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a b s t r a c t 

Localizing the eloquent cortex is a crucial part of presurgical planning. While invasive mapping is the gold 

standard, there is increasing interest in using noninvasive fMRI to shorten and improve the process. How- 

ever, many surgical patients cannot adequately perform task-based fMRI protocols. Resting-state fMRI has 

emerged as an alternative modality, but automated eloquent cortex localization remains an open chal- 

lenge. In this paper, we develop a novel deep learning architecture to simultaneously identify language 

and primary motor cortex from rs-fMRI connectivity. Our approach uses the representational power of 

convolutional neural networks alongside the generalization power of multi-task learning to find a shared 

representation between the eloquent subnetworks. We validate our method on data from the publicly 

available Human Connectome Project and on a brain tumor dataset acquired at the Johns Hopkins Hos- 

pital. We compare our method against feature-based machine learning approaches and a fully-connected 

deep learning model that does not account for the shared network organization of the data. Our model 

achieves significantly better performance than competing baselines. We also assess the generalizability 

and robustness of our method. Our results clearly demonstrate the advantages of our graph convolution 

architecture combined with multi-task learning and highlight the promise of using rs-fMRI as a presurgi- 

cal mapping tool. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The eloquent cortex includes regions of the brain that 

re responsible for various cognitive and sensory processes, 

uch as speech generation, language comprehension, and move- 

ent ( Ojemann and Whitaker, 1978; Tzourio-Mazoyer et al., 2004 ). 

dentifying and subsequently avoiding these areas during a neu- 

osurgery is crucial for recovery and postoperative quality of life. 

amely, an incision in the eloquent cortex can cause permanent 

hysical and cognitive damage ( Berger et al., 1989; Fadul et al., 

988; Sawaya et al., 1998 ). 

Localizing the eloquent cortex can be challenging due to the 

ariability of its anatomical boundaries across patients ( Ojemann 

nd Whitaker, 1978; Tomasi and Volkow, 2012 ). More specifically, 

he language network has especially high interindividual variabil- 

ty ( Tzourio-Mazoyer et al., 2004 ). Mapping the eloquent cortex 
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n brain tumor patients is even more difficult, as the functional- 

ty near the boundaries of slow growing tumors is often displaced, 

n effect known as neural plasticity ( Duffau, 2005; Thiel et al., 

001 ). In higher grade tumors, there is a phenomenon of neu- 

ovascular uncoupling that can confound the identification of func- 

ionally intact tissue. It has also been shown that the tumor dis- 

upts the local vasculature proximal and contralateral to the tumor 

ite ( Gabriel et al., 2014; Partovi et al., 2012; Zhang et al., 2016 ),

hich also affects functional connectivity. Thus, eloquent cortex 

apping remains an important and unsolved challenge in clinical 

ractice ( Berger et al., 1989; Duffau et al., 2003 ). 

The gold standard for mapping the eloquent cortex is invasive 

lectrocortical stimulation (ECS) performed during surgery ( Berger 

t al., 1989; Duffau et al., 2003; Gupta et al., 2007 ). While ECS is

ighly specific, it imposes a significant burden on patients, who 

ust remain awake and functioning during the procedure. Com- 

lications due to ECS arise for obese patients, patients with severe 

ysphasia, patients with severe respiratory complications, and pa- 

ients with psychiatric history or emotional instability ( Yang and 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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rashant, 2019 ). Furthermore, ECS is unavailable at the presurgical 

lanning stage and is usually not available within the depth of the 

ulci, which puts more demands on the neurosurgeon and can in- 

rease surgical times ( Kekhia et al., 2011; Rosazza et al., 2014 ). As

 result, noninvasive task-fMRI (t-fMRI) has been increasingly pop- 

lar for preoperative brain mapping ( Bizzi et al., 2008; Giussani 

t al., 2010; Petrella et al., 2006; Sabsevitz et al., 2003; Tomczak 

t al., 20 0 0 ). Namely, high activations in response to a language or

otor paradigm are considered biomarkers of the respective elo- 

uent areas ( Berger et al., 1989; Gabriel et al., 2014; Sair et al.,

016 ). While task-fMRI is the most popular noninvasive mapping 

odality ( Binder et al., 1996; Suarez et al., 2009 ), the activations 

an be unreliable for certain populations, like children, the cog- 

itively impaired, or aphasic patients, due to an inability to follow 

he task protocol, or excessive head motion ( Kokkonen et al., 2009; 

ee et al., 2016 ). 

Resting-state fMRI (rs-fMRI) captures spontaneous fluctuations 

n the brain at steady state ( Biswal et al., 1995; Fox and Raichle,

007; Shimony et al., 2009 ). While t-fMRI paradigms must be care- 

ully designed to target a specific cognitive process, rs-fMRI pro- 

ides a snapshot of the whole-brain, which can be used to isolate 

ultiple functional systems ( Lee et al., 2013; Smitha et al., 2017; 

enkataraman et al., 2012 ). Equally important, rs-fMRI is a passive 

odality and does not require the patient to perform a potentially 

hallenging task for accurate localization. As a result, there is in- 

reasing interest in using rs-fMRI for presurgical mapping to cir- 

umvent the issues of t-fMRI ( Ghinda et al., 2018; Lee et al., 2016;

euthardt et al., 2018 ). 

Prior work includes a variety of statistical and machine learning 

pproaches to localize the eloquent cortex using fMRI data. Start- 

ng with t-fMRI, the general linear model (GLM) is used to identify 

oxels with significant activation ( Sair et al., 2016; Tomczak et al., 

0 0 0 ). However, this method must be done on a per-patient ba-

is and requires manual intervention to set the correct activation 

hreshold. A more unified approach is presented in ( Langs et al., 

010; Langs et al., 2014 ). Here, the authors address the problem of 

arying anatomical boundaries through a functional embedding of 

he t-fMRI data based on diffusion maps and a subsequent Gaus- 

ian mixture model fit to the signal. This method was validated on 

 language t-fMRI paradigm in 7 tumor patients. While promising, 

his method has not yet been applied to rs-fMRI data. 

Within the rs-fMRI domain, the simplest methods use seed- 

ased correlation analysis to delineate subnetworks of the eloquent 

ortex. For example, the work of Wongsripuemtet et al. (2018) uses 

ateralized anatomical seeds to localize bilateral activations on 

he supplementary motor area in tumor patients. Going one 

tep further, the methods proposed in Sair et al. (2016) and 

ie et al. (2014) rely on group ICA to extract functional networks 

rom the rs-fMRI data. However, these methods require an expert 

o either manually select the seed or choose the language compo- 

ents and threshold the ICA maps as a final post-processing step. 

ence, they may not be practical in a prospective clinical setting. 

Deep learning (DL) methods have been increasingly popular in 

he neuroimaging field, and consequently, have shown promise 

n automatically identifying the eloquent cortex from rs-fMRI in 

oth healthy subjects and tumor patients. For example, the work 

f Hacker et al. (2013) uses a multi-layer perceptron to clas- 

ify seed-based correlation maps into one of seven resting-state 

etworks. This method first uses PCA for dimensionality reduc- 

ion followed by a two hidden layer artifical neural network 

or classification. Trained with t-fMRI labels, the model is ex- 

ended in Lee et al. (2016) to perform eloquent cortex localiza- 

ion in three separate tumor cases. While the results are promis- 

ng, once again, the user must select an a priori seed for each 

etwork, which can affect performance. Additionally, it is trained 

n healthy subjects and may not accommodate changes in the 
2 
rain organization due to the lesion. Finally, the large-scale study 

n Leuthardt et al. (2018) uses the same neural network architec- 

ure to identify eloquent subnetworks in 191 rs-fMRI and 83 t- 

MRI scans of tumor patients. However, a success refers to whether 

he model identified any clinically relevant topographies within the 

can. The study does not quantify the accuracy at the voxel or ROI 

evel, which is the metric of interest during presurgical mapping. 

.1. Contributions 

In contrast to prior work, we draw from the multi-task learning 

MTL) literature ( Ruder, 2017; Soltau et al., 2014; Xue et al., 2007; 

hang and Zhang, 2014 ) to simultaneously classify motor and lan- 

uage networks using a shared deep representation ( Martino et al., 

011; Overvliet et al., 2011; Pool et al., 2015 ). The goal of MTL is

o improve the generalizability of a model by training it to per- 

orm multiple tasks at the same time ( Caruana, 1997 ). Our archi- 

ecture uses convolutional filters that act on rows and columns of 

he functional connectivity matrix ( Kawahara et al., 2017 ). The re- 

ulting graph neural network (GNN) mines the topological proper- 

ies of the data in order to classify the eloquent brain regions. In 

ddition, our training strategy can easily accommodate missing pa- 

ient data in a way that optimizes the available information. This 

etup is highly advantageous, as the fMRI paradigms administered 

o each patient may vary depending on their case. 

