[−1,L−2]

which captures how the process noise w maps to the state x and control u. We refer to the causal

linear operators Φx ∈ LL,n×n
TV and Φu ∈ LL,m×n

TV as the system responses, which characterize the

closed-loop system behavior from noise to state and control input, respectively.

Theorem 3 (Theorem 2.1, Anderson et al. (2019)) For a system (1.1) with state-feedback control

law K ∈ LL,m×n
TV , i.e., u[0,L−1] = Kx[0,L−1], the following are true

1. The affine subspace defined by

[
(I −ZA) −ZB

]
[
Φx

Φu

]

= I, Φx ∈ LL,n×n
TV , Φu ∈ LL,m×n

TV (2.3)

parameterizes all possible system responses from w[−1,L−2] → (x[0,L−1], u[0,L−1]).

2. For any causal linear operators Φx,Φu satisfying (2.3), the controller K = ΦuΦ
−1
x ∈

LL,m×n
TV achieves the desired closed-loop responses (2.2).

Theorem 3 allows for the problem of controller synthesis to be equivalently posed as a search

over the affine space of system responses characterized by constraint (2.3) by setting x[0,L−1] =
Φxw[−1,L−2] and u[0,L−1] = Φuw[−1,L−2]. In particular, the LQG problem in Section 1 can be

recast as a search over system responses (see Section 2.2 of Anderson et al. (2019)) as:1

minimize
Φx,Φu

∥
∥
∥
∥

[
Q1/2

R1/2

] [
Φx

Φu

]∥
∥
∥
∥
F

subject to (2.3), (2.4)

where Q = IL ⊗ Q, R = IL ⊗ R, and ‖ · ‖F is the Frobenius norm. In the noise free setting, i.e.,

when the initial condition w(−1) = x(0) is known and w(t) = 0 for t ≥ 0, the objective function

of this problem instead simplifies to

minimize
Φx(:,0),Φu(:,0)

∥
∥
∥
∥

[
Q1/2

R1/2

] [
Φx(:, 0)
Φu(:, 0)

]

x(0)

∥
∥
∥
∥
F

, (2.5)

and similarly, because only the initial condition is nonzero, the affine constraint (2.3) reduces to

[
(I −ZA) −ZB

]
[
Φx(:, 0)
Φu(:, 0)

]

= I(:, 0). (2.6)

2.3. A Data-Driven Formulation

We now show how the simplified achievability constraints (2.6) can be replaced by a data-driven

representation through the use of Lemma 2. Our key insight is to recognize that the i-th column

of Φx and Φu are the impulse response of the state and control input, respectively, to the i-th
disturbance channel — which are themselves valid system trajectories that can be characterized

using Willems’ fundamental lemma.

1. We drop both the squaring of the objective function, and the scaling factor σ2, for brevity of notation going forward,

as neither affect the optimal solution, or the order-wise scaling of the derived bounds.
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Theorem 4 Consider the system (1.1) with (A,B) controllable, and assume that there is no driving

noise. Suppose that a state/input signal pair {x[0,T−1], u[0,T−1]} is collected, and assume that

u[0,T−1] is PE of order at least n + L. We then have that the set of feasible solutions to constraint

(2.6) defined over a time horizon t = 0, 1, . . . , L− 1 can be equivalently characterized as:
[
HL(x)
HL(u)

]

G, for all G ∈ Γ(x) := {G : H1(x)G = I}. (2.7)

Proof (Sketch)2 Our goal is to prove the following relationship

LHS :=

{[
Φx(:, 0)
Φu(:, 0)

]

satisfying (2.6)

}

=

{[
HL(x)
HL(u)

]

G : G ∈ Γ(x)

}

=: RHS.

(⊆) Let {Φx(:, 0),Φu(:, 0)} ∈ LHS and take e1, . . . , en to be the standard basis vectors. By

Lemma 2 there exists g1, . . . , gn such that each Φx(:, 0)ei = HL(x)gi and Φu(:, 0)ei = HL(u)gi.
Define G to be the horizontal concatenation of g1, . . . , gn.

(⊇) Substitute {HL(x)G,HL(u)G} ∈ RHS} into constraint (2.6) and note that G ∈ Γ(x).

