A Variational Auto-Encoder Model for Underwater

Acoustic Channels

Li Wei and Zhaohui Wang
Michigan Technological University
Houghton, Michigan, USA
liwei@mtu.edu,zhaohuiw@mtu.edu

Abstract

An underwater acoustic (UWA) channel model with high
validity and re-usability is widely demanded. In this paper,
we propose a variational auto-encoder (VAE)-based deep
generative model which learns an abstract representation of
the UWA channel impulse responses (CIRs) and can generate
CIR samples with similar features. A customized training
process is proposed to avoid the model collapse and being
trapped in a gradient pit. The proposed deep generative
model is validated using field experimental data sets.
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1 Introduction

There are an increasing number of underwater systems that
have recently emerged for underwater exploration, offshore
resource extraction, aquaculture, environmental monitoring,
oceanographic research, national defense missions, etc. As
various mobile systems have been introduced to these un-
derwater applications, the demands for underwater acoustic
(UWA) communications and networking are growing rapidly.
To deal with the challenging UWA channel conditions, a
rapid growth of novel UWA communication schemes have
drawn much attention in recent years. The study of UWA
channel characteristics plays an important role through the
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design, analysis, and performance evaluation processes of
these novel UWA communication schemes. Therefore, a
UWA channel model with high validity and re-usability is
widely demanded. Such an effective model is expected to
have several layers of complexity that can reflect the deter-
ministic characteristics of acoustic propagation in a certain
geographical environment, as well as the stochastic charac-
teristics caused by large-scale and small-scale uncertainties
[10].

The UWA channel characteristics have been studied with
both modeling and experimentation methodologies for decades
[1]. UWA channels have been represented as mathematical
models or simulation models. The mathematical models de-
scribe the variations of an acoustic waveform when prop-
agating through a UWA channel, which play an important
role in the design and analysis of UWA communication sys-
tems. However, tractable mathematical descriptions of an
UWA communication channel are elusive due to the com-
plexity that how environmental parameters affect the sound
propagation, reflection, refraction, scattering and reverber-
ation. The simulation models can generate UWA channel
realizations based on mathematical models describing the
variation of acoustic waveforms [1], stochastic models de-
scribing the distributions of UWA channel randomness [8],
and/or replays of the measured channel condition in exper-
iments [7]. Most existing simulation systems can simulate
certain aspects of the UWA channel, but few systems have
demonstrated the capability of simulating the UWA channel
which can match the data over a time scale that is appropriate
for UWA communications [14].

On the other hand, performance evaluation of practical
UWA communication systems still heavily relies on extensive
field experiments due the lack of well-categorized channel
types and corresponding stochastic models. Although sev-
eral field experiment test-beds have been developed in past
years, the field experiments are still costly and have limited
opportunity for repeating tests [12]. The re-usability of field
experiment data is limited since field experiments are usually
tailored to a particular communication scheme. Even for the
same communication scheme, data obtained at different ex-
periment sites could be distinctive due to the geographic and
hydro-graphic differences of UWA channels. Thus, a UWA
channel model with high validity and re-usability is widely
demanded due to the limitations of existing mathematical
models, simulation models and field experiments.
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Deep learning has been found a wide range of applica-
tions in wireless communication systems in recent years.
The Deep generative models [2] can learn from a target data
distribution and generates new samples following a similar
distribution, which function in a similar way as that of the
UWA simulation channel models and play-back models, but
no prior knowledge of stochastic characteristics or math-
ematical models is needed. The variational auto-encoders
(VAE) [5] can be promising for modeling UWA channels since
both the deterministic and stochastic characteristics of UWA
channels could be distinctive for different scenarios even for
different cases or at different time in the same water body.
For example, a water body could be covered with ice in the
winter, and the surface reflection of acoustic waveform with
different types of ice cover conditions will significantly affect
the UWA channel characteristics. Depending on the speed
of temporal variations, these affects on the UWA channel
can be considered as changes of the deterministic character-
istics when the ice cover condition varies slowly, or changes
of the stochastic characteristics for fast ice cover condition
variations. Since the VAE will learn from the observations of
the UWA channel, no prior knowledge about the stochastic
characteristics is needed for modeling the UWA channel,
and the UWA channel deterministic characteristics can also
be modeled without an explicit mathematical description of
the ice cover condition. New UWA channel data generated
from this model can be used to evaluate the performance of
a certain UWA communication scheme, as well as to train
deep learning models for other applications which require a
large training data set.

