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Abstract: Cervical disc implants are conventional surgical treatments for patients with degenerative
disc disease, such as cervical myelopathy and radiculopathy. However, the surgeon still must
determine the candidacy of cervical disc implants mainly from the findings of diagnostic imaging
studies, which can sometimes lead to complications and implant failure. To help address these
problems, a new approach was developed to enable surgeons to preview the post-operative effects of
an artificial disc implant in a patient-specific fashion prior to surgery. To that end, a robotic replica of
a person’s spine was 3D printed, modified to include an artificial disc implant, and outfitted with
a soft magnetic sensor array. The aims of this study are threefold: first, to evaluate the potential
of a soft magnetic sensor array to detect the location and amplitude of applied loads; second, to
use the soft magnetic sensor array in a 3D printed human spine replica to distinguish between five
different robotically actuated postures; and third, to compare the efficacy of four different machine
learning algorithms to classify the loads, amplitudes, and postures obtained from the first and second
aims. Benchtop experiments showed that the soft magnetic sensor array was capable of precisely
detecting the location and amplitude of forces, which were successfully classified by four different
machine learning algorithms that were compared for their capabilities: Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Random Forest (RF), and Artificial Neural Network (ANN).
In particular, the RF and ANN algorithms were able to classify locations of loads applied 3.25 mm
apart with 98.39% ± 1.50% and 98.05% ± 1.56% accuracies, respectively. Furthermore, the ANN had
an accuracy of 94.46% ± 2.84% to classify the location that a 10 g load was applied. The artificial
disc-implanted spine replica was subjected to flexion and extension by a robotic arm. Five different
postures of the spine were successfully classified with 100% ± 0.0% accuracy with the ANN using
the soft magnetic sensor array. All results indicated that the magnetic sensor array has promising
potential to generate data prior to invasive surgeries that could be utilized to preoperatively assess the
suitability of a particular intervention for specific patients and to potentially assist the postoperative
care of people with cervical disc implants.

Keywords: soft magnet; sensor array; machine learning; 3D printing; cervical spine; artificial disc

1. Introduction

Cervical spine degenerative disc disease can result in spinal cord injury and nerve root
compression, leading to painful symptoms such as myelopathy and radiculopathy [1]. A
cervical artificial disc implant is a conventional surgical treatment for these patients; how-
ever, the mechanical failure of these devices remains a significant complication, especially
in patients with multilevel pathology [2,3]. Static disc pressure has been measured using a
very small needle-type pressure sensor, but there are few methods to measure intervertebral
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pressure distribution [4,5]. As a result, the surgeon is forced to determine candidacy for
cervical disc implants primarily on the findings of diagnostic imaging studies.

As an alternative, the use of wearable sensors in the acquisition of spinal motion
parameters has shown promise throughout the literature [6,7]. Their quick and effortless
integration makes them a promising technology that may become a supplement to high-
cost imaging systems [8–10]. Accurate representation of the geometry and kinematics of a
patient’s spine is the beginning of realistic phantoms and models [11,12]. Measurements of
intradiscal pressure could be gained as well in the testing of the physical models. Literature
reports several methodologies for creating sensor arrays, which can measure the pressure at
several points across a surface [13,14]. However, flexible sensing technologies are required
to integrate them into a spine model without inhibiting mobility.

Flexible magnetoelectronics have attracted many researchers in the past few years
with different types of soft, compliant magnets [15]. A flexible magnetic sensor array is
a new method to realize soft and stretchable magnets by mixing silicone with magnetic
powder [16]. These sensors are low-cost, highly sensitive, and easily integrated into robotic
systems as the soft medium can be manipulated in many shapes and sizes [16,17]. Recently,
Hall effect sensors have been used in conjunction with a wearable magnetic skin for contact
location and force measurement [15–17].

The overall goal of this paper was to develop a new approach to enable surgeons to
preview the post-operative effects of an artificial disc implant in a patient-specific fashion
prior to surgery (Figure 1).
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Figure 1. (a) Patient-specific robotic spine model based on a CT scan of the spine. (b) A modi-
fied artificial disc was ‘implanted’ into the C4 cervical spine replica. The soft magnet, Hall effect
sensor array board, permanent magnet, and Ecoflex were embedded in the C5 vertebra replica. A
robotic arm flexed and extended the cervical spine replica while the intervertebral loads were moni-
tored with the soft magnetic sensor array to classify the spine posture with four different machine
learning algorithms.