We validate our method using an in-house dataset collected 

t the Johns Hopkins Hospital (JHH) as well as publicly available 

ata from the Human Connectome Project (HCP), in which we 

imulate tumors in the healthy brain and include performance on 

he healthy HCP data in the supplementary material. We demon- 

trate that our MTL-GNN achieves higher eloquent cortex detec- 

ion than popular machine learning baselines. We further show 

hat our model can recover clinically challenging bilateral language 

ases when trained on unilateral language cases. Using an ablation 

tudy, we assess the value of the multi-task portion of our net- 

ork. Finally, we assess robustness of our method by varying the 

unctional parcellation used for analysis, jittering the tumor seg- 

entations, quantifying the effects of data augmentation, and per- 

orming a hyperparameter sweep. Taken together, our results high- 

ight the promise in using rs-fMRI as part of presurgical planning 

rocedures. 

. Methods 

.1. Material 

.1.1. JHH tumor dataset 

Our tumor cohort consists of 62 patients who underwent 

resurgical fMRI at the Johns Hopkins Hospital (JHH). The data was 

btained using a 3.0 T Siemens Trio Tim system. Structural im- 

ges were acquired via an MPRAGE sequence (TR = 2300 ms, TI = 

00 ms, TE = 3.5 ms, flip angle = 9 ◦, FOV = 24 cm, acquisition ma-

rix = 256 × 256 × 176, slice thickness = 1 mm). Functional BOLD 

mages were acquired using 2D gradient echo-planar imaging (TR 

 20 0 0 ms, TE = 30 ms, flip angle = 9 ◦, FOV = 24 cm, acquisition

atrix = 64 × 64 × 33, slice thickness = 4 mm, slice gap = 1 mm,

nterleaved acquisition). A more detailed description of the partic- 

pants, the task paradigms, and acquisition protocol can be found 

n Sair et al. (2016) . 

The structural MRI was used for manual tumor segmentation 

ia the MIPAV package ( McAuliffe et al., 2001 ). The segmentations 

ere performed by a medical fellow and confirmed with an expert 

euroradiologist. Fig. 1 illustrates structural the T1 MRI of four pa- 

ients to motivate the heterogeneity in tumor size and location. 

T-fMRI data was acquired for all patients as part of the presur- 

ical workup. In this work, t-fMRI is used to derive “pseudo- 



N. Nandakumar, K. Manzoor, S. Agarwal et al. Medical Image Analysis 74 (2021) 102203 

Fig. 1. From ( L-R ), T1 scans of four separate brain tumor patients. Tumor size and location (outlined in red for clarity) vary throughout the JHH cohort. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. L : The tongue, finger, and foot sub-networks for one patient. R : The language network for three separate patients. The language network boundaries are very variable 

from patient to patient. 
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Table 1 

Patient, tumor and t-fMRI information for the JHH cohort. 

Age 38 ± 6 . 3 

Sex (M,F) 37,25 

Tumor location (lobe) Hemisphere 

Frontal 21 Left 35 

Parietal 18 Right 20 

Temporal 17 Both 7 

Occipital 6 

Volume (x1000) mm 

3 WHO grade 

< 35 21 1 14 

35–70 28 2 27 

70–100 8 3 13 

> 100 5 4 8 

Task protocol Number of patients 

Language 62 

Finger 38 

Tongue 41 

Foot 18 
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round truth” eloquent class labels using the General Linear Model 

GLM) implemented in SPM-8 ( Penny et al., 2011 ). The resulting 

ctivation maps were manually thresholded on a patient-specific 

asis and confirmed by an expert neuroradiologist. The t-fMRI is 

nly used during the training phase of the model. Only resting- 

tate fMRI information is included in the forward pass of the test- 

ng phase. 

Three motor task paradigms (finger tapping, tongue moving, 

oot tapping) were used to target specific locations of the motor 

omonculus ( Jack et al., 1994 ). Fig. 2 ( L ) shows the various sub-

etworks of interest for a single patient. Likewise, two language 

aradigms, sentence completion (SC) and silent word generation 

SWG), were performed. These language tasks are designed to tar- 

et both primary and secondary regions in the brain responsible 

or language generation ( Benjamin et al., 2018; Pillai and Zaca, 

011 ). For each patient, instructions and practice sessions were 

rovided. During acquisition, real-time fMRI maps for each task 

ere monitored by the neuroradiologist to assess for global data 

uality; any task performance deemed suboptimal due to motion- 

elated or other artifact was repeated. Since the t-fMRI was ac- 

uired as part of routine clinical care, not all patients performed 

ach task. Finally, our cohort has 57 patients with left-hemisphere 

anguage networks and 5 patients with bilateral language net- 

orks. Fig. 2 ( R ) illustrates the high anatomical variabilitiy in lan- 

uage regions, especially due to tumor presence. 

Rs-fMRI was acquired while subjects were awake but passive in 

he scanner. The rs-fMRI data was preprocessed using SPM-8. The 

teps include slice timing correction, motion correction and regis- 

ration to the MNI-152 template. The data was linearly detrended 

nd physiological nuisance regression was performed using the 

ompCorr method ( Behzadi et al., 2007 ). The data was bandpass 

ltered from 0.01 to 0.1 Hz, and spatially smoothed with a 6 mm 

WHM Gaussian kernel. Finally, images found to exceed the default 

oise threshold by the ArtRepair toolbox ( Mazaika et al., 2009 ) 

ere removed (scrubbed) from the rs-fMRI volumes. As a com- 

on practice, we apply a functional parcellation ( Craddock et al., 

012 ) to the rs-fMRI data to increase the signal-to-noise (SNR) of 

ur analysis and also reduce the input dimension to our model. In 

his work, we rely on the Craddocks atlas ( Craddock et al., 2012 )

ith removed cerebellar regions (N = 384) . The atlas was derived 

sing spectral clustering on healthy rs-fMRI and is widely cited in 

he literature ( Allen et al., 2014; Finn et al., 2015; Thirion et al.,

014 ). We chose this parcellation because it provides an appropri- 

te spatial resolution to map both the language network and the 

i

3 
rimary motor sub-networks (finger, foot, tongue). A region was 

etermined belonging to the eloquent class if at least 80% of its 

oxel membership coincided with that of the thresholded GLM ac- 

ivation maps. Tumor regions were determined in a similar fashion 

ased on the manual tumor segmentations. Due to varying tumor 

ize and location, the distribution of our labels is variable, as 139 

nique parcels are mapped to language by t-fMRI in at least one 

atient, 90 are mapped to finger, 84 are mapped to tongue, and 52 

re mapped to foot. Confounders such as tumor size and handed- 

ess are intrinsically tied within the model, as handedness relates 

o laterality of language (e.g., we have 57 unilateral and 5 bilateral 

anguage subjects), and the tumor is explicitly modelled within our 

imilarity graph. Table 1 presents information for the JHH cohort, 

here we report the number of patients that performed each task, 

he tumor grade and size, and demographics. 

.1.2. Human connectome project dataset 

We conduct a proof-of-concept simulation study by applying 

ur method to 100 subjects drawn from the Human Connectome 

roject (HCP1) dataset ( Van Essen et al., 2013 ), in which we sim- 

late “fake tumors”. We limit the analysis to 100 subjects, so that 

he dataset is of comparable size to our JHH cohort. Details on the 

cquisition paramters, sequencing, and preprocessing for both rs- 

MRI and t-fMRI can be found in Van Essen et al. (2013) . 

The language task for HCP was developed 

n Binder et al. (2011) to map the anterior temporal lobe for 
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resurgical planning. The task consisted of alternating between 

tory comprehension and performing basic arithmetic operations 

addition, subtraction etc.). In both blocks, the participants re- 

eived questions in the form of text-to-speech, to activate their 

anguage processing networks. For the motor task, participants 

ere instructed to tap their left or right fingers, squeeze their left 

r right toes, or move their tongue to map motor areas (block 

esign Buckner et al., 2011 ). We used the FEAT software from 

SL ( Jenkinson et al., 2012 ) to obtain GLM activation maps of the

CP t-fMRI. 

The “fake tumors” overlayed onto the HCP1 connectomes are 

andomly created, and ensured to be spatially continuous, akin 

o a real tumor. We include this augmented dataset to simulate 

arious issues the tumor introduces to our classification task and 

ltimately show robustness of our method. Our motivation for 

ncluding the HCP simulation study is to evaluate our MT-GNN 

erformance on real-world data with similar characteristics (i.e., 

esting-state functional connectivity inputs and labels derived from 

-fMRI). Though we cannot model neural reorganization due to the 

umor, our HCP simulation study provides a baseline of how re- 

oving functionality from these regions affects the overall perfor- 

ance. For the interested reader, we include the performance on 

he healthy HCP1 data without contamination in the supplemen- 

ary material. 

Finally, we have downloaded a second dataset of HCP subjects 

HCP2) to use solely for hyperparameter tuning of our model and 

aseline approaches. Once tuned, these hyperparameters are fixed 

or all experiments. This second HCP dataset ensures that there is 

o bias from our hyperparameter selection that enters the training 

nd testing procedures for the JHH and HCP1 datasets. 

