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Localizing the eloquent cortex is a crucial part of presurgical planning. While invasive mapping is the gold
standard, there is increasing interest in using noninvasive fMRI to shorten and improve the process. How-
ever, many surgical patients cannot adequately perform task-based fMRI protocols. Resting-state fMRI has
emerged as an alternative modality, but automated eloquent cortex localization remains an open chal-
lenge. In this paper, we develop a novel deep learning architecture to simultaneously identify language
and primary motor cortex from rs-fMRI connectivity. Our approach uses the representational power of
convolutional neural networks alongside the generalization power of multi-task learning to find a shared
representation between the eloquent subnetworks. We validate our method on data from the publicly
available Human Connectome Project and on a brain tumor dataset acquired at the Johns Hopkins Hos-
pital. We compare our method against feature-based machine learning approaches and a fully-connected
deep learning model that does not account for the shared network organization of the data. Our model
achieves significantly better performance than competing baselines. We also assess the generalizability
and robustness of our method. Our results clearly demonstrate the advantages of our graph convolution
architecture combined with multi-task learning and highlight the promise of using rs-fMRI as a presurgi-

cal mapping tool.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The eloquent cortex includes regions of the brain that
are responsible for various cognitive and sensory processes,
such as speech generation, language comprehension, and move-
ment (Ojemann and Whitaker, 1978; Tzourio-Mazoyer et al., 2004).
Identifying and subsequently avoiding these areas during a neu-
rosurgery is crucial for recovery and postoperative quality of life.
Namely, an incision in the eloquent cortex can cause permanent
physical and cognitive damage (Berger et al., 1989; Fadul et al.,
1988; Sawaya et al., 1998).

Localizing the eloquent cortex can be challenging due to the
variability of its anatomical boundaries across patients (Ojemann
and Whitaker, 1978; Tomasi and Volkow, 2012). More specifically,
the language network has especially high interindividual variabil-
ity (Tzourio-Mazoyer et al., 2004). Mapping the eloquent cortex
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in brain tumor patients is even more difficult, as the functional-
ity near the boundaries of slow growing tumors is often displaced,
an effect known as neural plasticity (Duffau, 2005; Thiel et al.,
2001). In higher grade tumors, there is a phenomenon of neu-
rovascular uncoupling that can confound the identification of func-
tionally intact tissue. It has also been shown that the tumor dis-
rupts the local vasculature proximal and contralateral to the tumor
site (Gabriel et al., 2014; Partovi et al., 2012; Zhang et al., 2016),
which also affects functional connectivity. Thus, eloquent cortex
mapping remains an important and unsolved challenge in clinical
practice (Berger et al., 1989; Duffau et al., 2003).

The gold standard for mapping the eloquent cortex is invasive
electrocortical stimulation (ECS) performed during surgery (Berger
et al., 1989; Duffau et al.,, 2003; Gupta et al., 2007). While ECS is
highly specific, it imposes a significant burden on patients, who
must remain awake and functioning during the procedure. Com-
plications due to ECS arise for obese patients, patients with severe
dysphasia, patients with severe respiratory complications, and pa-
tients with psychiatric history or emotional instability (Yang and
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Prashant, 2019). Furthermore, ECS is unavailable at the presurgical
planning stage and is usually not available within the depth of the
sulci, which puts more demands on the neurosurgeon and can in-
crease surgical times (Kekhia et al,, 2011; Rosazza et al.,, 2014). As
a result, noninvasive task-fMRI (t-fMRI) has been increasingly pop-
ular for preoperative brain mapping (Bizzi et al., 2008; Giussani
et al., 2010; Petrella et al., 2006; Sabsevitz et al., 2003; Tomczak
et al.,, 2000). Namely, high activations in response to a language or
motor paradigm are considered biomarkers of the respective elo-
quent areas (Berger et al., 1989; Gabriel et al., 2014; Sair et al.,
2016). While task-fMRI is the most popular noninvasive mapping
modality (Binder et al., 1996; Suarez et al., 2009), the activations
can be unreliable for certain populations, like children, the cog-
nitively impaired, or aphasic patients, due to an inability to follow
the task protocol, or excessive head motion (Kokkonen et al., 2009;
Lee et al., 2016).

Resting-state fMRI (rs-fMRI) captures spontaneous fluctuations
in the brain at steady state (Biswal et al., 1995; Fox and Raichle,
2007; Shimony et al., 2009). While t-fMRI paradigms must be care-
fully designed to target a specific cognitive process, rs-fMRI pro-
vides a snapshot of the whole-brain, which can be used to isolate
multiple functional systems (Lee et al.,, 2013; Smitha et al., 2017,
Venkataraman et al., 2012). Equally important, rs-fMRI is a passive
modality and does not require the patient to perform a potentially
challenging task for accurate localization. As a result, there is in-
creasing interest in using rs-fMRI for presurgical mapping to cir-
cumvent the issues of t-fMRI (Ghinda et al., 2018; Lee et al., 2016;
Leuthardt et al., 2018).

Prior work includes a variety of statistical and machine learning
approaches to localize the eloquent cortex using fMRI data. Start-
ing with t-fMRI, the general linear model (GLM) is used to identify
voxels with significant activation (Sair et al., 2016; Tomczak et al.,
2000). However, this method must be done on a per-patient ba-
sis and requires manual intervention to set the correct activation
threshold. A more unified approach is presented in (Langs et al.,
2010; Langs et al., 2014). Here, the authors address the problem of
varying anatomical boundaries through a functional embedding of
the t-fMRI data based on diffusion maps and a subsequent Gaus-
sian mixture model fit to the signal. This method was validated on
a language t-fMRI paradigm in 7 tumor patients. While promising,
this method has not yet been applied to rs-fMRI data.

Within the rs-fMRI domain, the simplest methods use seed-
based correlation analysis to delineate subnetworks of the eloquent
cortex. For example, the work of Wongsripuemtet et al. (2018) uses
lateralized anatomical seeds to localize bilateral activations on
the supplementary motor area in tumor patients. Going one
step further, the methods proposed in Sair et al. (2016) and
Tie et al. (2014) rely on group ICA to extract functional networks
from the rs-fMRI data. However, these methods require an expert
to either manually select the seed or choose the language compo-
nents and threshold the ICA maps as a final post-processing step.
Hence, they may not be practical in a prospective clinical setting.

Deep learning (DL) methods have been increasingly popular in
the neuroimaging field, and consequently, have shown promise
in automatically identifying the eloquent cortex from rs-fMRI in
both healthy subjects and tumor patients. For example, the work
of Hacker et al. (2013) uses a multi-layer perceptron to clas-
sify seed-based correlation maps into one of seven resting-state
networks. This method first uses PCA for dimensionality reduc-
tion followed by a two hidden layer artifical neural network
for classification. Trained with t-fMRI labels, the model is ex-
tended in Lee et al. (2016) to perform eloquent cortex localiza-
tion in three separate tumor cases. While the results are promis-
ing, once again, the user must select an a priori seed for each
network, which can affect performance. Additionally, it is trained
on healthy subjects and may not accommodate changes in the
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brain organization due to the lesion. Finally, the large-scale study
in Leuthardt et al. (2018) uses the same neural network architec-
ture to identify eloquent subnetworks in 191 rs-fMRI and 83 t-
fMRI scans of tumor patients. However, a success refers to whether
the model identified any clinically relevant topographies within the
scan. The study does not quantify the accuracy at the voxel or ROI
level, which is the metric of interest during presurgical mapping.

1.1. Contributions

In contrast to prior work, we draw from the multi-task learning
(MTL) literature (Ruder, 2017; Soltau et al., 2014; Xue et al., 2007;
Zhang and Zhang, 2014) to simultaneously classify motor and lan-
guage networks using a shared deep representation (Martino et al.,
2011; Overvliet et al., 2011; Pool et al., 2015). The goal of MTL is
to improve the generalizability of a model by training it to per-
form multiple tasks at the same time (Caruana, 1997). Our archi-
tecture uses convolutional filters that act on rows and columns of
the functional connectivity matrix (Kawahara et al., 2017). The re-
sulting graph neural network (GNN) mines the topological proper-
ties of the data in order to classify the eloquent brain regions. In
addition, our training strategy can easily accommodate missing pa-
tient data in a way that optimizes the available information. This
setup is highly advantageous, as the fMRI paradigms administered
to each patient may vary depending on their case.

We validate our method using an in-house dataset collected
at the Johns Hopkins Hospital (JHH) as well as publicly available
data from the Human Connectome Project (HCP), in which we
simulate tumors in the healthy brain and include performance on
the healthy HCP data in the supplementary material. We demon-
strate that our MTL-GNN achieves higher eloquent cortex detec-
tion than popular machine learning baselines. We further show
that our model can recover clinically challenging bilateral language
cases when trained on unilateral language cases. Using an ablation
study, we assess the value of the multi-task portion of our net-
work. Finally, we assess robustness of our method by varying the
functional parcellation used for analysis, jittering the tumor seg-
mentations, quantifying the effects of data augmentation, and per-
forming a hyperparameter sweep. Taken together, our results high-
light the promise in using rs-fMRI as part of presurgical planning
procedures.

2. Methods
2.1. Material

2.1.1. JHH tumor dataset

Our tumor cohort consists of 62 patients who underwent
presurgical fMRI at the Johns Hopkins Hospital (JHH). The data was
obtained using a 3.0 T Siemens Trio Tim system. Structural im-
ages were acquired via an MPRAGE sequence (TR = 2300 ms, Tl =
900 ms, TE = 3.5 ms, flip angle = 9°, FOV = 24 cm, acquisition ma-
trix = 256 x 256 x 176, slice thickness = 1 mm). Functional BOLD
images were acquired using 2D gradient echo-planar imaging (TR
= 2000 ms, TE = 30 ms, flip angle = 9°, FOV = 24 cm, acquisition
matrix = 64 x 64 x 33, slice thickness = 4 mm, slice gap = 1 mm,
interleaved acquisition). A more detailed description of the partic-
ipants, the task paradigms, and acquisition protocol can be found
in Sair et al. (2016).

The structural MRI was used for manual tumor segmentation
via the MIPAV package (McAuliffe et al., 2001). The segmentations
were performed by a medical fellow and confirmed with an expert
neuroradiologist. Fig. 1 illustrates structural the T1 MRI of four pa-
tients to motivate the heterogeneity in tumor size and location.