Thus, if a state/input pair {x[0,T−1], u[0,T−1]} is generated by a PE input signal of order at least

n + L, Theorem 4 gives conditions under which {HL(x),HL(u)} can be used to parameterize

achievable system responses for system (1.1) under no driving noise. In particular, one can then

reformulate the deterministic optimal control problem formulated in equations (2.5) and (2.6) as

minimize
G∈Γ(x)

∥
∥
∥
∥

[
Q1/2

R1/2

] [
HL(x)
HL(u)

]

Gx(0)

∥
∥
∥
∥
F

. (2.8)

3. Robust-Data Driven System Level Synthesis

We now turn our attention to the original stochastic LQG optimal control problem (2.4), where

for notational convenience we set w(−1) = x(0) = 0 and driving noise w(t)
iid∼ N (0, σ2I) for

t = 0, . . . , T − 2. To differentiate between the state of the noise-free and noisy system, we will

denote the state signal by x̃[0,T−1] when driving noise is present. This additional unmeasurable

input means that valid system trajectories can no longer be solely characterized in terms of the

Hankel matrices HL(x̃) and HL(u) as the effect of the process noise, captured by a corresponding

Hankel matrix HL(w), must also be accounted for. To address this challenge, we relate the state-

trajectories of system (1.1) under driving noise to those of system (1.1) under no driving noise, and

use this relationship to construct approximate system responses that lie a bounded distance from

the affine subspace defined in (2.3). We then leverage a robust SLS parameterization to bound the

effects of this approximation error on the closed loop behavior.

3.1. Robust System Level Synthesis

We begin with a robust variant of Theorem 3 that characterizes the behavior achieved by a controller

constructed from system responses lying near the affine subspace characterized by constraint (2.3).

Theorem 5 (Theorem 2.2, Anderson et al. (2019)) Let ∆ be a strictly causal linear operator

(i.e., its matrix representation is strictly block-lower-triangular), and suppose that {Φ̂x, Φ̂u} satisfy

[
(I −ZA) −ZB

]
[
Φ̂x

Φ̂u

]

= I +∆, Φ̂x ∈ LL,n×n
TV , Φ̂u ∈ LL,m×n

TV (3.1)

2. A full version is available at https://arxiv.org/abs/2011.10674
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Then the controller K̂ = Φ̂uΦ̂
−1
x achieves the system responses
[
x[0,L−1]

u[0,L−1]

]

=

[
Φ̂x

Φ̂u

]

(I +∆)−1w[−1,L−2] (3.2)

Equation (3.2) shows that the effect of the error term ∆ in the approximate achievability con-

straint (3.1) is to map the original disturbance to w[−1,L−2] → w̃[−1,L−2] := (I +∆)−1w[−1,L−2].

This makes clear that we must design the full system responses {Φx,Φu}, and not just their first

block-columns as in the idealized setting considered in the previous section.

3.2. A Robust Data-Driven Formulation

We now construct causal linear operators {Φ̂x, Φ̂u} from noisy data {x̃[0,T−1], u[0,T−1]} that sat-

isfy equation (3.1). Our approach is to construct each block-column of the approximate system

responses separately and then suitably concatenate them to yield a feasible solution. We empha-

size that only {x̃[0,T−1], u[0,T−1]} is available, but it is instructive to also consider w[−1,T−2] in the

analysis. To begin, since each column of HL(x̃),HL(u),HL(w) satisfies (2.1), it follows that

[
(I −ZA) −ZB

]
[
HL(x̃)
HL(u)

]

=

[
H1(x̃)

0

]

+ ZHL(w) (3.3)

Then fix Ĝ ∈ Γ(x̃) and let Φ̂x(:, 0) = HL(x̃)Ĝ, Φ̂u(:, 0) = HL(u)Ĝ as in the proof of Theorem 4,

[
(I −ZA) −ZB

]
[
Φ̂x(:, 0)

Φ̂u(:, 0)

]

= I(:, 0) + ZHL(w)Ĝ
︸ ︷︷ ︸

∆(:,0)

(3.4)