2. Materials and Methods

The soft magnet was fabricated and placed atop a 3 × 3 array of Hall effect sensors. The
soft sensing magnet comprised magnetic ferrofluid (Apex) mixed with a soft, stretchable
elastomer (Figure 2(ai)). Deformation of the soft magnet by external loads displaced the
magnetic particles within the soft magnet, and the resulting changes in the magnetic field
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were detected by the Hall effect sensor array (Figure 2(aii,aiii)). Four machine learning
algorithms were compared to classify the amplitude and the locations that external loads
were applied based on the sensor values reported by the nine Hall effect sensors on the
3 × 3 grid during robotic probing experiments (Figure 2b). The soft magnetic sensor array
was next integrated into the artificial disc-implanted robotic replica of the human spine
(Figure 1a) that was flexed and extended by a robotic arm (Figure 1b). Four different
machine learning algorithms were next compared for their capabilities to classify five
different postures of the human spine robotic replica.
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Figure 2. Robotically probing soft magnet to classify location and amplitude of external loads.
(ai) The stretchable soft magnet. (aii) The Hall effect sensor array PCB with dimensional units of mm.
(aiii) Each individual Hall effect sensor taxel position was numbered and physical dimensions were
labeled with units of mm. (b) The UR5 applied loads to the soft magnet that was placed atop the
3 × 3 Hall effect sensor array within the 3D-printed housing. These nine Hall effect sensor signals
were recorded in Simulink and classified with four machine learning algorithms in MATLAB.

2.1. Soft Magnet Fabrication

The soft magnet was realized by mixing Ecoflex 00-50 (Smooth-On) and ferrofluid
magnetic liquid. Two variations of the soft magnetic sensor array were developed and
compared by altering the ratios of Ecoflex and ferrofluid with the following weight ratios
(Ecoflex part A–Ecoflex part B–ferrofluid): 1:1:0.2 (10% ferrofluid), 1:1:0.3 (15% ferrofluid).
These ratios were mixed, degassed, poured into square 3D printed molds, covered with the
mold cap, and allowed to cure for at least 12 h.

2.2. Robotically Probing Soft Magnets to Classify Location and Amplitude

The soft magnet, Hall effect sensor array, and permanent magnet were assembled
within a 3D printed sensor housing (Figure 2a) and screwed securely to the end of a 2 kg
load cell (LSP-2, Transducer Techniques, Temecula, CA, USA) that was clamped onto a
desktop (Figure 2b). A 10 mm × 10 mm square permanent magnet was located 3 mm
below the Hall effect sensor array PCB to strengthen the impact of displacing the magnetic
particles within the soft magnet near the Hall effect sensors. The Hall effect sensor array
PCB was designed in Eagle and fabricated by OSH Park (Lake Oswego, OR, USA). Nine
Hall effect sensors (DRV5055A1QDBZR with the A1 model corresponding to the sensitivity
option of 100 mV/mT and a sensing range of ±21 mT; Texas Instruments, Dallas, TX,
USA) were next soldered to the PCB (Figure 2(aii)). The Hall effect sensor array and the
load cell were interfaced with a computer via a 16-bit PCIe-6323 data acquisition (DAQ)
card (National Instruments, Austin, TX, USA). Data were sampled with a ±10 V range
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producing a resolution of 305 µV. To amplify the response of the load cell, an INA131 (Texas
Instruments) instrumentation amplifier was used.

A UR5 robotic arm (Universal Robots, Odense, Denmark) was bolted onto a metal
table adjacent to the soft magnetic sensor array. A probe was 3D printed using Ultimaker 3
(Ultimaker, Zaltbommel, the Netherlands) and bolted to the end effector of the UR5 arm
(Figure 2b). The probe had a flat tip with a 4 mm2 surface area. Simulink (The MathWorks,
Natick, MA, USA) was used as the data collection software for both the load cell and the
Hall effect sensor array. Data were low pass filtered and sampled at 1 kHz.

