

Ecological consequences of large herbivore exclusion in an African savanna: 12 years of data from the UHURU experiment

Journal:	Ecology
Manuscript ID	ECY21-0746.R1
Wiley - Manuscript type:	Data Papers
Date Submitted by the Author:	n/a
Complete List of Authors:	Alston, Jesse; University of Wyoming, Reed, Courtney; Brown University Khasoha, Leo; University of Wyoming Brown, Bianca; Brown University Busienei, Gilbert; Mpala Research Center Carlson, Nathaniel; Cornell University Coverdale, Tyler; Cornell University, Ecology and Evolutionary Biology; Princeton University, Ecology and Evolutionary Biology Dudenhoeffer, Megan; University of Wyoming Dyck, Marissa; Ohio University Ekeno, John; Mpala Research Center Hassan, Abdikadir; Mpala Research Centre Hohbein, Rhianna; University of Georgia Jakopak, Rhiannon; University of Georgia Jakopak, Rhiannon; University of Wyoming, Kimiti, Buas; Mpala Research Center Kurukura, Samson; Mpala Research Center Lokeny, Peter; Mpala Research Center Louthan, Allison; University of Colorado Boulder, Musila, Simon; National Museums of Kenya Musili, Paul; National Museums of Kenya Musili, Paul; National Museums of Kenya Musili, Paul; National Museums of Kenya Musili, Tosca; Oxford University Weiner, Sarah; Mpala Research Center Kartzinel, Tyler; Brown University, Ecology and Evolutionary Biology Palmer, Todd; University of Florida, Biology Pringle, Robert; Princeton University, Goheen, Jacob; University of Wyoming,
Substantive Area:	Population Dynamics and Life History < Population Ecology < Substantive Area, Systematics < Population Ecology < Substantive Area, Conservation < Population Ecology < Substantive Area, Community Ecology < Substantive Area, Disturbance < Community Ecology < Substantive Area, Food Webs/Trophic Structure < Community Ecology < Substantive Area, Keystone Species < Community Ecology < Substantive Area, Species Interactions < Community Ecology < Substantive Area, Herbivory < Species Interactions < Community Ecology < Substantive Area, Climate Change < Ecosystems < Substantive Area, Restoration < Management < Substantive Area, Data paper < Data < Substantive Area

Organism:	Rodents < Mammals < Vertebrates < Animals, Other (specify type in field below) < Mammals < Vertebrates < Animals, Carnivores < Mammals < Vertebrates < Animals, Legumes, peas, beans < Angiosperms < Plants, Grasses < Angiosperms < Plants, Angiosperms < Plants
Habitat:	Savanna < Tropical Zone < Terrestrial < Habitat
Geographic Area:	East Africa < Africa < Geographic Area
Key words/phrases:	climate change, dik-dik (Madoqua), East African savannas, elephant (Loxodonta africana), extinction, food webs, grazing and browsing herbivores, impala (Aepyceros melampus), long-term ecological field experiments, plant communities, rangeland ecology, species interactions
Abstract:	Diverse communities of large mammalian herbivores (LMH), once widespread, are now rare. LMH exert strong direct and indirect effects on community structure and ecosystem functions, and measuring these effects is important for testing ecological theory and for understanding past, current, and future environmental change. This in turn requires long-term experimental manipulations, owing to the slow and often nonlinear responses of populations and assemblages to LMH removal. Moreover, the effects of particular species or body-size classes within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of these effects often depends on environmental context. Since 2008, we have maintained the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semi-arid Kenyan savana. The goals of the UHURU experiment are to measure the effects of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU experiment comprises three LMH-exclusion treatments and an unfenced control, applied to 9 randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are: "MEGA" (exclusion of herbivores $\geq 40 \text{ kg}$); and "TOTAL" (exclusion of herbivores $\geq 5 \text{ kg}$). Each block is replicated three times at three sites across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The first five years of data were published previously (Ecological Archives E095-064) and have been used in numerous studies. Since that publication, we have (a) continued to collect data following the original protocols, (b) improved the taxonomic resolution and accuracy of plant and small-mammal identifications, and (c) begun collecting several new data sets. Here, we present updated and extended raw data from the first 12 years of the UHURU experiment (2008–2019). Data include daily rainfall data throughout the experi
Note: The following files were You must view these files (e.g	submitted by the author for peer review, but cannot be converted to PDF.

DataS1.zip

SCHOLARONE[™] Manuscripts

Ecological consequences of large herbivore exclusion in an African savanna: 12 years of data from the UHURU experiment

JESSE M. ALSTON,^{1,2,3†} COURTNEY G. REED,^{4,5†} LEO M. KHASOHA,^{1,2,6} BIANCA R.P.

BROWN,^{4,5} GILBERT BUSIENEI,⁶ NATHANIEL CARLSON,⁷ TYLER C. COVERDALE,^{7,8} MEGAN

DUDENHOEFFER,⁹ MARISSA A. DYCK,¹⁰ JOHN EKENO,⁶ ABDIKADIR A. HASSAN,⁶ RHIANNA

HOHBEIN,¹¹ RHIANNON P. JAKOPAK,¹² BUAS KIMITI,⁶ SAMSON KURUKURA,⁶ PETER

LOKENY,⁶ Allison M. Louthan,¹³ Simon Musila,¹⁴ Paul M. Musili,¹⁵ Tosca

TINDALL,¹⁶ SARAH WEINER,⁶ TYLER R. KARTZINEL,^{4,5} TODD M. PALMER,¹⁷ ROBERT M.

PRINGLE,¹⁸ AND JACOB R. GOHEEN^{1,2*}

¹Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071 USA

²Program in Ecology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071 USA

³Center for Advanced Systems Understanding (CASUS), Untermarkt 20, 02826 Görlitz, Deutschland

⁴Department of Ecology, Evolution, and Organismal Biology, Brown University, 80 Waterman St., Providence, RI, 02912 USA

⁵Institute at Brown for Environment and Society, Brown University, 85 Waterman St., Providence, RI, 02912 USA

⁶Mpala Research Centre, P.O. Box 555 – 10400, Nanyuki, Kenya

⁷Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY, 14853 USA

⁸Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USA

⁹Department of Veterinary Sciences, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071 USA

¹⁰Biological Sciences Department, Ohio University, Irvine 107, Athens, OH, 45701 USA
 ¹¹Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green
 Street, Athens, GA, 30602 USA

¹²Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave. Laramie, WY, 82071 USA ¹³Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS, 66506 USA

¹⁴Mammalogy Section, Zoology Department, National Museums of Kenya, P.O. Box 40658- 00100, Nairobi, Kenya

¹⁵Botany Department, National Museums of Kenya, P.O. Box 40658- 00100, Nairobi, Kenya

¹⁶Institute of Human Sciences, University of Oxford, 51/53 Banbury Road, Oxford, OX2 6PE, United Kingdom

¹⁷Department of Biology, University of Florida, P.O. Box 118525, 220 Bartram Hall, Gainesville, FL, 32611 USA

¹⁸Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln., Princeton, NJ, 08544 USA

Abstract: Diverse communities of large mammalian herbivores (LMH), once widespread, are now rare. LMH exert strong direct and indirect effects on community structure and ecosystem functions, and measuring these effects is important for testing ecological theory and for understanding past, current, and future environmental change. This in turn requires long-term experimental manipulations, owing to the slow and often nonlinear responses of populations and assemblages to LMH removal. Moreover, the effects of particular species or body-size classes within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of these effects often depends on environmental context. Since 2008, we have maintained the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semi-arid Kenyan savanna. The goals of the UHURU experiment are to measure the effects of removing successively smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU experiment comprises three LMH-exclusion treatments and an unfenced control, applied to 9 randomized blocks of contiguous 1-ha plots (n = 36). The fenced

treatments are: "MEGA" (exclusion of megaherbivores, elephant and giraffe); "MESO" (exclusion of herbivores ≥40 kg); and "TOTAL" (exclusion of herbivores ≥5 kg). Each block is replicated three times at three sites across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The first five years of data were published previously (*Ecological Archives* E095-064) and have been used in numerous studies. Since that publication, we have (a) continued to collect data following the original protocols, (b) improved the taxonomic resolution and accuracy of plant and smallmammal identifications, and (c) begun collecting several new data sets. Here, we present updated and extended raw data from the first 12 years of the UHURU experiment (2008– 2019). Data include daily rainfall data throughout the experiment; annual surveys of understory plant communities; annual censuses of woody-plant communities; annual measurements of individually tagged woody plants; monthly monitoring of flowering and fruiting phenology; every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung surveys.

Key words/phrases: climate change; dik-dik (*Madoqua*); East African savannas; elephants (*Loxodonta africana*); extinction; food webs; grazing and browsing herbivores; impala (*Aepyceros melampus*); long-term ecological field experiments; plant communities; rangeland ecology; species interactions

Open Research: The complete data set is available as Supporting Information at: [*to be completed at proof stage*]. Associated data is also available at Dryad: [DOI assigned to deposited material].

Corresponding Editor: William K. Michener

* Corresponding Author E-mail: jgoheen@uwyo.edu

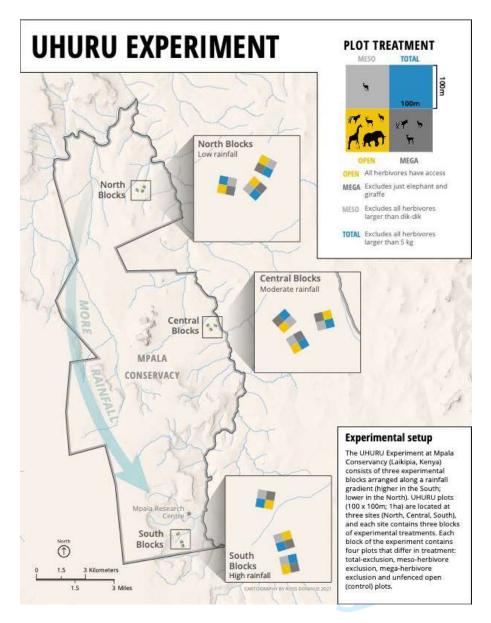
[†]These authors contributed equally to this work.

to peries only

1	Ecological consequences of large herbivore exclusion in an African savanna: 12 years of
2	data from the UHURU experiment
3	Alston, J.M. ^{1,2,3†} , C.G. Reed ^{4,5†} , L.M. Khasoha ^{1,2,6} , B.R.P. Brown ^{4,5} , G. Busienei ⁶ , N. Carlson ⁷ , T.C.
4	Coverdale ^{7,8} , M. Dudenhoeffer ⁹ , M.A. Dyck ¹⁰ , J. Ekeno ⁶ , A.A. Hassan ⁶ , R. Hohbein ¹¹ , R.P. Jakopak ¹² , B.
5	Kimiti ⁶ , S. Kurukura ⁶ , P. Lokeny ⁶ , A.M. Louthan ¹³ , S. Musila ¹⁴ , P.M. Musili ¹⁵ , T. Tindall ¹⁶ , S. Weiner ⁶ ,
6	T.R. Kartzinel ^{4,5} , T.M. Palmer ¹⁷ , R.M. Pringle ¹⁸ , and J.R. Goheen ^{1,2,6*}
7	
8	¹ Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA; ² Program in
9	Ecology, University of Wyoming, Laramie, WY, USA; ³ Center for Advanced Systems Understanding
10	(CASUS), Görlitz, DEU; ⁴ Department of Ecology and Evolutionary Biology, Brown University,
11	Providence, RI, USA; ⁵ Institute at Brown for Environment and Society, Providence, RI, USA; ⁶ Mpala
12	Research Centre, Nanyuki, Kenya; ⁷ Department of Ecology and Evolutionary Biology, Cornell
13	University, Ithaca, NY, USA; ⁸ Department of Organismal and Evolutionary Biology, Harvard
14	University, Cambridge, MA, USA; ⁹ Department of Veterinary Sciences, University of Wyoming,
15	Laramie, WY, USA; ¹⁰ Biological Sciences Department, Ohio University, Athens, OH, USA; ¹¹ Warnell
16	School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA; ¹² Haub School of
17	Environment and Natural Resources, University of Wyoming, Laramie, WY, USA; ¹³ Division of Biology,
18	Kansas State University, Manhattan, KS, USA; ¹⁴ Mammalogy Section, Zoology Department, National
19	Museums of Kenya, Nairobi, Kenya; ¹⁵ Botany Department, National Museums of Kenya, Nairobi,
20	Kenya; ¹⁶ Institute of Human Sciences, University of Oxford, Oxford, UK; ¹⁷ Department of Biology,
21	University of Florida, Gainesville, FL, USA; ¹⁸ Department of Ecology and Evolutionary Biology,
22	Princeton University, Princeton, NJ, USA
23	*E-mail: jgoheen@uwyo.edu
24	[†] These authors contributed equally to this work.
25	Running header: Data from the UHURU experiment

26 Introduction

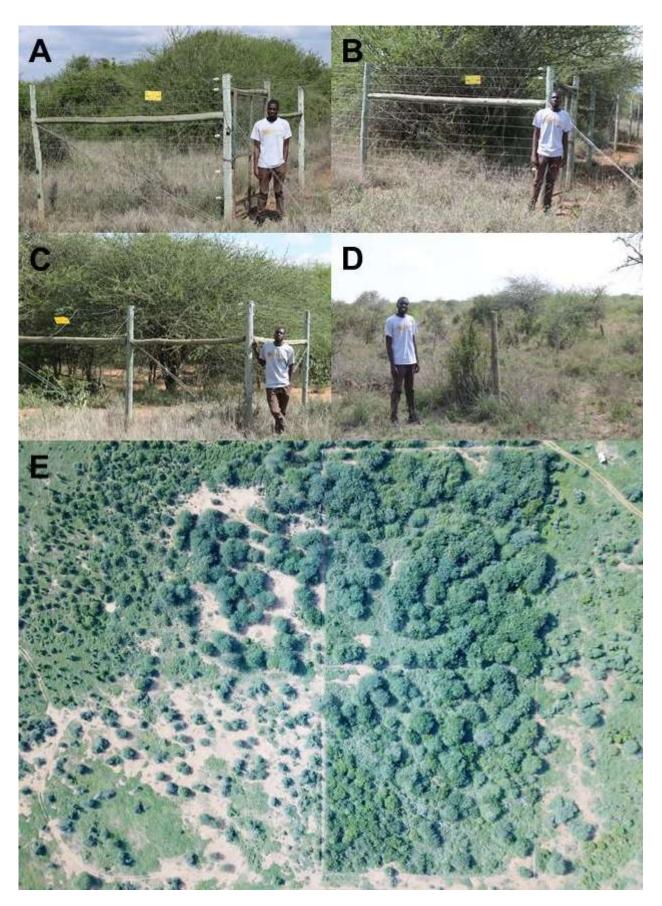
Large mammalian herbivores (\geq 5 kg; hereafter LMH) directly affect plant traits, population 27 dynamics, community structure, and biodiversity (Huntly 1991, Milchunas and Lauenroth 1993, 28 29 Anderson et al. 2007, Young et al. 2013, Staver and Bond 2014). In so doing, LMH indirectly 30 affect the abundance, diversity, and behavior of other organisms (Keesing 1998, Pringle et al. 31 2007, Martin et al. 2010, Young et al. 2015, Daskin and Pringle 2016, Long et al. 2017, Guy et al. 2021). Understanding species interactions involving LMH is central to many fundamental 32 questions in community and ecosystem ecology: To what extent do large-bodied consumers 33 34 govern food-web structure and ecosystem function (van Langevelde et al. 2003, Frank 2005, Koerner et al. 2018, le Roux et al. 2020, Guy et al. 2021)? What are the legacies of Pleistocene 35 megafauna (Janzen and Martin 1982, Guimarães et al. 2008, Smith et al. 2015) and the 36 37 ecological contexts of early hominin evolution (Faith et al. 2019)? What are the consequences of large-mammal extirpation (Campbell et al. 1994, Brodie et al. 2009), and are such consequences 38 39 reversible (Alston et al. 2019, Guyton et al. 2020, Lundgren et al. 2020)? How might actions taken to conserve or manage LMH populations affect the communities and ecosystems of which 40 they are part (Walker et al. 1987, Weisberg et al. 2002, Goheen et al. 2018)? 41 42 Because large-scale, long-term field manipulations of the abundance and diversity of 43 LMH are logistically challenging and expensive, there are few experimental data to inform two 44 important questions linked to those listed above. First, are different size classes of LMH


45 functionally redundant (sensu Walker 1992) or complementary (sensu Thibault et al. 2010) with

46 respect to their effects on population-, community-, and system-level attributes? Previous work

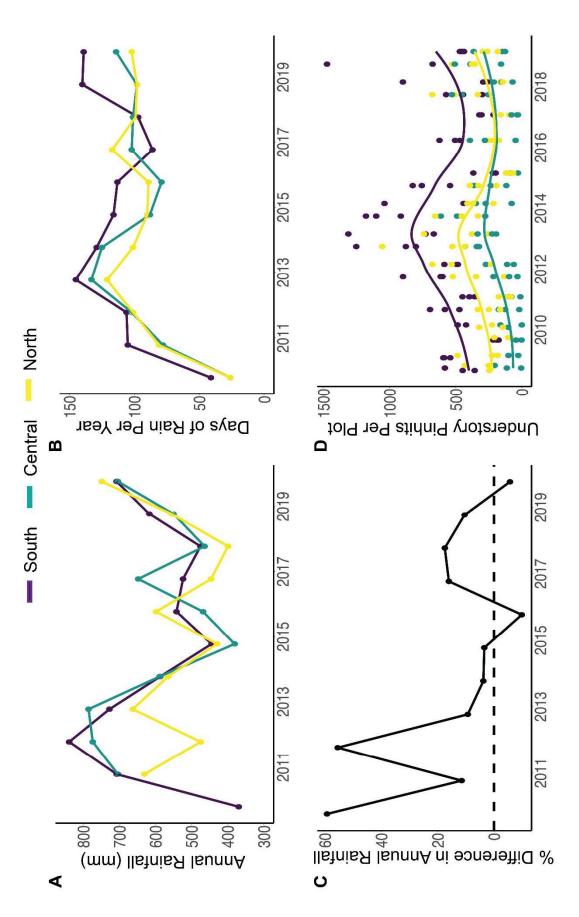
47 on this question has been mostly observational (but see Young et al. 2005, Staver et al. 2009,

48 Pringle et al. 2014, Coverdale et al. 2021), making it difficult to isolate causal mechanisms.


49	Second, how do the direction and magnitude of LMH impacts vary across environmental
50	gradients? Empirical tests of these questions often use meta-analysis (Chase et al. 2000,
51	Hillebrand et al. 2007, Daskin and Pringle 2016; but see Bakker et al. 2006), which are valuable
52	but can also confound multiple aspects of environmental variation, divergent methodologies and
53	regional species pools, and other characteristics that inevitably differ across studies and locations
54	(Paine 2010, Schmitz 2010). Long-term experiments that impose identical manipulations of
55	LMH across gradients within ecosystems—but among sites with otherwise similar attributes—
56	can bridge small-scale mechanistic studies and broad syntheses (Gruner et al. 2008).
57	Here, we present raw data from one of the few such experiments: the Ungulate Herbivory
58	Under Rainfall Uncertainty (UHURU) experiment at the Mpala Research Centre and
59	Conservancy in Kenya (Fig. 1). Initiated in 2008, the UHURU experiment selectively excludes
60	nested subsets of a diverse LMH assemblage comprising ≥ 20 co-occurring species (Goheen et al.
61	2013). Three features distinguish UHURU from prior experiments: (1) selective, size-based
62	exclusion of LMH; (2) replication across an important ecological gradient (rainfall) with minimal
63	confounding variation in soils and species pools; and (3) plots that are sufficiently large (1 ha) to
64	evaluate direct and indirect effects of LMH on both plants (e.g., Louthan et al. 2013, Ford et al.
65	2015, Coverdale et al. 2018) and smaller consumers such as invertebrates and small mammals
66	(e.g., Young et al. 2015, Long et al. 2017, Guy et al. 2021). Several long-term LMH exclosures
67	in Africa have recently been dismantled-including several of the Glade Legacies and
68	Defaunation Experiment plots at Mpala (Goheen et al. 2018), plots in Hluhluwe-iMfolozi Park,
69	South Africa (Staver and Bond 2014), and plots in Hwange National Park, Zimbabwe-
70	underscoring the value of extended time series of data from the UHURU experiment.
71	

72

Figure 1. Schematic of the UHURU experiment at the Mpala Research Centre and Conservancy
in central Kenya. The Ng'iro River runs along the eastern boundary of the property and the
Narok River runs along the north. Each of the three experimental sites contains three replicate
blocks, which in turn each comprise four contiguous 1-ha plots (total n = 36 plots, 9 per
treatment).