T-fMRI data was acquired for all patients as part of the presur-
gical workup. In this work, t-fMRI is used to derive “pseudo-
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Fig. 1. From (L-R), T1 scans of four separate brain tumor patients. Tumor size and location (outlined in red for clarity) vary throughout the JHH cohort. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. L: The tongue, finger, and foot sub-networks for one patient. R: The language network for three separate patients. The language network boundaries are very variable

from patient to patient.

ground truth” eloquent class labels using the General Linear Model
(GLM) implemented in SPM-8 (Penny et al., 2011). The resulting
activation maps were manually thresholded on a patient-specific
basis and confirmed by an expert neuroradiologist. The t-fMRI is
only used during the training phase of the model. Only resting-
state fMRI information is included in the forward pass of the test-
ing phase.

Three motor task paradigms (finger tapping, tongue moving,
foot tapping) were used to target specific locations of the motor
homonculus (Jack et al., 1994). Fig. 2 (L) shows the various sub-
networks of interest for a single patient. Likewise, two language
paradigms, sentence completion (SC) and silent word generation
(SWG), were performed. These language tasks are designed to tar-
get both primary and secondary regions in the brain responsible
for language generation (Benjamin et al., 2018; Pillai and Zaca,
2011). For each patient, instructions and practice sessions were
provided. During acquisition, real-time fMRI maps for each task
were monitored by the neuroradiologist to assess for global data
quality; any task performance deemed suboptimal due to motion-
related or other artifact was repeated. Since the t-fMRI was ac-
quired as part of routine clinical care, not all patients performed
each task. Finally, our cohort has 57 patients with left-hemisphere
language networks and 5 patients with bilateral language net-
works. Fig. 2 (R) illustrates the high anatomical variabilitiy in lan-
guage regions, especially due to tumor presence.

Rs-fMRI was acquired while subjects were awake but passive in
the scanner. The rs-fMRI data was preprocessed using SPM-8. The
steps include slice timing correction, motion correction and regis-
tration to the MNI-152 template. The data was linearly detrended
and physiological nuisance regression was performed using the
CompCorr method (Behzadi et al., 2007). The data was bandpass
filtered from 0.01 to 0.1 Hz, and spatially smoothed with a 6 mm
FWHM Gaussian kernel. Finally, images found to exceed the default
noise threshold by the ArtRepair toolbox (Mazaika et al., 2009)
were removed (scrubbed) from the rs-fMRI volumes. As a com-
mon practice, we apply a functional parcellation (Craddock et al.,
2012) to the rs-fMRI data to increase the signal-to-noise (SNR) of
our analysis and also reduce the input dimension to our model. In
this work, we rely on the Craddocks atlas (Craddock et al., 2012)
with removed cerebellar regions (N = 384). The atlas was derived
using spectral clustering on healthy rs-fMRI and is widely cited in
the literature (Allen et al., 2014; Finn et al., 2015; Thirion et al.,
2014). We chose this parcellation because it provides an appropri-
ate spatial resolution to map both the language network and the

Table 1

Patient, tumor and t-fMRI information for the JHH cohort.
Age 38+6.3
Sex (M,F) 3725
Tumor location (lobe) Hemisphere
Frontal 21 Left 35
Parietal 18 Right 20
Temporal 17 Both 7
Occipital 6
Volume (x1000)mm?3 WHO grade
<35 21 1 14
35-70 28 2 27
70-100 8 3 13
>100 5 4 8
Task protocol Number of patients
Language 62
Finger 38
Tongue 41
Foot 18

primary motor sub-networks (finger, foot, tongue). A region was
determined belonging to the eloquent class if at least 80% of its
voxel membership coincided with that of the thresholded GLM ac-
tivation maps. Tumor regions were determined in a similar fashion
based on the manual tumor segmentations. Due to varying tumor
size and location, the distribution of our labels is variable, as 139
unique parcels are mapped to language by t-fMRI in at least one
patient, 90 are mapped to finger, 84 are mapped to tongue, and 52
are mapped to foot. Confounders such as tumor size and handed-
ness are intrinsically tied within the model, as handedness relates
to laterality of language (e.g., we have 57 unilateral and 5 bilateral
language subjects), and the tumor is explicitly modelled within our
similarity graph. Table 1 presents information for the JHH cohort,
where we report the number of patients that performed each task,
the tumor grade and size, and demographics.

2.1.2. Human connectome project dataset

We conduct a proof-of-concept simulation study by applying
our method to 100 subjects drawn from the Human Connectome
Project (HCP1) dataset (Van Essen et al., 2013), in which we sim-
ulate “fake tumors”. We limit the analysis to 100 subjects, so that
the dataset is of comparable size to our JHH cohort. Details on the
acquisition paramters, sequencing, and preprocessing for both rs-
fMRI and t-fMRI can be found in Van Essen et al. (2013).

The language task for HCP was developed
in Binder et al. (2011) to map the anterior temporal lobe for



N. Nandakumar, K. Manzoor, S. Agarwal et al.

presurgical planning. The task consisted of alternating between
story comprehension and performing basic arithmetic operations
(addition, subtraction etc.). In both blocks, the participants re-
ceived questions in the form of text-to-speech, to activate their
language processing networks. For the motor task, participants
were instructed to tap their left or right fingers, squeeze their left
or right toes, or move their tongue to map motor areas (block
design Buckner et al., 2011). We used the FEAT software from
FSL (Jenkinson et al., 2012) to obtain GLM activation maps of the
HCP t-fMRIL.

The “fake tumors” overlayed onto the HCP1 connectomes are
randomly created, and ensured to be spatially continuous, akin
to a real tumor. We include this augmented dataset to simulate
various issues the tumor introduces to our classification task and
ultimately show robustness of our method. Our motivation for
including the HCP simulation study is to evaluate our MT-GNN
performance on real-world data with similar characteristics (i.e.,
resting-state functional connectivity inputs and labels derived from
t-fMRI). Though we cannot model neural reorganization due to the
tumor, our HCP simulation study provides a baseline of how re-
moving functionality from these regions affects the overall perfor-
mance. For the interested reader, we include the performance on
the healthy HCP1 data without contamination in the supplemen-
tary material.

Finally, we have downloaded a second dataset of HCP subjects
(HCP2) to use solely for hyperparameter tuning of our model and
baseline approaches. Once tuned, these hyperparameters are fixed
for all experiments. This second HCP dataset ensures that there is
no bias from our hyperparameter selection that enters the training
and testing procedures for the JHH and HCP1 datasets.

2.2. Multi-task GNN

Our chief modeling assumptions is that while the anatom-
ical boundaries of the eloquent cortex may shift from pa-
tient to patient, the resting-state functional signatures of the
language and motor network remain consistent (Langs et al.,
2010; 2014; Nandakumar et al, 2019). We construct a novel
multi-task learning graph neural network (MT-GNN) to capture
these patterns. A single-task version of our model appeared in
Nandakumar et al. (2019). In this paper we extend our prelimi-
nary work to simultaneously map different functional systems and
handle missing training data, which is typical in clinical practice.
Our MT-GNN is validated on multiple datasets compared with the
single-task GNN. We also evaluate robustness and generalization.

Our MT-GNN architecture can simultaneously learn different ar-
eas of the eloquent cortex (language, finger, tongue, foot) by lever-
aging all available data and the shared representation for whole-
brain rs-fMRI connectivity. Our architecture uses specialized con-
volutional filters, developed in Kawahara et al. (2017), that are de-
signed to operate on similarity matrices. These filters aggregate in-
formation across a hub-like row-column intersection, rather than
across the local spatial field of a standard convolution. As com-
pared to Kawahara et al. (2017), our model includes three innova-
tions. First, we treat the tumor as “missing data” to avoid biasing
the eloquent cortex identification. Second, instead of collapsing the
information into a single patient-wise prediction, we preserve the
region-wise information. Finally, we use MT learning to simultane-
ously obtain eloquent cortex segmentations for multiple functional
systems. Fig. 3 shows our pipeline from the unprocessed rs-fMRI
scans to our input similarity matrix. Tumor regions are delineated
and effectively ignored in our similarity matrix computation. Fig. 4
illustrates our MT-GNN pipeline. As seen, the input to our model
is a rs-fMRI similarity matrix, and the output of each branch is
a region-wise segmentation into eloquent, tumor, or background
gray matter.
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2.2.1. Graph construction

Our method treats the rs-fMRI connectivity as a weighted sim-
ilarity graph, drawing inspiration from the graph theoretic litera-
ture (Langs et al,, 2010; 2014). Let N be the number of brain re-
gions in our parcellation and T be the number of time points for
a rs-fMRI scan. We define x; € RT*! as the average time series ex-
tracted from region i. We normalize each time series to have zero
mean unit variance. The input similarity matrix W € RNV is given
by W = exp [XTX - 1]. The tumor regions disrupt connectivity, and
therefore are treated differently in our model formulation (Duffau,
2005; Gabriel et al., 2014; Nandakumar et al., 2018; 2019). In this
work, we opt to set all edges associated with tumor nodes to zero
while maintaining the value of 1 on the diagonal. We also create
a separate “tumor” class at the MT-GNN output, which allows the
network to learn the patterns of zero values, so that it does not
bias the eloquent cortex localization.

Our framework assumes that tumor boundaries have been pre-
determined (i.e. segmented) on the voxel level. While we rely on
manual segmentations in this paper, our approach is agnostic to
the segmentation method and can easily be applied to automated
techniques (Havaei et al., 2017; Isin et al., 2016; Zhao et al., 2018).
Our similarity graph construction asserts that W; ; > 0 for all non-
tumor regions. Therefore, even two healthy regions with a strong
negative correlation will still be more functionally similar than
tumor regions in our model. Our network achieves near perfect
(~ 0.99) accuracy for the tumor class due to this setup, as expected
due to the zeroing out of tumor regions.

2.2.2. Pre-MT network architecture

Our MT-GNN architecture employs both convolutional and fully-
connected (FC) layers to extract features from the connectivity ma-
trix. While a traditional convolutional assumes a grid-like field of
view, our MT-GNN convolutions span full rows and columns of the
graph, so they capture local neighborhood connectivity information
associated with node pairs (edges). The two convolutional layers of
our MT-GNN are from egde-to-edge (E2E) and egde-to-node (E2N)
filters, which are taken from Kawahara et al. (2017). For complete-
ness of describing our network architecture, we present the rele-
vant equations from Kawahara et al. (2017) below.