.2. Multi-task GNN 

Our chief modeling assumptions is that while the anatom- 

cal boundaries of the eloquent cortex may shift from pa- 

ient to patient, the resting-state functional signatures of the 

anguage and motor network remain consistent ( Langs et al., 

010; 2014; Nandakumar et al., 2019 ). We construct a novel 

ulti-task learning graph neural network (MT-GNN) to capture 

hese patterns. A single-task version of our model appeared in 

andakumar et al. (2019) . In this paper we extend our prelimi- 

ary work to simultaneously map different functional systems and 

andle missing training data, which is typical in clinical practice. 

ur MT-GNN is validated on multiple datasets compared with the 

ingle-task GNN. We also evaluate robustness and generalization. 

Our MT-GNN architecture can simultaneously learn different ar- 

as of the eloquent cortex (language, finger, tongue, foot) by lever- 

ging all available data and the shared representation for whole- 

rain rs-fMRI connectivity. Our architecture uses specialized con- 

olutional filters, developed in Kawahara et al. (2017) , that are de- 

igned to operate on similarity matrices. These filters aggregate in- 

ormation across a hub-like row-column intersection, rather than 

cross the local spatial field of a standard convolution. As com- 

ared to Kawahara et al. (2017) , our model includes three innova- 

ions. First, we treat the tumor as “missing data” to avoid biasing 

he eloquent cortex identification. Second, instead of collapsing the 

nformation into a single patient-wise prediction, we preserve the 

egion-wise information. Finally, we use MT learning to simultane- 

usly obtain eloquent cortex segmentations for multiple functional 

ystems. Fig. 3 shows our pipeline from the unprocessed rs-fMRI 

cans to our input similarity matrix. Tumor regions are delineated 

nd effectively ignored in our similarity matrix computation. Fig. 4 

llustrates our MT-GNN pipeline. As seen, the input to our model 

s a rs-fMRI similarity matrix, and the output of each branch is 

 region-wise segmentation into eloquent, tumor, or background 

ray matter. 
4 
.2.1. Graph construction 

Our method treats the rs-fMRI connectivity as a weighted sim- 

larity graph, drawing inspiration from the graph theoretic litera- 

ure ( Langs et al., 2010; 2014 ). Let N be the number of brain re- 

ions in our parcellation and T be the number of time points for 

 rs-fMRI scan. We define x i ∈ R 

T ×1 as the average time series ex- 

racted from region i . We normalize each time series to have zero 

ean unit variance. The input similarity matrix W ∈ R 

N×N is given 

y W = exp 

[
X 

T X − 1 
]
. The tumor regions disrupt connectivity, and 

herefore are treated differently in our model formulation ( Duffau, 

005; Gabriel et al., 2014; Nandakumar et al., 2018; 2019 ). In this 

ork, we opt to set all edges associated with tumor nodes to zero 

hile maintaining the value of 1 on the diagonal. We also create 

 separate “tumor” class at the MT-GNN output, which allows the 

etwork to learn the patterns of zero values, so that it does not 

ias the eloquent cortex localization. 

Our framework assumes that tumor boundaries have been pre- 

etermined (i.e. segmented) on the voxel level. While we rely on 

anual segmentations in this paper, our approach is agnostic to 

he segmentation method and can easily be applied to automated 

echniques ( Havaei et al., 2017; I ̧s ın et al., 2016; Zhao et al., 2018 ).

ur similarity graph construction asserts that W i, j > 0 for all non- 

umor regions. Therefore, even two healthy regions with a strong 

egative correlation will still be more functionally similar than 

umor regions in our model. Our network achieves near perfect 

 ≈ 0 . 99 ) accuracy for the tumor class due to this setup, as expected

ue to the zeroing out of tumor regions. 

.2.2. Pre-MT network architecture 

Our MT-GNN architecture employs both convolutional and fully- 

onnected (FC) layers to extract features from the connectivity ma- 

rix. While a traditional convolutional assumes a grid-like field of 

iew, our MT-GNN convolutions span full rows and columns of the 

raph, so they capture local neighborhood connectivity information 

ssociated with node pairs (edges). The two convolutional layers of 

ur MT-GNN are from egde-to-edge (E2E) and egde-to-node (E2N) 

lters, which are taken from Kawahara et al. (2017) . For complete- 

ess of describing our network architecture, we present the rele- 

ant equations from Kawahara et al. (2017) below. 

Mathematically, an E2E filter is composed one row filter, one 

olumn filter, and a learned bias, which totals 2 N + 1 parameters. 

et m ∈ { 1 , · · · , M} be the E2E filter index, r m ∈ R 

1 ×N be the m th

ow filter, c m ∈ R 

N×1 be the m th column filter and b m 

∈ R 

1 ×1 be

he E2E bias for filter m . The feature map A 

m ∈ R 

N×N output from

2E filter m is computed as 

 

m 

i, j = φ
( N ∑ 

n =1 

r m 

n W i,n + c m 

n W n, j + b m 

)
, (1) 

here φ is the activation function. An E2E filter (pink in Fig. 4 ) 

or node pair (i, j) computes a weighted sum of connectivity 

trengths over all edges connected to either region i or j. We 

se these filters to learn the predictive connectivity patterns be- 

ween brain regions. Even with symmetric input W , the derived 

2E features are not guaranteed symmetric. This asymmetry is de- 

irable for language localization, as these systems tend to be lat- 

ralized in the brain ( Tzourio-Mazoyer et al., 2004; Sair et al., 

016; Nandakumar et al., 2019 ). At the E2E layer (green in Fig. 4 ),

e have multiple different views along the M dimension of the 

dge-to-egde similarities within our connectome data. The E2N 

ayer condenses our representation from size N × N × M after the 

2E layer to N × M, yielding M features for each node. To obtain 

egion-wise representations, our E2N filter performs a 1D con- 

olution along the columns of each feature map, as the authors 

n Kawahara et al. (2017) did not see improvement in applying the 

onvolution to either the columns or rows of each feature map. 
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Fig. 3. The data workflow of our model. The rs-fMRI data is preprocessed and then the Craddocks functional atlas is applied. The tumor boundaries are delineated and 

introduced as rows and columns of zeros in the input similarity matrix. 

Fig. 4. The overall workflow of our model. N is number of nodes, M is number of convolutional feature maps, H 1 is number of neurons in the first FC layer and H 2 is the 

number of neurons in the second FC layer. Our model uses specialized E2E and E2N filters as well as employs multi-task learning on a variety of available t-fMRI paradigms. 

Each grey module represents a separate 3-class segmentation task. The variables L , M 1 , M 2 and M 3 represent the language, finger, tongue, and foot networks respectively, as 

shown by the segmentation maps where red, blue, and white refer to the eloquent, neither, and tumor classes respectively. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

F

n

s  

E  

p

a

T

a

E

i

n

r

w

b

o

w

i

w

m

t  

M

p

r

r

i

b

b

O

a

2

o

g

r

t

z

p

r

d

c

m

t

S

t

i

l

t  

8

r

a

p

t

S

w

s  

t

l

e

{
 

g

urthermore, using a single orientation allows us to reduce the 

umber of parameters in the network, which is critical given our 

mall datasets ( N < 100 ). Mathematically, let g m ∈ R 

1 ×N be the m th

2N filter and d m 

∈ R 

1 ×1 be the E2N bias for filter m . The E2N out-

ut a m ∈ R 

N×1 from input A 

m is computed as 

 

m 

i = φ
( N ∑ 

n =1 

g 

m 

n A 

m 

i,n + d m 

)
. (2) 

he E2N filter computes a single value for each node i by taking 

 weighted combination of edges associated with it. The resulting 

2N layer is shown in yellow. 