79	The Mpala Research Centre and Conservancy are located in Laikipia County, Kenya
80	(0°17'N, 37°52' E, 1600 m elevation), and the UHURU experiment spans the north-south axis of
81	the property (Fig. 1). UHURU treatments exclude herbivores via three configurations of
82	electrified fencing around 1-ha plots. The 'TOTAL' treatment (Fig. 2A) excludes all herbivores
83	\geq 5 kg. The 'MESO' treatment (Fig. 2B) excludes all megaherbivores, including African bush
84	elephant (Loxodonta africana), reticulated giraffe (Giraffa camelopardalis reticulata), and
85	hippopotamus (Hippopotamus amphibius), and mesoherbivores (> 40 kg, < 1,000 kg), including
86	impala (Aepyceros melampus), plains zebra (Equus quagga), Grevy's zebra (E. grevyi), Defassa
87	waterbuck (Kobus defassa), eland (Taurotragus oryx), African buffalo (Syncerus caffer),
88	warthog (Phacochoerus africanus), and a half-dozen antelope species that are comparatively rare
89	and occur patchily at Mpala; warthog have occasionally dug into MESO plots but are not
90	routinely present. MESO differs from TOTAL mainly by excluding dik-dik (Madoqua cf. M.
91	guentheri), which is the most abundant LMH species at Mpala (> 100 per km ² ; Ford and Goheen
92	2015). In principle, three additional small antelopes are excluded by TOTAL but not MESO—
93	bush duiker (Sylvicapra grimmia), steenbok (Raphicerus campestris), and klipspringer
94	(Oreotragus aureus)—but these species are very rare in the UHURU experiment (Goheen et al.
95	2013). The 'MEGA' (Fig. 2C) treatment consists of wires strung 2 m from ground level and
96	excludes only megaherbivores (≥1,000 kg), namely elephant and reticulated giraffe;
97	hippopotamus are not excluded by MEGA but rarely enter the plots. Unfenced 'OPEN' plots
98	(Fig. 2D) serve as an unmanipulated control, accessible to all species.

100	Figure 2. Photographs of experimental treatments. (A) Total-exclusion ("TOTAL") fences
101	consist of 14 wires up to 2.4 m above ground level, with a 1 m high chain-link barrier at ground
102	level. (B) Mesoherbivore-exclusion ("MESO") fences consist of 11 parallel wires starting ~ 0.3
103	<i>m</i> above ground level and continuing to 2.4 <i>m</i> above ground level. (C) Megaherbivore-exclusion
104	("MEGA") fences consist of two parallel wires starting 2 m above ground level. All fences are
105	electrified using a solar charger and have a series of 1 m long electrified wires extending
106	outwards to discourage large animals from contacting the fence; "TOTAL" and "MESO" fences
107	also have a series of short vertical wires to connect the parallel horizontal wires and add
108	structural stability. (D) "OPEN" control plots are unfenced, with boundaries demarcated by
109	wooden posts at 10-m intervals. (E) Aerial view of a single experimental block of plots (North
110	Block 1) in 2018; clockwise from top right: TOTAL, MESO, OPEN, and MEGA treatments.
111	Photographs by L. Khasoha (A-D) and B. Hays (E).

112

All plot types are accessible to small herbivores (e.g., hares, Lepus spp.) and most 113 114 carnivores. Large carnivores may be partially excluded by TOTAL fences (leopards, Panthera pardus, and cheetahs, Acinonyx jubatus, have occasionally climbed in) but can access the other 115 three treatments. These treatments have been continuously maintained (and rapidly repaired 116 following occasional incursions and fence breakages by elephant and other species) since 2008. 117 Three randomized blocks-each containing one replicate of each treatment-are located 118 119 at three different sites across a rainfall gradient spanning 20 km north to south (Fig. 3). Total 120 annual rainfall increases from the North site (low rainfall; 2009–2019 range: 201–749 mm/y) to 121 the Central (intermediate rainfall; 235–785 mm/y) and South sites (high rainfall; 369–839 122 mm/y). From 2009-2019, rainfall averaged 15% higher at the wettest site than the driest site

125	Figure 3. The UHURU experiment encompasses three sites along a 20 km north-to-south
126	rainfall gradient. (A) Total annual rainfall was historically greater in the South (~640 mm/year)
127	and Central (~580 mm/year) sites than the North (~440 mm/year) site (Goheen et al. 2013) but
128	has increasingly converged across sites in recent years. Points show rainfall observed at each
129	site in each year of the experiment. Data for the South site are missing 5 days (26 May – 30 May
130	2011). Data for the Central site are missing 23 days in Dec. 2015 and 15 days in Oct. 2016. (B)
131	The South site receives more days of rain per year on average (mean \pm SD; 115 \pm 23 days of
132	rain per year) than the Central (102 \pm 18 days of rain per year) and North sites (100 \pm 12 days
133	of rain per year). (C) Percent difference in annual rainfall between the South and North sites is
134	positive overall (indicating greater annual rainfall at the South site) but has decreased since
135	2017. (D) Understory biomass (measured using the canopy-intercept method as pin hits per
136	plot) has consistently been greatest in the South site (577 \pm 288 pin hits per plot) and lower in
137	the Central (189 \pm 153 pin hits per plot) and North (308 \pm 194 pin hits per plot) sites (which
138	have increasingly converged since 2014). Points show pin hits per plot for each of the control
139	plots during each semiannual understory survey; curves are smoothed lines for each site.
140	

(range: -9 to 84%) (**Fig. 3**). Despite the trend of convergence across sites in total rainfall, the South site still receives more days of rain in a typical year (**Fig. 3B**) and supports higher biomass of understory vegetation (**Fig. 3D**) than the Central and North sites. This variation in rainfall over small spatial scales arises from Mpala's position in the rain shadow of Mt. Kenya, which lies ~60 km to the southeast. In the center of each plot, we maintain a permanent 60×60 m grid with stakes at 10 m intervals (n = 49 stakes) where we survey vegetation and small mammals.

147	Here, we present 13 data sets from the UHURU experiment, spanning 2008–2019. These
148	raw data extend and update those from 2008–2013 provided in Kartzinel et al. (2014). These data
149	sets include: (1) Geographic coordinates of the plots; (2) Daily rainfall at each site (2008-2019);
150	(3) Semiannual pin-frame surveys of understory plant diversity and abundance at 49 stakes in
151	each plot (2008-2019); (4) Semiannual surveys of understory composition within 49 small (0.25
152	m ²) quadrats in each plot (2008-2019); (5) Semiannual surveys of understory composition within
153	49 larger (1 m ²) quadrats in each plot (2008-2019); (6) Several canopy-intercept surveys
154	integrating understory and woody vegetation at 49 stakes in each plot (2016-2018); (7) Annual
155	size measurements of a subset of tagged and mapped trees in each plot (2009-2019); (8)
156	Summaries of annual censuses of overstory plant composition for the 0.36 ha central grid in each
157	plot (2009-2019); (9) Spatially explicit annual censuses of overstory plant composition for each
158	10×10 m cell of the 0.36 ha central grid in each plot (2009-2019); (10) Monthly survey of
159	fruiting and flowering phenology in each plot (2012-2019); (11) Weekly seed rainfall from two
160	dominant Acacia species at each site (2016-2019); (12) Dung surveys conducted at 2–3 month
161	intervals in three parallel 60×5 m belt transects per plot (2009-2019); (13) Every-other-month
162	mark-recapture sampling of small mammals in TOTAL and OPEN plots (2009-2019).
163	The associated metadata describe data collection protocols, along with refinements to
164	these protocols that have been implemented as our understanding of the system has increased-
165	including significant updates to plant taxonomy, supported by DNA barcodes and verification by
166	botanical experts (Gill et al. 2019). Accordingly, the data presented here should be used
167	preferentially over those previously published in Kartzinel et al. (2014). These data profile the
168	annual-to-decadal scale ecological consequences of selectively excluding nested subsets of a

- 169 diverse LMH assemblage in a semi-arid African savanna ecosystem. We aim to periodically
- 170 publish updated raw data throughout the (indefinite) duration of the experiment.
- 171
- 172 **METADATA**
- 173 Class I. Data set descriptors
- 174 **A. Data set identity:** Data collected from the UHURU experiment.
- 175 Title: Ecological consequences of large herbivore exclusion in an African savanna: 12 years of
- 176 data from the UHURU experiment
- 177 **B. Data set identification code:** NA
- 178 **C. Data set description:**
- 179 **1. Principal Investigators:**
- 180 Jacob R. Goheen, Department of Zoology and Physiology, University of Wyoming, Laramie,
- 181 Wyoming, United States of America.
- 182 Tyler R. Kartzinel, Department of Ecology and Evolutionary Biology; Institute at Brown for
- 183 Environment and Society, Brown University, Providence, Rhode Island, United States of
- 184 America.
- 185 Todd M. Palmer, Department of Biology, University of Florida, Gainesville, Florida, United
- 186 States of America.
- 187 Robert M. Pringle, Department of Ecology and Evolutionary Biology, Princeton University,
- 188 Princeton, New Jersey, United States of America.
- 189
- 190 Questions regarding these data may be directed to Jacob Goheen (jgoheen@uwyo.edu) and
- 191 Robert Pringle (<u>rpringle@princeton.edu</u>).

192 2. Abstract: Diverse communities of large mammalian herbivores (LMH), once widespread, are 193 now rare. LMH exert strong direct and indirect effects on community structure and ecosystem 194 functions, and measuring these effects is important for testing ecological theory and for 195 understanding past, current, and future environmental change. This in turn requires long-term 196 experimental manipulations, owing to the slow and often nonlinear responses of populations and 197 assemblages to LMH removal. Moreover, the effects of particular species or body-size classes 198 within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of 199 these effects often depends on environmental context. Since 2008, we have maintained the 200 Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semi-arid Kenyan savanna. 201 202 The goals of the UHURU experiment are to measure the effects of removing successively 203 smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU 204 experiment comprises three LMH-exclusion treatments and an unfenced control, applied to 9 205 206 randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are: "MEGA" (exclusion of megaherbivores, elephant and giraffe); "MESO" (exclusion of herbivores ≥ 40 kg); 207 and "TOTAL" (exclusion of herbivores ≥ 5 kg). Each block is replicated three times at three sites 208 209 across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The 210 first five years of data were published previously (Ecological Archives E095-064) and have been 211 used in numerous studies. Since that publication, we have (a) continued to collect data following the original protocols, (b) improved the taxonomic resolution and accuracy of plant and small-212 213 mammal identifications, and (c) begun collecting several new data sets. Here, we present updated 214 and extended raw data from the first 12 years of the UHURU experiment (2008–2019). Data

215	include daily rainfall data throughout the experiment; annual surveys of understory plant
216	communities; annual censuses of woody-plant communities; annual measurements of
217	individually tagged woody plants; monthly monitoring of flowering and fruiting phenology;
218	every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung
219	surveys.
220	D. Key words: climate change; dik-dik (<i>Madoqua</i>); East African savannas; elephants
221	(Loxodonta africana); extinction; food webs; grazing and browsing herbivores; impala
222	(Aepyceros melampus); long-term ecological field experiments; plant communities; Pleistocene
223	megafauna; rangeland ecology; species interactions
224	
225	Class II. Research origin descriptors
226	A. Overall project description: The UHURU experiment excludes successively smaller-bodied
227	nested subsets of LMH (\geq 5 kg) ranging in size from dik-dik (~5 kg) to elephant (~3,000 kg).
228	This design isolates the ecological impacts of different size classes of LMH and mimics the
229	effects of size-biased large-herbivore extinction. Replicates spanning a 20 km rainfall gradient
230	share similar soil characteristics and species pools. To test predictions about the independent and
231	interactive effects of LMH exclusion and rainfall variability, investigators continuously sample a
232	broad range of vegetation characteristics and animal responses.
233	1. Identity: Data from the UHURU experiment
234	2. Originators: Jacob R. Goheen, Robert M. Pringle, Todd M. Palmer.
235	3. Period of study: 2008–2019. Continuing. Data from 2008-2013 were published previously
236	(Kartzinel et al. 2014) but have been substantially updated (detailed descriptions of updates can

237 be found elsewhere in the metadata).

238 **4. Objectives:** To test predictions concerning the independent and interactive effects of 239 herbivory by large mammals and rainfall variability on a broad range of ecological responses. 5. Abstract: See Section I.C.2. 240 6. Sources of funding: The UHURU experiment was built with seed funding from the Sherwood 241 242 Family Foundation, grants from the National Sciences and Engineering Research Council of 243 Canada, and the Universities of Florida and British Columbia. Support for maintenance and data collection has been provided by the US National Science Foundation (DEB-0709880, OISE-244 0852961, DEB-1355122, and IOS-1656527 to RMP; DEB-1547679, DEB-1930763, and DEB-245 246 2018405 to JRG; DEB-1930820 to TRK), the National Geographic Society, the University of Wyoming, the High Meadows Environmental Institute at Princeton University, The Nature 247 Conservancy, and the Institute at Brown for Environment and Society. Data curation was 248 249 partially funded by the Center for Advanced Systems Understanding (CASUS), which is financed by the German Federal Ministry of Education and Research (BMBF) and by the Saxon 250 Ministry for Science, Art, and Tourism (SMWK) with tax funds on the basis of the budget 251 252 approved by the Saxon State Parliament, and by the Elizabeth Gardner Norweb Summer Environmental Studies Scholarship from the Garden Club of America. 253 254

255 **B. Research origin description**

Site description: The UHURU experiment is located at the Mpala Research Centre and
 Conservancy (~200 km²) in Laikipia County, a semi-arid highland region in Kenya (0°17'N,
 37°52' E, 1600 m above sea level). Mpala is in the rain shadow of Mt. Kenya, which imposes
 climatic variation across a relatively short distance, although the resulting rainfall gradient is
 unpredictable in any given year and has fluctuated over the course of the experiment. On average

from 2009-2019, total annual rainfall and number of days with rainfall were both 15% higher at
the South (wettest) site than the North (driest) site.

2. Experimental design: In 2008, three fenced herbivore-exclusion treatments and an unfenced 263 264 control were randomly assigned to contiguous 1 ha plots replicated three times at each of three 265 sites along a rainfall gradient (36 total plots, 9 replicates per treatment). Although 1 ha is not 266 large enough to detect some ecological effects of LMH, this spatial scale is adequate for documenting effects on individual-, population-, and community-level responses of plants, small 267 mammals, and invertebrates (e.g., Goheen et al. 2013, Pringle et al. 2016, Guy et al. 2021), as 268 269 well as behavioral (as opposed to numerical) responses of small mammals and mesoherbivores to 270 the exclusion of all LMH and megaherbivores, respectively (e.g., Long et al. 2017, Wells et al. 2021). TOTAL exclosures exclude all LMH >5 kg but are accessible to hares and other smaller 271 272 herbivores, as well as large (e.g., leopard, cheetah) and small (e.g., mongooses [Ichneumia albicauda, Galerella sanguinea, Helogale parvula], genets [Genetta genetta, G. maculata]) 273 carnivores. These exclosures use 2.4 m high fences consisting of 14 strands of wire, electrically 274 275 charged by solar-powered batteries, with a 1 m tall barrier consisting of 10 cm chain link fencing. MESO exclosures consist of 11 wires beginning 30 cm above the ground, allowing 276 277 access to only the smallest LMH (predominately dik-dik), and excluding larger species. MEGA exclosures consist of two wires starting at 2 m above ground level and exclude only elephant and 278 giraffe. OPEN plots are unfenced and demarcated by a series of 1 m tall wooden posts at 10 m 279 280 intervals; these plots allow access to all LMH. On all fences, a series of 1 m long wires at 2 m height extend horizontally outward from plots to deter large herbivores from approaching the 281 barriers. In January 2009, we added vertical connecting wires to TOTAL and MESO fences to 282 283 increase security and stability. Exclosures are inspected and maintained by project personnel at