Mathematically, an E2E filter is composed one row filter, one
column filter, and a learned bias, which totals 2N + 1 parameters.
Let m e {1,.--,M} be the E2E filter index, r" ¢ R*N be the mth
row filter, ¢™ € RN*1 be the mth column filter and by € R1*! be
the E2E bias for filter m. The feature map A™ € RN*N output from
E2E filter m is computed as

N
A" =¢(ng1w,<,n+cnmwn,,-+bm), 1)

n=1

where ¢ is the activation function. An E2E filter (pink in Fig. 4)
for node pair (i, j) computes a weighted sum of connectivity
strengths over all edges connected to either region i or j. We
use these filters to learn the predictive connectivity patterns be-
tween brain regions. Even with symmetric input W, the derived
E2E features are not guaranteed symmetric. This asymmetry is de-
sirable for language localization, as these systems tend to be lat-
eralized in the brain (Tzourio-Mazoyer et al., 2004; Sair et al.,
2016; Nandakumar et al., 2019). At the E2E layer (green in Fig. 4),
we have multiple different views along the M dimension of the
edge-to-egde similarities within our connectome data. The E2N
layer condenses our representation from size N x N x M after the
E2E layer to N x M, yielding M features for each node. To obtain
region-wise representations, our E2N filter performs a 1D con-
volution along the columns of each feature map, as the authors
in Kawahara et al. (2017) did not see improvement in applying the
convolution to either the columns or rows of each feature map.
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Fig. 3. The data workflow of our model. The rs-fMRI data is preprocessed and then the Craddocks functional atlas is applied. The tumor boundaries are delineated and

introduced as rows and columns of zeros in the input similarity matrix.
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Fig. 4. The overall workflow of our model. N is number of nodes, M is number of convolutional feature maps, H; is number of neurons in the first FC layer and H, is the
number of neurons in the second FC layer. Our model uses specialized E2E and E2N filters as well as employs multi-task learning on a variety of available t-fMRI paradigms.
Each grey module represents a separate 3-class segmentation task. The variables L, My, M, and M3 represent the language, finger, tongue, and foot networks respectively, as
shown by the segmentation maps where red, blue, and white refer to the eloquent, neither, and tumor classes respectively. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Furthermore, using a single orientation allows us to reduce the
number of parameters in the network, which is critical given our
small datasets (N < 100). Mathematically, let g™ € R*N be the mth
E2N filter and d;;, € R be the E2N bias for filter m. The E2N out-
put a™ € RN*1 from input A™ is computed as

an = ¢<XN:g;"ATn n dm). 2)
n=1

The E2N filter computes a single value for each node i by taking
a weighted combination of edges associated with it. The resulting
E2N layer is shown in yellow.

Here, our modelling strategies depart from those
in Kawahara et al. (2017), as our network operates on the
node level, and does not condense the first dimension of the
representation any further. We use two fully-connected layers
with neurons H; and H, (shown in Fig. 4) to extract features
before the multi-task (MT) portion. The network then branches
off into the MT classifier, which effectively decouples the FC
weights according to which functional system it is responsible for
identifying. The grey blocks in Fig. 4 show the MT-FC layers, where
we have four separate functional systems to identify. Each grey
module performs a separate 3-class classification task, shown by
the segmentation maps on the RHS of Fig. 4. At a high level, the
MT-FC layer leverages commonalities in the rs-fMRI connectivity
patterns between the language and motor networks. This shared
representation drastically reduces the number of parameters,
relative to training the separate E2E and E2N layers in our prelim-
inary work (Nandakumar et al., 2019). Clinically, our model can
be extended to an arbitrary number of tasks by adding more MT
branches, thus providing a valuable tool for presurgical mapping.
Our MT-GNN also constructs a shared representation for language
and motor areas which may shed insight into brain organization.

2.2.3. Classification and loss functions

Each MT-FC layer has dimension N x 3 where N is the number
of regions, and the three classes denote eloquent, tumor, and back-
ground gray matter, represented by the colors red, white, and blue
respectively on the segmentation maps in Fig. 4. Recall that we
treat the tumor as a separate learned class to remove any bias that
zeroing out tumor edges might introduce into the model. We em-
phasize that the tumor detection accuracy is not the main goal or
result of this work. Instead, our goal is to maximize the eloquent
detection performance. We keep the tumor regions so the input
connectivity matrix is of the same dimension for each patient. Re-
moving the tumor regions would result in different size input ma-
trices across patients, which our model is not designed to handle.
Softmax is applied and each region is classified into one of the
three classes with an argmax operator. One obstacle in our datasets
is the limited number of eloquent class training samples, since the
language and individual motor areas are small (see Fig. 2). For
the JHH cohort, the average class membership is 4.7%,10.1% and
85.2% for the eloquent, tumor, and background gray matter class
respectively. Since the convolutional filters are designed to oper-
ate upon the whole-brain connectivity matrix, our class imbalance
problem cannot be mitigated by traditional data augmentation
techniques. Therefore, we train our model with a modified Risk-
Sensitive Cross-Entropy (RSCE) loss function (Suresh et al., 2008),
which is designed to handle membership imbalance in multi-class
setting. Let §; be the risk factor associated with class i. If §; is large,
then we pay a larger penalty for misclassifying samples that be-
long to class i. Due to a training set imbalance, we select differ-
ent penalty values for the language class {8{}111 and motor classes
{8}, respectively.

Let L, M;, M,, and M5 € R¥*3 (Fig. 4) be the output of the lan-
guage, finger, foot, and tongue MT-FC layers respectively. Each col-
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Training vs. Validation Error on HCP2 Dataset
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Fig. 5. Training and validation error on HCP2 dtaset for early stopping.

umn of these matrices represents one of three classes: eloquent,
tumor, and background. Let Y/, Y™ Y™ and Y™ € RN*3 be one-
hot encoding matrices for the region-wise class labels of the lan-
guage and motor subnetworks from t-fMRI. Our loss function is the
sum of four terms:

Lo(W,Y) =
3 3
— Y 8ilog(L)TY; - " 8" log(My)TY[™

i=1 i=1

Language Loss £; Finger Loss L, (3)

3 3
= 8" log(My)TY™ — " 5 log(M})T Y™

i=1 i=1

Foot Loss Limz Tongue Lossﬁ,,13

The error from all four loss terms is backpropagated throughout
the network during training, as illustrated by the green arrows in
Fig. 4. Our framework allows for overlapping eloquent labels, as
brain regions can be involved in multiple cognitive processes. To
reiterate, our goal is to identify subnetworks of the eloquent cor-
tex for presurgical planning. We take a supervised approach to this
problem via multi-task classification. The model presented in this
work focuses on localizing four eloquent subnetworks, as our in-
house dataset contains task fMRI labels for three motor areas and
one language area. We emphasize that our framework can be ex-
tended to any number of functional subsystems if the proper train-
ing labels exist. In this case, the user would simply add MT-FC lay-
ers and the corresponding cross-entropy term in the loss function.
From a modeling standpoint, our edge-to-edge layer is designed
to extract informative subnetworks from the rs-fMRI connectivity
matrix to maximize downstream separation of the desire classes.
Hence, the value of M (in this work between 8-16) is closely tied
to the number of subnetworks extracted from the data.

2.2.4. Implementation details and hyperparameter selection

We used 10-fold cross validation (CV) on the HCP2 dataset to fix
the hyperparameters for all experiments. In this manner, our evalu-
ation on the HCP1 and JHH datasets do not include biased informa-
tion from the hyperparameter selection. Fig. 5 shows the general-
ization gap between training and testing, which was used to deter-
mine epoch number. Overall, we observe stable training and vali-
dation curves, which gives us confidence in the optimization of our
network. For the § hyperparameters, we performed a coarse grid
search from 0 — 10 in increments of 10~! until we found a suitable
range of performance. We then performed a finer grid search in
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Table 2

Hyperparameters determined via CV on the separate
HCP2 dataset. Ir and wd refer to learning rate and weight
decay.

Parameter  value Parameter  value

N 384 wd 5x 10

M 8 Epochs 104

Ir 0.005 O (1.27,0.46,0.25)
H; 64 ] (2.02,0.46,0.25
H, 27

increments of 102 to obtain the final values shown in Table 2. We
fixed the same § values for the tumor and neither classes across
branches.

Due to the clinical protocol, most JHH patients have only
undergone a subset of the three motor t-fMRI tasks. We han-
dle this missing data during training by freezing the weights
of the MT-FC layer in Fig. 4 that corresponds to the missing
task when we backpropagate (Garcia-Laencina et al., 2007; Zhang
and Huan, 2012). Our strategy ensures that we mine the rele-
vant information from the data present while preserving the fine-
tuned layers of the branches that correspond to missing tasks.
We train with batch size equal to one, to accommodate the
missing tasks across patients. The number of subjects that per-
formed each task is listed in Table 4. We implement our net-
work in PyTorch (Paszke et al. (2017)) using the SGD optimizer.
The LeakyReLU(x) = max(0, x) + 0.33-min(0, x) activation function
is applied at each hidden layer. A softmax activation is applied at
the final layer for classification. With GPU available, the total train-
ing time of our model is 5 min.

2.3. Baseline methods

We evaluate the performance of our method against three base-
line algorithms.

1. A Multi-class SVM on graph theoretic features

2. Separate Random Forest Classifiers on stacked similarity matri-
ces

3. A Fully-connected neural network with a final MT-FC layer (FC-
NN)

The first baseline is a multi-class linear SVM based on node de-
gree, betweenness centrality, closeness centrality, and eigenvector
centrality (Fortunato, 2010; Opsahl et al., 2010). We include this
baseline as a traditional machine learning approach for network
detection in graphs. We experimented with the RBF, Gaussian, and
linear kernel classes and empirically determined that the linear
kernel achieves the highest AUC metrics. We set the SVM hyperpa-
rameter ¢ = 15.2 using CV on the HCP2 dataset. The second base-
line is a Random Forest (RF) classifier on the row vectors of the rs-
fMRI similarity matrices, thus taking the connectivity as its input
feature vector. Here, we train and test one separate RF classifier for
each of the four functional systems. We include this baseline to as-
sess the predictive power of the raw rs-fMRI correlations. We have
implemented the RF classifier in python using 250 decision trees.
The tumor nodes and class are removed for the machine learning
baselines, which operate on the node level.

Our deep learning baseline is an artifical neural network that
contains only fully-connected layers (FC-NN). We include this base-
line to observe the performance gains in adding the specialized
E2E and E2N filters. The FC-NN has five hidden layers and then
a final MT-FC layer. We include more hidden layers in the FC-
NN than the MT-GNN because it achieved a beter trade-off be-
tween architecture depth and width. We optimized the hyperpa-
rameters for the FC-NN using the HCP2 dataset as well, resulting
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Evaluation: 10 Repeated 10-fold CV
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Fig. 6. We use repeated 10-fold CV for model training and testing. We repeat each
CV 10 times, ensuring that fold membership changes for each run. We report the
mean and standard deviation of eloquent class true positive rate (TPR), and elo-
quent class area under the curve (AUC). For each baseline, we report the FDR cor-
rected p-value from the associated t-score between our MT-GNN and the baseline,
as evaluated on the AUC metric. In addition, we report the specificity, F1 and t-
scores for the main classification results shown in Tables 3 and 4.

in 8m = (1.34,0.43,0.31) and §; = (2.13,0.43,0.31). The tumor is
handled in the same way for the MT-GNN (proposed) and FC-NN
(baseline).