If block down-shifting is accounted for, (3.4) demonstrates the construction of a single block-

column of {Φ̂x, Φ̂u} and ∆. The construction of the other columns is similar; in general consider

Ĝ0, . . . , ĜL−1 ∈ Γ(x̃), where each Ĝk−1 is used to construct the kth column of Φ̂x, Φ̂u. Note that

Z commutes with block-diagonal matrices with identical block-diagonal entries (adjusting for di-

mensions): this can be seen by observing that left-multiplication by Z (down-shifting) is equivalent

to right-multiplication by Z (left-shifting). Thus, we can construct down-shifted block-columns of

the form (3.4) as follows

[
(I −ZA) −ZB

]
[
Zk−1HL(x)
Zk−1HL(u)

]

Ĝk−1 = Zk−1I(:, 0) + ZkHL(w)Ĝk−1, (3.5)

from which full approximate system responses can be constructed, as formalized in the following.

Theorem 6 For system (1.1) with (A,B) controllable, and control input u[0,T−1] and disturbance

process w[−1,T−2]] PE of order n + L, the approximate system response matrices {Φ̂x, Φ̂u} and

perturbation term ∆ are defined as

Φ̂x = ZL(IL ⊗HL(x̃))Ĝ, Φ̂u = ZL(IL ⊗HL(u))Ĝ, ∆ = ZL(IL ⊗ZHL(w))Ĝ (3.6)

and satisfy the approximate achievability constraint (3.1), where ZL :=
[
I Z · · · ZL−1

]
and

Ĝ ∈ LTV with block-diagonal elements Ĝ(i, i) ∈ Γ(x̃) for i = 0, 1, . . . , L − 1, and off-diagonal

blocks H1(x̃)Ĝ(i, j) = 0 for i 6= j.

Proof (Sketch) Repeated application of (3.5) to construct each block column of Φ̂x, Φ̂u,∆.
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Theorem 6 thus allows us to apply the robust SLS parameterization of Theorem 5 to characterize

the closed-loop behavior (3.2) achieved by a controller constructed from the data-driven approxi-

mate system responses {Φ̂x, Φ̂u} in terms of the perturbation term ∆, as described in equation

(3.6). In particular, if we assume that ‖H(w)‖2 ≤ ε but is otherwise acting adversarially, we can

pose the following robust LQG problem:

minimize
Ĝ∈LTV

max
‖HL(w)‖≤ε

∥
∥
∥
∥

[
Q1/2

R1/2

] [
ZL(IL ⊗HL(x̃))
ZL(IL ⊗HL(u))

]

Ĝ(I + ZL(IL ⊗ZHL(w))Ĝ)−1

∥
∥
∥
∥
F

subject to Ĝ(i, i) ∈ Γ(x̃) for all i, H1(x)Ĝ(i, j) = 0 for all i 6= j. (3.7)

Note that although we assume that the disturbance process is drawn as w(t)
iid∼ N (0, σ2I), we

conservatively treat the effects of the unknown Hankel matrix HL(w) on the estimated system re-

sponses as adversarial in our analysis. This approach also allows our method to generalize naturally

to other optimal control settings, such as those with H∞ and L1 cost functions.

The objective function of optimization problem (3.7) is non-convex, but its structure allows for

a transparent and data-independent quasi-convex upper-bound to be derived. First, we observe that

we can upper bound ‖∆‖2 as given in equation (3.6), by

‖∆‖2 = ‖ZL(IL ⊗ZHL(w))Ĝ‖2 ≤ ‖ZL‖2‖HL(w)‖2‖Ĝ‖2 ≤
√
Lε‖Ĝ‖2, (3.8)

from which it follows immediately that if
√
Lε‖Ĝ‖2 < 1, then ‖(I +∆)−1‖2 ≤ 1

1−
√
Lε‖Ĝ‖2

. This

observation allows us to follow a similar argument as in Dean et al. (2019) to derive the following

quasi-convex upper bound to problem (3.7):

minimize
γ∈[0,1), Ĝ

1

1− γ

∥
∥
∥
∥

[
Q1/2

R1/2

] [
ZL(IL ⊗HL(x̃))
ZL(IL ⊗HL(u))

]

Ĝ
∥
∥
∥
∥
F

(3.9)

subject to ‖Ĝ‖2 ≤
γ√
Lε

, Ĝ(i, i) ∈ Γ(x̃) for all i, H1(x̃)Ĝ(i, j) = 0 for all i 6= j

which is quasi-convex in (γ, Ĝ), allowing for an efficient solution via bisection.