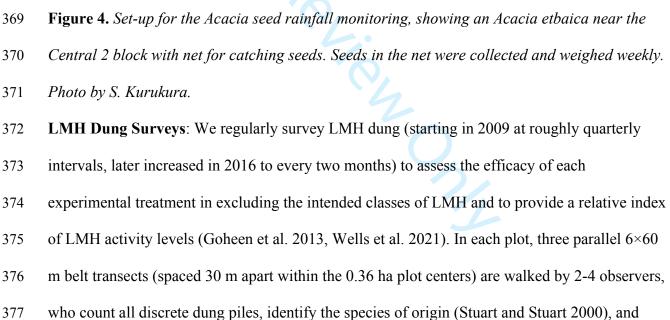
284	least once per week (and often more frequently). Rapid repairs are made whenever damage to the
285	fencing is discovered. For the eight most common LMH between 2009 and 2019, mean
286	exclosure effectiveness (assessed as the percent reduction in dung deposition between OPEN and
287	exclusion plots) was 97% and ranged from 95% (for elephants) to 99% (for cattle/buffalo).
288	Within each plot, a 0.36 ha grid (60×60 m) marked by 49 rebar stakes at 10 m intervals provides
289	the spatial template for most experimental monitoring. Routine data collection (i.e., the data
290	presented here) does not require destructive sampling. Any harvesting, as intermittently needed
291	for individual studies, is minimized and confined to the outlying portions of each plot to avoid
292	disturbance to the central 0.36 ha monitoring grid.
293	UHURU was designed to assess the effects of wild large herbivores. Mpala maintains a
294	ranching operation with comparatively low stocking densities for the region, predominantly of
295	cattle (1,270 head in 2021, ~6 individuals km ⁻²), with smaller numbers of camel (130 head),
296	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded
297	not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports
298	since then indicate that cattle do occasionally pass through OPEN and MEGA plots (Goheen et
299	al. 2013); MESO and LMH plots are protected by locked gates. We do not have sufficient data to
300	determine the exact frequency of such incursions and are unable to reliably distinguish buffalo
301	from cattle dung in the field, but given the relatively low overall density of livestock on Mpala
302	and the injunction against grazing in UHURU, we believe any effects of livestock are marginal.
303	Conservatively, livestock can be interpreted as a low-density component of the diverse
304	mesoherbivore size class, and in that respect may simulate 'natural' conditions of low-density
305	pastoralism that prevailed in East African savannas for millennia. Future work in UHURU can

306

Ecology

use camera trapping to quantify the frequency and intensity of cattle occupancy and thus refine

300	use camera trapping to quantify the frequency and intensity of cattle occupancy and thus ferme
307	inferences about the extent to which they contribute to net effects documented in the experiment.
308	3. Research methods:
309	Rainfall Monitoring: Rainfall has been continuously monitored since October 2008 at each of
310	the three experimental sites (Goheen et al. 2013). At the outset of the experiment, rainfall was
311	measured using cylindrical drip gauges (All Weather Rain Gauge, Productive Alternatives,
312	Fergus Falls, MN). A single automated tipping-bucket rain gauge (RainLogger, Rainwise Inc.,
313	Bar Harbor, ME) was installed in one of the TOTAL plots at each site in June 2010; a second
314	was installed in July 2011 and a third in April 2012 (Goheen et al. 2013), such that since 2012,
315	rainfall has been logged in each of the 9 experimental blocks ($n = 3$ gauges per site). Because
316	rainfall variability at this spatial scale is minimal, we use the average across the three gauges to
317	characterize rainfall at each site. This design provides redundancy that is useful when rain
318	gauges occasionally fail.
319	Understory Monitoring: Grasses and forbs are surveyed semiannually in February/March (dry
320	season) and October (short rainy season). A 1 m ² quadrat is placed immediately to the north of
321	each of the 49 stakes demarcating in the center grid in each plot, and an additional 0.25 m ²
322	quadrat is placed within the larger quadrat. Species presence/absence is recorded within both
323	quadrats. A 10-pin point frame is then positioned within the smaller quadrat, and the presence of
324	bare soil and/or the total number of vegetation pin hits is recorded for each plant species (the
325	canopy-intercept method; Frank and McNaughton 1990). From 2008–2012, individuals were
326	identified to species (or to genus and morphospecies) using field guides and published species
327	lists (Bogdan 1976, Blundell 1982, van Oudtshoorn 2009). Starting in 2012, we began a process
328	of verifying and refining plant identifications in this data set through establishment of an


329 extensive collection of >1,781 herbarium reference specimens and corresponding DNA barcode 330 data for >460 species, representing 92% of the roughly 500 vascular plants thought to occur at Mpala (Gill et al. 2019). To facilitate consistency in the face of taxonomic revisions and 331 332 refinements of our own identifications, we maintain a list of voucher numbers that match each 333 species to a reference specimen used for DNA barcoding and taxonomic verification by botanists 334 at the National Museums of Kenya (Gill et al. 2019). Individual Tree Monitoring: Individual-based surveys of trees focused on 10 tagged 335 336 individuals per plot (or all individuals if there were less than 10 individuals per plot) of each of five common woody species, including the three dominant acacias (Acacia syn. Vachellia 337 etbaica, A. syn. Senegalia mellifera, and A. syn. Senegalia brevispica: Fabaceae), Croton 338 339 dichogamus (Euphorbiaceae), and Balanites rotundifolia (Zygophyllaceae). Plants were tagged 340 in January 2009, and tagged individuals are resurveyed annually. The following data are recorded: survival, height (m), crown diameter (m), basal diameter (mm) and/or circumference 341 (cm) at 15 cm from ground level, and the number of stems at ground level. Many additional trees 342 343 were tagged in 2012 following the same monitoring protocol, but some of these additional trees were not monitored after 2015. 344

Woody Plant Censuses: Each year, a census is conducted of all trees and shrubs (i.e., species that reach ≥ 2 m tall at maturity) and large succulents (*Euphorbia* and *Opuntia* spp.) within the 0.36 ha central grids. Individuals are identified, and the number of individuals of each species are recorded for each of five height classes (<1 m, 1–2 m, 2–3 m, 3–4 m, >4 m). The first census, in 2009, omitted *Euphorbia* spp., and censuses prior to 2012 omitted *Opuntia* spp.

350	Phenology Surveys: Each month, the presence or absence of reproductive bodies (flowers
351	and/or fruits) is recorded for all plant species within the 0.36 ha plot centers during a 30-minute
352	scan of each plot. This data set was initiated in 2012 and is continuing.
353	Vertical Vegetation Structure: From December 2016 to December 2018, we conducted several
354	surveys that integrate understory and overstory vegetation using a modified version of the
355	canopy-intercept method (Frank and McNaughton 1990). At each of the 49 grid stakes in each
356	plot, a telescoping pole was placed on the ground and extended up through the canopy (Kartzinel
357	and Pringle 2020). All vegetation touches were recorded, along with plant species identity,
358	height of the intercept, and whether the touch was stem or leaf. The objectives of these surveys
359	were (a) to quantify understory and overstory vegetation simultaneously using a consistent
360	methodology and (b) to quantify the vertical profile of vegetation biomass within the plots.
361	Seed Rainfall Monitoring: Seed rainfall weights were recorded weekly for two of the dominant
362	tree species, Acacia (Vachellia) etbaica and Acacia (Senegalia) mellifera just outside of the
363	UHURU plots at the South, Central, and North sites from 2016–2019 (Fig. 4). Nets were placed
364	underneath the tree canopy, and all seeds that accumulated in the nets were weighed weekly.
365	Three individuals per species were monitored at each site, one each from the following height
366	classes: 2-3m, 3-4m, and >4m. Seed rainfall from 18 trees were measured in total.
367	

- 378 crush the dung after identification to prevent recounting in subsequent surveys. Rates of dung
- decomposition do not differ markedly among the three sites (Goheen et al. 2013).
- 380 Small Mammal Sampling: Continuously since 2009, small mammals are live-trapped at two-
- 381 month intervals in TOTAL and OPEN plots using Sherman traps baited with peanut butter and

382 oats (Goheen et al. 2013). In each trapping session, a single trap is set at each of the 49 grid 383 stakes in the center of each plot, opened in the late afternoon, and checked and closed in the early morning. Trapping sessions last four consecutive days. All small mammals are fit with a 384 385 numbered ear tag on each ear, with the exception of individuals in the genera Acomys, 386 *Crocidura*, *Mus*, and *Steatomys*, which are too small or too fragile (Seifert et al. 2012) for ear 387 tags. Instead, we mark individuals in these genera with permanent markers for subsequent identification within trapping sessions. Sample sizes and movement patterns by the four most 388 commonly captured and marked small mammals (Hinde's rock rat [Aethomys hindei], rufous 389 390 elephant shrew [Elephantulus rufescens], fringe-tailed gerbil [Gerbilliscus robustus], and 391 Mearns' pouched mouse [Saccostomus mearnsi])—represented by (a) the maximum distance moved by an individual within a four-day sampling period; (b) the probability of remaining on a 392 393 sampling grid between successive periods; and (c) the number of times an individual was captured on more than one plot-indicate that the 1 ha UHURU plot size is sufficiently large to 394 measure effects of LMH exclusion on small mammals (Table 1). Initial misclassifications of 395 396 Harrington's tateril (*Taterillus harringtoni*) as juvenile fringe-tailed gerbil (*Gerbilliscus* 397 robustus) were identified in May 2011 via DNA barcoding (Goheen et al. 2013). We now 398 distinguish these two species based on hindfoot length (<34 mm for T. harringtoni), mass (<60 g 399 for T. harringtoni), and tail (tufted for T. harringtoni). With the aid of mitochondrial DNA barcoding, we have identified the tiny fat mouse (Steatomys parvus) as present in the 400 401 community. We believe that there was a single misidentification of this species (for *Mus* spp. "Umus") in Kartzinel et al. 2014, which we have updated in the current data set. Mitochondrial 402 403 DNA barcoding has also been used to confirm the presence of at least 3 Mus phylotypes in the 404 plots that we cannot reliably distinguish in the field. Two *Crocidura* species (*C. elgonius* and *C.*

405 *gracilipes*) are morphologically indistinguishable except for size at maturity; *C. elgonius* are <7

406 g, while *C. gracilipes* are >7 g. We record weight, sex, age, and reproductive condition for every

- 407 captured individual.
- 408

Species	Sample Size	Maximum Distance (m)	Probability of Remaining	Inter-Plot Movement
Aethomys hindei	2184	78.1	0.83	261
Elephantulus rufescens	561	67.1	0.88	49
Gerbilliscus robustus	1684	78.1	0.83	153
Saccostomus mearnsi	1125	72.1	0.93	83

409

410	Table 1. UHURU plots (1 ha) are large relative to the scale of movement by the four most
411	commonly captured and marked small mammals within and between sampling periods. Data
412	include the maximum distance moved within a four-day sampling bout, the probability of an
413	individual remaining within a sampling grid between successive sampling periods, and the total
414	number of times that any individual has been captured in more than one plot between periods.
415	
416	Permit history: Kenya National Commission for Science, Technology & Innovation permits to
417	Robert M. Pringle: NCST/5/002/R/656, NACOSTI/P/14/0592/1852,
418	NACOSTI/P/18/0592/21481, NACOSTI/P/20/6262; University of Wyoming Institutional
419	Animal Care and Use Committee Protocol Approval (Jacob Goheen; SKMBT_60112030515200;
420	SKMBT_60112030515201; SKMBT_60112030515202; SKMBT_60112030515210).
421	C. Project personnel: In addition to the authors, the UHURU experiment team has employed
422	several full-time Kenyan field assistants, who collected field data and maintain the experimental
423	infrastructure. Simon Lima, Jackson Lima, Antony Eshwah (deceased), and Mohamud Mohamed

424 have worked in this capacity.

425	
426	Class III. Data set status and accessibility
427	A. Status
428	1. Latest update: December 2019.
429	2. Latest archive date: December 2019.
430	3. Metadata status: The metadata are current and stored with the data.
431	4. Data verification: Data verification was conducted by J. Alston and C. Reed, with assistance
432	from S. Kurukura, A. Hassan, L. Khasoha, S. Weiner, J. Goheen, R. Pringle, and T. Kartzinel.
433	B. Accessibility
434	1. Contact person(s): Jacob Goheen, e-mail: jgoheen@uwyo.edu, phone: 307-509-0280.
435	Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA.
436	Robert Pringle, e-mail: rpringle@princeton.edu, phone 609-258-8273. Department of Ecology &
437	Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
438	2. Storage location and medium: Original data files exist on the authors' personal computers
439	(several of which are routinely backed up on servers housed at their home institutions) and are
440	replicated on external hard drives, Google Drive, and Dropbox in .xlsx, .csv, and .txt files. Paper
441	copies of original field data sheets are stored safely in a facility rented by Jacob Goheen and
442	Robert Pringle at the Mpala Research Centre. Data format and the programs required to access
443	and manipulate data will be kept current throughout the duration of this study.
444	3. Copyright restrictions: None.
445	4. Proprietary restrictions: Notification about when and how data are used is appreciated but
446	not mandated by the authors. Given ongoing research in the UHURU experiment and the
447	continuation of most of the data sets presented here, we strongly recommend contacting J.

448 Goheen and R. Pringle prior to using these data, as updated data are available at regular intervals.

449 We ask that users of UHURU data cite this data paper when using the data.

450 C. Costs: None.

451

452 Class IV. Data structural descriptors

453 There are 13 files that provide location, rainfall, habitat, vegetation, and animal data from the

454 UHURU experiment. There are several column headings that identify the scale and location of

455 sampling, appearing in many of the 13 datasets that follow.

Label	Attribute	Definition
Survey/Census	Survey or Census number	Numeric
Year	Year of sampling	2008–2019
Month	Month of sampling	Month
Site	Plot location	North (dry), Central (intermediate), South (wet)
Block	Replicate	Numeric (1–3)
Treatment	Experimental treatment type (definitions refer to the excluded LMH species)	OPEN = open plots; MEGA = megaherbivore; MESO = meso- and megaherbivore; TOTAL = all LMH excluded; OUT = near to, but outside, experimental plots (rarely used)
Plot	Unique plot identifiers	Comprises site, block, and treatment
Rebar/Section	Identity of the rebar stake within the central grid	Alphanumeric ID of rebar stakes (49 per plot). "Section" denotes the grid cell

		immediately below and to the right of a stake (e.g., 1A denotes the grid cell bounded by stakes 1A, 1B, 2A, and 2B).
Species	Species	Species of plant or animal. Some species are identified only to genus/morphospecies.

457

458 1. PLOT COORDINATES

- 459 **A. Data set file**
- 460 **Identity:** PLOT_COORDINATES.csv
- 461 Size: 4 KB
- 462 Format: CSV
- 463 **Contents:** Includes the name and location of all experimental plots. There are 81 lines of data,
- 464 with each record providing location data for the axes of each plot.

465 **B. Variable information**

Column	Attribute	Definition
3-6	Coordinates	Columns 3 and 4 are UTM coordinates, columns 5 and 6 are decimal degree coordinates.

466 **C. Data anomalies:** None.

- 468 **2. RAINFALL DATA**
- 469 **A. Data set file**
- 470 Identity: RAINFALL_2008-2019.csv
- 471 Size: 263 KB
- 472 **Contents:** Daily data for each rain gauge.

Column	Attribute	Definition
1	Date	Date in form of day-month-year.
2–13	Daily rainfall (mm)	Daily rain gauge readings at each block. "man" denotes manual rain gauges used early in the project, while "aut" denotes automatic rain gauges that were installed beginning in 2010.
14-16	Averages (mm)	Average rainfall across gauges at a given site.

473 **B. Variable information**

474

C. Data anomalies: NA denotes days on which no data were recorded by a given gauge due to equipment failure. No gauges recorded data from the South site from 26 May 2011 to 30 May 2011, and no gauges recorded data for the Central site from 9 December 2015 to 31 December 2015 and 9 October 2016 to 23 October 2016, and therefore data is missing for these dates. No gauges recorded data for the North site from 9 December 2015 to 31 December 2015, but data from a nearby long-term hydrology study was substituted for those dates (Caylor et al. 2017).

482 **3. VEGETATION DATA – PIN-FRAME SURVEYS**

- 483 A. Data set file
- 484 Identity: UNDERSTORY_PIN_2008-2019.csv

485 Size: 29.1 MB

- 486 **Contents:** Understory pinhit vegetation data recorded within each of the smaller quadrats (0.25
- 487 m²) in each of 20 semiannual surveys from October 2008 to March 2019.

B. Variable information

Column	Attribute	Definition
9	Bare ground	Number of pins with bare ground and no vegetation
10:331	Species names	Genus and species of plant recorded in understory vegetation surveys

490	C. Data anomalies: Two surveys were performed per year, except for 2015, 2016, and 2019;
491	only one survey was performed for each of those years. Notes on taxonomy, including changes
492	across the 20 surveys, are recorded in rows 2-4. Row 2 (Notes) indicates the name that a plant
493	was assigned during each of the 20 surveys. Row 3 (Changes) provides details on name changes,
494	including lumping, splitting, and new identifications. Row 4 (SKS#) provides the voucher
495	number matching each species to a specimen used to confirm identification by botanists at the
496	National Museums of Kenya in conjunction with DNA barcoding (Gill et al. 2019). Taxonomic
497	identities are considered provisional if labeled as morphospecies, as genus with "sp.", or as
498	"unknown." Identifications of morphospecies are pending ongoing taxonomic investigation and
499	DNA barcoding. Taxa are recorded as NA in surveys for which those taxa were not recognized.
500	We include all 20 surveys conducted from 2008-2019 to facilitate tracking of nomenclatural
501	updates that have been guided by detailed botanical investigations and DNA barcoding over this
502	period (cf. Kartzinel et al. 2014). For Surveys 1-14, trees (e.g., Acacia spp., Boscia angustifolia)
503	and other overstory species (e.g., Opuntia stricta, Euphorbia spp.) were not counted. Starting in
504	Survey 15, seedlings and saplings of these species were included in the surveys as components of
505	the understory. For Surveys 1-14, these species are listed as NA. Elsewhere throughout the data
506	set, NA indicates data that are missing or suffered from transcription errors.

508 4. VEGETATION DATA – SMALL (0.25 m²) QUADRATS

- 509 A. Data set file
- 510 Identity: UNDERSTORY_SMQUAD_2008-2019.csv
- 511 Size: 28.7 MB
- 512 **Contents:** Understory vegetation data recorded in small quadrats (0.25 m²) at each rebar stake
- 513 during 20 semiannual surveys from October 2008 to March 2019.