The UR5 was programmed using Universal Robot’s proprietary user interface, PolyScope.
This interface allowed programming the robot through manual control of the robotic arm
to set waypoints, directing its movement through a sequence of target positions and loads,
as measured by the load cell. The robot was programmed to probe the sensor in 9 different
locations in a 3 × 3 grid; each probe location was directly above a different Hall effect
sensor (Figure 2(aiii)). Thirty repetitions at each of the nine taxels (tactile pixel) were
done with six different loads: 5 g, 10 g, 20 g, 50 g, 75 g, and 100 g. This procedure was
replicated for both soft magnets that were comprised of 10% or 15% ferrofluid. This
produced 3240 datasets (9 locations × 30 repetitions × 6 loads × 2 soft magnets) that were
used to train four different machine learning algorithms which were compared for load
amplitude and location detection accuracy with each soft magnet. The correlation between
load and Hall effect sensor readings was also plotted with a linear fit model at each taxel
location in MATLAB. From this, the sensitivity in mV/g was reported along with the R2

values to quantify the goodness of fit of the linear models.
To evaluate the measurement uncertainty of the soft magnetic sensors, we followed

the guidelines from the National Institute of Standards and Technology (NIST) [18]. In our
application, the main sources of measurement uncertainty in the force sensing application
were caused by deviations of the measured force from the value predicted by the linear
models for the external LSP-2 load cell (ULoad Cell) and also each taxel on the soft magnetic
sensor array (UTaxel,i). To calculate the uncertainty (U) for both of these sources, we used
the same procedure outlined by NIST based on the difference between the measured values
and the values predicted by the models fit to the data:

U2 =
∑n

j=1 d2
j

(n − m)
(1)

where dj is the difference between the measured response and the calculated response
using the linear models fit to the data, n is the number of measurement repetitions and m is
the order of the polynomial modeling the data plus one (m = 2). We fit linear models to data
from the load cell and each taxel on the sensor array for both soft magnets. The number of
repetitions for each of the nine taxels and the load cell was n = 30. We next calculated the
overall measurement uncertainty for each taxel i of the sensor array:

Ui
2 = UTaxel,i

2 + ULoad Cell
2 (2)

UTaxel,i is the measurement uncertainty of each taxel i on the sensor array and ULoad Cell
is the uncertainty of the load cell, both of which were calculated using (1). Ui is the
overall measurement uncertainty for each taxel i (Figure 2(aiii)), including the load cell
measurement uncertainty.

2.3. Robotic Replica of Human Spine to Preview Artificial Disc Implantation

The CT scan of a person’s cervical spine was imported into Solidworks™ (Waltham,
MA, USA) to produce a CAD model (C4–C5 cervical spine, Figure 1a) using Mimics/3-
matic [19,20] and Hypermesh [21–23]. The C4 vertebra model was virtually “implanted”
with an artificial disc (modified from the ProDisc-C [24]) to preview the effects of the
intervention prior to surgery (Figure 1b). The C4 vertebra model was also altered to
allow a mechanical connection to the UR5 robotic arm end effector. This concept has a
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powerful potential to enable surgeons to preview and compare the effects of different
surgical interventions in a patient-specific manner using robotically actuated spine replica.
Similarly, the C5 vertebra was modified to house the soft magnet, Hall effect sensor array
board, and permanent magnet. The C5 vertebra replica was also designed so that it could
be bolted to an LSP-35 load cell (Transducer Techniques, Temecula, CA, USA) for load
monitoring (Figure 1b). The C4 and C5 vertebrae were subsequently 3D printed with
Ultimaker 3.

The artificial disc ‘implanted’ C4 replica was bolted to the UR5 arm, which was
programmed to flex and extend the C4 vertebra relative to the C5 vertebra (30 times for
each soft magnet). The soft magnetic sensor array was used to classify five different
postures of the spine replica: center, mid-flexion, flexion, mid-extension, extension.

2.4. Machine Learning Classification Approach

Extracting features from time-domain data is helpful to train a machine learning
classifier to recognize the patterns hidden within the data. In some cases, frequency
features are extracted to help classify patterns within the data [25]. Another way to produce
features is through statistical information to represent the data. In this paper, 15 statistical
features were extracted from each dataset (Table 1). After extracting the statistical features
from the time domain data, the feature matrices were used to train and compare four
distinct machine learning algorithms: Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Random Forest (RF), and Artificial Neural Network (ANN).

Table 1. Statistical Features Extracted for Training Machine Learning Algorithms.