3. Experiments and results

Fig. 6 shows the evaluation workflow of our experiments. For
each task, we report the eloquent class true positive rate (TPR)
and eloquent class AUC. We note that all experiments in this work
are performed on the parcel (ROI) and not voxel level. This dimen-
sionality reduction is critical when working with a smaller clini-
cal dataset. Eloquent class TPR is computed as the total number
of correctly classified eloquent parcels divided by the total number
of eloquent parcels. The AUC metric reported balances the tradeoff
between the true and false positive rates of detecting the eloquent
class. The reported statistics were determined using repeated 10-
fold CV, where each run has a different fold membership. We re-
port the mean and standard deviation of the metrics. To demon-
strate statistically significant improvement, we perform a t-test on
the repeated 10-fold CV runs, which corrects for the independence
assumption between samples (Bouckaert and Frank, 2004). For-
mally, let r be the number of times we repeat k-fold CV. We ob-
serve two learning algorithms A and B and measure their respec-
tive AUCs g; ; and b; ; for fold i and run j. Let x; j = a; j — b; ; be
the performance difference, n, be the number of testing samples,
ny be the number of training samples, and 62 be the sample vari-
ance. The test statistic is given by

1 K
oF Doict 21 Xij

VG + )62

The variable t in Eq. (4) follows a t-distribution with degrees of
freedom df = kr — 1.

The experimental results section is broken into 3 main subsec-
tions. In Section 3.1, we show the results from the tumor simula-
tion experiment in the HCP1 dataset. Section 3.2 contains the main
JHH dataset and our bilateral language identification experiment.
Section 3.3 includes an ablation study, where we evaluate the
multi-task learning portion of our network. Finally, in Section 3.4,
we assess robustness of our method using varying functional at-
lases, corruption in tumor segmentations, and data augmentation
techniques.

t=

(4)

3.1. HCP simulation study

We validate our approach on a synthetic dataset which uses
healthy connectomes with fake simulated tumors. This experiment
provides a proof-of-concept for our methodology on data which
has similar characteristics as our main JHH cohort. The “tumors”
added to this dataset are randomly positioned but created to be
spatially continuous with the same size as the real tumor segmen-
tations we obtained from the JHH cohort.
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Eloquent Class AUC for HCP Cohort
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Fig. 7. Boxplot for the AUC metric reported in Table 3 using 10 repeated 10-fold
CVs. The colors red, blue, green and yellow refer to the MT-GNN, FC-NN, RF, and
SVM methods respectively. We observe higher median performance and smaller de-
viations in our proposed method compared to the baseline algorithms. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

The results for this experiment are summarized in Table 3,
where we show that the MT-GNN has superior performance in
all cases when compared to the baselines. Our performance gains
are underscored by the t-test, where we observe very small p-
values (p << 0.001) for each competing baseline algorithm among
each task present. Therefore, our method captures the compli-
cated interactions between the eloquent cortex much better than
the competing baseline algorithms. We also observe less perfor-
mance variability across CV runs with our method compared to
all of the baselines, which demonstrates robustness to the train-
ing data. We note that the RF classifier has low sensitivity and
the mutli class SVM performs slightly better than chance. The per-
formance of these machine learning baselines suggests that elo-
quent cortex mapping is a particularly challenging problem. High-
lighted by the AUC column, the MT-GNN outperforms the FC-NN
baseline in all cases. Using convolutional filters, the MT-GNN finds
stereotypical connectivity patterns that identify the eloquent cor-
tex. Compared to the motor network localization, all methods per-
form worse when identifying language networks, likely due to its
higher anatomical variation. Fig. 7 shows boxplots of the AUC met-
ric among all four methods and all four tasks. The colors red, blue,
green and yellow refer to the MT-GNN, FC-NN, RF, and SVM al-
gorithms respectively. Here we can see the performance gain and
robustness of our method, which has larger median values and
smaller deviations than the baselines. We repeat the performance
of the algorithms on the healthy HCP dataset in the supplementary
material as a way of gauging the effect that the additional tumor
class has on this problem.

3.2. JHH cohort and bilateral language experiment

Our primary localization task is on the JHH tumor cohort.
Table 4 shows the eloquent class accuracy, AUC for detecting the
eloquent class and t-scores for the JHH dataset. Once again, the
MT-GNN has the best overall localization performance. Highlighted
by the AUC and p-value column, the MT-GNN outperforms the
baselines in nearly all cases, except for the tongue network. Similar
to the HCP study, we observe smaller deviations with our method
compared to all of the baselines, which shows robustness even
when the method is trained and tested on different subsampled
versions of the data. Among both the HCP simulation study and
the JHH dataset, the HCP language task was the most challenging
to localize, likely due to differences between the HCP and JHH lan-
guage protocols. The HCP language task was designed to target lan-
guage comprehension (Binder et al., 2011) while the JHH sentence
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Table 3
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Mean plus or minus standard deviation for eloquent class true positive rate (TPR), specificity, F1 and AUC for the
HCP cohort (100 subjects). The final column shows the FDR corrected p-values for the associated t-scores where we

compare AUC between our method against each baseline.

Task Method Eloquent TPR  Specificity F1 AUC t-score  p-value

Language  MTGNN  0.67 +0.013 062+0012 063+0014 0.68+0.01
FCNN 0.59 4+ 0.022 0.56 & 0.021 0.58+0.019  0.62+0.018 14.08 3.5 x 1074
RF 0.32+0.036 0.61+0.026 045+0.013 0.52+0.034 17.02 1.8 x 1064
SVM 0.36 +0.026 049+0.024 039+0.018 0.51+0.016 34.68 2.7 x 10262

Finger MTGNN  0.78 +0.011 075+0013 0.77+0.014 0.82+0.008
FCNN 0.75+0.014 0.69+0.016  0.71+0.015 0.73+0.011 17.84 3.1x10°7°
RF 0.41 +£0.026 0.71+£0.022  0.54+0.023 0.58+0.028 27.61 1.2 x 107166
SVM 0.41 +£0.024 0.55+0.028 042+0.025 0.52+0.015 52.66 ~0

Foot MTGNN  0.83 +0.009 0.82+0.008 0.8+0.011 0.79 + 0.009
FC-NN 0.73 £0.016 0.65 4+ 0.017 0.66+0.013  0.71+0.015 21.45 4.9 x 10-101
RF 0.42 +£0.025 0.74+0.026  046+0.021 0.58+0.029 1432 1.2 x 107%
SVM 0.50 & 0.031 0.534+0.028 0.48+0.027 0.51+0.013 65.72 ~0

Tongue MTGNN  0.80+0.01 0.78+0.009 0.77+0.011 0.78+0.009
FC-NN 0.76 +0.012 0.72+0.014 0.73+0.016  0.73+0.015 7.63 9.1x 10~
RF 0.44+0.03 0.694+0.032 0.50+0.026 0.57+0.032 23.73 2.1x107'%
SVM 0.55 4+ 0.023 0.524+0.025 0.48+0.024 053+0.014 49.61 ~0

Table 4

Mean plus or minus standard deviation for eloquent class TPR, specificity, F1 and AUC for the JHH cohort, where the
number of subjects who performed each task is shown in the first column. The final column shows the FDR corrected
p-values for the associated t-scores where we compare AUC between our method against each baseline.

Task Method Eloquent TPR  Specificity F1 AUC t-score p-value
Language  MTGNN  0.75+0.011 0.72+0.01 0.74+0.013 0.76 +0.013
(N =62) FCNN 0.68 +£0.014 0.63+0.016 0.67+0.013 0.70+0.015 11.56 3.8 x 10730
RF 0.49 4+ 0.034 0.65+0.027 0.59+0.029 0.61+0.035 12.11 5.7 x 1073
SVM 0.46 + 0.017 0.55+0.019  0.45+0.02 0.524+0.012  50.76 ~0
Finger MTGNN  0.85+0.014 083+0016 082+0.013 0.83+0.015
(N =38) FCNN 0.77 £0.019 0.65+0.016 0.73+0.019 0.75+0.017 8.36 2.7 x 10716
RF 0.48 +0.039 0.66+0.028 0.57+0.034 0.60+0.029 24.22 1.7 x 107128
SVM 0.55+0.02 0.544+0.021 0.53+0.015 05440014 43.48 ~0
Foot MTGNN  0.81+0.023 081+0021 079+0.019 0.78+0.025
(N =18) FC-NN 0.71 +£0.023 0.624+0.025 0.68+0.024 0.73+£0.025 9.32 5.5 x 10-20
RF 0.45 +0.044 0.67+0.038 0.51+0.039 0.66+0.047 10.58 2.0x 1072
SVM 0.53 +0.028 0.57+0.023  0.49+0.025 0.54+0.021 25.63 12 x 107143
Tongue MTGNN  0.82+0.015 081+0012 0.82+0.014 0.80+0.014
(N = 41) FC-NN 0.83 +0.019 0.80+0.011 083+0018 080+0.019 -0.91 0.82
RF 0.38 +0.028 0.65+0.029 0.52+0.024 0.60+0.031 18.96 3.5x 1077
SVM 0.58 £ 0.021 0.51+£0.022 0.50+£0.025 0.53+0.015 37.69 1.34 x 10739
Table 5
Eloquent Class AUC for JHH Cohort Mean class and overall accuracy for testing on 5 bilat-
0.85 EMT-GNN eral language subjets. As a comparison, the mean elo-
—_— ! i i* Hecnn quent class TPR from Table 4 is also shown in the final
column.
Mrr
0.75 T ; -
i svm Method Bilateral TPR  overall  Eloquent TPR
g‘ 0.70 ; e
=z MT-GNN  0.70 0.77 0.75
0.65 FC-NN 0.51 0.72 0.68
RF 0.33 0.76 0.49
98¢ T SVM 0.41 0.63 0.46
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Fig. 8. Boxplot for the AUC metric reported in Table 4. The colors red, blue, green
and yellow refer to the MT-GNN, FC-NN, RF, and SVM methods respectively. We ob-
serve higher median performance in three out of four tasks and smaller deviations
in all four tasks with the MT-GNN. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

completion and silent word generation task were designed to tar-
get speech and language generation (Benjamin et al., 2018; Pillai
and Zaca, 2011; Sair et al., 2016). Fig. 8 shows boxplots of the AUC
metric among all four methods and tasks in the JHH cohort. Once
again, we can see the robustness of our MT-GNN, which has larger

median values for three out of the four tasks and smaller devia-
tions for all four tasks compared to the baselines.