514 **B. Variable information**

Column	Attribute	Definition
9	Bare ground	Percent cover
10:331	Species names	Genus and species of plant recorded in understory vegetation surveys

515

C. Data anomalies: Two surveys were performed per year, except for 2015, 2016, and 2019; 516 517 only one survey was performed for each of those years. Notes on taxonomy, including changes 518 across the 20 surveys, are recorded in rows 2-4. Row 2 (Notes) indicates the name that a plant 519 was assigned during each of the 20 surveys. Row 3 (Changes) provides details on name changes, 520 including lumping, splitting, and new identifications. Row 4 (SKS#) provides the voucher 521 number matching each species to a specimen used to confirm identification by botanists at the 522 National Museums of Kenya in conjunction with DNA barcoding (Gill et al. 2019). Taxonomic 523 identities are considered provisional if labeled as morphospecies, as genus with "sp.", or as "unknown." Identifications of morphospecies are pending ongoing taxonomic investigation and 524 525 DNA barcoding. Taxa are recorded as NA in surveys for which those taxa were not recognized. 526 We include all 20 surveys conducted from 2008-2019 to facilitate tracking of nomenclatural updates that have been guided by detailed botanical investigations and DNA barcoding over this 527

- 528 period (cf. Kartzinel et al. 2014). For Surveys 1-14, trees (e.g., Acacia spp., Boscia angustifolia)
- and other overstory species (e.g., *Opuntia stricta, Euphorbia* spp.) were not counted. Starting in
- 530 Survey 15, seedlings and saplings of these species were included in the surveys as components of
- the understory. For Surveys 1-14, these species are listed as NA. Elsewhere throughout the data
- set, NA indicates data that are missing or suffered from transcription errors. For surveys 1-14,
- data are binary presence/absence data (values = 0 or 1), and surveys 15-20 include percent cover
- 534 data.
- 535
- 536 5. VEGETATION DATA LARGE (1 m²) QUADRATS
- 537 A. Data set file
- 538 Identity: UNDERSTORY LGQUAD 2008-2019.csv
- 539 Size: 28.7 MB
- 540 **Contents:** Understory vegetation data recorded in large quadrats (1 m²) at each rebar during 20
- semiannual surveys from October 2008 to March 2019.
- 542 **B. Variable information**

Column	Attribute	Definition
9	Bare ground	Percent cover
10:331	Species names	Genus and species of plant recorded in understory vegetation surveys

- 544 **C. Data anomalies:** Two surveys were performed per year, except for 2015, 2016, and 2019;
- only one survey was performed for each of those years. Notes on taxonomy, including changes
- across the 20 surveys, are recorded in rows 2-4. Row 2 (Notes) indicates the name that a plant
- 547 was assigned during each of the 20 surveys. Row 3 (Changes) provides details on name changes,

548	including lumping, splitting, and new identifications. Row 4 (SKS#) provides the voucher
549	number matching each species to a specimen used to confirm identification by botanists at the
550	National Museums of Kenya in conjunction with DNA barcoding (Gill et al. 2019). Taxonomic
551	identities are considered provisional if labeled as morphospecies, as genus with "sp.", or as
552	"unknown." Identifications of morphospecies are pending ongoing taxonomic investigation and
553	DNA barcoding. Taxa are recorded as NA in surveys for which those taxa were not recognized.
554	We include all 20 surveys conducted from 2008-2019 to facilitate tracking of nomenclatural
555	updates that have been guided by detailed botanical investigations and DNA barcoding over this
556	period (cf. Kartzinel et al. 2014). For Surveys 1-14, trees (e.g., Acacia spp. and Boscia
557	angustifolia) and other overstory species (e.g., Opuntia stricta and Euphorbia sp.) were not
558	counted. Starting in Survey 15, seedlings and saplings of these species were included in the
559	surveys as components of the understory. For Surveys 1-14, these species are listed as NA.
560	Elsewhere throughout the data set, NA indicates data that are missing or suffered from
561	transcription errors. For surveys 1-14, data are binary presence/absence data (values = 0 or 1),
562	and surveys 15-20 include percent cover data.
563	and surveys 15-20 include percent cover data.
564	6. VEGETATION DATA – VERTICAL VEGETATION STRUCTURE

- 565 A. Data set file
- 566 Identity: VERTICAL_VEGETATION_2016-2018.csv
- 567 Size: 3.8 MB
- 568 **Contents:** Annual surveys of vertical vegetation taken at the 49 stakes in each plot.
- 569 **B. Variable information**

Column	Attribute	Definition
--------	-----------	------------

8	Voucher Number	Specimen number for identification at National Museums of Kenya
9	Stem	Stem (1) or non-stem (0; e.g., leaf, flower)
10	Height	Height at which plant touched tree pole (cm)

570

571	C. Data anomalies: Three vertical vegetation surveys were performed between December 2016
572	and December 2018. A partial survey in October 2017 (Survey 1B) includes only the South
573	plots. During Surveys 1-2, Achyranthes aspera was identified to subspecies, but in Survey 3 it
574	was identified only to species. During data curation for this publication, several species names
575	were updated from those that have been used in previous studies from UHURU: an unknown
576	Eragrostis species was identified as Eragrostis cylindriflora, an unknown Malvaceae was
577	identified as Hibiscus sparseaculeatus, an unknown Pavonia species was identified as Pavonia
578	patens, and an unknown Pollichia species was identified as Atriplex semibaccata. Sida alba was
579	changed to Sida ovata, Abutilon mauritianum was changed to Pavonia burchellii, and Cyathula
580	cylindrica was changed to Cyathula orthacantha. All instances of Cyathula orthacantha
581	associated with Voucher # RRH_13_040 as described in Gill et al. (2019) were changed to
582	Pupalia lappacea. Nomenclatural updates (cf. Kartzinel et al. 2014) have been guided by
583	detailed botanical investigations of voucher specimens at the National Museums of Kenya as
584	well as DNA barcoding, and are consistent with changes made in the understory, tree census, and
585	tree survey datasets.
586	
507	7 VECETATION DATA LONCITUDINAL TREE SUDVEVS

587 **7. VEGETATION DATA – LONGITUDINAL TREE SURVEYS**

- 588 A. Data set file
- 589 Identity: TREE_SURVEYS_2009-2019.csv

590 Size: 1.3 MB

591 **Contents:** Annual tree surveys and measurements for each plot (2009–2019).

592 **B. Variable information**

Column	Attribute	Definition
9	Tag Number	Current tag number that identifies a tree.
10	Dead	Whether the tree is dead ($Y = Yes; N = No$).
11	Height	Tree height (m).
12	Length	Length of canopy extent (m).
13	Width	Length of canopy perpendicular to first measurement (m).
14	Circumference	Circumference of tree (cm).
15	Number of stems	Number of stems at ground level.

593

C. Data anomalies: Re-measuring tree heights and circumferences can be imprecise due to 594 factors including variability in how high on the stem the calipers or measuring tape was placed or 595 the inadvertent measurement of the wrong basal stem on a tagged tree. Nonetheless, tree heights 596 597 and diameters can change dramatically from year to year, due to damage by elephants, drought, 598 etc. We scrutinized data and identified all trees with changes in height or circumference greater 599 than three standard deviations between any two consecutive surveys to identify and correct inadvertent miscalculations, transcription errors, or other verifiable mistakes; otherwise, we 600 601 assumed measurements to be accurate, even when differing markedly between successive years.

- No tree survey was conducted in 2018. Some trees and plots were inadvertently measured twice
- 603 in the same year—these values can be used to estimate measurement error. Many additional trees
- were tagged in 2012 following the same monitoring protocol as the other trees, but some of these
- additional trees were not monitored after 2015; these trees are denoted by a tree tag number
- 606 beginning with "JM".
- 607
- 608 8. VEGETATION DATA TREE CENSUS SUMMARY
- 609 **A. Data set file**
- 610 Identity: TREE_CENSUS_SUMMARY.csv
- 611 Size: 259 KB
- 612 **Contents:** Summary spreadsheet at the plot level showing number of individuals of each species
- 613 in each size class in each year per plot (2009-2019).

614 **B. Variable information**

Column	Attribute	Definition
8–14	Size classes	Trees per size class per subplot
15	Total	Total trees per species per subplot

- 616 C. Data anomalies: No census was conducted in 2011 or 2015. No data are available for
- 617 N1MESO and N3OPEN in 2019. Some data were missing for S2MESO and S3MESO in 2016,
- 618 S3MESO in 2017, and C1TOTAL and C3TOTAL in 2019 (so summarized data may be
- 619 meaningfully undercounted in these plots in these years). *Euphorbia* spp. were present but not

- recorded in 2009; *Opuntia* spp. were present but not recorded until 2012. Otherwise, when tree
- species are not listed in a year, this indicates that the tree species was not present in that year.
- 622

623 9. VEGETATION DATA – TREE CENSUS DETAILED

- 624 **A. Data set file**
- 625 Identity: TREE_CENSUS_DETAILED.csv
- 626 Size: 2.7 MB
- 627 **Contents:** Spreadsheet showing the data for each 10×10 m sampled section of each plot (2009-
- 628 2019).

629 **B. Variable information**

Column	Attribute	Definition
9-15	Size classes	The number of trees for the corresponding species in each size class
16	Total	The total number of trees measured.

630

631 C. Data anomalies: No census was conducted in 2011 or 2015. No data are available for

N1MESO and N3OPEN in 2019. Some data were missing for S2MESO and S3MESO in 2016,

633 S3MESO in 2017, and C1TOTAL and C3TOTAL in 2019 (so summarized data may be

634 meaningfully undercounted in these plots in these years). *Euphorbia* spp. were present but not

recorded in 2009; *Opuntia* spp. were present but not recorded until 2012. Otherwise, when tree

- 636 species are not listed in a year, this indicates that the tree species was not present in that year. In
- 637 some sections in some years, two rows for the same species were inadvertently recorded with

- different numbers of trees. We recommend that data users average these entries to account for
- 639 these data errors.
- 640

641 **10. VEGETATION DATA - FLOWER AND FRUIT PHENOLOGY**

- 642 **A. Data set file**
- 643 Identity: PHENOLOGY_2012-2019.csv
- 644 Size: 1.2 MB
- 645 **Contents:** Spreadsheet detailing the presence of flowers and fruit on species of plants at each
- 646 site of the UHURU experiment.

647 **B. Variable information**

Column	Attribute	Definition
4	Flower or fruit	Whether the observation represents flowers or fruits
5-7	Presence at sites	Presence of flowers or fruits during the month and year denoted by the row (1: present, 0: absent or missing from site)

648

C. Data anomalies: June and December 2012 data quantified numbers of flowers and fruits for a small subset of plant species. From August 2013, monthly phenology data were collected. These data include a broader range of species than 2012 data, but only specify whether a species was flowering (not fruiting) in a given site. From January 2017, the data include the presence of both flowers and fruits (separately) for each species in each site. Zeros may indicate either that no flowers or fruits were present, or that the species itself was not present or not detected in a plot; analyses based on absence of flowering/fruiting should therefore be conducted with caution.

|--|

657 11. VEGETATION DATA - ACACIA SEED RAINFALL

- 658 A. Data set file
- 659 Identity: ACACIA_SEED_RAIN_2016-2019.csv
- 660 Size: 83 KB
- 661 Contents: Seed rain from Acacia etbaica and Acacia mellifera across the rainfall gradient from
- 662 December 2016 to October 2019.

663 **B. Variable information**

Column	Attribute	Definition
2	Tree ID	Unique identifier for each tree, including species and ID number (AE = $Acacia \ etbaica$; AM = $Acacia \ mellifera$)
3	Species	Acacia tree species (Acacia_etbaica or Acacia_mellifera)
4	Height class	Trees divided into categories based on height (2-3 m, 3-4 m, or >4 m)
6	Weight	Weight of seeds caught in net underneath tree canopy (g; marked as "not checked" if tree was not checked in a given week)

664

665 **C. Data anomalies:** Missing data are indicated by NA.

- 667 12. ANIMAL DATA DUNG SURVEYS
- 668 A. Data set file
- 669 Identity: DUNG_SURVEYS.csv
- 670 Size: 532 KB

671 **Contents:** Dung count survey data, 2009–2019

672 **B. Variable information**

Column	Attribute	Definition
9	Line	Transect line number (corresponding with the tree census and small mammal trapping grid)
10-40	Source of dung	Species of origin and age (old vs. new dung assessed by color).

673

674 **C. Data anomalies:** Dung of several species pairs cannot be differentiated reliably in the field.

675 These include hares (*Lepus* cf. *L. capensis* and *L.* cf. *L. saxatilis*; Kartzinel et al. 2019), plains

and Grevy's zebra (*Equus quagga* and *E. grevyi*), African buffalo (*Syncerus caffer*) and domestic

677 cattle (*Bos indicus*). We made no effort to differentiate predator dung (rare) according to species;

678 instead, we lumped them within three size classes: large, medium, and small. A transcription

679 error occurred when recording block number in the Central plots during the January 2011 survey.

As a result, Block 2 and Block 3 are coded as NA to reflect the uncertainty. No data are available

for the Central and South sites for Survey 19.

682

683 **13. ANIMAL DATA – SMALL MAMMAL SURVEYS**

- 684 A. Data set file
- 685 Identity: SMALL_MAMMALS_2009-2019.csv

686 Size: 2.7 MB

687 **Contents:** Small mammal captures during capture periods 1–63 (May 2009 – December 2019).

688 **B. Variable information**

Column	Attribute	Definition
10	Night	Trap night (per site per survey)
11	Species	Acke = $Acomys \ kempi$ = Kemp's spiny mouse Acpe = $Acomys \ percivali$ = Percival's spiny mouse Aehi = $Aethomys \ hindei$ = Hinde's rock rat Arna = $Arvicanthis \ nairobae$ = Nairobi grass rat Arni = $Arvicanthis \ nairobae$ = Nairobi grass rat Crel = $Crocidura \ snitoticus$ = African grass rat Crel = $Crocidura \ gracilipes$ = Peter's musk shrew Crog = $Crocidura \ gracilipes$ = Peter's musk shrew Croc = $Crocidura \ spp.$ = white-toothed shrews Dend = $Dendromus \ spp.$ = climbing mice Elru = $Elephantulus \ rufescens$ = rufous elephant shrew Geni = Gerbiliscus nigricaudus = black-tailed gerbil Gero = $Gerbilliscus \ robustus$ = fringe-tailed gerbil Grdo = $Grammomys \ dolichurus$ = woodland thicket rat Grmi = $Graphiurus \ microtis$ = small-eared dormouse Mana = $Mastomys \ natalensis$ = Natal multi-mammate rat NA = used for traps that were closed but empty as well as traps that were missing or damaged; also used for plots in which no animals were caught that night Rara = $Rattus \ rattus$ = black rat Same = $Saccostomus \ mearnsi$ = northern pouched mouse Stpa = $Steatomys \ parvus$ = tiny fat mouse Taha = $Taterillus \ harringtoni$ = Harrington's tateril Uarvi = $Arvicanthis \ spp.$ = grass rats Umus = $Mus \ spp.$ = pygmy mice Unkn = unknown Zehi = $Zelatomys \ hildegardeae$ = Hildegarde's broad-headed stink mouse
12	Capture	C = capture; R = recapture
13	Sex	F = female; M = male

14	Condition	L = lactating N = none (no reproductive condition) P = pregnant PL = pregnant and lactating S = scrotal
15	Age	A = adult; S = subadult; J = juvenile
16	Left hind foot	Length of left hind foot (mm)
17	Left tag	Tag number at survey
18	Original tag	Original tag number. Particularly useful for cross-referencing with left_tag column when a tag was missing or replaced
19	ID	Individual identifier
20	Marks	Number of paint marks left on animals without ear tags
21	Weight	Weight (g)
22	Notes	Indicate areas where individual identifications or measurement interpretations require caution. In particular, this column indicates if ID tags were lost or replaced, or if an individual escaped during evaluation. The condition of some individual captures could be consequential, such as individuals captured dead or with broken limbs. Also may indicate when a non-small mammal species is caught, such as a bird, squirrel, or dwarf mongoose.

690 C. Data anomalies: NA indicates no data. Based on mitochondrial DNA barcoding data, along with geographic range and morphological data, the species listed as Mus sorella (MUSO) on the 691 original field data sheets is now identified as the tiny fat mouse, *Steatomys parvus* (STPA). 692 693 Harrington's tateril (Taterillus harringtoni) was initially misclassified as juvenile fringe-tailed 694 gerbil (Gerbilliscus robustus) but was identified in May 2011 via DNA barcoding (Goheen et al. 695 2013). We now differentiate between the two species based on hindfoot length (<34 mm for T. harringtoni), mass (<60 g for T. harringtoni), and tail (tufted for T. harringtoni). Mitochondrial 696 DNA barcoding has also been used to confirm the presence of at least 3 Mus phylotypes in the 697 698 plots that we cannot reliably distinguish in the field; all are listed as Umus (Mus spp.) in the dataset. Two Crocidura species (C. elgonius and C. gracilipes) are distinguished by size at 699 maturity; C. elgonius are <7 g, and C. gracilipes are >7 g. 700

701

702 Class V. Supplemental descriptors

A. Data acquisition: Data can be accessed at the link located in the supporting information for
 this data paper.

B. Quality assurance/quality control procedures: Measures taken for quality control are
detailed in each data set description above. Data were recorded in the field on paper, entered into
spreadsheets via Microsoft Excel, and checked for outliers or omissions at that time, and
subsequently scrutinized for similar issues during data curation for this publication. Any known
data anomalies are reported with the corresponding data set. Original data sheets are stored at
Mpala Research Centre.
C. Related materials: NA

712 **D. Computer programs and data-processing algorithms:** NA

713	E. Archiving: Data are archived at the link located in the supporting information for this data
714	paper.
715	F. Publications
716	Brown, B.R.P. 2021. Communities within a community: the gut microbiomes of co-occurring
717	small mammals in a Kenyan savanna. Ph.D. Thesis, Brown University.
718	Brown, B.R.P., J.R. Goheen, S.D. Newsome, R.M. Pringle, T.M. Palmer, L. Khasoha, and T.R.
719	Kartzinel. Host phylogeny and functional traits differentiate gut microbiomes in a diverse
720	natural community of small mammals. In review.
721	Coverdale, T.C. 2018. Patterns of plant defense, diversity, and fitness in an African savanna.
722	Ph.D. Thesis, Princeton University.
723	Coverdale, T.C., I.J. McGeary, R.D. O'Connell, T.M. Palmer, J.R. Goheen, M. Sankaran, D.J.
724	Augustine, A.T. Ford, and R.M. Pringle. Strong but opposing effects of associational
725	resistance and susceptibility on defense phenotype in an African savanna plant. Oikos
726	128:1772-1782.
727	Coverdale, T.C., J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2018. Good neighbors make good
728	defenses: associational refuges reduce defense investment in African savanna plants.
729	Ecology 99:1724-1736.
730	Coverdale, T.C., T.R. Kartzinel, K.L. Grabowski, R.K. Shriver, A.A. Hassan, J.R. Goheen, T.M.
731	Palmer, and R.M. Pringle. 2016. Elephants in the understory: opposing direct and indirect
732	effects of consumption and ecosystem engineering by megaherbivores. Ecology 97:3219-
733	3230.
734	Coverdale, T.C., R.D. O'Connell, M.C. Hutchinson, A. Savagian, T.R. Kartzinel, T.M. Palmer,
735	J.R. Goheen, D.J. Augustine, M. Sankaran, C.E. Tarnita, and R.M. Pringle. Large

736	herbivores suppress liana infestation in an African savanna. 2021. Proceedings of the
737	National Academy of Sciences 118:e2101676118.
738	Ford, A.T. 2014. A mechanistic study of trophic interactions in an African savanna. Ph.D.
739	Thesis, University of British Columbia.
740	Ford, A.T., J.R. Goheen, D.J. Augustine, M.F. Kinnaird, T.G. O'Brien, T.M. Palmer, R.M.
741	Pringle and R. Woodroffe. 2015. Recovery of African wild dogs suppresses prey but does
742	not trigger a trophic cascade. Ecology 96:2705-2714.
743	Ford, A.T., J.R. Goheen, T.O. Otieno, L. Bidner, L.A. Isbell, T.M. Palmer, D. Ward, R.
744	Woodroffe, and R.M. Pringle. 2014. Large carnivores make savanna tree communities
745	less thorny. Science 346:346-349.
746	Fraser, L.H., J. Pither, A. Jentsch, M. Sternberg, M. Zobel, D. Askarizadeh, S. Bartha, C.
747	Beierkuhnlein, J.A. Bennett, A. Bittel, B. Boldgiv, I.I. Boldrini, E. Bork, L. Brown, M.
748	Cabido, J. Cahill, C.N. Carlyle, G. Campetella, S. Chelli, O. Cohen, AM. Csergo, S.
749	Díaz, L. Enrico, D. Ensing, A. Fidelis, J.D. Fridley, B. Foster, H. Garris, J.R. Goheen,
750	H.A.L. Henry, M. Hohn, M.H. Jouri, J. Klironomos, K. Koorem, R. Lawrence-Lodge, R.
751	Long, P. Manning, R. Mitchell, M. Moora, S.C. Müller, C. Nabinger, K. Naseri, G.E.
752	Overbeck, T.M. Palmer, S. Parsons, M. Pesek, V.D. Pillar, R.M. Pringle, K. Roccaforte,
753	A. Schmidt, Z. Shang, R. Stahlmann, G.C. Stotz, S. Sugiyama, S. Szentes, D. Thompson,
754	R. Tungalag, S. Undrakhbold, M. van Rooyen, C. Wellstein, J.B. Wilson, T. Zupo. 2015.
755	Worldwide evidence of a unimodal relationship between productivity and plant species
756	richness. Science 349:302-305.