Here, our modelling strategies depart from those 

n Kawahara et al. (2017) , as our network operates on the 

ode level, and does not condense the first dimension of the 

epresentation any further. We use two fully-connected layers 

ith neurons H 1 and H 2 (shown in Fig. 4 ) to extract features 

efore the multi-task (MT) portion. The network then branches 

ff into the MT classifier, which effectively decouples the FC 

eights according to which functional system it is responsible for 

dentifying. The grey blocks in Fig. 4 show the MT-FC layers, where 

e have four separate functional systems to identify. Each grey 

odule performs a separate 3-class classification task, shown by 

he segmentation maps on the RHS of Fig. 4 . At a high level, the

T-FC layer leverages commonalities in the rs-fMRI connectivity 

atterns between the language and motor networks. This shared 

epresentation drastically reduces the number of parameters, 

elative to training the separate E2E and E2N layers in our prelim- 

nary work ( Nandakumar et al., 2019 ). Clinically, our model can 

e extended to an arbitrary number of tasks by adding more MT 

ranches, thus providing a valuable tool for presurgical mapping. 

ur MT-GNN also constructs a shared representation for language 

nd motor areas which may shed insight into brain organization. 
5 
.2.3. Classification and loss functions 

Each MT-FC layer has dimension N × 3 where N is the number 

f regions, and the three classes denote eloquent, tumor, and back- 

round gray matter, represented by the colors red, white, and blue 

espectively on the segmentation maps in Fig. 4 . Recall that we 

reat the tumor as a separate learned class to remove any bias that 

eroing out tumor edges might introduce into the model. We em- 

hasize that the tumor detection accuracy is not the main goal or 

esult of this work. Instead, our goal is to maximize the eloquent 

etection performance. We keep the tumor regions so the input 

onnectivity matrix is of the same dimension for each patient. Re- 

oving the tumor regions would result in different size input ma- 

rices across patients, which our model is not designed to handle. 

oftmax is applied and each region is classified into one of the 

hree classes with an argmax operator. One obstacle in our datasets 

s the limited number of eloquent class training samples, since the 

anguage and individual motor areas are small (see Fig. 2 ). For 

he JHH cohort, the average class membership is 4 . 7% , 10 . 1% and

5 . 2% for the eloquent, tumor, and background gray matter class 

espectively. Since the convolutional filters are designed to oper- 

te upon the whole-brain connectivity matrix, our class imbalance 

roblem cannot be mitigated by traditional data augmentation 

echniques. Therefore, we train our model with a modified Risk- 

ensitive Cross-Entropy (RSCE) loss function ( Suresh et al., 2008 ), 

hich is designed to handle membership imbalance in multi-class 

etting. Let δi be the risk factor associated with class i . If δi is large,

hen we pay a larger penalty for misclassifying samples that be- 

ong to class i . Due to a training set imbalance, we select differ- 

nt penalty values for the language class { δl 
i 
} 3 

i =1 
and motor classes 

 δm 

i 
} 3 

i =1 
respectively. 

Let L , M 1 , M 2 , and M 3 ∈ R 

N×3 ( Fig. 4 ) be the output of the lan-

uage, finger, foot, and tongue MT-FC layers respectively. Each col- 
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Fig. 5. Training and validation error on HCP2 dtaset for early stopping. 
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Table 2 

Hyperparameters determined via CV on the separate 

HCP2 dataset. lr and wd refer to learning rate and weight 

decay. 

Parameter value Parameter value 

N 384 wd 5 × 10 −5 

M 8 E pochs 104 

lr 0.005 δm (1.27,0.46,0.25) 

H 1 64 δl (2.02,0.46,0.25 

H 2 27 
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T
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mn of these matrices represents one of three classes: eloquent, 

umor, and background. Let Y 

l , Y 

m 1 , Y 

m 1 , and Y 

m 3 ∈ R 

N×3 be one-

ot encoding matrices for the region-wise class labels of the lan- 

uage and motor subnetworks from t-fMRI. Our loss function is the 

um of four terms: 

L �(W , Y ) = 

−
3 ∑ 

i =1 

δl 
i log (L i ) 

T Y 

l 
i 

︸ ︷︷ ︸ 
Language Loss L l 

−
3 ∑ 

i =1 

δm 

i log (M 

i 
1 ) 

T Y 

m 1 

i 

︸ ︷︷ ︸ 
Finger Loss L m 1 

3 ∑ 

i =1 

δm 

i log (M 

i 
2 ) 

T Y 

m 2 

i 

 ︷︷ ︸ 
Foot Loss L m 2 

−
3 ∑ 

i =1 

δm 

i log (M 

i 
3 ) 

T Y 

m 3 

i 

︸ ︷︷ ︸ 
Tongue Loss L m 3 

(3) 

he error from all four loss terms is backpropagated throughout 

he network during training, as illustrated by the green arrows in 

ig. 4 . Our framework allows for overlapping eloquent labels, as 

rain regions can be involved in multiple cognitive processes. To 

eiterate, our goal is to identify subnetworks of the eloquent cor- 

ex for presurgical planning. We take a supervised approach to this 

roblem via multi-task classification. The model presented in this 

ork focuses on localizing four eloquent subnetworks, as our in- 

ouse dataset contains task fMRI labels for three motor areas and 

ne language area. We emphasize that our framework can be ex- 

ended to any number of functional subsystems if the proper train- 

ng labels exist. In this case, the user would simply add MT-FC lay- 

rs and the corresponding cross-entropy term in the loss function. 

rom a modeling standpoint, our edge-to-edge layer is designed 

o extract informative subnetworks from the rs-fMRI connectivity 

atrix to maximize downstream separation of the desire classes. 

ence, the value of M (in this work between 8–16) is closely tied 

o the number of subnetworks extracted from the data. 

.2.4. Implementation details and hyperparameter selection 

We used 10-fold cross validation (CV) on the HCP2 dataset to fix 

he hyperparameters for all experiments. In this manner, our evalu- 

tion on the HCP1 and JHH datasets do not include biased informa- 

ion from the hyperparameter selection. Fig. 5 shows the general- 

zation gap between training and testing, which was used to deter- 

ine epoch number. Overall, we observe stable training and vali- 

ation curves, which gives us confidence in the optimization of our 

etwork. For the δ hyperparameters, we performed a coarse grid 

earch from 0 − 10 in increments of 10 −1 until we found a suitable 

ange of performance. We then performed a finer grid search in 
6 
ncrements of 10 −2 to obtain the final values shown in Table 2 . We

xed the same δ values for the tumor and neither classes across 

ranches. 

Due to the clinical protocol, most JHH patients have only 

ndergone a subset of the three motor t-fMRI tasks. We han- 

le this missing data during training by freezing the weights 

f the MT-FC layer in Fig. 4 that corresponds to the missing 

ask when we backpropagate ( García-Laencina et al., 2007; Zhang 

nd Huan, 2012 ). Our strategy ensures that we mine the rele- 

ant information from the data present while preserving the fine- 

uned layers of the branches that correspond to missing tasks. 

e train with batch size equal to one, to accommodate the 

issing tasks across patients. The number of subjects that per- 

ormed each task is listed in Table 4 . We implement our net- 

ork in PyTorch ( Paszke et al. (2017) ) using the SGD optimizer. 

he LeakyReLU (x ) = max (0 , x ) + 0 . 33 ·min (0 , x ) activation function

s applied at each hidden layer. A softmax activation is applied at 

he final layer for classification. With GPU available, the total train- 

ng time of our model is 5 min. 

.3. Baseline methods 

We evaluate the performance of our method against three base- 

ine algorithms. 

1. A Multi-class SVM on graph theoretic features 

2. Separate Random Forest Classifiers on stacked similarity matri- 

ces 

3. A Fully-connected neural network with a final MT-FC layer (FC- 

NN) 

The first baseline is a multi-class linear SVM based on node de- 

ree, betweenness centrality, closeness centrality, and eigenvector 

entrality ( Fortunato, 2010; Opsahl et al., 2010 ). We include this 

aseline as a traditional machine learning approach for network 

etection in graphs. We experimented with the RBF, Gaussian, and 

inear kernel classes and empirically determined that the linear 

ernel achieves the highest AUC metrics. We set the SVM hyperpa- 

ameter c = 15 . 2 using CV on the HCP2 dataset. The second base-

ine is a Random Forest (RF) classifier on the row vectors of the rs- 

MRI similarity matrices, thus taking the connectivity as its input 

eature vector. Here, we train and test one separate RF classifier for 

ach of the four functional systems. We include this baseline to as- 

ess the predictive power of the raw rs-fMRI correlations. We have 

mplemented the RF classifier in python using 250 decision trees. 

he tumor nodes and class are removed for the machine learning 

aselines, which operate on the node level. 

Our deep learning baseline is an artifical neural network that 

ontains only fully-connected layers (FC-NN). We include this base- 

ine to observe the performance gains in adding the specialized 

2E and E2N filters. The FC-NN has five hidden layers and then 

 final MT-FC layer. We include more hidden layers in the FC- 

N than the MT-GNN because it achieved a beter trade-off be- 

ween architecture depth and width. We optimized the hyperpa- 

ameters for the FC-NN using the HCP2 dataset as well, resulting 
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Fig. 6. We use repeated 10-fold CV for model training and testing. We repeat each 

CV 10 times, ensuring that fold membership changes for each run. We report the 

mean and standard deviation of eloquent class true positive rate (TPR), and elo- 

quent class area under the curve (AUC). For each baseline, we report the FDR cor- 

rected p-value from the associated t-score between our MT-GNN and the baseline, 

as evaluated on the AUC metric. In addition, we report the specificity, F1 and t- 

scores for the main classification results shown in Tables 3 and 4 . 
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Fig. 7. Boxplot for the AUC metric reported in Table 3 using 10 repeated 10-fold 

CVs. The colors red, blue, green and yellow refer to the MT-GNN, FC-NN, RF, and 

SVM methods respectively. We observe higher median performance and smaller de- 

viations in our proposed method compared to the baseline algorithms. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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n δm 

= (1 . 34 , 0 . 43 , 0 . 31) and δl = (2 . 13 , 0 . 43 , 0 . 31) . The tumor is

andled in the same way for the MT-GNN (proposed) and FC-NN 

baseline). 