4. Sub-optimality Analysis

In this section we prove the following sub-optimality result, which relates the performance Ĵ
achieved by the controller synthesized via the robust problem (3.9) to the optimal J? achieved

by the optimal LQG controller. To state the our main result, let G?
k be the optimal solution to the

L− 1− k (indexing starts at zero) horizon LQG problem, as in Theorem 4. Further, let:

OL(A) :=






I
A
...

AL−1




 , TL(X) :=








0
X 0

AX X
.. .

...
...

. . .
. . .

AL−2 AL−3 · · · X 0







.

Theorem 7 Let (Ĝ, γ̂) be the optimal solution to (3.9), let Ĵ be the LQG cost that the con-

troller K̂ = Φ̂uΦ̂
−1
x constructed from the system responses (3.6) achieves on system (1.1). As-

sume that T ≥ 2L + 1, that ‖HL(w)‖2 ≤ ε, and that ε satisfies the bounds (4.1). Let G? =
blkdiag(G?

0, . . . , G
?
L−1), with G?

0, . . . , G
?
L−1 ∈ Γ(x) the parameters to the optimal LQG system re-

sponses as defined above, and let {Φ?
x,Φ

?
u} = {ZL(IL⊗HL(x))G?,ZL(IL⊗HL(u))G?}. Letting
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J? be the optimal LQG cost achieved by the resulting optimal controller K? = Φ
?
u(Φ

?
x)

−1, then

Ĵ − J?

J?
≤ 6‖G?‖2ε

(

2
√
L+ ‖TT−L+1(I)‖2 +

L(1 + ‖OL(A)‖2)‖Q1/2‖F ‖TT−L+1(I)‖2
J?

)

Our strategy is to construct a feasible solution to problem (3.9) using the optimal G? defined

in the theorem statement, such that {Φ?
x,Φ

?
u} = {ZL(IL ⊗ HL(x))G?,ZL(IL ⊗ HL(u))G?} for

data {x[0,T−1], u[0,T−1]} generated by system (1.1) with no driving noise. 3 First, we introduce the

following lemma relating Hankel matrices of system (1.1) state trajectories with and without noise.

Lemma 8 Let x[0,T−1] and x̃[0,T−1] be the state signals for system (1.1), driven by noise-free

u[0,T−1] and noisy {u[0,T−1], w[−1,T−2]}, respectively. Then the following holds

HL(x̃) = HL(x) + TL(I)HL(w) +OL(A)W[0,T−L],

where W(t) =
∑t−1

k=0A
t−1−kw(k) are columns of W[0,T−L] =

[
W(0) · · · W(T − L)

]
.4

Proof (Sketch) Let x[t,t−L+1] and x̃[t,t+L−1] be any pair of columns of HL(x) and HL(x̃). Then,

x[t,t+L−1] = OL(A)x(t) + TL(B)u[t,t+L−1]

x̃[t,t+L−1] = OL(A)x̃(t) + TL(B)u[t,t+L−1] + TL(I)w[t,t+L−1]

x̃[t,t+L−1] = OL(A)(x(t) +W(t)) + TL(B)u[t,t+L−1] + TL(I)w[t,t+L−1]

We now use Lemma 8 to construct a feasible solution to the robust optimization problem (3.9)

using the optimal solution G?, which is subsequently used to prove the main result of this section.

Lemma 9 Let x[0,T−1] and x̃[0,T−1] be the state signals for system (1.1), driven by noiseless

u[0,T−1] and noisy {u[0,T−1], w[−1,T−2]}, respectively, and suppose that {u[0,T−1], w[−1,T−2]} are

PE of order n+L. Let G? = blkdiag(G?
0, . . . , G

?
L−1), with G?