Statistical Features for Algorithm Training

1 Mean

2 Maximum Element of a Vector

3 Minimum Element of a Vector

4 Sum of Vector Elements

5 Standard Deviation

6 Range of Values

7 Median Value

8 Root Mean Square

9 Kurtosis

10 Skewness

11 Peak Magnitude to RMS ratio

12 Most Frequent Values in an Array

13 Variance

14 Interquartile Range

15 Mean Absolute Deviation

The SVM algorithm creates a separating hyperplane in the feature space between all
the classes [26]. The SVM algorithm uses the extracted features for the training portion
to generate the hyperplane. The maximum separation margin between the classes is
calculated and the hyperplane is constructed in the middle of the margin. The KNN
algorithm calculates the shortest distance between a query and classifies the new samples
based on the majority vote of its neighbors. The classes are assigned based on the most
common vote amongst its K nearest neighbor measured by the shortest distance. The
points in the extracted features select the specified K number closest to the query to vote
for the most repeated class number [27]. The RF algorithm contains a collection of tree
predictors such that each tree is initialized with random values independently from each
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other with the same distribution of all trees in the forest [28]. As the number of trees
in the forest increase, the generalization error approaches the minimum limit to ensure
the best performance in classification and prediction. The RF is a very effective machine
learning tool since it contains multiple trees—each tree is an independent classifier, and
its classification accuracy is independent of other trees in the forest. The RF algorithm
used in this study was designed with 500 trees to perform the classification assignment. In
general, a forest with more trees produces more robust predictions which lead to higher
classification accuracy. The neural network toolbox in MATLAB (nprtool) was used to
generate a feedforward network to train and test the ANN [29]. A three-layer feedforward
network with 100 hidden neurons with a sigmoid activation function for the hidden layer
and output neurons with a softmax activation function for the output layer was used
to classify the collected data. The extracted statistical features were fed into the ANN
through the input layer which consists of the input neurons. The neurons in the output
layer represent the output classes. The performance of the network was evaluated using
cross-entropy and confusion matrices, and the network was trained with scaled conjugate
gradient backpropagation.

In the robotic probing experiments, the collected data were used to train and test the
machine learning classifiers in two different configurations. In the first configuration, the
machine learning classifiers were used to distinguish between 10 different classes (9 taxel
locations and no-touch), and in the second configuration, the machine learning classifiers
were used to distinguish between 6 different loads (5 g, 10 g, 20 g, 50 g, 75 g, 100 g). To
evaluate the sensor for the artificial disc-implanted spine replica application (Figure 1b),
five output classes were defined for each classifier corresponding to five different postures
of the spine that were robotically actuated: center, mid-flexion, flexion, mid-extension,
and extension.

To train and test the ANN, the feature extracted dataset was separated into 3 groups:
70% training dataset, 15% validation dataset, and 15% testing dataset. The ANN was
trained, and the network parameters were modified according to the error generated with
the training dataset. The validation dataset was used to measure network generalization
error and to stop training when the generalization error stopped improving, while the
testing dataset was used to provide an independent evaluation of network performance
after the training, and it is independent of the validation dataset. The training process
automatically stopped when generalization error stopped improving, as indicated by an
increase in the cross-entropy error of the validation dataset. For the SVM, KNN, and
RF machine learning algorithms, the extracted features were subdivided randomly into
two categories, the training data which included 80% of the feature data, and the testing
data which included the remaining 20% of the extracted feature dataset. Overfitting can
cause the generalized performance of any classification model to decrease significantly.
To avoid overfitting problems, feature data were swapped randomly before training and
testing the classifier models. To avoid any biases, each classifier model was run 10 times
with randomized selection of the 80% training features and 20% testing features and the
average and standard deviation of the classification accuracy was reported for each of the
four algorithms.

2.5. Statistical Analysis

Two different three-factor analysis of variance (ANOVA) tests were performed to
assess the statistical significance of the results from the two different configurations of
machine learning algorithms used with the robotic probing experiments. In each case, the
dependent variable was the classification accuracy of the machine learning algorithms. The
independent variables for the first configuration were the taxel location where loads were
applied (9 taxels), the soft magnet composition (10% or 15% ferrofluid), and the machine
learning algorithm (ANN, KNN, SVM, or RF). The independent variables for the second
configuration were the load amplitude (6 loads), the soft magnetic skin composition (10%
or 15% ferrofluid), and the machine learning algorithm (ANN, KNN, SVM or RF).
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A two-factor ANOVA was performed on the robotically actuated spine replica ex-
periments. The independent variables were the soft magnet composition (10% or 15%
ferrofluid) and the four different machine learning algorithms. The dependent variable
was the accuracy to classify the five different postures of the spine. A p-value < 0.01 was
used in all cases for statistical significance.