757	Gill, B.A., P.M. Musili, S. Kurukura, A.A. Hassan, W.J. Kress, M. Kuzmina, J.R. Goheen, R.M.
758	Pringle, and T.R. Kartzinel. 2019. Plant DNA metabarcode library and community
759	phylogeny for a semi-arid savanna in Kenya. Molecular Ecology Resources 19: 838-846.
760	Goheen, J.R., D.J. Augustine, K.E. Veblen, D.M. Kimuyu, L.M. Porensky, T.M. Palmer, L.M.
761	Porensky, R.M. Pringle, J. Ratnam, C. Riginos, M. Sankaran, G.K. Charles, A.T. Ford,
762	A.A. Hassan, R. Jakopak, T.R. Kartzinel, S. Kurukura, A.M. Louthan, W.O. Odadi, T.O.
763	Otieno, A.M. Wambua, H.S. Young, and T.P. Young. 2018. Conservation and
764	management lessons from large-mammal manipulations in East African rangelands:
765	KLEE, GLADE, and UHURU experiments. Annals of the New York Academy of
766	Sciences 1429:31-49.
767	Goheen, J.R., T.M. Palmer, G.K. Charles, K.M. Helgen, S.N. Kinyua, J.E. Maclean, B.L. Turner,
768	H.S. Young, and R.M. Pringle. 2013. Piecewise disassembly of a large-herbivore
769	community across a rainfall gradient: the UHURU experiment. PLoS One 8: e55192.
770	Graham, S.I., M.F. Kinnaird, T.G. O'Brien, T.G. Vägen, L.A. Winowiecki, T.P. Young, and H.S.
771	Young. 2019. Effects of land-use change on community diversity and composition are
772	highly variable among functional groups. Ecological Applications 29:e01973.
773	Guy, T.J. 2017. Large mammals, rainfall variation, and the structure of plant-pollinator networks
774	in an African savanna. M.Sc. Thesis, University of Florida.
775	Guy, T.J., M.C. Hutchinson, K.C.R. Baldock, E. Kayser, B. Baiser, P.P.A. Staniczenko, J.R.
776	Goheen, R.M. Pringle, and T.M. Palmer. Large herbivores restructure plant-pollinator
777	networks. Current Biology 31:2964-2971.
778	Hutchinson, M.C. 2021. Foraging in a variable world: species interactions across ecological
779	gradients. Ph.D. Thesis, Princeton University.

780	Kartzinel, T.R., J.R. Goheen, G.K. Charles, E. DeFranco, J.E. MacLean, T. Otieno, T.M. Palmer
781	and R.M. Pringle. 2014. Plant and small-mammal responses to large-herbivore exclusion
782	in an African savanna: five years of the UHURU experiment. Ecology 95:787.
783	Kartzinel, T.R., P.A. Chen, T.C. Coverdale, D.L. Erickson, W.J. Kress, M.L. Kuzmina, D.I.
784	Rubenstein, W. Wang, and R.M. Pringle. 2015. DNA metabarcoding illuminates dietary
785	niche partitioning by African large herbivores. Proceedings of the National Academy of
786	Sciences 112:8019-8024.
787	Kartzinel, T.R., J.C. Hsing, P.M. Musili, B.R. Brown, B.R. and R.M. Pringle. 2019. Covariation
788	of diet and gut microbiome in African megafauna. Proceedings of the National Academy
789	of Sciences 116:23588-23593.
790	Kartzinel, TR and RM Pringle. 2020. Multiple dimensions of dietary diversity in large
791	mammalian herbivores. Journal of Animal Ecology 89:1482-1496.
792	Koerner, S.E., M.D. Smith, D.E. Burkepile, N.P. Hanan, M.L. Avolio, S.L. Collins, A.K. Knapp,
793	N.P. Lemoine, E.J. Forrestel, S. Eby, D.I. Thompson, G.A. Aguado-Santacruz, J.P.
794	Anderson, T.M. Anderson, A. Angassa, S. Bagchi, E.S. Bakker, G. Bastin, L.E. Baur,
795	K.H. Beard, E.A. Beever, P.J. Bohlen, E.H. Boughton, D. Canestro, A. Cesa, E.
796	Chaneton, J. Cheng, C.M. D'Antonio, C. Deleglise, F. Dembélé, J. Dorrough, D.J.
797	Eldridge, B. Fernandez-Going, S. Fernández-Lugo, L.H. Fraser, B. Freedman, G. García-
798	Salgado, J.R. Goheen, L. Guo, S. Husheer, M. Karembé, J.M.H. Knops, T. Kraaij, A.
799	Kulmatiski, MM. Kytöviita, F. Lezama, G. Loucougaray, A. Loydi, D.G. Milchunas,
800	S.J. Milton, J.W. Morgan, C. Moxham, K.C. Nehring, H. Olff, T.M. Palmer, S. Rebollo,
801	C. Riginos, A.C. Risch, M. Rueda, M. Sankaran, T. Sasaki, K.A. Schoenecker, N.L.

803	Strong, J. Su, Y.V. Tiruvaimozhi, C. Tyler, J. Val, M.L. Vandegehuchte, K.E. Veblen,
804	L.T. Vermeire, D. Ward, J. Wu, T.P. Young, Q. Yu, and T.J. Zelikova. 2018. Change in
805	dominance determines herbivore effects on plant biodiversity. Nature Ecology &
806	Evolution 2:1925-1932.
807	Long, R.A., A. Wambua, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2017. Climatic variation
808	modulates the indirect effects of large herbivores on small-mammal habitat use. Journal
809	of Animal Ecology 86:739-748.
810	Louthan, A.M. 2016. The relative strength of abiotic and biotic controls on species range limits.
811	Ph.D. Thesis, University of Colorado.
812	Louthan, A.M., D.F. Doak, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2013. Climatic stress
813	mediates the impacts of herbivory on plant population structure and components of
814	individual fitness. Journal of Ecology 101:1074-1083.
815	Louthan, A.M., D.F. Doak, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2014. Mechanisms of
816	plant-plant interactions: concealment from herbivores is more important than abiotic-
817	stress mediation in an African savannah. Proceedings of the Royal Society Series B:
818	Biological Sciences 281:20132647.
819	Louthan, A., E. Valencia, D.J. Martins, T. Guy, J. Goheen, T. Palmer, and D. Doak. 2019. Large
820	mammals generate both top-down effects and extended trophic cascades on floral-visitor
821	assemblages. Journal of Tropical Ecology 35:185-198.
822	Louthan, A.M., R.M. Pringle, J.R. Goheen, T.M. Palmer, W.F. Morris, and D.F. Doak. 2018.
823	Aridity weakens population-level effects of multiple species interactions in Hibiscus
824	meyeri. Proceedings of the National Academy of Sciences of the United States of
825	America 115:543-548.
	45

Page 52 of 116

Ecology

826	Ngatia, L.W. 2012. Grass productivity and carbon storage in relation to rainfall, soil nutrients,
827	and herbivory in an East African savanna. Ph.D. Thesis, University of Florida.
828	Ngatia, L.W., K.R. Reddy, P.K.R. Nair, R.M. Pringle, T.M. Palmer, and B.L. Turner. 2014.
829	Seasonal patterns in decomposition and nutrient release from East African savanna
830	grasses grown under contrasting nutrient conditions. Agriculture, Ecosystems &
831	Environment 188:12-19.
832	Otieno, T.O. 2016. Foraging preferences for impala and dik-dik under different levels of
833	perceived risk in a savanna ecosystem. M.Sc. Thesis, Karatina University.
834	Pringle, R.M. 2012. How to be manipulative: intelligent tinkering is key to understanding
835	ecology and rehabilitating ecosystems. American Scientist 100:30-37.
836	Pringle, R.M., J.R. Goheen, T.M. Palmer, G.K. Charles, E. DeFranco, R. Hohbein A.T. Ford, B.
837	Torto, and C.E. Tarnita. 2014. Low functional redundancy among mammalian browsers
838	in regulating an encroaching shrub (Solanum campylacanthum) in African savannah.
839	Proceedings of the Royal Society B: Biological Sciences 281:20140390.
840	Pringle, R.M., K.M. Prior, T.M. Palmer, T.P. Young, and J.R. Goheen. 2016. Large herbivores
841	promote habitat specialization and beta diversity of African savanna trees. Ecology
842	97:2640-2657.
843	Titcomb, G., B.F. Allan, T. Ainsworth, L. Henson, T. Hedlund, R.M. Pringle. T.M. Palmer, L.
844	Njoroge, M.G. Campana, R.C. Fleischer, J.N. Mantas, and H.S. Young 2017. Interacting
845	effects of wildlife loss and climate on ticks and tick-born disease. Proceedings of the
846	Royal Society B 286:20170475.
847	Titcomb, G., R.M. Pringle, T.M. Palmer and H.S. Young. 2018. What explains tick proliferation
848	following large-herbivore exclusion? Proceedings of the Royal Society B 286:20180612.

Ecology

849	Wells, H.B.M., R.D. Crego, Ø.H. Opedal, L. Malingati, J.M. Alston, C.G. Reed, S. Weiner, S.
850	Kurukura, A. Hassan, M. Namoni, J. Akadeli, D.M. Kimuyu, T.P. Young, T.R. Kartzinel,
851	T.M. Palmer, R.M. Pringle, and J.R. Goheen. Long-term experiments reveal effects of
852	megaherbivores on mesoherbivore occurrence and use intensity, mediated by species'
853	traits. Journal of Animal Ecology (doi:10.1111/1365-2656.13565).
854	Young, H.S., McCauley, D.J., Dirzo, R., Nunn, C.L., Campana, M.G., Agwanda, B., Otarola-
855	Castillo, E.R., Castillo, E.R., Pringle, R.M., Veblen, K.E. and Salkeld, D.J., 2017.
856	Interacting effects of land use and climate on rodent-borne pathogens in central Kenya.
857	Philosophical Transactions of the Royal Society B: Biological Sciences 372:20160116.
858	Young, H.S., D.J. McCauley, R. Dirzo, J.R. Goheen, B. Agwanda, A.W. Ferguson, S.N. Kinyua,
859	M.M. McDonough, T.M. Palmer, R.M. Pringle, T.P. Young, and K.M. Helgen. 2015.
860	Context-dependent effects of large-wildlife declines on small-mammal communities in
861	central Kenya. Ecological Applications 25:348-360.
862	Young, H.S., D.J. McCauley, K.M. Helgen, J.R. Goheen, E. Otárola-Castillo, T.M. Palmer, R.M.
863	Pringle, T.P. Young, R. Dirzo. 2013. Effects of mammalian herbivore declines on plant
864	communities: observations and experiments in an African savanna. Journal of Ecology
865	101:1030-1041.
866	

867 G. History of data set usage: Data are currently in use by several of the authors on this data paper to answer research questions related to the goals of the UHURU experiment. Publications 868 that have included data from the UHURU experiment are listed in Section V.F. 869

870	1. Data request history: Data from the UHURU experiment are frequently requested for
871	research conducted by outside research groups. We encourage researchers to contact J. Goheen
872	and R. Pringle to check whether more recent but as-yet-unpublished UHURU data are available.
873	2. Data set updates history: Data from the UHURU experiment were originally published in
874	2014 (Kartzinel et al. 2014). Since publication of this original data paper, we have (a) collected
875	additional data according to the original protocols, (b) improved the taxonomic resolution and
876	accuracy of plant and small mammal identifications, and (c) begun collecting several new data
877	sets. Here, we present updated and extended data from the UHURU experiment (current through
878	2019).
879	Literature Cited
880	Alston, J. M., B. M. Maitland, B. T. Brito, S. Esmaeili, A. T. Ford, B. Hays, B. R. Jesmer, F. J.
881	Molina, and J. R. Goheen. 2019. Reciprocity in restoration ecology: when might large
882	carnivore reintroduction restore ecosystems? Biological Conservation 234: 82-89.
883	Anderson, T. M., M.E. Ritchie, and S.J. McNaughton. 2007. Rainfall and soils modify plant
884	community response to grazing in Serengeti National Park. Ecology 88: 1191-1201.
885	Bakker, E.S., M.E. Ritchie, H. Olff, D.G. Michunas, and J.M.H. Knops. 2006. Herbivore impact
886	on grassland plant diversity depends on habitat productivity and herbivore size. Ecology
887	Letters 9: 780-788.
888	Blundell, M. 1982. The wild flowers of Kenya. Collins, London, UK.
889	Bogdan, A.V. 1976. A revised list of Kenya grasses (with keys for identification). Government
890	Printer, Nairobi, Kenya.

891	Brodie, J.F., O.E. Helmy, W.Y. Brockelman, and J.L. Maron. 2009. Bushmeat poaching reduces
892	the seed dispersal and population growth rate of a mammal-dispersed tree. Ecological
893	Applications 19:854-863.
894	Campbell, C., I.D. Campbell, C.B. Blyth, and J.H. McAndrews. 1994. Bison extirpation may
895	have caused aspen expansion in western Canada. Ecography 17:360-362.
896	Caylor K.K., J. Gitonga, and D.J. Martins. 2017 Mpala Research Centre Meteorological and
897	Hydrological Dataset [North Station]. Laikipia, Kenya: Mpala Research Centre.
898	Chase, J.M., M.A. Leibold, A.L. Downing, and J.B. Shurin. 2000. The effects of productivity,
899	herbivory, and plant species turnover in grassland foodwebs. Ecology 81: 2485-2497.
900	Coverdale, T.C., J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2018. Good neighbors make good
901	defenses: associational refuges reduce defense investment in African savanna plants.
902	Ecology 99: 1724-1736.
903	Coverdale, T.C., R.D. O'Connell, M.C. Hutchinson, A. Savagian, T.R. Kartzinel, T.M. Palmer,
904	J.R. Goheen, D.J. Augustine, M. Sankaran, C.E. Tarnita, and R.M. Pringle. 2021. Large
905	herbivores suppress liana infestation in an African savanna. Proceedings of the National
906	Academy of Sciences of the United States of America 118:e2101676118
907	Daskin, J.H., and R.M. Pringle. 2016. Does primary productivity modulate the indirect effects of
908	large herbivores? A global meta-analysis. Journal of Animal Ecology 85:857-868.
909	Faith, J.T., J. Rowan, and A. Du. 2019. Early hominins evolved within non-analog ecosystems.
910	Proceedings of the National Academy of Sciences of the United States of America
911	116:21478-21483.
912	Ford, A.T., and J.R. Goheen. 2015. An experimental study on risk effects in a dwarf antelope,
913	Madoqua guentheri. Journal of Mammalogy 96: 918-926.

- 914 Ford, A.T., J.R. Goheen, D.J. Augustine, M.F. Kinnaird, T.G. O'Brien, T.M. Palmer, R.M.
- 915 Pringle and R. Woodroffe. 2015. Recovery of African wild dogs suppresses prey but does
 916 not trigger a trophic cascade. Ecology 96:2705-2714.
- 917 Frank, D.A. 2005. The interactive effects of grazing ungulates and aboveground production on
- 918 grassland diversity. Oecologia 143: 629-634.
- Frank, D.A., and S.J. McNaughton. 1990. Aboveground biomass estimation with the canopy
 intercept method: a plant growth form caveat. Oikos 57: 57-60.
- 921 Gill, B.A., P.M. Musili, S. Kurukura, A.A. Hassan, W.J. Kress, M. Kuzmina, J.R. Goheen, R.M.
- 922 Pringle, and T.R. Kartzinel. 2019. Plant DNA metabarcode library and community
- phylogeny for a semi-arid savanna in Kenya. Molecular Ecology Resources 19: 838-846.
- 924 Goheen, J.R., D.J. Augustine, K.E. Veblen, D.M. Kimuyu, L.M. Porensky, T.M. Palmer, L.M.
- 925 Porensky, R.M. Pringle, J. Ratnam, C. Riginos, M. Sankaran, G.K. Charles, A.T. Ford,
- 926 A.A. Hassan, R. Jakopak, T.R. Kartzinel, S. Kurukura, A.M. Louthan, W.O. Odadi, T.O.
- 927 Otieno, A.M. Wambua, H.S. Young, and T.P. Young. 2018. Conservation and
- 928 management lessons from large-mammal manipulations in East African rangelands:
- 929 KLEE, GLADE, and UHURU experiments. Annals of the New York Academy of
- 930 Sciences 1429: 31-49.

931 Goheen, J.R., T.M. Palmer, G.K. Charles, K.M. Helgen, S.N. Kinyua, J.E. Maclean, B.L. Turner,

- H.S. Young, and R.M. Pringle. 2013. Piecewise disassembly of a large-herbivore
- 933 community across a rainfall gradient: the UHURU experiment. PLoS One 8: e55192.
- 934 Gruner, D.S., J.E. Smith, E.W. Seabloom, S.A. Sandin, J.T. Ngai, H. Hillebrand, W.S. Harpole,
- 935 J.J. Elser, E.E. Cleland, M.E.S. Bracken, E.T. Borer, B.M. and Bolker. 2008. A cross-

936

Ecology

system synthesis of consumer and nutrient resource control on producer biomass.