0, . . . , G
?
L−1 ∈ Γ(x), be the parame-

ter to the optimal LQG system responses in Theorem 4. Then, if

ε ≤ min

{

1

3
√
L‖G?‖2

,
1

2‖G?‖2 · ‖TT−L+1(I)‖2

}

, (4.1)

the pair {G0 = G?(I +D)−1, γ0 = 2ε‖G?‖2
√
L} is a feasible solution to (3.9) where

D = blkdiag(D0, . . . , DL−1), Dk = W[0,T−L]G
?
k, for 0 ≤ k ≤ L− 1.

Proof (Sketch) These are sufficient for (I +D)−1 to exist, and for each ‖Dk‖2 ≤ 1/2.

Proof [Theorem 7] (Sketch) By (3.9), the approximate system response {Φ̂x, Φ̂u} = {ZL(IL ⊗
HL(x̃))Ĝ,ZL(IL ⊗HL(u))Ĝ} achieves cost Ĵ on the true dynamics, which is bounded as

Ĵ ≤ 1

1− γ̂

∥
∥
∥
∥

[
Q1/2

R1/2

] [
Φ̂x

Φ̂u

]∥
∥
∥
∥
F

≤ 1

1− γ0

∥
∥
∥
∥

[
Q1/2

R1/2

] [
ZL(IL ⊗HL(x̃))
ZL(IL ⊗HL(u))

]

G0

∥
∥
∥
∥
F

(4.2)

3. Such a G? exists by Theorem 4, and we select the minimum norm G
? satisfying the desired relationship. Future work

will seek explicit relationships between the norms of the system responses, data matrices, and G
?.

4. We let W(0) = 0 by convention.
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where the first inequality follows from (3.7), and the second from the optimality of {Φ̂x, Φ̂u γ̂} and

Lemma 9. Set α(T ) = ‖TT−L+1(I)‖2‖G?‖2, then apply Lemma 8 and the relations

G0 = G?(I +D)−1,

[
Φ

?
x

Φ
?
u

]

=

[
ZL(IL ⊗HL(x))
ZL(IL ⊗HL(u))

]

G?,
∥
∥(I +D)−1

∥
∥
2
≤ 1

1− α(T )ε

and ‖TL‖2 ≤ ‖TT−L+1‖2 to yield

J − J?

J?
≤ γ0 + α(T )ε

(1− γ0)(1− α(T )ε)
+

L(1 + ‖OL(A)‖2)
∥
∥Q1/2

∥
∥
F
‖TT−L+1(I)‖2‖G?‖2ε

(1− γ0)(1− α(T )ε)J?

Recall that γ0 = 2ε‖G?‖2
√
L, and by the assumptions we have that α(T )ε ≤ 1/2 and γ0 ≤ 2/3:

γ0 + α(T )ε

(1− γ0)(1− α(T )ε)
≤ 6ε(2‖G?‖2

√
L+ α(T )).

Similarly, the second term is bounded as 6L(1+‖OL(A)‖2)
∥
∥Q1/2

∥
∥
F
‖TT−L+1(I)‖2‖G?‖2ε/J?.

4.1. Sample Complexity

Simple trajectory averaging suffices to reduce noise. Let {x̃(i)[0,T−1], u
(i)
[0,T−1], w

(i)
[−1,T−2]}Ni=1 be a

sample of N trajectories from system (1.1). By linearity, the averages x̄[0,T−1], ū[0,T−1], w̄[−1,T−2]

also form a valid trajectory. Since w̄(t)
iid∼ N (0, σ

2

N In), then by matrix concentration Tropp (2012):

Lemma 10 P [‖HL(w̄)‖2 ≥ t] ≤ 2nT exp(− t2N
2σ2nT

) for all t ≥ 0.

As in Alpago et al. (2020), the control input is not averaged out by setting u
(i)
[0,T−1] ≡ u

(1)
[0,T−1] for all

i such that ū(t) = u(1)(t) for all t. We then obtain an end-to-end sample complexity by combining

Lemma 10 and Theorem 7, and inverting the probability bound of Lemma 10:

Corollary 11 If N ≥ 2σ2nT log(2nT/δ)max{9L‖G?‖22, 4‖G?‖22‖TT−L+1(I)‖22}, then with prob-

ability at least 1− δ, we have that

Ĵ − J?