. Experiments and results 

Fig. 6 shows the evaluation workflow of our experiments. For 

ach task, we report the eloquent class true positive rate (TPR) 

nd eloquent class AUC. We note that all experiments in this work 

re performed on the parcel (ROI) and not voxel level. This dimen- 

ionality reduction is critical when working with a smaller clini- 

al dataset. Eloquent class TPR is computed as the total number 

f correctly classified eloquent parcels divided by the total number 

f eloquent parcels. The AUC metric reported balances the tradeoff

etween the true and false positive rates of detecting the eloquent 

lass. The reported statistics were determined using repeated 10- 

old CV, where each run has a different fold membership. We re- 

ort the mean and standard deviation of the metrics. To demon- 

trate statistically significant improvement, we perform a t -test on 

he repeated 10-fold CV runs, which corrects for the independence 

ssumption between samples ( Bouckaert and Frank, 2004 ). For- 

ally, let r be the number of times we repeat k -fold CV. We ob- 

erve two learning algorithms A and B and measure their respec- 

ive AUCs a i, j and b i, j for fold i and run j. Let x i, j = a i, j − b i, j be

he performance difference, n 2 be the number of testing samples, 

 1 be the number of training samples, and ˆ σ 2 be the sample vari- 

nce. The test statistic is given by 

 = 

1 
k ·r 

∑ k 
i =1 

∑ r 
j=1 x i, j √ 

( 1 
k ·r + 

n 2 
n 1 

) ̂  σ 2 

. (4) 

he variable t in Eq. (4) follows a t-distribution with degrees of 

reedom df = kr − 1 . 

The experimental results section is broken into 3 main subsec- 

ions. In Section 3.1 , we show the results from the tumor simula- 

ion experiment in the HCP1 dataset. Section 3.2 contains the main 

HH dataset and our bilateral language identification experiment. 

ection 3.3 includes an ablation study, where we evaluate the 

ulti-task learning portion of our network. Finally, in Section 3.4 , 

e assess robustness of our method using varying functional at- 

ases, corruption in tumor segmentations, and data augmentation 

echniques. 

.1. HCP simulation study 

We validate our approach on a synthetic dataset which uses 

ealthy connectomes with fake simulated tumors. This experiment 

rovides a proof-of-concept for our methodology on data which 

as similar characteristics as our main JHH cohort. The “tumors”

dded to this dataset are randomly positioned but created to be 

patially continuous with the same size as the real tumor segmen- 

ations we obtained from the JHH cohort. 
7 
The results for this experiment are summarized in Table 3 , 

here we show that the MT-GNN has superior performance in 

ll cases when compared to the baselines. Our performance gains 

re underscored by the t -test, where we observe very small p- 

alues ( p << 0 . 001 ) for each competing baseline algorithm among 

ach task present. Therefore, our method captures the compli- 

ated interactions between the eloquent cortex much better than 

he competing baseline algorithms. We also observe less perfor- 

ance variability across CV runs with our method compared to 

ll of the baselines, which demonstrates robustness to the train- 

ng data. We note that the RF classifier has low sensitivity and 

he mutli class SVM performs slightly better than chance. The per- 

ormance of these machine learning baselines suggests that elo- 

uent cortex mapping is a particularly challenging problem. High- 

ighted by the AUC column, the MT-GNN outperforms the FC-NN 

aseline in all cases. Using convolutional filters, the MT-GNN finds 

tereotypical connectivity patterns that identify the eloquent cor- 

ex. Compared to the motor network localization, all methods per- 

orm worse when identifying language networks, likely due to its 

igher anatomical variation. Fig. 7 shows boxplots of the AUC met- 

ic among all four methods and all four tasks. The colors red, blue, 

reen and yellow refer to the MT-GNN, FC-NN, RF, and SVM al- 

orithms respectively. Here we can see the performance gain and 

obustness of our method, which has larger median values and 

maller deviations than the baselines. We repeat the performance 

f the algorithms on the healthy HCP dataset in the supplementary 

aterial as a way of gauging the effect that the additional tumor 

lass has on this problem. 

.2. JHH cohort and bilateral language experiment 

Our primary localization task is on the JHH tumor cohort. 

able 4 shows the eloquent class accuracy, AUC for detecting the 

loquent class and t-scores for the JHH dataset. Once again, the 

T-GNN has the best overall localization performance. Highlighted 

y the AUC and p-value column, the MT-GNN outperforms the 

aselines in nearly all cases, except for the tongue network. Similar 

o the HCP study, we observe smaller deviations with our method 

ompared to all of the baselines, which shows robustness even 

hen the method is trained and tested on different subsampled 

ersions of the data. Among both the HCP simulation study and 

he JHH dataset, the HCP language task was the most challenging 

o localize, likely due to differences between the HCP and JHH lan- 

uage protocols. The HCP language task was designed to target lan- 

uage comprehension ( Binder et al., 2011 ) while the JHH sentence 
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Table 3 

Mean plus or minus standard deviation for eloquent class true positive rate (TPR), specificity, F1 and AUC for the 

HCP cohort (100 subjects). The final column shows the FDR corrected p-values for the associated t-scores where we 

compare AUC between our method against each baseline. 

Task Method Eloquent TPR Specificity F1 AUC t-score p-value 

Language MTGNN 0 . 67 ± 0 . 013 0 . 62 ± 0 . 012 0 . 63 ± 0 . 014 0 . 68 ± 0 . 01 

FCNN 0 . 59 ± 0 . 022 0 . 56 ± 0 . 021 0 . 58 ± 0 . 019 0 . 62 ± 0 . 018 14.08 3 . 5 × 10 −44 

RF 0 . 32 ± 0 . 036 0 . 61 ± 0 . 026 0 . 45 ± 0 . 013 0 . 52 ± 0 . 034 17.02 1 . 8 × 10 −64 

SVM 0 . 36 ± 0 . 026 0 . 49 ± 0 . 024 0 . 39 ± 0 . 018 0 . 51 ± 0 . 016 34.68 2 . 7 × 10 −262 

Finger MTGNN 0 . 78 ± 0 . 011 0 . 75 ± 0 . 013 0 . 77 ± 0 . 014 0 . 82 ± 0 . 008 

FCNN 0 . 75 ± 0 . 014 0 . 69 ± 0 . 016 0 . 71 ± 0 . 015 0 . 73 ± 0 . 011 17.84 3 . 1 × 10 −70 

RF 0 . 41 ± 0 . 026 0 . 71 ± 0 . 022 0 . 54 ± 0 . 023 0 . 58 ± 0 . 028 27.61 1 . 2 × 10 −166 

SVM 0 . 41 ± 0 . 024 0 . 55 ± 0 . 028 0 . 42 ± 0 . 025 0 . 52 ± 0 . 015 52.66 ≈ 0 

Foot MTGNN 0 . 83 ± 0 . 009 0 . 82 ± 0 . 008 0 . 8 ± 0 . 011 0 . 79 ± 0 . 009 

FC-NN 0 . 73 ± 0 . 016 0 . 65 ± 0 . 017 0 . 66 ± 0 . 013 0 . 71 ± 0 . 015 21.45 4 . 9 × 10 −101 

RF 0 . 42 ± 0 . 025 0 . 74 ± 0 . 026 0 . 46 ± 0 . 021 0 . 58 ± 0 . 029 14.32 1 . 2 × 10 −45 

SVM 0 . 50 ± 0 . 031 0 . 53 ± 0 . 028 0 . 48 ± 0 . 027 0 . 51 ± 0 . 013 65.72 ≈ 0 

Tongue MTGNN 0 . 80 ± 0 . 01 0 . 78 ± 0 . 009 0 . 77 ± 0 . 011 0 . 78 ± 0 . 009 

FC-NN 0 . 76 ± 0 . 012 0 . 72 ± 0 . 014 0 . 73 ± 0 . 016 0 . 73 ± 0 . 015 7.63 9 . 1 × 10 −14 

RF 0 . 44 ± 0 . 03 0 . 69 ± 0 . 032 0 . 50 ± 0 . 026 0 . 57 ± 0 . 032 23.73 2 . 1 × 10 −123 

SVM 0 . 55 ± 0 . 023 0 . 52 ± 0 . 025 0 . 48 ± 0 . 024 0 . 53 ± 0 . 014 49.61 ≈ 0 

Table 4 

Mean plus or minus standard deviation for eloquent class TPR, specificity, F1 and AUC for the JHH cohort, where the 

number of subjects who performed each task is shown in the first column. The final column shows the FDR corrected 

p-values for the associated t-scores where we compare AUC between our method against each baseline. 