937	Ecology Letters, 11: 740-755.
938	Guimarães, P. R., M. Galetti, and P. Jordano. 2008. Seed dispersal anachronisms: rethinking the
939	fruits extinct megafauna ate. PLoS One 3: e1745.
940	Guy, T.J., M.C. Hutchinson, K.C.R. Baldock, E. Kayser, B. Baiser, P.P.A. Staniczenko, J.R.
941	Goheen, R.M. Pringle, and T.M. Palmer. Large herbivores restructure plant-pollinator
942	networks. Current Biology 31:2964-2971.
943	Guyton, J.A., J. Pansu, M.C. Hutchinson, T.R. Kartzinel, A.B. Potter, T.C. Coverdale, J.H.
944	Daskin, A.G. da Conceição, M.J.S. Peel, M.E. Stalmans, and R.M. Pringle. 2020. Trophic
945	rewilding revives biotic resistance to shrub invasion. Nature Ecology & Evolution 4: 712-
946	724.
947	Hillebrand, H., D.S. Gruner, E.T. Borer, M.E.S. Bracken, E.E. Cleland, J.J. Elser, W.S. Harpole,
948	J.T. Ngai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Consumer versus resource
949	control of producer diversity depends on ecosystem type and producer community
950	structure. Proceedings of the National Academy of the United States of America 104:
951	10904-10909.
952	Huntly, N. 1991. Herbivores and the dynamics of communities and ecosystems. Annual Reviews
953	of Ecology and Systematics 22: 477-503.
954	Janzen, DH and PS Martin. 1982. Neotropical anachronisms: the fruits the gomphotheres ate.
955	Science 215:19-27.
956	Kartzinel, T.R., J.R. Goheen, G.K. Charles, E. DeFranco, J.E. MacLean, T. Otieno, T.M. Palmer
957	and R.M. Pringle. 2014. Plant and small-mammal responses to large-herbivore exclusion
958	in an African savanna: five years of the UHURU experiment. Ecology 95:787.

959	Kartzinel, T.R., J.C. Hsing, P.M. Musili, B.R. Brown, B.R. and R.M. Pringle. 2019. Covariation
960	of diet and gut microbiome in African megafauna. Proceedings of the National Academy
961	of Sciences 116:23588-23593.
962	Kartzinel, T.R. and R.M. Pringle. 2020. Multiple dimensions of dietary diversity in large
963	mammalian herbivores. Journal of Animal Ecology 89:1482-1496
964	Keesing, F.L. 1998. Impacts of ungulates on the demography and diversity of small mammals in
965	central Kenya. Oecologia 116: 381-389.
966	Koerner, S.E., M.D. Smith, D.E. Burkepile, N.P. Hanan, M.L. Avolio, S.L. Collins, A.K. Knapp,
967	N.P. Lemoine, E.J. Forrestel, S. Eby, D.I. Thompson, G.A. Aguado-Santacruz, J.P.
968	Anderson, T.M. Anderson, A. Angassa, S. Bagchi, E.S. Bakker, G. Bastin, L.E. Baur,
969	K.H. Beard, E.A. Beever, P.J. Bohlen, E.H. Boughton, D. Canestro, A. Cesa, E.
970	Chaneton, J. Cheng, C.M. D'Antonio, C. Deleglise, F. Dembélé, J. Dorrough, D.J.
971	Eldridge, B. Fernandez-Going, S. Fernández-Lugo, L.H. Fraser, B. Freedman, G. García-
972	Salgado, J.R. Goheen, L. Guo, S. Husheer, M. Karembé, J.M.H. Knops, T. Kraaij, A.
973	Kulmatiski, MM. Kytöviita, F. Lezama, G. Loucougaray, A. Loydi, D.G. Milchunas,
974	S.J. Milton, J.W. Morgan, C. Moxham, K.C. Nehring, H. Olff, T.M. Palmer, S. Rebollo,
975	C. Riginos, A.C. Risch, M. Rueda, M. Sankaran, T. Sasaki, K.A. Schoenecker, N.L.
976	Schultz, M. Schütz, A. Schwabe, F. Siebert, C. Smit, K.A. Stahlheber, C. Storm, D.J.
977	Strong, J. Su, Y.V. Tiruvaimozhi, C. Tyler, J. Val, M.L. Vandegehuchte, K.E. Veblen,
978	L.T. Vermeire, D. Ward, J. Wu, T.P. Young, Q. Yu, and T.J. Zelikova. 2018. Change in
979	dominance determines herbivore effects on plant biodiversity. Nature Ecology &
980	Evolution 2:1925-1932.

981	le Roux, E., L.S. van Veenhuisen, G.I. Kerley, and J.P. Cromsigt. 2020. Animal body size
982	distribution influences the ratios of nutrients supplied to plants. Proceedings of the
983	National Academy of Sciences 117: 22256-22263.
984	Long, R.A., A. Wambua, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2017. Climatic variation
985	modulates the indirect effects of large herbivores on small-mammal habitat use. Journal
986	of Animal Ecology 86: 739-748.
987	Louthan, A.M., D.F. Doak, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2013. Climatic stress
988	mediates the impacts of herbivory on plant population structure and components of
989	individual fitness. Journal of Ecology 101: 1074-1083.
990	Lundgren, EJ, D Ramp, J Rowan, O Middleton, SD Schowanek, O Sanisidro, SP Carroll, M
991	Davis, CJ Sandom, JC Svenning, and AD Wallach. 2020. Introduced herbivores restore
992	Late Pleistocene ecological functions. Proceeding of the National Academy of Sciences
993	117:7871-7878.
994	Martin, J.L., S.A. Stockton, S. Allombert, and A.J. Gaston. 2010. Top-down and bottom-up
995	consequences of unchecked ungulate browsing on plant and animal diversity in temperate
996	forests: lessons from a deer introduction. Biological Invasions 12: 353-371.
997	Milchunas, D.G., and W.K. Lauenroth. 1993. Quantitative effects of grazing on vegetation and
998	soils over a global range of environments. Ecological Monographs 63: 327-366.
999	Paine, R.T. 2010. Macroecology: does it ignore or can it encourage further ecological syntheses
1000	based on spatially local experimental manipulations? American Naturalist 176: 385-393.
1001	Pringle, R.M., T.P. Young, D.I. Rubenstein, D.J. McCauley. 2007. Herbivore-initiated
1002	interaction cascades and their modulation by productivity in an African savanna.

1003	Proceedings of the National Academy of Sciences of the United States of America 104:
1004	193-197.
1005	Pringle, R.M., J.R. Goheen, T.M. Palmer, G.K. Charles, E. DeFranco, R. Hohbein, A.T. Ford, B.
1006	Torto, and C.E. Tarnita. 2014. Low functional redundancy among mammalian browsers
1007	in regulating an encroaching shrub (Solanum campylacanthum) in African savannah.
1008	Proceedings of the Royal Society B: Biological Sciences 281: 20140390.
1009	Pringle, R.M., K.M. Prior, T.M. Palmer, T.P. Young, and J.R. Goheen. 2016. Large herbivores
1010	promote habitat specialization and beta diversity of African savanna trees. Ecology
1011	97:2640-2657.
1012	Schmitz, O.J. 2010. Resolving ecosystem complexity (MPB-47). Princeton University Press,
1013	Princeton, U.S.A.
1014	Seifert, A.W., S.G. Kiama, M.G. Seifert, J.R. Goheen, T.M. Palmer, M. Maden. 2012. Skin
1015	shedding and tissue regeneration in African spiny mice (Acomys). Nature 489: 561-565.
1016	Smith, FA, JI Hammond, MA Balk, SM Elliott, SK Lyons, MI Pardi, CP Tomé, PJ Wagner, and
1017	ML Westover. 2015. Exploring the influence of ancient and historic megaherbivore
1018	extirpations on the global methane budget. Proceedings of the National Academy of
1019	Sciences of the United States of America 113:874-879.
1020	Staver, A.C., W.J. Bond, W.D. Stock, S.J. van Rensburg, and M.S. Waldram. 2009. Browsing
1021	and fire interact to suppress tree density in African savanna. Ecological Applications 19:
1022	1909-1919.
1023	Staver, A.C. and W.J. Bond. 2014. Is there a 'browse trap'? Dynamics of herbivore impacts on
1024	trees and grasses in an African savanna. Journal of Ecology 102: 595-602.

1025	Stuart, C. and T. Stuart. 2000. A field guide to the tracks and signs of Southern and East African
1026	wildlife. Struik Publishers, Cape Town, South Africa.
1027	Thibault, K.M., Ernest, S.M. and Brown, J.H. 2010. Redundant or complementary? Impact of a
1028	colonizing species on community structure and function. Oikos 119:1719-1726.
1029	van Langevelde, F., C.A.D.M. van de Vijver, L. Kumar, J. van de Koppel, N. de Ridder, J. van
1030	Andel, A.K. Skidmore, J.W. Hearne, L. Stroosnijder, W.J. Bond, H.H.T. Prins, and M.
1031	Rietkerk. 2003. Effects of fire and herbivory on the stability of savanna ecosystem.
1032	Ecology 84: 337-350.
1033	van Oudtshoorn, F. 2009. Guide to grasses of southern Africa. Briza Publications, Pretoria,
1034	South Africa.
1035	Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6:18-23.
1036	Walker, B.H., R.H. Emslie, R.N. Owen-Smith, and R.J. Scholes. 1987. To cull or not to cull:
1037	lessons from a southern African drought. Journal of Applied Ecology 24: 381-401.
1038	Weisberg, P.J., N.T. Hobbs, J.E. Ellis, and M.B. Coughenour. 2002. An ecosystem approach to
1039	population management of ungulates. Journal of Environmental Management 65: 181-
1040	197.
1041	Wells, H.B.M., R.D. Crego, Ø.H. Opedal, L. Malingati, J.M. Alston, C.G. Reed, S. Weiner, S.
1042	Kurukura, A. Hassan, M. Namoni, J. Akadeli, D.M. Kimuyu, T.P. Young, T.R. Kartzinel,
1043	T.M. Palmer, R.M. Pringle, and J.R. Goheen. Long-term experiments reveal effects of
1044	megaherbivores on mesoherbivore occurrence and use intensity, mediated by species'
1045	traits. Journal of Animal Ecology, early view.
1046	Young, H.S., D.J. McCauley, K.M. Helgen, J.R. Goheen, E. Otárola-Castillo, T.M. Palmer, R.M.
1047	Pringle, T.P. Young, and R. Dirzo. 2013. Effects of mammalian herbivore declines on

plant communities: observations and experiments in an African savanna. Journal of 1048 Ecology 101: 1030-1041. 1049

1050 Young, Hillary S., D.J. McCauley, R. Dirzo, J.R. Goheen, B. Agwanda, C. Brook, E. Otárola-

1051 Castillo, A.W. Ferguson, S.N. Kinyua, M.M. McDonough, T.M. Palmer, R.M. Pringle,

1052 T.P. Young, and K.M. Helgen. 2015. Context-dependent effects of large-wildlife declines

- 1053 on small-mammal communities in central Kenya. Ecological Applications 25: 348-360.
- 1054 Young, T.P., T.M. Palmer, and M.E. Gadd. 2005. Competition and compensation among cattle,

ii-arid s. 1055 zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biological Conservation

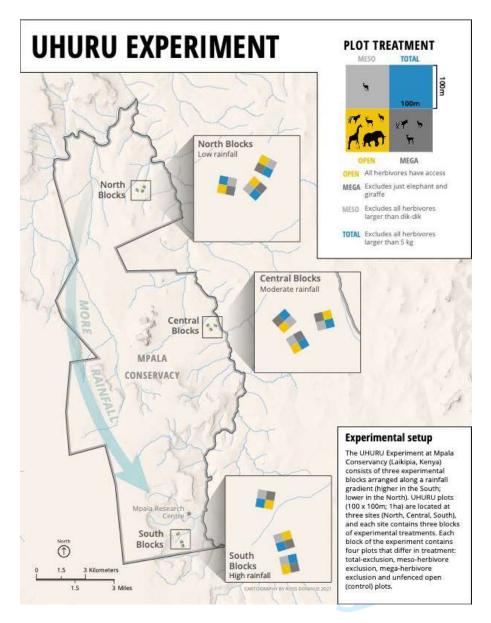
1056 122: 351-359.

1	Ecological consequences of large herbivore exclusion in an African savanna: 12 years of
2	data from the UHURU experiment
3	Alston, J.M. ^{1,2,3†} , C.G. Reed ^{4,5†} , L.M. Khasoha ^{1,2,6} , B.R.P. Brown ^{4,5} , G. Busienei ⁶ , N. Carlson ⁷ , T.C.
4	Coverdale ^{7,8} , M. Dudenhoeffer ⁹ , M.A. Dyck ¹⁰ , J. Ekeno ⁶ , A.A. Hassan ⁶ , R. Hohbein ¹¹ , R.P. Jakopak ¹² , B.
5	Kimiti ⁶ , S. Kurukura ⁶ , P. Lokeny ⁶ , A.M. Louthan ¹³ , S. Musila ¹⁴ , P.M. Musili ¹⁵ , T. Tindall ¹⁶ , S. Weiner ⁶ ,
6	T.R. Kartzinel ^{4,5} , T.M. Palmer ¹⁷ , R.M. Pringle ¹⁸ , and J.R. Goheen ^{1,2,6*}
7	
8	¹ Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA; ² Program in
9	Ecology, University of Wyoming, Laramie, WY, USA; ³ Center for Advanced Systems Understanding
10	(CASUS), Görlitz, DEU; ⁴ Department of Ecology and Evolutionary Biology, Brown University,
11	Providence, RI, USA; ⁵ Institute at Brown for Environment and Society, Providence, RI, USA; ⁶ Mpala
12	Research Centre, Nanyuki, Kenya; ⁷ Department of Ecology and Evolutionary Biology, Cornell
13	University, Ithaca, NY, USA; ⁸ Department of Organismal and Evolutionary Biology, Harvard
14	University, Cambridge, MA, USA; ⁹ Department of Veterinary Sciences, University of Wyoming,
15	Laramie, WY, USA; ¹⁰ Biological Sciences Department, Ohio University, Athens, OH, USA; ¹¹ Warnell
16	School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA; ¹² Haub School of
17	Environment and Natural Resources, University of Wyoming, Laramie, WY, USA; ¹³ Division of Biology,
18	Kansas State University, Manhattan, KS, USA; ¹⁴ Mammalogy Section, Zoology Department, National
19	Museums of Kenya, Nairobi, Kenya; ¹⁵ Botany Department, National Museums of Kenya, Nairobi,
20	Kenya; ¹⁶ Institute of Human Sciences, University of Oxford, Oxford, UK; ¹⁷ Department of Biology,
21	University of Florida, Gainesville, FL, USA; ¹⁸ Department of Ecology and Evolutionary Biology,
22	Princeton University, Princeton, NJ, USA
23	*E-mail: jgoheen@uwyo.edu
24	[†] These authors contributed equally to this work.
25	Running header: Data from the UHURU experiment

26 Introduction

Large mammalian herbivores (\geq 5 kg; hereafter LMH) directly affect plant traits, population 27 dynamics, community structure, and biodiversity (Huntly 1991, Milchunas and Lauenroth 1993, 28 29 Anderson et al. 2007, Young et al. 2013, Staver and Bond 2014). In so doing, LMH indirectly 30 affect the abundance, diversity, and behavior of other organisms (Keesing 1998, Pringle et al. 31 2007, Martin et al. 2010, Young et al. 2015, Daskin and Pringle 2016, Long et al. 2017, Guy et al. 2021). Understanding species interactions involving LMH is central to many fundamental 32 questions in community and ecosystem ecology: To what extent do large-bodied consumers 33 34 govern food-web structure and ecosystem function (van Langevelde et al. 2003, Frank 2005, Koerner et al. 2018, le Roux et al. 2020, Guy et al. 2021)? What are the legacies of Pleistocene 35 megafauna (Janzen and Martin 1982, Guimarães et al. 2008, Smith et al. 2015) and the 36 37 ecological contexts of early hominin evolution (Faith et al. 2019)? What are the consequences of large-mammal extirpation (Campbell et al. 1994, Brodie et al. 2009), and are such consequences 38 39 reversible (Alston et al. 2019, Guyton et al. 2020, Lundgren et al. 2020)? How might actions taken to conserve or manage LMH populations affect the communities and ecosystems of which 40 they are part (Walker et al. 1987, Weisberg et al. 2002, Goheen et al. 2018)? 41 42 Because large-scale, long-term field manipulations of the abundance and diversity of 43 LMH are logistically challenging and expensive, there are few experimental data to inform two 44 important questions linked to those listed above. First, are different size classes of LMH

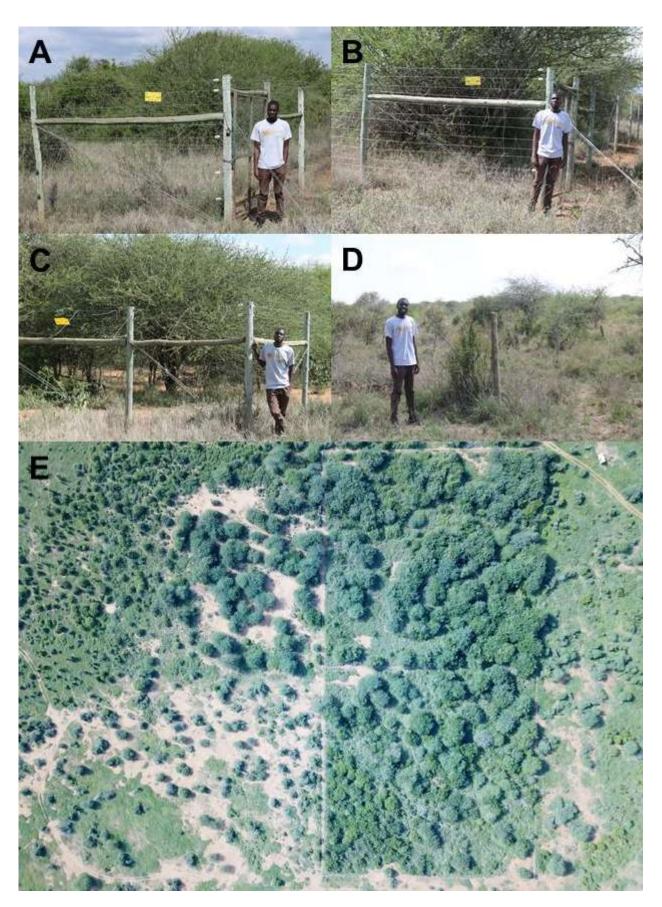
45 functionally redundant (*sensu* Walker 1992) or complementary (*sensu* Thibault et al. 2010) with


46 respect to their effects on population-, community-, and system-level attributes? Previous work

47 on this question has been mostly observational (but see Young et al. 2005, Staver et al. 2009,

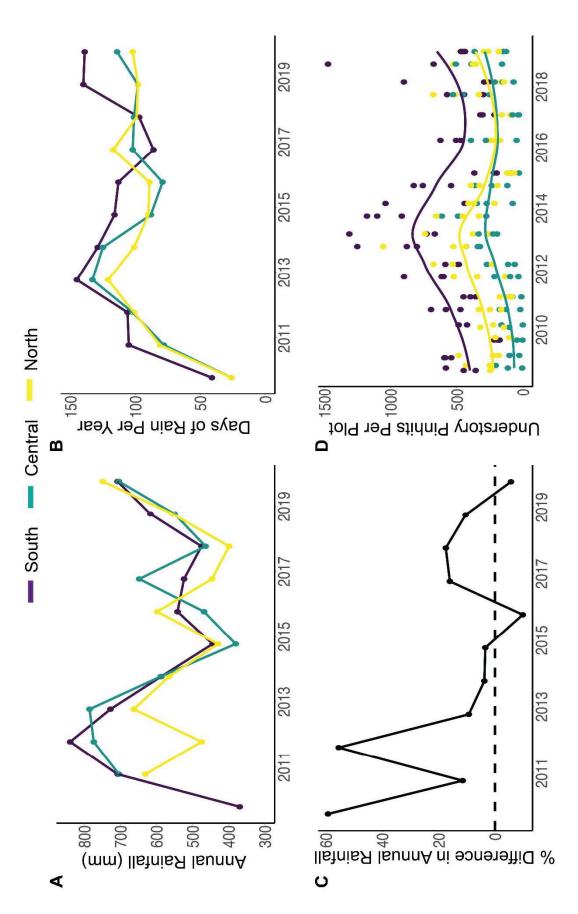
48 Pringle et al. 2014, Coverdale et al. 2021), making it difficult to isolate causal mechanisms.