3. Results

Sample time-domain data from the soft magnetic sensor array with the 10% ferrofluid
composition showed the taxels’ responses as a 75 g load was applied repeatedly in nine
different locations (Figure 3a). Spatially organized responses of each taxel showed similar
trends of signals responding to different probing locations with the 100 g load (Figure 3(bii)).
Corresponding time response data with a 75 g load (Figure 4a) and spatially organized
responses with the 100 g load (Figure 4(bii)) show similar trends with the 15% ferrofluid soft
magnet composition. The correlation between load and voltage measured by each of the
nine Hall effect sensors for both soft magnets is reported in Figure 3(bi) and Figure 4(bi). A
linear model was fit to these data. Averaged across all nine taxels, the R2 value of the linear
fit for the 10% ferrofluid soft magnet was 0.88 ± 0.03 and the R2 value for the 15% ferrofluid
soft magnet was 0.90 ± 0.04 (Table 2). Averaged across all nine taxels, the sensitivity for the
10% ferrofluid soft magnet was 0.09 mV/g ± 0.02 mV/g (Figure 3(bi), Table 2). The mean
sensitivity of the 15% ferrofluid soft magnet was 0.14 mV/g ± 0.03 mV/g (Figure 4(bi),
Table 2). The measurement uncertainties for the 9 taxels that were calculated according to (2)
ranged between 3.23 g and 6.24 g for the 15% ferrofluid Soft Magnet (Table 3). Uncertainties
for the 10% ferrofluid soft magnet followed similar trends with moderately higher levels of
measurement uncertainty.

Table 2. Linear fit model parameters for both soft magnets. The linear model polynomials have a
form: Hall effect sensor (mV) = P1* (Load (g)) + P2.

Soft Magnet 1 (10% Ferrofluid) Soft Magnet 2 (15% Ferrofluid)

Taxel P1 (mV/g) P2 (mV) R2 P1 (mV/g) P2 (mV) R2

1 0.09 0.15 0.85 0.15 0.02 0.91

2 0.11 −0.92 0.91 0.17 0.31 0.92

3 0.07 0.18 0.87 0.12 −0.16 0.87

4 0.11 −1.45 0.92 0.18 0.86 0.94

5 0.11 −1.36 0.89 0.15 −3.12 0.91

6 0.07 −1.83 0.87 0.13 0.24 0.91

7 0.09 −1.66 0.90 0.11 −0.86 0.88

8 0.08 −1.03 0.86 0.16 0.02 0.93

9 0.05 −0.74 0.81 0.08 −0.18 0.83

Mean 0.09 −0.96 0.88 0.14 −0.32 0.90

Standard
Deviation 0.02 0.73 0.03 0.03 1.15 0.04
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Figure 3. Classification accuracy of 10% ferrofluid soft magnetic sensor array. (a) Illustrative responses
and load cell data at the nine taxel locations with a 75 g load. (bi) Load changes with Hall effect
signals at each taxel, (bii) Individual taxel responses under 100 g load. (ci) Hall effect sensor taxel
position. (cii) Classification accuracies to detect the different locations a load was applied with each
of the six different loads (n = 30 repetitions/load). (ciii) Taxel responses under 20 g load applied at
taxel 1. (civ) All taxel responses under different loads (50 g, 75 g, 100 g) applied at taxel 1.
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Figure 4. Classification accuracy of 15% ferrofluid Hall effect sensor array. (a) Illustrative responses
and load data at the nine taxel locations. (bi) Load changes with Hall effect signals at each taxel,
(bii) Individual taxel responses under 100 g load. (ci) Taxel location color code indicating illustrative
data is from taxel 1. (cii) Classification accuracies to detect the different locations a load was applied
with each of the six different loads (n = 30 repetitions/load). (ciii) Taxel 1 response to the 10 g load
applied at taxel 1. (civ) All taxel responses from a 20 g load applied at taxel 1. (cv) All taxel responses
under different loads (50 g, 75 g, 100 g) applied at taxel 1.
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Table 3. Sensor uncertainties (2) for each taxel i from both soft magnets.