J?
≤ 6‖G?‖2

√

2σ2nT
N log

(
2nT
δ

) (

2
√
L+ ‖TT−L+1(I)‖2

(

1 + L(1+‖OL(A)‖2)‖Q1/2‖F
J?

))

5. Experiments

We present experiments on the system from Dean et al. (2019)

A =

[
1.01 0.01 0.00
0.01 1.01 0.01
0.00 0.01 1.01

]

, B = I, σ2 = 0.1, Q = 10−3I, R = I,

which corresponds to a slightly unstable graph Laplacian system with input much more penalized

than output. All experiments were done in Julia v1.3.1 using the JuMP v0.21.2 with MOSEK v9.2.9.

We found it effective to use JuMP’s dual optimizer due to the semi-definite programs. 5

Bootstrap Estimation of Noise A vanilla bootstrap Chernick et al. (2011) is used to empirically

estimate confidence on ‖HL(w̄)‖2 for L = 10, T = 45 in terms of the number of trajectory samples:

Fig. 1 shows the estimated 95-th percentile compared to true 95-th percentile over 1000 trials.

5. All code is open source and available at https://github.com/unstable-zeros/data-driven-sls.
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Fig. 1: Bootstrap Estimation of ε:

In red is the 95-th percentile bound

on the bootstrapped estimate of

‖HL(w̄)‖2 over 1000 trials. In

blue are the median, 5-th, and 95-

th percentiles of ‖HL(w̄)‖2 across

an additional 1000 trials.

Controller Performance in MPC Loop: We consider four types

of unconstrained MPC controllers based on the following finite-

horizon LTV feedback gains: K? the optimal LQG controller

synthesized with noise-free data; KB and KT the robust con-

trollers synthesized using the bootstrap value of εB and true

ε = ‖HL(w)‖2 respectively in problem (3.9); and KN the

naive controller is synthesized by dropping the robustness con-

straint in problem (3.9). For the selected values of N , ran-

dom trajectories {x̃(i)[0,T−1], u
(i)
[0,T−1], w

(i)
[−1,T−2]} of length T =

45 are generated and used to form the appropriate Hankel ma-

trices HL(¯̃x),HL(ū),HL(w̄) by averaging trajectories. We set

u(1)(t)
iid∼ N (0, I) and replay u(1) in all trials. Each finite-

horizon controller is then synthesized with the running cost matri-

ces (Q,R) specified above. To remove the effects of the terminal

cost QL on stability and optimality, we set QL = P ?, for P ? the solution to the discrete algebraic

Riccati equation for the infinite horizon LQG problem specified in terms of (A,B,Q,R), thus en-

suring that K? is both stabilizing and equal to the optimal infinite horizon LQG controller. An MPC

loop is then implemented over a horizon of H = 1000 time-steps starting from an initial x(0) = 0

with w(t)
iid∼ N (0, σ2I) noise. For robust controllers, we constrain the Ĝ to be block-diagonal, with

block diagonals Ĝ(i, i) ∈ Γ(x̃) in a restricted setting of Theorem 6.

Fig. 2: (Left) Median and quartiles of MPC controller

performances, with infeasibility assumed to be +∞ in

cost. (Right) Median and quartiles of running state tra-

jectory norm ‖x[0,H−1]‖2, with infeasibility assumed

to be +∞ in norm.

We evaluate 50 trials at each value of

N , with empirically computed costs shown in

Figs. 2. We omit the nominal controllers as they

consistently fail to stabilize the system. While

the robust controllers tend to have worse cost

than the optimal controller (Fig. 2 (Left)), they

achieve better disturbance rejection, as seen by

the smaller norm of the states (Fig. 2 (Right)), at

the expense of larger control effort (not shown).

6. Conclusion & Discussion

We defined and analyzed data-driven SLS pa-

rameterizations of controllers for LTI systems. We show that using noise-free trajectories gives

an exact equivalence between traditional and data-driven SLS. We then consider the setting with

noisy data, and use tools from robust SLS and matrix concentration to characterize and bound the

effect of noise on closed-loop performance. Future work will look to extend these results to the

infinite horizon, distributed & robust MPC, and output-feedback settings.
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