Our next experiment using the JHH cohort evaluates whether
the proposed model and baselines can accurately identify bilateral
language networks, even when this case is not present in the train-
ing set. This experiment assessess how well the models can iden-
tify unseen language regions based on intrinsic rs-fMRI connectiv-
ity patterns. We only perform this experiment on the JHH cohort
because the JHH sentence completion and silent word generation
tasks are designed to target lateralized systems, as compared to
the HCP language processing and comprehension tasks. Here, we
trained the model on 57 left-hemisphere language network pa-
tients and tested on the remaining 5 bilateral subjects. Table 5
shows the mean eloquent class and the overall accuracies for the 5
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Fig. 9. Task-fMRI "ground truth” activations (blue) and predicted (yellow) labels for one bilateral language network example across all algorithms. The MT-GNN has the
highest localization accuracy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6

Mean plus or minus standard deviation for eloquent TPR and AUC
for the ablation study, where the cohort is shown in the first col-
umn. The final column shows the corrected p-values from the asso-
ciated t-scores where we compare AUC between our method against
the single GNN (SGNN).

Task Method TPR AUC p-value
Lang. MT-GNN  0.75 +£0.011 0.76 + 0.013

SGNN 0.73+£0.019 0.72+0.026  1.5e-9
Finger MT-GNN  0.85+0014 0.83+0.015

SGNN 0.82 +£0.021 0.81+£0.027 0.28
Foot MT-GNN  0.81+0.023 0.78 +0.025

SGNN 0.714+£0.032 0.72+0.034 3.3e-3
Tongue  MT-GNN  0.82+0.015 0.80+0.014

SGNN 0.79+0.019 0.77+0.023  2.2e-3

held out subjects. Our proposed model outperforms all baselines in
both per-class and overall accuracy. Fig. 9 shows the ground truth
(blue) and predicted (yellow) labels for one bilateral language net-
work across methods. The MT-GNN shows the best trade-off be-
tween true positives and false positives compared to the baselines.
We observe that the FC-NN overpredicts too many incorrect re-
gions, the RF is unable to detect bilateral activation, and the SVM
completely misses the correct activation pattern. We point out that
due to a small sample size, the bilateral language identification
experiment is not as conclusive as the main results, but rather
provides a proof-of-concept and clinically valuable assessment on
the JHH cohort. Specifically, this experiment provides evidence that
our MT-GNN does not simply memorize nodes, but rather finds in-
trinsic connectivity patterns associated with language. In addition,
language lateralization is a key problem in clinical neuroradiology,
and the bilateral experiment is exciting preliminary evidence that
our MT-GNN can be applied to other clinical problems in the fu-
ture.

3.3. Ablation study

In this section, we assess the value of adding the multi-task
learning component to our network via an ablation study. Specifi-
cally, we evaluate performance on each of the four networks by re-
moving the other three MT-FC layers from the model during train-
ing and testing. Therefore, each single GNN (SGNN) is trained sep-
arately for each task, and evaluated on that same task, without
any information from the other three tasks present. Table 6 shows
the mean eloquent TPR, AUC for eloquent class detection, and cor-
rected p-value for AUC between the MT-GNN and SGNN for the
JHH cohort. Highlighted by p < 0.01, our MT-GNN outperforms the
SGNN in three out of four experiments. Fig. 10 shows the side-by-
side boxplots for AUC between the MT-GNN and SGNN, where we
can see a clear divide in performance between the two methods.
The MT-GNN also has smaller variability, which shows robustness
in our method.

Ablation Study
0.85 HwT-6Nn
! Misingle
GNN
0.80 ;
8]
] ?
0.75 To
0.70 +
0.65
Language Finger Foot Tongue

Fig. 10. Ablation study boxplots for AUC between both cohorts. Red refers to MT-
GNN and blue refers to single GNN. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

3.4. Assessing model robustness

In this section, we assess the robustness of our model via the
following experiments: (1) model evaluation on different scales of
the Craddocks atlas (2) degrading the accuracy of tumor segmen-
tations (3) boosting the training set via data augmentation and
(4) sweeping the language class § hyperparameter to observe the
tradeoff between class accuracy and AUC.

3.4.1. Varying parcellation choice

It is understood that the choice of parcellation can affect the
rs-fMRI connectivity due to varying spatial resolution (de Reus and
Van den Heuvel, 2013; Lord et al., 2016). Therefore, we perform
eloquent cortex localization using our MT-GNN on three additional
scales of the Craddocks atlas (N =262, N =432, and N =432 re-
gions). We choose scales that are either coarser or finer than the
original N = 384 atlas to observe the effect that varying parcel size
has on performance.

Table 7 shows the evaluation metrics using the MT-GNN for the
JHH cohort among all three atlases considered, where the p-values
for are computed with respect to the original N = 384 atlas. Con-
sidering a p < 0.01 threshold, we observe only a significant differ-
ence in performance among one of four tasks present. We observe
the N = 318 atlas outperforming the original in the foot functional
subnetworks, denoted by a large p-value. Regarding the N = 262
atlas, however, three of the four tasks have a significant decrease in
AUC. Our method is robust across the N =384 and N = 318 scales
but degrades in performance when the parcels become too coarse,
as is the case with N =262. This result implies that there is a
certain spatial resolution in atlas choice that is necessary for our
method to remain robust, likely due to the relatively small size of
the networks we identify. However, we observe that the N =432
atlas does not significantly outperform the N = 384 atlas, which
suggests that there may be a limit of spatial resolution to which
the chosen model architecture can achieve additional performance
gains.
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Eloquent Class AUC as Tumor Segmentation Degrades
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Fig. 11. AUC boxplots using the MT-GNN on the JHH dataset as the tumor segmentations decrease in accuracy. The x-axis shows the dice coefficient of the corrupted
tumor segmentation used for evaluation with the manual tumor segmentation. Corruption occurred via a combination of translating, dilating, or shrinking the manual
segmentations. The colors red, blue, green and yellow refer to the JHH language, finger, foot and tongue tasks. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 7

Mean plus or minus standard deviation for eloquent TPR and AUC
when varying the parcellation atlas. The final column shows the
corrected p-values for the associated t-scores where we compare
AUC between N = 384 against N = 318 and N = 262.

Task Atlas  TPR AUC p-value
Language 384 0.75 4 0.011 0.76 +0.013
432 0.77+0.014 0.77+0.012 0.11
318 0.73+0.018 0.75+0.016 0.06
262 0.71+£0.014  0.74+0.017 1.3e-3
Finger 384 0.85+0.014  0.83+0.015
432 0.88+0.013 0.84+0.013 0.73
318 0.8 +0.016 0.80+0.017  2.7e-3
262 0.76 £0.019  0.79+0.014  7.0e-7
Foot 384 0.814+0.023  0.78 £0.025
432 0.824+0.012 0.78+0.023 0.52
318 0.814+0.021 0.79+0.023  0.99
262 0.784+0.027 0.77+0.024 0.49
Tongue 384 0.82+0.015 0.80+0.014
432 0.83 +0.011 0.82+0.015 0.96
318 0.81+0.016 0.79+0.015 0.19
262 0.78+0.019 0.76+0.017  4.9e-5

3.4.2. Degrading tumor segmentation

Next, we evaluate the performance of the MT-GNN on the JHH
tumor cohort without perfect manual tumor segmentations. Here,
we corrupt the tumor segmentations using a combination of trans-
lation, dilation, and/or shrinking operators on the original manual
segmentations. We include this experiment to assess how robust
our method is to the segmentation accuracy.

Fig. 11 shows boxplots for the AUC metric as the tumor seg-
mentations become more corrupt, expressed by the dice coefficient
between the corrupted and true segmentations on the x-axis. As
expected, overall detection performance decreases as tumor cor-
ruption increases. This result is likely due to the network learning
connectivity patterns from tumor regions, which are confounding
features. Also, the corrupted tumor segmentations could encroach
into the eloquent cortex regions, which would also decrease per-
formance. For relatively higher dice coefficients (> .85), we observe
only a slight decrease in performance. Therefore, the model does
not require perfect tumor segmentations to work, which is valu-
able in a clinical setting.

3.4.3. Boosting training set via data augmentation

Next, we use data augmentation to artificially increase the
training set size. We include this experiment to probe the limi-
tations of our small clinical dataset when training the highly pa-
rameterized deep network. Data augmentation has been shown to
improve the performance of deep learning models due to obtain-

10

Table 8

Mean plus or minus standard deviation for eloquent TPR and AUC with
and without data augmentation. The final column shows the corrected
p-values associated with the t-scores where we compare AUC between
the original and augmented.

Task Augment  TPR AUC p-value
Language No 0.75+0.011 0.76 £0.013

Yes 0.76 +0.01 0.76 +0.011 0.21
Finger No 0.85+0.014 0.83+0.015

Yes 0.86 +£0.011 0.84+0.012 094
Foot No 0.81+0.023 0.78+0.025

Yes 0.80+0.012 0.79+0.015 0.85
Tongue No 0.82+0.015 0.80+0.014

Yes 0.80+0.017 0.80+0.013 0.39

ing a more comprehensive training set to help close the generaliza-
tion gap (Perez and Wang, 2017; Rashid and Louis, 2019). For the
JHH cohort, we subsampled the time series data using a contin-
uous sliding window to create 25 distinct new training similarity
matrices for each subject. Our evaluation strategy remained other-
wise consistent and relies on the full connectivity matrix.

Table 8 shows the localization performance, where the second
row for each task corresponds to the augmented dataset. Overall,
we observe similar performance with and without data augmenta-
tion, as highlighted by the lack of significant differences. However,
we do observe smaller deviations with using augmentation, likely
due to having more training samples. Ultimately, this experiment
gives us confidence that the MT-GNN method effectively mines in-
formation from the original data and is probably not overfitting on
a small dataset.