Ecology


49	Second, how do the direction and magnitude of LMH impacts vary across environmental
50	gradients? Empirical tests of these questions often use meta-analysis (Chase et al. 2000,
51	Hillebrand et al. 2007, Daskin and Pringle 2016; but see Bakker et al. 2006), which are valuable
52	but can also confound multiple aspects of environmental variation, divergent methodologies and
53	regional species pools, and other characteristics that inevitably differ across studies and locations
54	(Paine 2010, Schmitz 2010). Long-term experiments that impose identical manipulations of
55	LMH across gradients within ecosystems—but among sites with otherwise similar attributes—
56	can bridge small-scale mechanistic studies and broad syntheses (Gruner et al. 2008).
57	Here, we present raw data from one of the few such experiments: the Ungulate Herbivory
58	Under Rainfall Uncertainty (UHURU) experiment at the Mpala Research Centre and
59	Conservancy in Kenya (Fig. 1). Initiated in 2008, the UHURU experiment selectively excludes
60	nested subsets of a diverse LMH assemblage comprising ≥ 20 co-occurring species (Goheen et al.
61	2013). Three features distinguish UHURU from prior experiments: (1) selective, size-based
62	exclusion of LMH; (2) replication across an important ecological gradient (rainfall) with minimal
63	confounding variation in soils and species pools; and (3) plots that are sufficiently large (1 ha) to
64	evaluate direct and indirect effects of LMH on both plants (e.g., Louthan et al. 2013, Ford et al.
65	2015, Coverdale et al. 2018) and smaller consumers such as invertebrates and small mammals
66	(e.g., Young et al. 2015, Long et al. 2017, Guy et al. 2021). Several long-term LMH exclosures
67	in Africa have recently been dismantled-including several of the Glade Legacies and
68	Defaunation Experiment plots at Mpala (Goheen et al. 2018), plots in Hluhluwe-iMfolozi Park,
69	South Africa (Staver and Bond 2014), and plots in Hwange National Park, Zimbabwe-
70	underscoring the value of extended time series of data from the UHURU experiment.
71	

72

Figure 1. Schematic of the UHURU experiment at the Mpala Research Centre and Conservancy
in central Kenya. The Ng'iro River runs along the eastern boundary of the property and the
Narok River runs along the north. Each of the three experimental sites contains three replicate
blocks, which in turn each comprise four contiguous 1-ha plots (total n = 36 plots, 9 per
treatment).


79	The Mpala Research Centre and Conservancy are located in Laikipia County, Kenya
80	(0°17'N, 37°52' E, 1600 m elevation), and the UHURU experiment spans the north-south axis of
81	the property (Fig. 1). UHURU treatments exclude herbivores via three configurations of
82	electrified fencing around 1-ha plots. The 'TOTAL' treatment (Fig. 2A) excludes all herbivores
83	\geq 5 kg. The 'MESO' treatment (Fig. 2B) excludes all megaherbivores, including African bush
84	elephant (Loxodonta africana), reticulated giraffe (Giraffa camelopardalis reticulata), and
85	hippopotamus (Hippopotamus amphibius), and mesoherbivores (> 40 kg, < 1,000 kg), including
86	impala (Aepyceros melampus), plains zebra (Equus quagga), Grevy's zebra (E. grevyi), Defassa
87	waterbuck (Kobus defassa), eland (Taurotragus oryx), African buffalo (Syncerus caffer),
88	warthog (Phacochoerus africanus), and a half-dozen antelope species that are comparatively rare
89	and occur patchily at Mpala; warthog have occasionally dug into MESO plots but are not
90	routinely present. MESO differs from TOTAL mainly by excluding dik-dik (Madoqua cf. M.
91	guentheri), which is the most abundant LMH species at Mpala (> 100 per km ² ; Ford and Goheen
92	2015). In principle, three additional small antelopes are excluded by TOTAL but not MESO—
93	bush duiker (Sylvicapra grimmia), steenbok (Raphicerus campestris), and klipspringer
94	(Oreotragus aureus)—but these species are very rare in the UHURU experiment (Goheen et al.
95	2013). The 'MEGA' (Fig. 2C) treatment consists of wires strung 2 m from ground level and
96	excludes only megaherbivores (≥1,000 kg), namely elephant and reticulated giraffe;
97	hippopotamus are not excluded by MEGA but rarely enter the plots. Unfenced 'OPEN' plots
98	(Fig. 2D) serve as an unmanipulated control, accessible to all species.

100	Figure 2. Photographs of experimental treatments. (A) Total-exclusion ("TOTAL") fences
101	consist of 14 wires up to 2.4 m above ground level, with a 1 m high chain-link barrier at ground
102	level. (B) Mesoherbivore-exclusion ("MESO") fences consist of 11 parallel wires starting ~ 0.3
103	<i>m</i> above ground level and continuing to 2.4 <i>m</i> above ground level. (C) Megaherbivore-exclusion
104	("MEGA") fences consist of two parallel wires starting 2 m above ground level. All fences are
105	electrified using a solar charger and have a series of 1 m long electrified wires extending
106	outwards to discourage large animals from contacting the fence; "TOTAL" and "MESO" fences
107	also have a series of short vertical wires to connect the parallel horizontal wires and add
108	structural stability. (D) "OPEN" control plots are unfenced, with boundaries demarcated by
109	wooden posts at 10-m intervals. (E) Aerial view of a single experimental block of plots (North
110	Block 1) in 2018; clockwise from top right: TOTAL, MESO, OPEN, and MEGA treatments.
111	Photographs by L. Khasoha (A-D) and B. Hays (E).

112

All plot types are accessible to small herbivores (e.g., hares, Lepus spp.) and most 113 114 carnivores. Large carnivores may be partially excluded by TOTAL fences (leopards, Panthera pardus, and cheetahs, Acinonyx jubatus, have occasionally climbed in) but can access the other 115 three treatments. These treatments have been continuously maintained (and rapidly repaired 116 following occasional incursions and fence breakages by elephant and other species) since 2008. 117 Three randomized blocks-each containing one replicate of each treatment-are located 118 119 at three different sites across a rainfall gradient spanning 20 km north to south (Fig. 3). Total 120 annual rainfall increases from the North site (low rainfall; 2009–2019 range: 201–749 mm/y) to 121 the Central (intermediate rainfall; 235–785 mm/y) and South sites (high rainfall; 369–839 122 mm/y). From 2009-2019, rainfall averaged 15% higher at the wettest site than the driest site

125	Figure 3. The UHURU experiment encompasses three sites along a 20 km north-to-south
126	rainfall gradient. (A) Total annual rainfall was historically greater in the South (~640 mm/year)
127	and Central (~580 mm/year) sites than the North (~440 mm/year) site (Goheen et al. 2013) but
128	has increasingly converged across sites in recent years. Points show rainfall observed at each
129	site in each year of the experiment. Data for the South site are missing 5 days (26 May $-$ 30 May
130	2011). Data for the Central site are missing 23 days in Dec. 2015 and 15 days in Oct. 2016. (B)
131	The South site receives more days of rain per year on average (mean \pm SD; 115 \pm 23 days of
132	rain per year) than the Central (102 \pm 18 days of rain per year) and North sites (100 \pm 12 days
133	of rain per year). (C) Percent difference in annual rainfall between the South and North sites is
134	positive overall (indicating greater annual rainfall at the South site) but has decreased since
135	2017. (D) Understory biomass (measured using the canopy-intercept method as pin hits per
136	plot) has consistently been greatest in the South site (577 \pm 288 pin hits per plot) and lower in
137	the Central (189 \pm 153 pin hits per plot) and North (308 \pm 194 pin hits per plot) sites (which
138	have increasingly converged since 2014). Points show pin hits per plot for each of the control
139	plots during each semiannual understory survey; curves are smoothed lines for each site.
140	

(range: -9 to 84%) (**Fig. 3**). Despite the trend of convergence across sites in total rainfall, the South site still receives more days of rain in a typical year (**Fig. 3B**) and supports higher biomass of understory vegetation (**Fig. 3D**) than the Central and North sites. This variation in rainfall over small spatial scales arises from Mpala's position in the rain shadow of Mt. Kenya, which lies ~60 km to the southeast. In the center of each plot, we maintain a permanent 60×60 m grid with stakes at 10 m intervals (n = 49 stakes) where we survey vegetation and small mammals.

147	Here, we present 13 data sets from the UHURU experiment, spanning 2008–2019. These
148	raw data extend and update those from 2008–2013 provided in Kartzinel et al. (2014). These data
149	sets include: (1) Geographic coordinates of the plots; (2) Daily rainfall at each site (2008-2019);
150	(3) Semiannual pin-frame surveys of understory plant diversity and abundance at 49 stakes in
151	each plot (2008-2019); (4) Semiannual surveys of understory composition within 49 small (0.25
152	m ²) quadrats in each plot (2008-2019); (5) Semiannual surveys of understory composition within
153	49 larger (1 m ²) quadrats in each plot (2008-2019); (6) Several canopy-intercept surveys
154	integrating understory and woody vegetation at 49 stakes in each plot (2016-2018); (7) Annual
155	size measurements of a subset of tagged and mapped trees in each plot (2009-2019); (8)
156	Summaries of annual censuses of overstory plant composition for the 0.36 ha central grid in each
157	plot (2009-2019); (9) Spatially explicit annual censuses of overstory plant composition for each
158	10×10 m cell of the 0.36 ha central grid in each plot (2009-2019); (10) Monthly survey of
159	fruiting and flowering phenology in each plot (2012-2019); (11) Weekly seed rainfall from two
160	dominant Acacia species at each site (2016-2019); (12) Dung surveys conducted at 2–3 month
161	intervals in three parallel 60×5 m belt transects per plot (2009-2019); (13) Every-other-month
162	mark-recapture sampling of small mammals in TOTAL and OPEN plots (2009-2019).
163	The associated metadata describe data collection protocols, along with refinements to
164	these protocols that have been implemented as our understanding of the system has increased-
165	including significant updates to plant taxonomy, supported by DNA barcodes and verification by
166	botanical experts (Gill et al. 2019). Accordingly, the data presented here should be used
167	preferentially over those previously published in Kartzinel et al. (2014). These data profile the
168	annual-to-decadal scale ecological consequences of selectively excluding nested subsets of a

- 169 diverse LMH assemblage in a semi-arid African savanna ecosystem. We aim to periodically
- 170 publish updated raw data throughout the (indefinite) duration of the experiment.
- 171
- 172 **METADATA**
- 173 Class I. Data set descriptors
- 174 **A. Data set identity:** Data collected from the UHURU experiment.
- 175 Title: Ecological consequences of large herbivore exclusion in an African savanna: 12 years of
- 176 data from the UHURU experiment
- 177 **B. Data set identification code:** NA
- 178 **C. Data set description:**
- 179 **1. Principal Investigators:**
- 180 Jacob R. Goheen, Department of Zoology and Physiology, University of Wyoming, Laramie,
- 181 Wyoming, United States of America.
- 182 Tyler R. Kartzinel, Department of Ecology and Evolutionary Biology; Institute at Brown for
- 183 Environment and Society, Brown University, Providence, Rhode Island, United States of
- 184 America.
- 185 Todd M. Palmer, Department of Biology, University of Florida, Gainesville, Florida, United
- 186 States of America.
- 187 Robert M. Pringle, Department of Ecology and Evolutionary Biology, Princeton University,
- 188 Princeton, New Jersey, United States of America.
- 189
- 190 Questions regarding these data may be directed to Jacob Goheen (jgoheen@uwyo.edu) and
- 191 Robert Pringle (<u>rpringle@princeton.edu</u>).

192 2. Abstract: Diverse communities of large mammalian herbivores (LMH), once widespread, are 193 now rare. LMH exert strong direct and indirect effects on community structure and ecosystem 194 functions, and measuring these effects is important for testing ecological theory and for 195 understanding past, current, and future environmental change. This in turn requires long-term 196 experimental manipulations, owing to the slow and often nonlinear responses of populations and 197 assemblages to LMH removal. Moreover, the effects of particular species or body-size classes 198 within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of 199 these effects often depends on environmental context. Since 2008, we have maintained the 200 Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semi-arid Kenyan savanna. 201 202 The goals of the UHURU experiment are to measure the effects of removing successively 203 smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU 204 experiment comprises three LMH-exclusion treatments and an unfenced control, applied to 9 205 206 randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are: "MEGA" (exclusion of megaherbivores, elephant and giraffe); "MESO" (exclusion of herbivores ≥ 40 kg); 207 and "TOTAL" (exclusion of herbivores ≥ 5 kg). Each block is replicated three times at three sites 208 209 across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The 210 first five years of data were published previously (Ecological Archives E095-064) and have been 211 used in numerous studies. Since that publication, we have (a) continued to collect data following the original protocols, (b) improved the taxonomic resolution and accuracy of plant and small-212 213 mammal identifications, and (c) begun collecting several new data sets. Here, we present updated 214 and extended raw data from the first 12 years of the UHURU experiment (2008–2019). Data

215	include daily rainfall data throughout the experiment; annual surveys of understory plant
216	communities; annual censuses of woody-plant communities; annual measurements of
217	individually tagged woody plants; monthly monitoring of flowering and fruiting phenology;
218	every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung
219	surveys.
220	D. Key words: climate change; dik-dik (Madoqua); East African savannas; elephant
221	(Loxodonta africana); extinction; food webs; grazing and browsing herbivores; impala
222	(Aepyceros melampus); long-term ecological field experiments; plant communities; rangeland
223	ecology; species interactions
224	
225	Class II. Research origin descriptors
226	A. Overall project description: The UHURU experiment excludes successively smaller-bodied
227	nested subsets of LMH (\geq 5 kg) ranging in size from dik-dik (~5 kg) to elephant (~3,000 kg).
228	This design isolates the ecological impacts of different size classes of LMH and mimics the
229	effects of size-biased large-herbivore extinction. Replicates spanning a 20 km rainfall gradient
230	share similar soil characteristics and species pools. To test predictions about the independent and

231 interactive effects of LMH exclusion and rainfall variability, investigators continuously sample a

broad range of vegetation characteristics and animal responses.

233 **1. Identity:** Data from the UHURU experiment

234 2. Originators: Jacob R. Goheen, Robert M. Pringle, Todd M. Palmer.

3. Period of study: 2008–2019. Continuing. Data from 2008-2013 were published previously

236 (Kartzinel et al. 2014) but have been substantially updated (detailed descriptions of updates can

237 be found elsewhere in the metadata).

238 **4. Objectives:** To test predictions concerning the independent and interactive effects of 239 herbivory by large mammals and rainfall variability on a broad range of ecological responses. 5. Abstract: See Section I.C.2. 240 6. Sources of funding: The UHURU experiment was built with seed funding from the Sherwood 241 242 Family Foundation, grants from the National Sciences and Engineering Research Council of 243 Canada, and the Universities of Florida and British Columbia. Support for maintenance and data collection has been provided by the US National Science Foundation (DEB-0709880, OISE-244 0852961, DEB-1355122, and IOS-1656527 to RMP; DEB-1547679, DEB-1930763, and DEB-245 246 2018405 to JRG; DEB-1930820 to TRK), the National Geographic Society, the University of Wyoming, the High Meadows Environmental Institute at Princeton University, The Nature 247 Conservancy, and the Institute at Brown for Environment and Society. Data curation was 248 249 partially funded by the Center for Advanced Systems Understanding (CASUS), which is financed by the German Federal Ministry of Education and Research (BMBF) and by the Saxon 250 Ministry for Science, Art, and Tourism (SMWK) with tax funds on the basis of the budget 251 252 approved by the Saxon State Parliament, and by the Elizabeth Gardner Norweb Summer Environmental Studies Scholarship from the Garden Club of America. 253 254

255 **B. Research origin description**

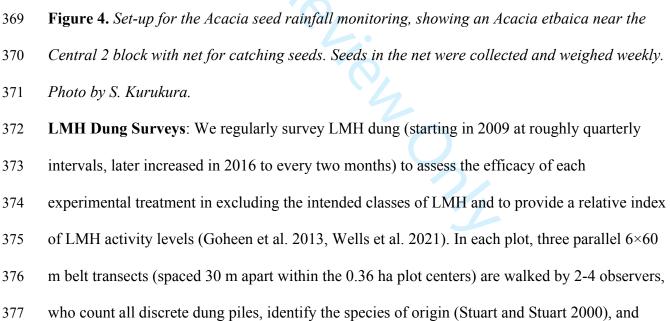
Site description: The UHURU experiment is located at the Mpala Research Centre and
 Conservancy (~200 km²) in Laikipia County, a semi-arid highland region in Kenya (0°17'N,
 37°52' E, 1600 m above sea level). Mpala is in the rain shadow of Mt. Kenya, which imposes
 climatic variation across a relatively short distance, although the resulting rainfall gradient is
 unpredictable in any given year and has fluctuated over the course of the experiment. On average

from 2009-2019, total annual rainfall and number of days with rainfall were both 15% higher at
the South (wettest) site than the North (driest) site.