Task Method Eloquent TPR Specificity F1 AUC t-score p-value 

Language MTGNN 0 . 75 ± 0 . 011 0 . 72 ± 0 . 01 0 . 74 ± 0 . 013 0 . 76 ± 0 . 013 

(N = 62) FCNN 0 . 68 ± 0 . 014 0 . 63 ± 0 . 016 0 . 67 ± 0 . 013 0 . 70 ± 0 . 015 11.56 3 . 8 × 10 −30 

RF 0 . 49 ± 0 . 034 0 . 65 ± 0 . 027 0 . 59 ± 0 . 029 0 . 61 ± 0 . 035 12.11 5 . 7 × 10 −33 

SVM 0 . 46 ± 0 . 017 0 . 55 ± 0 . 019 0 . 45 ± 0 . 02 0 . 52 ± 0 . 012 50.76 ≈ 0 

Finger MTGNN 0 . 85 ± 0 . 014 0 . 83 ± 0 . 016 0 . 82 ± 0 . 013 0 . 83 ± 0 . 015 

(N = 38) FCNN 0 . 77 ± 0 . 019 0 . 65 ± 0 . 016 0 . 73 ± 0 . 019 0 . 75 ± 0 . 017 8.36 2 . 7 × 10 −16 

RF 0 . 48 ± 0 . 039 0 . 66 ± 0 . 028 0 . 57 ± 0 . 034 0 . 60 ± 0 . 029 24.22 1 . 7 × 10 −128 

SVM 0 . 55 ± 0 . 02 0 . 54 ± 0 . 021 0 . 53 ± 0 . 015 0 . 54 ± 0 . 014 43.48 ≈ 0 

Foot MTGNN 0 . 81 ± 0 . 023 0 . 81 ± 0 . 021 0 . 79 ± 0 . 019 0 . 78 ± 0 . 025 

(N = 18) FC-NN 0 . 71 ± 0 . 023 0 . 62 ± 0 . 025 0 . 68 ± 0 . 024 0 . 73 ± 0 . 025 9.32 5 . 5 × 10 −20 

RF 0 . 45 ± 0 . 044 0 . 67 ± 0 . 038 0 . 51 ± 0 . 039 0 . 66 ± 0 . 047 10.58 2 . 0 × 10 −25 

SVM 0 . 53 ± 0 . 028 0 . 57 ± 0 . 023 0 . 49 ± 0 . 025 0 . 54 ± 0 . 021 25.63 1 . 2 × 10 −143 

Tongue MTGNN 0 . 82 ± 0 . 015 0 . 81 ± 0 . 012 0 . 82 ± 0 . 014 0 . 80 ± 0 . 014 

(N = 41) FC-NN 0 . 83 ± 0 . 019 0 . 80 ± 0 . 011 0 . 83 ± 0 . 018 0 . 80 ± 0 . 019 −0 . 91 0 . 82 

RF 0 . 38 ± 0 . 028 0 . 65 ± 0 . 029 0 . 52 ± 0 . 024 0 . 60 ± 0 . 031 18.96 3 . 5 × 10 −79 

SVM 0 . 58 ± 0 . 021 0 . 51 ± 0 . 022 0 . 50 ± 0 . 025 0 . 53 ± 0 . 015 37.69 1 . 34 × 10 −309 

Fig. 8. Boxplot for the AUC metric reported in Table 4 . The colors red, blue, green 

and yellow refer to the MT-GNN, FC-NN, RF, and SVM methods respectively. We ob- 

serve higher median performance in three out of four tasks and smaller deviations 

in all four tasks with the MT-GNN. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Table 5 

Mean class and overall accuracy for testing on 5 bilat- 

eral language subjets. As a comparison, the mean elo- 

quent class TPR from Table 4 is also shown in the final 

column. 

Method Bilateral TPR overall Eloquent TPR 

MT-GNN 0 . 70 0 . 77 0 . 75 

FC-NN 0 . 51 0.72 0.68 

RF 0 . 33 0 . 76 0 . 49 

SVM 0 . 41 0.63 0.46 
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ompletion and silent word generation task were designed to tar- 

et speech and language generation ( Benjamin et al., 2018; Pillai 

nd Zaca, 2011; Sair et al., 2016 ). Fig. 8 shows boxplots of the AUC

etric among all four methods and tasks in the JHH cohort. Once 

gain, we can see the robustness of our MT-GNN, which has larger 
8 
edian values for three out of the four tasks and smaller devia- 

ions for all four tasks compared to the baselines. 

Our next experiment using the JHH cohort evaluates whether 

he proposed model and baselines can accurately identify bilateral 

anguage networks, even when this case is not present in the train- 

ng set. This experiment assessess how well the models can iden- 

ify unseen language regions based on intrinsic rs-fMRI connectiv- 

ty patterns. We only perform this experiment on the JHH cohort 

ecause the JHH sentence completion and silent word generation 

asks are designed to target lateralized systems, as compared to 

he HCP language processing and comprehension tasks. Here, we 

rained the model on 57 left-hemisphere language network pa- 

ients and tested on the remaining 5 bilateral subjects. Table 5 

hows the mean eloquent class and the overall accuracies for the 5 
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Fig. 9. Task-fMRI ”ground truth” activations (blue) and predicted (yellow) labels for one bilateral language network example across all algorithms. The MT-GNN has the 

highest localization accuracy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Mean plus or minus standard deviation for eloquent TPR and AUC 

for the ablation study, where the cohort is shown in the first col- 

umn. The final column shows the corrected p-values from the asso- 

ciated t-scores where we compare AUC between our method against 

the single GNN (SGNN). 

Task Method TPR AUC p-value 

Lang. MT-GNN 0 . 75 ± 0 . 011 0 . 76 ± 0 . 013 

SGNN 0 . 73 ± 0 . 019 0 . 72 ± 0 . 026 1 . 5 e- 9 

Finger MT-GNN 0 . 85 ± 0 . 014 0 . 83 ± 0 . 015 

SGNN 0 . 82 ± 0 . 021 0 . 81 ± 0 . 027 0.28 

Foot MT-GNN 0 . 81 ± 0 . 023 0 . 78 ± 0 . 025 

SGNN 0 . 71 ± 0 . 032 0 . 72 ± 0 . 034 3 . 3 e- 3 

Tongue MT-GNN 0 . 82 ± 0 . 015 0 . 80 ± 0 . 014 

SGNN 0 . 79 ± 0 . 019 0 . 77 ± 0 . 023 2 . 2 e- 3 
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Fig. 10. Ablation study boxplots for AUC between both cohorts. Red refers to MT- 

GNN and blue refers to single GNN. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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eld out subjects. Our proposed model outperforms all baselines in 

oth per-class and overall accuracy. Fig. 9 shows the ground truth 

blue) and predicted (yellow) labels for one bilateral language net- 

ork across methods. The MT-GNN shows the best trade-off be- 

ween true positives and false positives compared to the baselines. 

e observe that the FC-NN overpredicts too many incorrect re- 

ions, the RF is unable to detect bilateral activation, and the SVM 

ompletely misses the correct activation pattern. We point out that 

ue to a small sample size, the bilateral language identification 

xperiment is not as conclusive as the main results, but rather 

rovides a proof-of-concept and clinically valuable assessment on 

he JHH cohort. Specifically, this experiment provides evidence that 

ur MT-GNN does not simply memorize nodes, but rather finds in- 

rinsic connectivity patterns associated with language. In addition, 

anguage lateralization is a key problem in clinical neuroradiology, 

nd the bilateral experiment is exciting preliminary evidence that 

ur MT-GNN can be applied to other clinical problems in the fu- 

ure. 

.3. Ablation study 

In this section, we assess the value of adding the multi-task 

earning component to our network via an ablation study. Specifi- 

ally, we evaluate performance on each of the four networks by re- 

oving the other three MT-FC layers from the model during train- 

ng and testing. Therefore, each single GNN (SGNN) is trained sep- 

rately for each task, and evaluated on that same task, without 

ny information from the other three tasks present. Table 6 shows 

he mean eloquent TPR, AUC for eloquent class detection, and cor- 

ected p-value for AUC between the MT-GNN and SGNN for the 

HH cohort. Highlighted by p < 0 . 01 , our MT-GNN outperforms the 

GNN in three out of four experiments. Fig. 10 shows the side-by- 

ide boxplots for AUC between the MT-GNN and SGNN, where we 

an see a clear divide in performance between the two methods. 

he MT-GNN also has smaller variability, which shows robustness 

n our method. 
9 
.4. Assessing model robustness 

In this section, we assess the robustness of our model via the 

ollowing experiments: (1) model evaluation on different scales of 

he Craddocks atlas (2) degrading the accuracy of tumor segmen- 

ations (3) boosting the training set via data augmentation and 

4) sweeping the language class δ hyperparameter to observe the 

radeoff between class accuracy and AUC. 