3.4.4. Hyperparameter sweep for 84

Finally, we sweep the language class hyperparameter 84 while
keeping the other hyperparameters constant and plot the AUC and
class accuracy on the JHH dataset. For brevity, we only show the
sweep for the language class, as the tradeoff between AUC and TPR
for the motor class shows the same trend. Fig. 12 shows the re-
sults, where AUC is in red, eloquent class TPR is in blue, and 54 is
swept in increments of 0.1. As 8% increases, we observe an increase
in false-positives, for example, when 84 exceeds 2.1, AUC drops as
the true positive rate continues to rise. Clinically, it is more im-
portant to minimize false negatives (missing the eloquent cortex)
than to minimize false positives, as there is a greater cost for dam-
aging the eloquent cortex during surgery. Therefore, our weighted
cross-entropy strategy proves useful, even if our model tends to
overpredict the eloquent cortex class.
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Fig. 12. AUC (red) and class accuracy (blue) for the language class on the JHH cohort as §;; is swept in increments of 0.1. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. An example of a reproducible left-hemisphere only connectivity hub identified by our E2E filter when trained on the JHH dataset. We observe the nodes implicated

resemble the activations in the language networks from Fig. 2.

Fig. 14. An example of a reproducible language network hub found in both hemispheres, when the MT-GNN is trained on the HCP dataset. The HCP story comprehension
task is designed to target symmetric areas, which is captured in the identified language hub.

4. Discussion

We present a novel multi-task deep learning framework to
identify language processing and motor sub-regions in brain tu-
mor patients using rs-fMRI connectivity. In comparison to base-
line methods, our model achieves higher and statistically signif-
icant region-based localization performance on both a synthetic
and real world clinical dataset. We show that our model can re-
cover clinically challenging bilateral language cases when trained
on unilateral cases. Our ablation study further demonstrates the
value of the multi-task portion of our network. Finally, we evalu-
ate the robustness of our method, including varying the functional
parcellation used, corrupting the tumor segmentations, performing
data augmentation, and sweeping our weighted cross entropy loss
hyperparameter for detecting the language class.

We observe that including the specialized convolutional layers
aids in identifying patterns within the eloquent cortex distribution.
To assess whether our network learns reproducible patterns, we
visually inspected the weights with the highest E2E filter magni-
tudes. In this manner, we can assess which network features are
considered the most important. Fig. 13 shows one example of a
language connectivity hub that our model consistently identifies on
the JHH dataset. We observe that this hub is lateralized on the left
hemisphere, which is in line with the bulk of the JHH training data.
Fig. 14 shows a symmetric language network hub that is consis-

1

tently found during the HCP experiments. This network is bilateral
because the HCP task is designed to target symmetrical areas of
the anterior temporal lobe (ATL) while the JHH task is not. Though
the network has many layers responsible for feature extraction, we
conjecture that the MT-GNN performance gains relative to the FC-
NN baseline are likely due to these reproducible connectivity hubs,
which aid the downstream classification task. However, as deep
learning models can lack interpretability, we emphasize that our
speculation is heuristic and should be taken with a grain of salt.
It is important to note that there exists potential confounding
variables in our study, such as language laterality, tumor size, age,
and gender. Here, language laterality refers to a quantitative mea-
sure between -1 and 1 that describes handedness of the subject.
These confounders can affect the relationship between the input
data and output variables of our study, thus causing unwanted bias
in our algorithm. In the Supplementary Results, we address these
potential confounders by plotting model performance against each
confounder and assessing statistical significance on the correlation
coefficients. All associated line of best fit plots are included in the
Supplementary Results. For brevity, we have listed the p-values as-
sociated with the correlation coefficients between the confounders
and the AUC metric for each classification task. Using a threshold
of p < 0.05, we find no significant correlations between model per-
formance against any of the four confounders. Fig. 16 shows an ex-
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Fig. 15. From (L-R) we show coronal, axial and sagittal views of correct (blue) and incorrect (red) prediction by our model for the eloquent cortex in a challenging inferior
frontal gyrus tumor case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 9

p-values of the correlation between confounder and AUC for
each classification task. The analysis setup and scatter plots
are provided in the Supplementary Results.

Task Gender  Tumor size  Age Laterality
Language 0.52 0.36 0.49 0.61
Finger 0.42 0.39 0.52

Foot 0.37 0.42 0.69

Tongue 0.33 0.14 0.63

ample of the tumor size confounder analysis. As seen, there is no
significant correlation between tumor size and model performance.

It is common in deep learning to first find an architecture that
overfits to the training data and then apply it to the test data. In
the Supplementary Results, we explore with different architectures
to maximize overfitting to our training data. We then explore the
effect of adding dropout to this overfit model and observe valida-
tion accuracy. We include this experiment to show the robustness
and generalization capabilities of the main model presented in the
manuscript (Table 9).

Unlike our preliminary work (Nandakumar et al., 2019), which
constructs a separate GNN for each t-fMRI paradigm, this work
shares the network parameters among all four tasks for both co-
horts. Our method shows a substantial improvement in a threefold
manner: (1) we save a large number of parameters, which is es-
sential when working with smaller clinical datasets, (2) we find a
shared latent representation of the eloquent cortex functional sys-
tems, and (3) we reduce training time by a factor of three. High-
lighted by the ablation study, we observe that the single GNN
(SGNN) cannot localize the eloquent regions as well as the MT-
GNN. Due to our multi-branch loss function, our model has access
to more training data compared to the SGNN case. Also, compared
to the SGNN, our network finds a shared latent representation that
models the complex interactions between the eloquent cortex that
eventually helps with simultaneous classification. To highlight our
localization performance, Fig. 15 illustrates the correct (blue) and
false positive (red) detections by our MT-GNN in a patient with a
large tumor in the inferior frontal gyrus. These results are aggre-
gated across all four task branches of the model. We observe per-
fect sensitivity for the motor cortex localization (no false negative
detections) and high accuracy for language despite the anatomical
lesion.

We acknowledge that a restriction of our model is to have tu-
mor segmentations manually delineated, which can be time con-
suming. However, we note that there exists a large body of work
describing automated techniques for tumor segmentation (Havaei
et al, 2017; Isin et al.,, 2016; Zhao et al., 2018) where state-of-the-
art performance is up to 0.85 dice overlap with the true segmenta-
tions. We observe that our method only slightly decreases in per-
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Fig. 16. Tumor size vs. AUC for each of the classes of interest. The associated line
of best fit equation, R? value, and p-value are shown. Tumor size is not significantly
correlated with any of the four networks..

formance at this dice coefficient, shown by Fig. 11. Therefore, we
believe our MT-GNN is a valuable tool for presurgical evaluation.

We note that the risk factor 8. plays a role in the model perfor-
mance Specifically, large values of §. encourage overprediction of
the eloquent class, as illustrated in Fig. 12 in Section 3.4.4. How-
ever, we emphasize that in this clinical application, false positive
predictions are more desirable than false negative predictions, due
to the severe outcomes of accidental damage to the eloquent cor-
tex (Fadul et al.,, 1988; Sawaya et al., 1998). Nonetheless, rectify-
ing these overpredictions is a valuable direction for future work.
In addition, we acknowledge that due to partial volume effects, our
framework is conservative in handling the tumor, as the boundary
parcels usually contain some number of healthy voxels. One future
workaround is to use a spatially hierarchical learning scheme that
increases resolution to the voxel level.

We note that there are different mathematical formulations
available to construct the similarity graph. Our formulation is taken
from Langs et al. (2010), where the full definition of W;; = d'eﬁ
Here, € is the decay speed, which controls the apparent sparse-
ness of the graph. In this work, we fixed € = 1. Additionally, we
zeroed out rows and columns corresponding to tumor regions. Ex-
perimenting with our similarity graph construction is an interest-
ing line of future work.

Though we use the convolutional filters developed
in Kawahara et al. (2017), our network and overall task are
very distinct from that in Kawahara et al. (2017). There are three
key architectural differences to our MT-GNN, which allow it to
perform the desired eloquent cortex localization. First, the original
BrainNetCNN is designed to make a single patient-wise prediction
from the input connectivity matrix. In contrast, our MT-GNN
makes node-level predictions by preserving the node information
through the fully-connected and multi-task (MT) layers. Second,
our MT-GNN treats anatomical lesions as a separate learned class
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in order to remove any biases they introduce into the eloquent
cortex detection. Finally, our MT portion uses the learned repre-
sentation from the E2E and E2N layers to simultaneously identify
multiple functional systems. Not only does this strategy reduce the
total number of parameters (i.e., convolutional layers are shared),
but our loss function can easily accommodate missing training
data. Specifically, the weights of the missing task branches are
frozen during backpropagation, while the shared representation
is still updated based on the available tasks. Hence, our MT-GNN
can mine information from the available training data. This feature
is helpful in a clinical setting, as subjects are asked to perform
different tasks based on their clinical condition.

Finally, our work has two notable advantages over existing
methods. First, it operates on whole-brain resting-state fMRI con-
nectivity in order to maximize the information used identify elo-
quent regions. Second, it explicitly models subject-specific tumor
size and location information. For example, it is unclear how the
Hacker et al. (2013) method would perform when multiple seeds
lie in the tumor region. Another highlight of our method is compu-
tational efficiency, as it considers just one N x N connectivity ma-
trix per subject, as compared to the method in Lee et al. (2016) and
Leuthardt et al. (2018), which requires multiple correlation maps
per subject (based on 169 seed locations). As discussed, these prior
works also do not quantify accuracy on the voxel or ROI level. Our
work reports both the eloquent detection accuracy and a statisti-
cally significant improvement in performance between our method
and competing baselines.

5. Conclusion

We have introduced a novel deep learning method to simul-
taneously localize multiple areas of the eloquent cortex using rs-
fMRI connectivity. Our MT-GNN captures a shared representation
between nuanced functional sub-networks of interest for neu-
rosurgery planning via a graph-based architecture. We validate
our method on an in-house JHH cohort and on a subset of the
HCP dataset with manually-created fake tumors. Quantitatively, our
model achieves better performance than both conventional and
deep learning baselines. We showed an example of a language
connectivity hub in both cohorts that our network consistently
recovers as well as an example of our localization. Finally, we
demonstrate generalizability and robustness with our bilateral lan-
guage, varying atlas, and tumor segmentation corruption experi-
ments. Taken together, our results highlight the potential of using
rs-fMRI to supplement the presurgical workup, with the ultimate
goal of faster and more reliable tumor resections.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Naresh Nandakumar: Software, Formal analysis, Methodology,
Investigation, Writing - original draft. Komal Manzoor: Data cu-
ration. Shruti Agarwal: Data curation. Jay J. Pillai: Data curation.
Sachin K. Gujar: Data curation. Haris L. Sair: Conceptualization,
Resources, Data curation, Funding acquisition. Archana Venkatara-
man: Conceptualization, Methodology, Writing - review & editing,
Supervision, Funding acquisition.