Several researchers have explored utilizing auto-encoder
based models for solving various wireless communication
problems. The encoder and decoder perform signal process-
ing at the transmitter and the receiver, respectively. Tradi-
tional digital signal processing modules, such as error cor-
rection coding, components of the modulation and demod-
ulation, and detection, are implemented as the encoder at
the transmitter and as the decoder at the receiver. The auto-
encoder is trained as parts of a communication system includ-
ing a transmitter, a receiver, and a channel model in between.
Other signal processing modules at the transmitter and re-
ceiver side are also included in the overall input-output of
the auto-encoder, as well as the distortions and noises added
to the signal by the channel. Existing auto-encoder based
communication system design work has been reviewed in
[9] and [15]. However, most existing works suffer from the
curse of dimensionality and can only be evaluated with a sim-
ple additive white Gaussian noise (AWGN) channel model.
Another type of the auto-encoder application for wireless
communication is that using an auto-encoder to compress
the downlink channel state information (CSI) of multiple-
input multiple-output (MIMO) wireless communication sys-
tems to reduce the CSI feedback overhead. An optional chan-
nel model can also be involved in the training process of
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the auto-encoder to enhance the overall robustness of the
compressed MIMO CSI feedback. Related works for this ap-
plication have been summarized in [3]. An auto-encoder
consisting of residual network blocks was employed in [13]
to reduce the dimensionality of CSI representations. Further-
more, an extended neural network structure with learning
rate scheduling scheme was proposed in [6] to enhanced the
MIMO CSI compression performances. Both works demon-
strated practical scales and architectures of deep neural net-
works for representation learning of CSI data, which have
significant referential value for VAE design of CSI generative
models.

In this paper, we propose a deep generative model for the
UWA CIR based on VAE. Field experimental data sets are
employed to train the proposed generative model. Existing
auto-encoder models for the CIR, namely CsiNet [13] and
CRNet [6], are evaluated and modified to VAE. The train-
ing process of such models are customized to prevent the
VAE model collapses and ensure that a practical generative
process could be performed.

2 A generative model for UWA channels

The UWA channel can be modeled as a channel impulse
response (CIR) h. Given the transmitted signal x, the channel
output can be formulated as a convolution between the CIR
and the input,

y=hxx+n (1)

with n being the channel noise. The CIR h can be considered
as following a stochastic distribution conditioning on the
environmental parameters of the water body and channel
dynamics. The proposed generative model is to learn from
a set of the h observations, then generate new CIR samples
following a similar distribution.

2.1 VAE as generative models

An auto-encoder model consists of an encoder and an de-
coder. The encoder converts a data sample to an abstract
representation in a latent hyperspace, while the decoder can
convert a sample in the latent space back to a data sample
in the original form. With constraints on the latent space,
the abstract representations of the original data sample can
have different number of dimensions and disentangled cor-
relations among latent dimensions. Instead of converting
the original data into a point in the latent hyperspace, the
encoder of a VAE converts a original data sample into a set
of parameters describing a stochastic distribution in the la-
tent space, and a reparameterization module is introduced
between the encoder and the decoder which draws a sam-
ple from the distribution determined by the encoded set of
parameters each time when decoding.

The loss function of a VAE consists of the reconstruction
error and several regularization terms. The reconstruction
error is introduced to minimize the difference between the
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Figure 1. Overview of the deep generative model for underwater acoustic channel impulse responses (CIRs)

decoded output and the the input. The regularization terms
reduce the correlation of latent dimensions and also con-
strain the distributions of encoded representations to be
similar to given prior distributions. By sampling from the
prior distributions in the latent space, new data samples shar-
ing similar deterministic and stochastic characteristics of the
original data can be generated with the trained decoder of
the VAE.

2.2 The VAE model for UWA CIRs

An overview of the deep generative model is shown in Fig. 1.
The input h, taking from a field experiment, is originally
a vector consisting of L complex values, and its real and
imaginary parts are first reshaped to a (2, VL, VL) real value
tensor. The encoder converts h to two parameter vectors
p and o. The latent representation z is obtained from the
reparameterization process based on the parameter vectors p
and 0. The decoder takes samples of the latent representation
z as input and finally outputs the CIR reconstruction h’.

The loss function of the VAE consists of the reconstruc-
tion error and a standard VAE regularization term. The mean
squared error (MSE) of the reconstruction and the the origi-
nal input is employed as the reconstruction error.

M
. .1
min £ = MSE(hK) + 2 > (1 +log(o?) — 42 - aj.) @)

Jj=1

where M is the dimensionality of latent representation z in
latent hyperspace, and z = y+0-€, where vectore ~ N(0,1) is
drawn from a multivariate normal distribution of dimension
M with an identity covariance matrix, and - denotes element-
wise product.

Multiple network architectures are available to construct
the encoder and the decoder. The CsiNet[13] and CRNet[6]
were both validated workable auto-encoder architectures
but without the reparameterization module. Other typical
network architectures such as DenseNet[4] or classic simple
CNNs can also be employed to construct the deep neural
network. The neural network with insufficient depth and
width will result in inaccurate similar reconstruction which
is more similar to an average of all data samples rather than

distinguishing reconstructions of each different data samples.
However, neural networks with too many parameters suffer
from the curse of dimensionality. Here as an demonstration,
we employ the neural network architecture of CsiNet[13]
and introduce the reparameterization module of the VAE.
The encoder consists of 2 CNN layers and a linear layer. For
a CIR of length L = 256, this leads to a total dimensionality
of 16 in the latent space. The decoder consists of a linear
layer that increases the dimensionality and then 2 RefineNet
blocks proposed in [13]. There are 28,472 parameters in total
to be trained.