.4.1. Varying parcellation choice 

It is understood that the choice of parcellation can affect the 

s-fMRI connectivity due to varying spatial resolution ( de Reus and 

an den Heuvel, 2013; Lord et al., 2016 ). Therefore, we perform 

loquent cortex localization using our MT-GNN on three additional 

cales of the Craddocks atlas ( N = 262 , N = 432 , and N = 432 re-

ions). We choose scales that are either coarser or finer than the 

riginal N = 384 atlas to observe the effect that varying parcel size 

as on performance. 

Table 7 shows the evaluation metrics using the MT-GNN for the 

HH cohort among all three atlases considered, where the p-values 

or are computed with respect to the original N = 384 atlas. Con- 

idering a p < 0 . 01 threshold, we observe only a significant differ- 

nce in performance among one of four tasks present. We observe 

he N = 318 atlas outperforming the original in the foot functional 

ubnetworks, denoted by a large p-value. Regarding the N = 262 

tlas, however, three of the four tasks have a significant decrease in 

UC. Our method is robust across the N = 384 and N = 318 scales

ut degrades in performance when the parcels become too coarse, 

s is the case with N = 262 . This result implies that there is a

ertain spatial resolution in atlas choice that is necessary for our 

ethod to remain robust, likely due to the relatively small size of 

he networks we identify. However, we observe that the N = 432 

tlas does not significantly outperform the N = 384 atlas, which 

uggests that there may be a limit of spatial resolution to which 

he chosen model architecture can achieve additional performance 

ains. 
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Fig. 11. AUC boxplots using the MT-GNN on the JHH dataset as the tumor segmentations decrease in accuracy. The x-axis shows the dice coefficient of the corrupted 

tumor segmentation used for evaluation with the manual tumor segmentation. Corruption occurred via a combination of translating, dilating, or shrinking the manual 

segmentations. The colors red, blue, green and yellow refer to the JHH language, finger, foot and tongue tasks. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 7 

Mean plus or minus standard deviation for eloquent TPR and AUC 

when varying the parcellation atlas. The final column shows the 

corrected p-values for the associated t-scores where we compare 

AUC between N = 384 against N = 318 and N = 262 . 

Task Atlas TPR AUC p-value 

Language 384 0 . 75 ± 0 . 011 0 . 76 ± 0 . 013 

432 0 . 77 ± 0 . 014 0 . 77 ± 0 . 012 0 . 11 

318 0 . 73 ± 0 . 018 0 . 75 ± 0 . 016 0.06 

262 0 . 71 ± 0 . 014 0 . 74 ± 0 . 017 1 . 3 e- 3 

Finger 384 0 . 85 ± 0 . 014 0 . 83 ± 0 . 015 

432 0 . 88 ± 0 . 013 0 . 84 ± 0 . 013 0 . 73 

318 0 . 8 ± 0 . 016 0 . 80 ± 0 . 017 2 . 7 e- 3 

262 0 . 76 ± 0 . 019 0 . 79 ± 0 . 014 7 . 0 e- 7 

Foot 384 0 . 81 ± 0 . 023 0 . 78 ± 0 . 025 

432 0 . 82 ± 0 . 012 0 . 78 ± 0 . 023 0 . 52 

318 0 . 81 ± 0 . 021 0 . 79 ± 0 . 023 0.99 

262 0 . 78 ± 0 . 027 0 . 77 ± 0 . 024 0.49 

Tongue 384 0 . 82 ± 0 . 015 0 . 80 ± 0 . 014 

432 0 . 83 ± 0 . 011 0 . 82 ± 0 . 015 0 . 96 

318 0 . 81 ± 0 . 016 0 . 79 ± 0 . 015 0.19 

262 0 . 78 ± 0 . 019 0 . 76 ± 0 . 017 4 . 9 e- 5 
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Table 8 

Mean plus or minus standard deviation for eloquent TPR and AUC with 

and without data augmentation. The final column shows the corrected 

p-values associated with the t-scores where we compare AUC between 

the original and augmented. 

Task Augment TPR AUC p-value 

Language No 0 . 75 ± 0 . 011 0 . 76 ± 0 . 013 

Yes 0 . 76 ± 0 . 01 0 . 76 ± 0 . 011 0.21 

Finger No 0 . 85 ± 0 . 014 0 . 83 ± 0 . 015 

Yes 0 . 86 ± 0 . 011 0 . 84 ± 0 . 012 0.94 

Foot No 0 . 81 ± 0 . 023 0 . 78 ± 0 . 025 

Yes 0 . 80 ± 0 . 012 0 . 79 ± 0 . 015 0.85 

Tongue No 0 . 82 ± 0 . 015 0 . 80 ± 0 . 014 

Yes 0 . 80 ± 0 . 017 0 . 80 ± 0 . 013 0.39 
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.4.2. Degrading tumor segmentation 

Next, we evaluate the performance of the MT-GNN on the JHH 

umor cohort without perfect manual tumor segmentations. Here, 

e corrupt the tumor segmentations using a combination of trans- 

ation, dilation, and/or shrinking operators on the original manual 

egmentations. We include this experiment to assess how robust 

ur method is to the segmentation accuracy. 

Fig. 11 shows boxplots for the AUC metric as the tumor seg- 

entations become more corrupt, expressed by the dice coefficient 

etween the corrupted and true segmentations on the x-axis. As 

xpected, overall detection performance decreases as tumor cor- 

uption increases. This result is likely due to the network learning 

onnectivity patterns from tumor regions, which are confounding 

eatures. Also, the corrupted tumor segmentations could encroach 

nto the eloquent cortex regions, which would also decrease per- 

ormance. For relatively higher dice coefficients ( > . 85 ), we observe 

nly a slight decrease in performance. Therefore, the model does 

ot require perfect tumor segmentations to work, which is valu- 

ble in a clinical setting. 

.4.3. Boosting training set via data augmentation 

Next, we use data augmentation to artificially increase the 

raining set size. We include this experiment to probe the limi- 

ations of our small clinical dataset when training the highly pa- 

ameterized deep network. Data augmentation has been shown to 

mprove the performance of deep learning models due to obtain- 
10 
ng a more comprehensive training set to help close the generaliza- 

ion gap ( Perez and Wang, 2017; Rashid and Louis, 2019 ). For the

HH cohort, we subsampled the time series data using a contin- 

ous sliding window to create 25 distinct new training similarity 

atrices for each subject. Our evaluation strategy remained other- 

ise consistent and relies on the full connectivity matrix. 

Table 8 shows the localization performance, where the second 

ow for each task corresponds to the augmented dataset. Overall, 

e observe similar performance with and without data augmenta- 

ion, as highlighted by the lack of significant differences. However, 

e do observe smaller deviations with using augmentation, likely 

ue to having more training samples. Ultimately, this experiment 

ives us confidence that the MT-GNN method effectively mines in- 

ormation from the original data and is probably not overfitting on 

 small dataset. 

.4.4. Hyperparameter sweep for δl 
1 

Finally, we sweep the language class hyperparameter δl 
1 

while 

eeping the other hyperparameters constant and plot the AUC and 

lass accuracy on the JHH dataset. For brevity, we only show the 

weep for the language class, as the tradeoff between AUC and TPR 

or the motor class shows the same trend. Fig. 12 shows the re- 

ults, where AUC is in red, eloquent class TPR is in blue, and δl 
1 

is

wept in increments of 0.1. As δl 
1 

increases, we observe an increase 

n false-positives, for example, when δl 
1 

exceeds 2.1, AUC drops as 

he true positive rate continues to rise. Clinically, it is more im- 

ortant to minimize false negatives (missing the eloquent cortex) 

han to minimize false positives, as there is a greater cost for dam- 

ging the eloquent cortex during surgery. Therefore, our weighted 

ross-entropy strategy proves useful, even if our model tends to 

verpredict the eloquent cortex class. 
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Fig. 12. AUC (red) and class accuracy (blue) for the language class on the JHH cohort as δl, 1 is swept in increments of 0.1. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. An example of a reproducible left-hemisphere only connectivity hub identified by our E2E filter when trained on the JHH dataset. We observe the nodes implicated 

resemble the activations in the language networks from Fig. 2 . 

Fig. 14. An example of a reproducible language network hub found in both hemispheres, when the MT-GNN is trained on the HCP dataset. The HCP story comprehension 

task is designed to target symmetric areas, which is captured in the identified language hub. 
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. Discussion 

We present a novel multi-task deep learning framework to 

dentify language processing and motor sub-regions in brain tu- 

or patients using rs-fMRI connectivity. In comparison to base- 

ine methods, our model achieves higher and statistically signif- 

cant region-based localization performance on both a synthetic 

nd real world clinical dataset. We show that our model can re- 

over clinically challenging bilateral language cases when trained 

n unilateral cases. Our ablation study further demonstrates the 

alue of the multi-task portion of our network. Finally, we evalu- 

te the robustness of our method, including varying the functional 

arcellation used, corrupting the tumor segmentations, performing 

ata augmentation, and sweeping our weighted cross entropy loss 

yperparameter for detecting the language class. 