Acknowledgment

This work was supported by the National Science Foundation
CAREER award 1845430 (PI: Venkataraman) and the Research &

13

Medical Image Analysis 74 (2021) 102203

Education Foundation Carestream Health RSNA Research Scholar
Grant RSCH1420 (PI: Sair).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.media.2021.102203.

References

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014.
Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex
24 (3), 663-676.

Behzadi, Y., Restom, K., Liau, J., Liu, T.T.,, 2007. A component based noise correc-
tion method (CompCor) for BOLD and perfusion based fMRI. Neurolmage 37 (1),
90-101.

Benjamin, C.FA., Dhingra, I, Li, A.X,, Blumenfeld, H., Alkawadri, R., Bickel, S., Helm-
staedter, C., Meletti, S., Bronen, R.A., Warfield, S.K,, et al., 2018. Presurgical lan-
guage fMRI: technical practices in epilepsy surgical planning. Hum. Brain Mapp.
39 (10), 4032-4042.

Berger, M.S., Kincaid, J., Ojemann, G.A., Lettich, E., 1989. Brain mapping techniques
to maximize resection, safety, and seizure control in children with brain tumors.
Neurosurgery 25 (5), 786-792.

Binder, J.R., Gross, W.L, Allendorfer, ].B., Bonilha, L., Chapin, J., Edwards, ].C.,
Grabowski, TJ., Langfitt, ].T., Loring, D.W., Lowe, M., et al., 2011. Mapping an-
terior temporal lobe language areas with fMRI: a multicenter normative study.
Neurolmage 54 (2), 1465-1475.

Binder, J.R., Swanson, S.J., Hammeke, T.A., Morris, G.L., Mueller, W.M., Fischer, M.,
Benbadis, S., Frost, J.A., Rao, S.M., Haughton, V.M., 1996. Determination of lan-
guage dominance using functional MRI: a comparison with the Wada test. Neu-
rology 46 (4), 978-984.

Biswal, B., Zerrin Yetkin, F, Haughton, V.M., Hyde, ].S., 1995. Functional connectiv-
ity in the motor cortex of resting human brain using echo-planar MRI. Magn.
Reson. Med. 34 (4), 537-541.

Bizzi, A., Blasi, V., Falini, A., Ferroli, P., Cadioli, M., Danesi, U., Aquino, D., Marras, C.,
Caldiroli, D., Broggi, G., 2008. Presurgical functional MR imaging of language
and motor functions: validation with intraoperative electrocortical mapping. Ra-
diology 248 (2), 579-589.

Bouckaert, R.R., Frank, E., 2004. Evaluating the replicability of significance tests for
comparing learning algorithms. In: Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. Springer, pp. 3-12.

Buckner, R.L., Krienen, EM., Castellanos, A., Diaz, ].C., Yeo, B.T.T., 2011. The organiza-
tion of the human cerebellum estimated by intrinsic functional connectivity. J.
Neurophysiol. 106 (5), 2322-2345.

Caruana, R., 1997. Multitask learning. Mach. Learn. 28 (1), 41-75.

Craddock, R.C,, et al, 2012. A whole brain fMRI atlas generated via spatially con-
strained spectral clustering. Hum. Brain Mapp. 33 (8), 1914-1928.

Duffau, H., 2005. Lessons from brain mapping in surgery for low-grade glioma: in-
sights into associations between tumour and brain plasticity. Lancet Neurol. 4
(8), 476-486.

Duffau, H., Capelle, L., Denvil, D., Sichez, N., Gatignol, P, Taillandier, L., Lopes, M.,
Mitchell, M.-C., Roche, S., Muller, ].-C., et al., 2003. Usefulness of intraopera-
tive electrical subcortical mapping during surgery for low-grade gliomas located
within eloquent brain regions: functional results in a consecutive series of 103
patients. J. Neurosurg. 98 (4), 764-778.

Fadul, C., Wood, J., Thaler, H., Galicich, ]., Patterson, R.H., Posner, ].B., 1988. Morbidity
and mortality of craniotomy for excision of supratentorial gliomas. Neurology
38 (9), 1374-1379.

Finn, ES. Shen, X, Scheinost, D., Rosenberg, M.D., Huang, ], Chun, M.M., Pa-
pademetris, X., Constable, RT.,, 2015. Functional connectome fingerprinting:
identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18
(11), 1664.

Fortunato, S., 2010. Community detection in graphs. Phys. Rep. 486 (3-5), 75-174.
Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed
with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 (9), 700.
Gabriel, M., Brennan, N.P, Peck, K.K., Holodny, A.l, 2014. Blood oxygen level de-
pendent functional magnetic resonance imaging for presurgical planning. Neu-

rolmaging Clin. 24 (4), 557-571.

Garcia-Laencina, PJ., Serrano, J., Figueiras-Vidal, A.R., Sancho-Gémez, ].-L., 2007.
Multi-task neural networks for dealing with missing inputs. In: International
Work-Conference on the Interplay Between Natural and Artificial Computation.
Springer, pp. 282-291.

Ghinda, D.C., Wu, J.-S., Duncan, N.W., Northoff, G., 2018. How much is enough-can
resting state fMRI provide a demarcation for neurosurgical resection in glioma?
Neurosci. Biobehav. Rev. 84, 245-261.

Giussani, C., Roux, F-E., Ojemann, J., Sganzerla, E.P,, Pirillo, D., Papagno, C., 2010. Is
preoperative functional magnetic resonance imaging reliable for language areas
mapping in brain tumor surgery? Review of language functional magnetic reso-
nance imaging and direct cortical stimulation correlation studies. Neurosurgery
66 (1), 113-120.

Gupta, D.K,, Chandra, PS., Ojha, B.K,, Sharma, B.S., Mahapatra, A.K., Mehta, V.S., 2007.
Awake craniotomy versus surgery under general anesthesia for resection of in-
trinsic lesions of eloquent cortex-a prospective randomised study. Clin. Neurol.
Neurosurg. 109 (4), 335-343.


https://doi.org/10.1016/j.media.2021.102203
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0023

N. Nandakumar, K. Manzoor, S. Agarwal et al.

Hacker, C.D., Laumann, T.O., Szrama, N.P, Baldassarre, A., Snyder, A.Z,
Leuthardt, E.C.,, Corbetta, M., 2013. Resting state network estimation in in-
dividual subjects. Neuroimage 82, 616-633.

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C.,
Jodoin, P.-M., Larochelle, H., 2017. Brain tumor segmentation with deep neural
networks. Med. Image Anal. 35, 18-31.

Isin, A., Direkoglu, C.,, Sah, M., 2016. Review of MRI-based brain tumor image seg-
mentation using deep learning methods. Procedia Comput. Sci. 102, 317-324.

Jack Jr, CR., Thompson, R.M., Butts, RK., Sharbrough, EW., Kelly, PJ., Hanson, D.P.,
Riederer, S.J., Ehman, R.L., Hangiandreou, N.J., Cascino, G.D., 1994. Sensory mo-
tor cortex: correlation of presurgical mapping with functional MR imaging and
invasive cortical mapping. Radiology 190 (1), 85-92.

Jenkinson, M., Beckmann, C.F,, Behrens, T.E.]., Woolrich, M.W., Smith, S.M., 2012. Fsl.
Neurolmage 62 (2), 782-790.

Kawahara, J., Brown, CJ., Miller, S.P,, Booth, B.G., Chau, V., Grunau, R.E., Zwicker, ].G.,
Hamarneh, G., 2017. BrainNetCNN: convolutional neural networks for brain net-
works; towards predicting neurodevelopment. Neurolmage 146, 1038-1049.

Kekhia, H., Rigolo, L., Norton, I., Golby, A.J., 2011. Special surgical considerations for
functional brain mapping. Neurosurg. Clin. 22 (2), 111-132.

Kokkonen, S.-M., Nikkinen, J., Remes, J., Kantola, J., Starck, T., Haapea, M., Tuomi-
nen, J., Tervonen, O., Kiviniemi, V., 2009. Preoperative localization of the sen-
sorimotor area using independent component analysis of resting-state fMRI.
Magn. Reson. Imaging 27 (6), 733-740.

Langs, G., Sweet, A., Lashkari, D., Tie, Y., Rigolo, L., Golby, A]J., Golland, P., 2014. De-
coupling function and anatomy in atlases of functional connectivity patterns:
language mapping in tumor patients. Neurolmage 103, 462-475.

Langs, G., Tie, Y., Rigolo, L., Golby, A., Golland, P., 2010. Functional geometry align-
ment and localization of brain areas. In: Advances in Neural Information Pro-
cessing Systems, pp. 1225-1233.

Lee, M.H., Miller-Thomas, M.M., Benzinger, T.L. Marcus, D.S. Hacker, CD.,
Leuthardt, E.C., Shimony, J.S., 2016. Clinical resting-state fMRI in the preoper-
ative setting: are we ready for prime time? Top. Magn. Reson. Imaging 25 (1),
11.

Lee, M.H., Smyser, C.D., Shimony, J.S., 2013. Resting-state fMRI: a review of methods
and clinical applications. Am. ]. Neuroradiol. 34 (10), 1866-1872.

Leuthardt, E.C., Guzman, G., Bandt, S.K., Hacker, C., Vellimana, A.K, Limbrick, D.,
Milchenko, M., Lamontagne, P., Speidel, B., Roland, J., et al., 2018. Integration
of resting state functional MRI into clinical practice-a large single institution
experience. PLoS ONE 13 (6), e0198349.

Lord, A., Ehrlich, S., Borchardt, V., Geisler, D., Seidel, M., Huber, S., Murr, J., Wal-
ter, M., 2016. Brain parcellation choice affects disease-related topology differ-
ences increasingly from global to local network levels. Psychiatry Res. 249,
12-19.

Martino, J., Honma, S.M., Findlay, A.M., Guggisberg, A.G., Owen, ].P., Kirsch, H.E.,
Berger, M.S., Nagarajan, S.S., 2011. Resting functional connectivity in patients
with brain tumors in eloquent areas. Ann. Neurol. 69 (3), 521-532.

Mazaika, PK., Hoeft, F., Glover, G.H., Reiss, A.L, et al., 2009. Methods and software
for fMRI analysis of clinical subjects. Neurolmage 47 (Suppl 1), S58.

McAuliffe, M., Lalonde, EM., McGarry, D., Gandler, W., Csaky, K., Trus, B.L., 2001.
Medical image processing, analysis and visualization in clinical research. In:
Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS
2001. IEEE, pp. 381-386.