2.3 Training process of the VAE for UWA CIRs

Considering the very large dimensionality of h, if the pro-
posed model is trained following the classic VAE training
process, the model will easily collapse and its parameters
will be trapped in a gradient pit. A typical phenomenon is
that no matter whatever inputs to the encoder, its output p
and o are the same and very close to zero vectors. Another
typical phenomenon is that all the reconstructions output
from the decoder are the same no matter whatever the value
of z is.

To obtain a practical VAE for generating CIR samples, the
training process can be divided into 3 stages. First, train
the parameters as a basic auto-encoder: remove the regular-
ization terms from the loss function and use only the MSE
of reconstruction value for gradient back propagation. The
reparameterization process should also be disabled and let
z = p during this stage. Reasonable reconstruction that is
similar to the input can be obtained during this stage. Second,
when the reconstruction error is small enough, introduce the
regularization terms into the loss function but still disable
the reparameterization process. A threshold can be set up,
the training can be switched between Stage 1 and 2 based
on whether the reconstruction error is below the threshold.
During this stage, the g and o will gradually move towards
a zero vector 0 and I, respectively. Finally, when o is stabi-
lized and close to vectors with very small amplitudes and
the reconstruction error is bouncing around the threshold,
the reparameterization process can be enabled, but the reg-
ularization terms in the loss function can be disabled. The
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second and the third stage can only take a few epochs as
long as the p’s of most training data set distribute closely
to a multivariate standard normal distribution, while the
reconstruction h’ is similar to the input and distinguishable
from each other.

The model collapse could also happen with such train-
ing configuration. Thus, saving checkpoints of the model
parameters with the current best loss value and resuming
the model parameters to a checkpoint are both necessary.

3 Experiments and Result Analysis

The proposed model are evaluated with field experiment data
sets KWAUG14[11], which was obtained in an experiment
conducted in the Keweenaw Waterway. The water depth
was around 3-5m. The acoustic modems were at 1.5m depth
and the transmission distance was 313m. The CIR length is
L = 256. The batch size is set to 50, and there are 774 batches
of training data, 86 batches of validation data. The histogram
of CIR amplitudes in KWAUG14 is showing in Figure 2.
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Figure 2. Histograms of the KWAUG14 CIR amplitude

The CsiNet’s architecture is employed as the encoder and
decoder. The learning rate is set to 0.002 and Adam optimizer
is employed for training. Figure 3 shows the loss value at each
epoch for the training process. The Stage 2 begins around
Epoch 1600, and the Stage 3 begins around Epoch 1800.
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Figure 3. Loss value during training
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3.1 Reconstruction of CIR samples

Figure 4 shows 3 samples of the KWAUG14 CIR amplitude
and their corresponding reconstructions with the trained
VAE. The reconstruction is obtained with the reparameteri-
zation process disabled. The results shows that significant
values of CIR are successfully captured in the reconstruction.
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Figure 4. Samples of the KWAUG14 CIR and corresponding
reconstructions

The histogram of all reconstructions is shown in Figure 5
(right). The significant values of CIRs locate in the similar
area as in Figure 2.

3.2 Distribution of the latent representations

The histogram of the encoded output g is shown in Figure
5 (left). Although the latent representations do not strictly
follow the normal distribution in all latent dimensions, most
latent dimensions are centered around 0 and have similar
variances.
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Figure 5. Histograms of latent representations and recon-
structions
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3.3 Generated CIR samples and distribution

The mean and variance of the latent representation in each
dimension in Figure 5 (left) are calculated. To generate new
CIR samples, we first draw in each dimension 10,000 random
numbers following a normal distribution that has the same
mean and variance as shown in Figure 5 (left). The distribu-
tion of (10000, 16) random numbers is shown in Figure 6 (left).
Then, these random numbers are processed by the trained
decoder and new CIRs can be obtained. The histogram of gen-
erated CIRs are showing in Figure 6 (right). The histogram
is similar to that of the reconstruction histogram in Figure 5
(right).
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Figure 6. Histograms of generated latent representations

and corresponding CIRs

Figure 7 shows 4 generated CIR samples. They share the
similar features as those shown in Figure 4.
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Figure 7. Samples of generated CIRs

4 Conclusions

In this paper, we explored utilizing VAE to learn a generative
model for the UWA CIR. Due to the dimensionality of the
CIR data set, the classic training process of VAE is not prac-
tical. A modified training process is proposed. Results show
that the reconstructions and generated data have satisfying
performance.
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