Soft Magnet 1 (10% Ferrofluid) Soft Magnet 2 (15% Ferrofluid)

Taxel Measurement Uncertainty (g) Measurement Uncertainty (g)

1 6.14 5.21

2 5.21 3.81

3 8.16 5.55

4 6.87 6.24

5 4.88 4.84

6 7.15 3.23

7 7.82 4.39

8 6.35 3.34

9 11.49 5.71

3.1. Classifying Locations of Applied Loads

At each location, the applied load triggered distinct patterns of taxel responses that
were classified by the four different machine learning algorithms to distinguish between
the probing locations for given loads. These algorithms showed high classification ac-
curacies with both the 10% ferrofluid (Figure 3(cii)) and 15% ferrofluid soft magnets
(Figure 4(cii)). In particular, the RF and ANN accuracies were respectively 98.39% ± 1.50%
and 98.05% ± 1.56% with the 15% ferrofluid soft magnet (Figure 4(cii)).

Three-factor ANOVA showed that the classification accuracies were significantly
impacted by the four different algorithms (p < 0.01), the two soft magnets (p < 0.01), and
the nine different taxel locations (p < 0.01). The interaction between the classification
algorithms and the load amplitudes was significant (p < 0.01). One illustration of this
interaction can be seen with the higher accuracy of the RF compared to the ANN at the
5 g load whereas the ANN had a higher accuracy than the RF with the 10 g load. The
interaction between the classification algorithms and the two different soft magnets was
also significant (p < 0.01). This interaction can be seen, for example, with the accuracy of
the KNN with 10% ferrofluid soft magnet (Figure 3(cii)) being significantly lower than the
RF with 15% ferrofluid soft magnet (Figure 4(cii)). The load amplitudes and the ferrofluid
percentage of the soft magnets also significantly interacted (p < 0.01). This interaction can
be seen, in one illustrative case, as the accuracies for the 5 g loads with the 10% ferrofluid
soft magnet (Figure 3(cii)) were significantly lower than the classification accuracies with
the 10 g load and the 15% ferrofluid soft magnet (Figure 4(cii)). The three-factor interaction
is significantly different (p < 0.01) because of the many cases where the classification
accuracies were significantly different, for example, the SVM with 5 g load and the 10%
ferrofluid soft magnet compared to the RF with the 10 g and 15% ferrofluid soft magnet.

3.2. Distinguishing between Different Loads at Each Taxel Location

The machine learning algorithms were able to distinguish between all the loads
applied to each location with high classification accuracy for loads ≥ 20 g with the 10%
ferrofluid soft magnet (Figure S1a) and loads ≥ 10 g with the 15% ferrofluid soft magnet
(Figure S1b, Table S1). Generally, the classification accuracies were higher when the sensor
was manufactured with 15% ferrofluid than when the sensor was manufactured with 10%
ferrofluid. The highest accuracies were 98.39% ± 0.93% with the RF and 98.04% ± 1.37%
with the ANN when the sensor was manufactured with 15% ferrofluid, while the highest
accuracy was 96.18% ± 1.41% for the ANN when the sensor was manufactured with 10%
ferrofluid (Table S1).

When detecting different loads at a given taxel, the three-factor ANOVA indicated
that the classification accuracies were significantly impacted by the taxel locations, soft
magnets (10% ferrofluid, and 15% ferrofluid), and different algorithms (p < 0.01). The inter-
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actions between the machine learning algorithms and the taxel locations were significant
(p < 0.01). One case illustrating this interaction is that the RF accuracy was significantly
lower than the ANN accuracy at taxel 4 while the RF accuracy was significantly higher
than the ANN accuracy at taxel 7 with the 10% ferrofluid soft magnet (Figure S1a). The
interaction between locations and different ferrofluid percentage is significant (p < 0.01)
due to the different cases like taxel 5 with 10% ferrofluid (Figure S1a) in comparison to
taxel 4 with 15% ferrofluid (Figure S1b). The interaction between the four machine learning
algorithms with the two different soft magnets was significant also (p < 0.01) due to the
mean response for KNN in 10% ferrofluid being significantly different than RF in 15%
ferrofluid, for example (Table S1). The three-factor interaction among load amplitude,
soft magnet, and classification algorithm were also significant (p < 0.01) because of the
significantly different cases such as the RF with 5 g load and the 10% ferrofluid soft magnet
compared to the ANN with the 10 g and 15% ferrofluid soft magnet.