Nandakumar, N., D’Souza, N.S., Craley, ]., Manzoor, K., Pillai, J.J., Gujar, S.K,, Sair, H.I,
Venkataraman, A., 2018. Defining patient specific functional parcellations in le-
sional cohorts via Markov random fields. In: International Workshop on Con-
nectomics in Neuroimaging. Springer, pp. 88-98.

Nandakumar, N., Manzoor, K., Pillai, J.J., Gujar, S.K,, Sair, H.I, Venkataraman, A., 2019.
A novel graph neural network to localize eloquent cortex in brain tumor pa-
tients from resting-state fMRI connectivity. In: International Workshop on Con-
nectomics in Neuroimaging. Springer, pp. 10-20.

Ojemann, G.A. Whitaker, H.A., 1978. Language localization and variability. Brain
Lang. 6 (2), 239-260.

Opsahl, T, et al., 2010. Node centrality in weighted networks: generalizing degree
and shortest paths. Soc Netw. 32 (3), 245-251.

Overvliet, G.M., Aldenkamp, A.P., Klinkenberg, S., Nicolai, ]., Vles, J.S.H., Bessel-
ing, RM.H., Backes, W., Jansen, ].FA., Hofman, PA., Hendriksen, J., 2011. Corre-
lation between language impairment and problems in motor development in
children with rolandic epilepsy. Epilepsy Behav. 22 (3), 527-531.

Partovi, S., Jacobi, B., Rapps, N., Zipp, L., Karimi, S., Rengier, F.,, Lyo, J.K., Stippich, C.,
2012. Clinical standardized fMRI reveals altered language lateralization in pa-
tients with brain tumor. Am. J. Neuroradiol. 33 (11), 2151-2157.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A., 2017. Automatic differentiation in PyTorch.

Penny, W.D., Friston, KJ., Ashburner, ].T.,, Kiebel, S.J., Nichols, T.E., 2011. Statistical
Parametric Mapping: The Analysis of Functional Brain Images. Elsevier.

Perez, L., Wang, J., 2017. The effectiveness of data augmentation in image classifica-
tion using deep learning. arXiv preprint arXiv:1712.04621

Petrella, J.R., Shah, L.M., Harris, KM., Friedman, A.H., George, T.M., Sampson, ].H.,
Pekala, ].S., Voyvodic, ].T., 2006. Preoperative functional MR imaging localization
of language and motor areas: effect on therapeutic decision making in patients
with potentially resectable brain tumors. Radiology 240 (3), 793-802.

Pillai, JJ., Zaca, D., 2011. Relative utility for hemispheric lateralization of differ-
ent clinical fMRI activation tasks within a comprehensive language paradigm
battery in brain tumor patients as assessed by both threshold-dependent and
threshold-independent analysis methods. Neurolmage 54, S136-S145.

Pool, E.-M., Rehme, AK., Eickhoff, S.B., Fink, G.R., Grefkes, C., 2015. Functional

14

Medical Image Analysis 74 (2021) 102203

resting-state connectivity of the human motor network: differences between
right-and left-handers. Neurolmage 109, 298-306.

Rashid, K.M., Louis, ]J., 2019. Times-series data augmentation and deep learning for
construction equipment activity recognition. Adv. Eng. Inf. 42, 100944.

de Reus, M.A., Van den Heuvel, M.P,, 2013. The parcellation-based connectome: lim-
itations and extensions. Neurolmage 80, 397-404.

Rosazza, C., Aquino, D., D’Incerti, L., Cordella, R., Andronache, A., Zaca, D., Bruz-
zone, M.G., Tringali, G., Minati, L., 2014. Preoperative mapping of the sensorimo-
tor cortex: comparative assessment of task-based and resting-state FMRI. PLoS
ONE 9 (6), e98860.

Ruder, S., 2017An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098

Sabsevitz, D.S., Swanson, S.J., Hammeke, T.A., Spanaki, M.V., Possing, E.T., Morris, G.,
Mueller, W.M,, Binder, J.R., 2003. Use of preoperative functional neuroimaging to
predict language deficits from epilepsy surgery. Neurology 60 (11), 1788-1792.

Sair, H.I, Yahyavi-Firouz-Abadi, N., Calhoun, V.D., Airan, R.D., Agarwal, S., In-
trapiromkul, J., Choe, A.S., Gujar, SK. Caffo, B., Lindquist, M.A., et al., 2016.
Presurgical brain mapping of the language network in patients with brain tu-
mors using resting-state f MRI: comparison with task f MRI. Hum. Brain Mapp.
37 (3), 913-923.

Sawaya, R, Hammoud, M., Schoppa, D., Hess, KR, Wu, S.Z., Shi, W.-M., Wi-
Idrick, D.M., 1998. Neurosurgical outcomes in a modern series of 400
craniotomies for treatment of parenchymal tumors. Neurosurgery 42 (5),
1044-1055.

Shimony, J.S., Zhang, D., Johnston, .M., Fox, M.D., Roy, A., Leuthardt, E.C., 2009. Rest-
ing-state spontaneous fluctuations in brain activity: a new paradigm for presur-
gical planning using fMRI. Acad. Radiol. 16 (5), 578-583.

Smitha, K.A., Akhil Raja, K., Arun, K.M., Rajesh, P.G., Thomas, B., Kapilamoorthy, T.R.,
Kesavadas, C., 2017. Resting state fMRI: a review on methods in resting state
connectivity analysis and resting state networks. Neuroradiol. J. 30 (4), 305-317.

Soltau, H., Saon, G., Sainath, T.N., 2014. Joint training of convolutional and non-con-
volutional neural networks. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, pp. 5572-5576.

Suarez, R.O., Whalen, S., Nelson, A.P, Tie, Y., Meadows, M.-E., Radmanesh, A.,
Golby, AJ., 2009. Threshold-independent functional MRI determination of lan-
guage dominance: a validation study against clinical gold standards. Epilepsy
Behav. 16 (2), 288-297.

Suresh, S., et al.,, 2008. Risk-sensitive loss functions for sparse multi-category clas-
sification problems. Inf. Sci. 178 (12), 2621-2638.

Thiel, A., Herholz, K, Koyuncu, A. Ghaemi, M., Kracht, LW, Habedank, B.,
Heiss, W.-D., 2001. Plasticity of language networks in patients with brain tu-
mors: a positron emission tomography activation study. Ann. Neurol. 50 (5),
620-629.

Thirion, B., Varoquaux, G., Dohmatob, E., Poline, ].-B., 2014. Which fMRI clustering
gives good brain parcellations? Front. Neurosci. 8, 167.

Tie, Y., Rigolo, L., Norton, LH., Huang, R.Y., Wu, W., Orringer, D., Mukundan Jr., S.,
Golby, AJ., 2014. Defining language networks from resting-state fMRI for surgi-
cal planning-a feasibility study. Hum. Brain Mapp. 35 (3), 1018-1030.

Tomasi, D., Volkow, N.D., 2012. Language network: segregation, laterality and con-
nectivity. Mol. Psychiatry 17 (8), 759.

Tomczak, RJ., Wunderlich, A.P, Wang, Y., Braun, V., Antoniadis, G., Gorich, J.,
Richter, H.-P., Brambs, H.-J., 2000. fMRI for preoperative neurosurgical mapping
of motor cortex and language in a clinical setting. ]. Comput. Assist. Tomogr. 24
(6), 927-934.

Tzourio-Mazoyer, N., Josse, G., Crivello, F., Mazoyer, B., 2004. Interindividual variabil-
ity in the hemispheric organization for speech. Neurolmage 21 (1), 422-435.
Van Essen, D.C.,, Smith, S.M., Barch, D.M., Behrens, T.EJ., Yacoub, E., Ugurbil, K., Con-
sortium, W.-M.H., et al., 2013. The WU-minn human connectome project: an

overview. Neurolmage 80, 62-79.

Venkataraman, A., Whitford, TJ., Westin, C.-F, Golland, P, Kubicki, M., 2012.
Whole brain resting state functional connectivity abnormalities in schizophre-
nia. Schizophr. Res. 139 (1-3), 7-12.

Wongsripuemtet, J., Tyan, A.E., Carass, A., Agarwal, S., Gujar, S.K,, Pillai, J.J., Sair, H.L,
2018. Preoperative mapping of the supplementary motor area in patients with
brain tumor using resting-state fMRI with seed-based analysis. Am. J. Neurora-
diol. 39 (8), 1493-1498.

Xue, Y., Liao, X., Carin, L., Krishnapuram, B., 2007. Multi-task learning for classifica-
tion with Dirichlet process priors. J. Mach. Learn. Res. 8 (Jan), 35-63.

Yang, I, Prashant, G.N., 2019. Advances in the surgical resection of temporo-pari-
eto-occipital junction gliomas. In: New Techniques for Management of ‘Inoper-
able’ Gliomas. Elsevier, pp. 73-87.

Zhang, C., Zhang, Z., 2014. Improving multiview face detection with multi-task deep
convolutional neural networks. In: IEEE Winter Conference on Applications of
Computer Vision. IEEE, pp. 1036-1041.

Zhang, H., Shi, Y., Yao, C, Tang, W., Yao, D., Zhang, C., Wang, M., Wu, ]., Song, Z.,
2016. Alteration of the intra-and cross-hemisphere posterior default mode net-
work in frontal lobe glioma patients. Sci. Rep. 6, 26972.

Zhang, ], Huan, ], 2012. Inductive multi-task learning with multiple view data. In:
Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, pp. 543-551.

Zhao, X., Wu, Y., Song, G., Li, Z, Zhang, Y., Fan, Y., 2018. A deep learning model
integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal.
43, 98-111.


http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0048
http://arxiv.org/abs/1712.04621
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0055
http://arxiv.org/abs/1706.05098
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00248-6/sbref0079

	Automated eloquent cortex localization in brain tumor patients using multi-task graph neural networks
	1 Introduction
	1.1 Contributions

	2 Methods
	2.1 Material
	2.1.1 JHH tumor dataset
	2.1.2 Human connectome project dataset

	2.2 Multi-task GNN
	2.2.1 Graph construction
	2.2.2 Pre-MT network architecture
	2.2.3 Classification and loss functions
	2.2.4 Implementation details and hyperparameter selection

	2.3 Baseline methods

	3 Experiments and results
	3.1 HCP simulation study
	3.2 JHH cohort and bilateral language experiment
	3.3 Ablation study
	3.4 Assessing model robustness
	3.4.1 Varying parcellation choice
	3.4.2 Degrading tumor segmentation
	3.4.3 Boosting training set via data augmentation
	3.4.4 Hyperparameter sweep for 


	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary material
	References