We observe that including the specialized convolutional layers 

ids in identifying patterns within the eloquent cortex distribution. 

o assess whether our network learns reproducible patterns, we 

isually inspected the weights with the highest E2E filter magni- 

udes. In this manner, we can assess which network features are 

onsidered the most important. Fig. 13 shows one example of a 

anguage connectivity hub that our model consistently identifies on 

he JHH dataset. We observe that this hub is lateralized on the left 

emisphere, which is in line with the bulk of the JHH training data. 

ig. 14 shows a symmetric language network hub that is consis- 
11 
ently found during the HCP experiments. This network is bilateral 

ecause the HCP task is designed to target symmetrical areas of 

he anterior temporal lobe (ATL) while the JHH task is not. Though 

he network has many layers responsible for feature extraction, we 

onjecture that the MT-GNN performance gains relative to the FC- 

N baseline are likely due to these reproducible connectivity hubs, 

hich aid the downstream classification task. However, as deep 

earning models can lack interpretability, we emphasize that our 

peculation is heuristic and should be taken with a grain of salt. 

It is important to note that there exists potential confounding 

ariables in our study, such as language laterality, tumor size, age, 

nd gender. Here, language laterality refers to a quantitative mea- 

ure between -1 and 1 that describes handedness of the subject. 

hese confounders can affect the relationship between the input 

ata and output variables of our study, thus causing unwanted bias 

n our algorithm. In the Supplementary Results, we address these 

otential confounders by plotting model performance against each 

onfounder and assessing statistical significance on the correlation 

oefficients. All associated line of best fit plots are included in the 

upplementary Results. For brevity, we have listed the p-values as- 

ociated with the correlation coefficients between the confounders 

nd the AUC metric for each classification task. Using a threshold 

f p < 0 . 05 , we find no significant correlations between model per-

ormance against any of the four confounders. Fig. 16 shows an ex- 
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Fig. 15. From ( L-R ) we show coronal, axial and sagittal views of correct (blue) and incorrect (red) prediction by our model for the eloquent cortex in a challenging inferior 

frontal gyrus tumor case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 9 

p-values of the correlation between confounder and AUC for 

each classification task. The analysis setup and scatter plots 

are provided in the Supplementary Results. 

Task Gender Tumor size Age Laterality 

Language 0.52 0.36 0 . 49 0.61 

Finger 0.42 0.39 0.52 

Foot 0.37 0 . 42 0 . 69 

Tongue 0.33 0.14 0 . 63 
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Fig. 16. Tumor size vs. AUC for each of the classes of interest. The associated line 

of best fit equation, R 2 value, and p-value are shown. Tumor size is not significantly 

correlated with any of the four networks.. 
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mple of the tumor size confounder analysis. As seen, there is no 

ignificant correlation between tumor size and model performance. 

It is common in deep learning to first find an architecture that 

verfits to the training data and then apply it to the test data. In

he Supplementary Results, we explore with different architectures 

o maximize overfitting to our training data. We then explore the 

ffect of adding dropout to this overfit model and observe valida- 

ion accuracy. We include this experiment to show the robustness 

nd generalization capabilities of the main model presented in the 

anuscript ( Table 9 ). 

Unlike our preliminary work ( Nandakumar et al., 2019 ), which 

onstructs a separate GNN for each t-fMRI paradigm, this work 

hares the network parameters among all four tasks for both co- 

orts. Our method shows a substantial improvement in a threefold 

anner: (1) we save a large number of parameters, which is es- 

ential when working with smaller clinical datasets, (2) we find a 

hared latent representation of the eloquent cortex functional sys- 

ems, and (3) we reduce training time by a factor of three. High- 

ighted by the ablation study, we observe that the single GNN 

SGNN) cannot localize the eloquent regions as well as the MT- 

NN. Due to our multi-branch loss function, our model has access 

o more training data compared to the SGNN case. Also, compared 

o the SGNN, our network finds a shared latent representation that 

odels the complex interactions between the eloquent cortex that 

ventually helps with simultaneous classification. To highlight our 

ocalization performance, Fig. 15 illustrates the correct (blue) and 

alse positive (red) detections by our MT-GNN in a patient with a 

arge tumor in the inferior frontal gyrus. These results are aggre- 

ated across all four task branches of the model. We observe per- 

ect sensitivity for the motor cortex localization (no false negative 

etections) and high accuracy for language despite the anatomical 

esion. 

We acknowledge that a restriction of our model is to have tu- 

or segmentations manually delineated, which can be time con- 

uming. However, we note that there exists a large body of work 

escribing automated techniques for tumor segmentation ( Havaei 

t al., 2017; I ̧s ın et al., 2016; Zhao et al., 2018 ) where state-of-the-

rt performance is up to 0.85 dice overlap with the true segmenta- 

ions. We observe that our method only slightly decreases in per- 
12 
ormance at this dice coefficient, shown by Fig. 11 . Therefore, we 

elieve our MT-GNN is a valuable tool for presurgical evaluation. 

We note that the risk factor δc plays a role in the model perfor- 

ance Specifically, large values of δc encourage overprediction of 

he eloquent class, as illustrated in Fig. 12 in Section 3.4.4 . How- 

ver, we emphasize that in this clinical application, false positive 

redictions are more desirable than false negative predictions, due 

o the severe outcomes of accidental damage to the eloquent cor- 

ex ( Fadul et al., 1988; Sawaya et al., 1998 ). Nonetheless, rectify- 

ng these overpredictions is a valuable direction for future work. 

n addition, we acknowledge that due to partial volume effects, our 

ramework is conservative in handling the tumor, as the boundary 

arcels usually contain some number of healthy voxels. One future 

orkaround is to use a spatially hierarchical learning scheme that 

ncreases resolution to the voxel level. 

We note that there are different mathematical formulations 

vailable to construct the similarity graph. Our formulation is taken 

rom Langs et al. (2010) , where the full definition of W i j = 

< x i , x j > 

ε .

ere, ε is the decay speed, which controls the apparent sparse- 

ess of the graph. In this work, we fixed ε = 1 . Additionally, we 

eroed out rows and columns corresponding to tumor regions. Ex- 

erimenting with our similarity graph construction is an interest- 

ng line of future work. 

Though we use the convolutional filters developed 

n Kawahara et al. (2017) , our network and overall task are 

ery distinct from that in Kawahara et al. (2017) . There are three 

ey architectural differences to our MT-GNN, which allow it to 

erform the desired eloquent cortex localization. First, the original 

rainNetCNN is designed to make a single patient-wise prediction 

rom the input connectivity matrix. In contrast, our MT-GNN 

akes node-level predictions by preserving the node information 

hrough the fully-connected and multi-task (MT) layers. Second, 

ur MT-GNN treats anatomical lesions as a separate learned class 
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n order to remove any biases they introduce into the eloquent 

ortex detection. Finally, our MT portion uses the learned repre- 

entation from the E2E and E2N layers to simultaneously identify 

ultiple functional systems. Not only does this strategy reduce the 

otal number of parameters (i.e., convolutional layers are shared), 

ut our loss function can easily accommodate missing training 

ata. Specifically, the weights of the missing task branches are 

rozen during backpropagation, while the shared representation 

s still updated based on the available tasks. Hence, our MT-GNN 

an mine information from the available training data. This feature 

s helpful in a clinical setting, as subjects are asked to perform 

ifferent tasks based on their clinical condition. 

Finally, our work has two notable advantages over existing 

ethods. First, it operates on whole-brain resting-state fMRI con- 

ectivity in order to maximize the information used identify elo- 

uent regions. Second, it explicitly models subject-specific tumor 

ize and location information. For example, it is unclear how the 

acker et al. (2013) method would perform when multiple seeds 

ie in the tumor region. Another highlight of our method is compu- 

ational efficiency, as it considers just one N × N connectivity ma- 

rix per subject, as compared to the method in Lee et al. (2016) and

euthardt et al. (2018) , which requires multiple correlation maps 

er subject (based on 169 seed locations). As discussed, these prior 

orks also do not quantify accuracy on the voxel or ROI level. Our 

ork reports both the eloquent detection accuracy and a statisti- 

ally significant improvement in performance between our method 

nd competing baselines. 

. Conclusion 

We have introduced a novel deep learning method to simul- 

aneously localize multiple areas of the eloquent cortex using rs- 

MRI connectivity. Our MT-GNN captures a shared representation 

etween nuanced functional sub-networks of interest for neu- 

osurgery planning via a graph-based architecture. We validate 

ur method on an in-house JHH cohort and on a subset of the 

CP dataset with manually-created fake tumors. Quantitatively, our 

odel achieves better performance than both conventional and 

eep learning baselines. We showed an example of a language 

onnectivity hub in both cohorts that our network consistently 

ecovers as well as an example of our localization. Finally, we 

emonstrate generalizability and robustness with our bilateral lan- 

uage, varying atlas, and tumor segmentation corruption experi- 

ents. Taken together, our results highlight the potential of using 

s-fMRI to supplement the presurgical workup, with the ultimate 

oal of faster and more reliable tumor resections. 
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