3.3. Intervertebral Monitoring of Human Spine Robotic Replica for Posture Classification

Five spine postures (center, mid-flexion, flexion, mid-extension, and extension) were
classified by the four machine learning algorithms with both the 10% and 15% ferrofluid
soft magnetic sensor arrays. When the UR5 arm robotically flexed and extended the human
spine robotic replica with the artificial disc implant (Figure 5a), the sensor signals increased
or decreased significantly with both the 10% ferrofluid (Figure 5b) and 15% ferrofluid soft
magnetic sensor arrays (Figure 5c). The ANN performed the best with the 10% ferrofluid
soft magnetic sensor array with a 100% ± 0.0% success rate (Table 4), while both KNN and
ANN performed exceptionally with the 15% magnetic sensor array with 99.66% ± 1.05%
and 99.14% ± 1.81% accuracies, respectively (Table 4).
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Figure 5. Human spine robotic replica posture measurement via intervertebral monitoring. (a) Five
robotically actuated postures of the artificial disc-implanted spine replica were classified by four
machine learning algorithms during flexion and extension motions. (b) Taxel responses measured
with the 10% ferrofluid soft magnet. (c) Taxel responses measured with the 15% ferrofluid soft magnet.
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Table 4. Machine learning algorithm accuracies to detect the five different postures of the spine
replica with the 10% ferrofluid and 15% ferrofluid soft magnets.

Classification Algorithms Accuracy
(10% Ferrofluid)

Accuracy
(15% Ferrofluid)

K-Nearest Neighbors (KNN) 94.00% ± 3.78% 99.66% ± 1.05%

Support Vector Machine (SVM) 97.33% ± 3.06% 99.00% ± 1.60%

Random Forest (RF) 99.33% ± 1.40% 98.33% ± 1.75%

Artificial Neural Network (ANN) 100.00% ± 0.00% 99.14% ± 1.81%

Two-factor ANOVA indicated that classification accuracies were significantly impacted
(p < 0.01) by both the machine learning algorithms and the soft magnets. The interac-
tion between the classification algorithms and the two soft magnets was also significant
(p < 0.01). One example of this interaction can be seen from the mean response of the KNN,
which was lower than the RF with the 10% ferrofluid soft magnet (Table 4), whereas the
KNN was more accurate than the RF with the 15% ferrofluid soft magnet (Table 4).

4. Discussion

A new soft magnetic sensor array system was successfully fabricated to achieve
intervertebral load monitoring of robotically actuated human spine replica, promising the
potential to preview artificial disc implant suitability in a patient-specific fashion. Results
showed that the soft magnetic sensor array system has the high capability to classify five
different postures of the spine, which can be a predictor of different problems of the spine
that people experience [30]. In comparing the two soft magnets on the algorithms’ abilities
to detect different loads and locations, the soft magnet with 15% ferrofluid generally
produced higher classification accuracy in detecting the different loads applied to each
taxel (Table S1, Figure S1). As the load amplitudes increased, the soft magnets yielded
very comparable classification accuracies; however, the main difference between the soft
magnets was with the low amplitude loads. The location where the 10 g load was applied
was classified with high accuracy using the ANN and RF algorithms with the 15% ferrofluid
soft magnet (Figure 4(cii,ciii)), which was much more accurate in comparison to the 10%
ferrofluid soft magnet data (Figure 3(cii)). From these findings, it is hypothesized that the
sensitivity of the system could be improved by further optimizing the ratio of magnetic
particles within the elastic material, which must be counterbalanced against the impact that
would have upon the mechanical properties of the soft magnet sensor array. Comparing
the algorithms, the ANN had classification accuracy >99% with both soft magnets during
the flexion-extension experiments with the spine replica (Figure 5). However, there were
several cases where the RF slightly outperformed the ANN in the probing experiments
to detect the locations where the load was applied (Figures 3(cii) and 4(cii)). This is an
important consideration to bear in mind when choosing an algorithm for a particular
classification problem such as contact location, load amplitude, or more specifically, to
detect the posture of the spine where the ANN performed the best.

Prior work has shown that the loads on the human cervical spine vary from 120 N to
1200 N during daily tasks [31]. However, this net load is distributed across the entire surface
of the intervertebral disc and surrounding tissues. The intradiscal pressure of C3-C4 human
spine cadavers ranged from 200 kPa to 270 kPa during physiologically relevant flexion and
extension movements (Figure 3 in [32]). In this paper, we have applied loads ranging from
5 g to 100 g over a surface area of 4 mm2 with a flat-tipped probe. The 100 g load over a
4 mm2 area produces a physiologically relevant pressure of 245.3 kPa, which corresponds
quite closely to those reported in [32]. We chose the range of loads from 5 g to 100 g to
span the range from indetectable to detectable loads to uncover the capabilities of each
different classification algorithm at every load and location, which was in general different.
The nuanced results regarding the interplay between load amplitude and classification
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accuracy of the different algorithms can be helpful in the future to implement AI in new
sensing applications.

The novel use of machine learning algorithms and the soft magnetic sensor array
to classify different postures of a patient’s artificial disc-implanted robotic spine replica
could also be utilized in conjunction with existing techniques to study and predict whether
a patient is a candidate for artificial disc replacement or cage-plate fusion. Moreover,
the novel system could help in determining whether a constrained, semi-constrained, or
unconstrained device could be the best fit [33]. After surgery, the spine replica could
assist in estimating whether there is sufficient motion at the operated level and possibly
change the rehabilitation program to prevent calcification and subsequent loss of intended
motion [34]. Additionally, motion and angulation data could be correlated with a patient’s
symptoms or complications to better understand them from a biomechanical standpoint. In
combination with wearable sensors on the patient’s spine, one could also obtain additional
data to ameliorate postoperative care and the overall success of the surgery [35]. At the
current time, postoperative instructions for patients with spine implants are qualitative
(do as much as you can until the pain starts), creating fears in both the patient and the
surgeon [36]. Questions regarding how much bending, lifting, and exercising is permissible
after a cervical implant operation could be studied and correlated with biomechanical
data generated by the sensorized robotic replica with individually tailored postoperative
care that could be prescribed to reduce complications [37]. However, one limitation in
this study is that there are no ligaments or muscles in the robotic spine replica. In the
future, this could be overcome with a more lifelike tissue phantom approach or with an
FEA model to understand the effect of ligaments and muscles on the sensor properties [38].
Furthermore, intervertebral simulations from the FEA model of the spine [38] could be
merged with empirical measurements from the robotic replica and wearable sensors from
the patient after surgeries to provide multiple viewpoints and a unified set of guidelines
for post-operative care. This could lower the likelihood of complications, such as artificial
disc subsidence that narrows the neuroforamen space, causing cervicalgia and cervical
radiculopathy [39]. In the future, this sensor could also potentially be coupled with CT
scans to address the issue of spinal malalignment [40–42].

5. Conclusions

We have created a novel robotic replica of a human spine to enable surgeons to preview
the effects of surgical interventions prior to the operation. The 3D printed spine replica
was modified to include an artificial disc and a soft magnetic sensor array. Benchtop
experiments showed that the magnetic sensor array was readily capable of detecting
the location (with 3.25 mm spacing) and amplitude of externally applied loads ≥10 g
from a robotic arm, as evidenced by high classification accuracies from the four different
machine learning algorithms that were compared. When the soft magnetic sensor array was
integrated within the human spine robotic replica, the ANN had the highest accuracy of
100% to classify five different postures of the robotic spine replica. These results indicated
that the integration of the soft magnetic sensor array within the artificial disc ‘implanted’,
robotically actuated spine replica has the potential to generate physiologically relevant
data before invasive surgeries, which could be used preoperatively to assess the suitability
of a particular intervention for specific patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22010212/s1, Figure S1: Classification accuracies from four
algorithms to detect the load magnitude at each of the nine different taxels. Thirty repetitions of six
different loads (5 g, 10 g, 20 g, 50 g, 75 g, 100 g) were applied to every taxel for both soft magnets.
a. 10% ferrofluid soft sensor array. b. 15% ferrofluid soft sensor array; Table S1: Overall mean
and standard deviation of algorithm accuracies for load amplitude classification at each of the nine
taxels; Video S1: Stretchable soft magnet, load at each taxel and intervertebral monitoring of human
spine replica.

https://www.mdpi.com/article/10.3390/s22010212/s1
https://www.mdpi.com/article/10.3390/s22010212/s1
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