2. Experimental design: In 2008, three fenced herbivore-exclusion treatments and an unfenced 263 264 control were randomly assigned to contiguous 1 ha plots replicated three times at each of three 265 sites along a rainfall gradient (36 total plots, 9 replicates per treatment). Although 1 ha is not 266 large enough to detect some ecological effects of LMH, this spatial scale is adequate for documenting effects on individual-, population-, and community-level responses of plants, small 267 mammals, and invertebrates (e.g., Goheen et al. 2013, Pringle et al. 2016, Guy et al. 2021), as 268 269 well as behavioral (as opposed to numerical) responses of small mammals and mesoherbivores to 270 the exclusion of all LMH and megaherbivores, respectively (e.g., Long et al. 2017, Wells et al. 2021). TOTAL exclosures exclude all LMH >5 kg but are accessible to hares and other smaller 271 272 herbivores, as well as large (e.g., leopard, cheetah) and small (e.g., mongooses [Ichneumia albicauda, Galerella sanguinea, Helogale parvula], genets [Genetta genetta, G. maculata]) 273 carnivores. These exclosures use 2.4 m high fences consisting of 14 strands of wire, electrically 274 275 charged by solar-powered batteries, with a 1 m tall barrier consisting of 10 cm chain link fencing. MESO exclosures consist of 11 wires beginning 30 cm above the ground, allowing 276 277 access to only the smallest LMH (predominately dik-dik), and excluding larger species. MEGA exclosures consist of two wires starting at 2 m above ground level and exclude only elephant and 278 giraffe. OPEN plots are unfenced and demarcated by a series of 1 m tall wooden posts at 10 m 279 280 intervals; these plots allow access to all LMH. On all fences, a series of 1 m long wires at 2 m height extend horizontally outward from plots to deter large herbivores from approaching the 281 barriers. In January 2009, we added vertical connecting wires to TOTAL and MESO fences to 282 283 increase security and stability. Exclosures are inspected and maintained by project personnel at

284	least once per week (and often more frequently). Rapid repairs are made whenever damage to the
285	fencing is discovered. For the eight most common LMH between 2009 and 2019, mean
286	exclosure effectiveness (assessed as the percent reduction in dung deposition between OPEN and
287	exclusion plots) was 97% and ranged from 95% (for elephants) to 99% (for cattle/buffalo).
288	Within each plot, a 0.36 ha grid (60×60 m) marked by 49 rebar stakes at 10 m intervals provides
289	the spatial template for most experimental monitoring. Routine data collection (i.e., the data
290	presented here) does not require destructive sampling. Any harvesting, as intermittently needed
291	for individual studies, is minimized and confined to the outlying portions of each plot to avoid
292	disturbance to the central 0.36 ha monitoring grid.
293	UHURU was designed to assess the effects of wild large herbivores. Mpala maintains a
294	ranching operation with comparatively low stocking densities for the region, predominantly of
295	cattle (1,270 head in 2021, ~6 individuals km ⁻²), with smaller numbers of camel (130 head),
295 296	cattle (1,270 head in 2021, ~6 individuals km ⁻²), with smaller numbers of camel (130 head), sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded
296	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded
296 297	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports
296 297 298	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports since then indicate that cattle do occasionally pass through OPEN and MEGA plots (Goheen et
296 297 298 299	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports since then indicate that cattle do occasionally pass through OPEN and MEGA plots (Goheen et al. 2013); MESO and LMH plots are protected by locked gates. We do not have sufficient data to
296 297 298 299 300	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports since then indicate that cattle do occasionally pass through OPEN and MEGA plots (Goheen et al. 2013); MESO and LMH plots are protected by locked gates. We do not have sufficient data to determine the exact frequency of such incursions and are unable to reliably distinguish buffalo
296 297 298 299 300 301	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports since then indicate that cattle do occasionally pass through OPEN and MEGA plots (Goheen et al. 2013); MESO and LMH plots are protected by locked gates. We do not have sufficient data to determine the exact frequency of such incursions and are unable to reliably distinguish buffalo from cattle dung in the field, but given the relatively low overall density of livestock on Mpala
 296 297 298 299 300 301 302 	sheep and goat (290 head), and a few donkeys. Herders are instructed and periodically reminded not to graze livestock in the plots, although camera trapping in 2010–2011 and anecdotal reports since then indicate that cattle do occasionally pass through OPEN and MEGA plots (Goheen et al. 2013); MESO and LMH plots are protected by locked gates. We do not have sufficient data to determine the exact frequency of such incursions and are unable to reliably distinguish buffalo from cattle dung in the field, but given the relatively low overall density of livestock on Mpala and the injunction against grazing in UHURU, we believe any effects of livestock are marginal.

306	use camera trapping to quantify the frequency and intensity of cattle occupancy and thus refine
307	inferences about the extent to which they contribute to net effects documented in the experiment.
308	3. Research methods:
309	Rainfall Monitoring: Rainfall has been continuously monitored since October 2008 at each of
310	the three experimental sites (Goheen et al. 2013). At the outset of the experiment, rainfall was
311	measured using cylindrical drip gauges (All Weather Rain Gauge, Productive Alternatives,
312	Fergus Falls, MN). A single automated tipping-bucket rain gauge (RainLogger, Rainwise Inc.,
313	Bar Harbor, ME) was installed in one of the TOTAL plots at each site in June 2010; a second
314	was installed in July 2011 and a third in April 2012 (Goheen et al. 2013), such that since 2012,
315	rainfall has been logged in each of the 9 experimental blocks ($n = 3$ gauges per site). Because
316	rainfall variability at this spatial scale is minimal, we use the average across the three gauges to
317	characterize rainfall at each site. This design provides redundancy that is useful when rain
318	gauges occasionally fail.
319	Understory Monitoring: Grasses and forbs are surveyed semiannually in February/March (dry
320	season) and October (short rainy season). A 1 m ² quadrat is placed immediately to the north of
321	each of the 49 stakes demarcating in the center grid in each plot, and an additional 0.25 m ²
322	quadrat is placed within the larger quadrat. Species presence/absence is recorded within both
323	quadrats. A 10-pin point frame is then positioned within the smaller quadrat, and the presence of
324	bare soil and/or the total number of vegetation pin hits is recorded for each plant species (the
325	canopy-intercept method; Frank and McNaughton 1990). From 2008–2012, individuals were
326	identified to species (or to genus and morphospecies) using field guides and published species
327	lists (Bogdan 1976, Blundell 1982, van Oudtshoorn 2009). Starting in 2012, we began a process
328	of verifying and refining plant identifications in this data set through establishment of an


329 extensive collection of >1,781 herbarium reference specimens and corresponding DNA barcode 330 data for >460 species, representing 92% of the roughly 500 vascular plants thought to occur at Mpala (Gill et al. 2019). To facilitate consistency in the face of taxonomic revisions and 331 332 refinements of our own identifications, we maintain a list of voucher numbers that match each 333 species to a reference specimen used for DNA barcoding and taxonomic verification by botanists 334 at the National Museums of Kenya (Gill et al. 2019). Individual Tree Monitoring: Individual-based surveys of trees focused on 10 tagged 335 336 individuals per plot (or all individuals if there were less than 10 individuals per plot) of each of five common woody species, including the three dominant acacias (Acacia syn. Vachellia 337 etbaica, A. syn. Senegalia mellifera, and A. syn. Senegalia brevispica: Fabaceae), Croton 338 339 dichogamus (Euphorbiaceae), and Balanites rotundifolia (Zygophyllaceae). Plants were tagged 340 in January 2009, and tagged individuals are resurveyed annually. The following data are recorded: survival, height (m), crown diameter (m), basal diameter (mm) and/or circumference 341 (cm) at 15 cm from ground level, and the number of stems at ground level. Many additional trees 342 343 were tagged in 2012 following the same monitoring protocol, but some of these additional trees were not monitored after 2015. 344

Woody Plant Censuses: Each year, a census is conducted of all trees and shrubs (i.e., species that reach ≥ 2 m tall at maturity) and large succulents (*Euphorbia* and *Opuntia* spp.) within the 0.36 ha central grids. Individuals are identified, and the number of individuals of each species are recorded for each of five height classes (<1 m, 1–2 m, 2–3 m, 3–4 m, >4 m). The first census, in 2009, omitted *Euphorbia* spp., and censuses prior to 2012 omitted *Opuntia* spp.

350	Phenology Surveys: Each month, the presence or absence of reproductive bodies (flowers
351	and/or fruits) is recorded for all plant species within the 0.36 ha plot centers during a 30-minute
352	scan of each plot. This data set was initiated in 2012 and is continuing.
353	Vertical Vegetation Structure: From December 2016 to December 2018, we conducted several
354	surveys that integrate understory and overstory vegetation using a modified version of the
355	canopy-intercept method (Frank and McNaughton 1990). At each of the 49 grid stakes in each
356	plot, a telescoping pole was placed on the ground and extended up through the canopy (Kartzinel
357	and Pringle 2020). All vegetation touches were recorded, along with plant species identity,
358	height of the intercept, and whether the touch was stem or leaf. The objectives of these surveys
359	were (a) to quantify understory and overstory vegetation simultaneously using a consistent
360	methodology and (b) to quantify the vertical profile of vegetation biomass within the plots.
361	Seed Rainfall Monitoring: Seed rainfall weights were recorded weekly for two of the dominant
362	tree species, Acacia (Vachellia) etbaica and Acacia (Senegalia) mellifera just outside of the
363	UHURU plots at the South, Central, and North sites from 2016–2019 (Fig. 4). Nets were placed
364	underneath the tree canopy, and all seeds that accumulated in the nets were weighed weekly.
365	Three individuals per species were monitored at each site, one each from the following height
366	classes: 2-3m, 3-4m, and >4m. Seed rainfall from 18 trees were measured in total.
367	

- 378 crush the dung after identification to prevent recounting in subsequent surveys. Rates of dung
- decomposition do not differ markedly among the three sites (Goheen et al. 2013).
- 380 Small Mammal Sampling: Continuously since 2009, small mammals are live-trapped at two-
- 381 month intervals in TOTAL and OPEN plots using Sherman traps baited with peanut butter and

382 oats (Goheen et al. 2013). In each trapping session, a single trap is set at each of the 49 grid 383 stakes in the center of each plot, opened in the late afternoon, and checked and closed in the early morning. Trapping sessions last four consecutive days. All small mammals are fit with a 384 385 numbered ear tag on each ear, with the exception of individuals in the genera Acomys, 386 *Crocidura*, *Mus*, and *Steatomys*, which are too small or too fragile (Seifert et al. 2012) for ear 387 tags. Instead, we mark individuals in these genera with permanent markers for subsequent identification within trapping sessions. Sample sizes and movement patterns by the four most 388 commonly captured and marked small mammals (Hinde's rock rat [Aethomys hindei], rufous 389 390 elephant shrew [Elephantulus rufescens], fringe-tailed gerbil [Gerbilliscus robustus], and 391 Mearns' pouched mouse [Saccostomus mearnsi])—represented by (a) the maximum distance moved by an individual within a four-day sampling period; (b) the probability of remaining on a 392 393 sampling grid between successive periods; and (c) the number of times an individual was captured on more than one plot-indicate that the 1 ha UHURU plot size is sufficiently large to 394 measure effects of LMH exclusion on small mammals (Table 1). Initial misclassifications of 395 396 Harrington's tateril (*Taterillus harringtoni*) as juvenile fringe-tailed gerbil (*Gerbilliscus* 397 robustus) were identified in May 2011 via DNA barcoding (Goheen et al. 2013). We now 398 distinguish these two species based on hindfoot length (<34 mm for T. harringtoni), mass (<60 g 399 for T. harringtoni), and tail (tufted for T. harringtoni). With the aid of mitochondrial DNA barcoding, we have identified the tiny fat mouse (Steatomys parvus) as present in the 400 401 community. We believe that there was a single misidentification of this species (for *Mus* spp. "Umus") in Kartzinel et al. 2014, which we have updated in the current data set. Mitochondrial 402 403 DNA barcoding has also been used to confirm the presence of at least 3 Mus phylotypes in the 404 plots that we cannot reliably distinguish in the field. Two *Crocidura* species (*C. elgonius* and *C.*

gracilipes) are morphologically indistinguishable except for size at maturity; C. elgonius are <7 405

g, while *C. gracilipes* are >7 g. We record weight, sex, age, and reproductive condition for every 406

- captured individual. 407
- 408

Species	Sample Size	Maximum Distance (m)	Probability of Remaining	Inter-Plot Movement
Aethomys hindei	2184	78.1	0.83	261
Elephantulus rufescens	561	67.1	0.88	49
Gerbilliscus robustus	1684	78.1	0.83	153
Saccostomus mearnsi	1125	72.1	0.93	83

	Saccostomus mearnsi	1125	/2.1	0.93	83
409					
410	Table 1. UHURU plots (1)	ha) are large rel	ative to the scale of	f movement by the	four most
411	commonly captured and m	arked small mam	mals within and b	etween sampling pe	eriods. Data
412	include the maximum dista	ince moved within	n a four-day sampl	ing bout, the proba	bility of an
413	individual remaining with	in a sampling grie	d between successi	ve sampling period	s, and the total
414	number of times that any i	ndividual has bee	en captured in mor	e than one plot betw	veen periods.
415					
416	Permit history: Kenya Na	ational Commissi	on for Science, Te	chnology & Innova	tion permits to
417	Robert M. Pringle: NCST/	/5/002/R/656, NA	.COSTI/P/14/0592	/1852,	
418	NACOSTI/P/18/0592/214	81, NACOSTI/P/	20/6262; Universi	ty of Wyoming Ins	titutional
419	Animal Care and Use Con	nmittee Protocol	Approval (Jacob G	oheen; SKMBT_60	0112030515200;
420	SKMBT_6011203051520	1; SKMBT_6011	2030515202; SKN	IBT_60112030515	210).
421	C. Project personnel: In a	addition to the au	thors, the UHURU	experiment team h	as employed
422	several full-time Kenyan f	ield assistants, w	no collected field c	lata and maintain th	ne experimental
423	infrastructure. Simon Lima	a, Jackson Lima,	Antony Eshwah (d	leceased), and Moh	amud Mohamed

have worked in this capacity. 424

425	
426	Class III. Data set status and accessibility
427	A. Status
428	1. Latest update: December 2019.
429	2. Latest archive date: December 2019.
430	3. Metadata status: The metadata are current and stored with the data.
431	4. Data verification: Data verification was conducted by J. Alston and C. Reed, with assistance
432	from S. Kurukura, A. Hassan, L. Khasoha, S. Weiner, J. Goheen, R. Pringle, and T. Kartzinel.
433	B. Accessibility
434	1. Contact person(s): Jacob Goheen, e-mail: jgoheen@uwyo.edu, phone: 307-509-0280.
435	Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA.
436	Robert Pringle, e-mail: rpringle@princeton.edu, phone 609-258-8273. Department of Ecology &
437	Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
438	2. Storage location and medium: Original data files exist on the authors' personal computers
439	(several of which are routinely backed up on servers housed at their home institutions) and are
440	replicated on external hard drives, Google Drive, and Dropbox in .xlsx, .csv, and .txt files. Paper
441	copies of original field data sheets are stored safely in a facility rented by Jacob Goheen and
442	Robert Pringle at the Mpala Research Centre. Data format and the programs required to access
443	and manipulate data will be kept current throughout the duration of this study.
444	3. Copyright restrictions: None.
445	4. Proprietary restrictions: Notification about when and how data are used is appreciated but
446	not mandated by the authors. Given ongoing research in the UHURU experiment and the
447	continuation of most of the data sets presented here, we strongly recommend contacting J.

448 Goheen and R. Pringle prior to using these data, as updated data are available at regular intervals.

449 We ask that users of UHURU data cite this data paper when using the data.

- 450 C. Costs: None.
- 451

452 Class IV. Data structural descriptors

453 There are 13 files that provide location, rainfall, habitat, vegetation, and animal data from the

454 UHURU experiment. There are several column headings that identify the scale and location of

455 sampling, appearing in many of the 13 datasets that follow.

Label	Attribute	Definition
Survey/Census	Survey or Census number	Numeric
Year	Year of sampling	2008–2019
Month	Month of sampling	Month
Site	Plot location	North (dry), Central (intermediate), South (wet)
Block	Replicate	Numeric (1–3)
Treatment	Experimental treatment type (definitions refer to the excluded LMH species)	OPEN = open plots; MEGA = megaherbivore; MESO = meso- and megaherbivore; TOTAL = all LMH excluded; OUT = near to, but outside, experimental plots (rarely used)
Plot	Unique plot identifiers	Comprises site, block, and treatment
Rebar/Section	Identity of the rebar stake within the central grid	Alphanumeric ID of rebar stakes (49 per plot). "Section" denotes the grid cell

		immediately below and to the right of a stake (e.g., 1A denotes the grid cell bounded by stakes 1A, 1B, 2A, and 2B).
Species	Species	Species of plant or animal. Some species are identified only to genus/morphospecies.

457

458 1. PLOT COORDINATES

- 459 **A. Data set file**
- 460 **Identity:** PLOT_COORDINATES.csv
- 461 Size: 4 KB
- 462 Format: CSV
- 463 **Contents:** Includes the name and location of all experimental plots. There are 81 lines of data,
- 464 with each record providing location data for the axes of each plot.

465 **B. Variable information**

Column	Attribute	Definition
3-6	Coordinates	Columns 3 and 4 are UTM coordinates, columns 5 and 6 are decimal degree coordinates.

466 **C. Data anomalies:** None.

- 468 **2. RAINFALL DATA**
- 469 **A. Data set file**
- 470 Identity: RAINFALL_2008-2019.csv
- 471 Size: 263 KB
- 472 **Contents:** Daily data for each rain gauge.

Column	Attribute	Definition
1	Date	Date in form of day-month-year.
2–13	Daily rainfall (mm)	Daily rain gauge readings at each block. "man" denotes manual rain gauges used early in the project, while "aut" denotes automatic rain gauges that were installed beginning in 2010.
14-16	Averages (mm)	Average rainfall across gauges at a given site.

473 **B. Variable information**

474

C. Data anomalies: NA denotes days on which no data were recorded by a given gauge due to equipment failure. No gauges recorded data from the South site from 26 May 2011 to 30 May 2011, and no gauges recorded data for the Central site from 9 December 2015 to 31 December 2015 and 9 October 2016 to 23 October 2016, and therefore data is missing for these dates. No gauges recorded data for the North site from 9 December 2015 to 31 December 2015, but data from a nearby long-term hydrology study was substituted for those dates (Caylor et al. 2017).

482 **3. VEGETATION DATA – PIN-FRAME SURVEYS**

- 483 A. Data set file
- 484 Identity: UNDERSTORY_PIN_2008-2019.csv

485 Size: 29.1 MB

- 486 **Contents:** Understory pinhit vegetation data recorded within each of the smaller quadrats (0.25
- 487 m²) in each of 20 semiannual surveys from October 2008 to March 2019.

B. Variable information

Column	Attribute	Definition
9	Bare ground	Number of pins with bare ground and no vegetation
10:331	Species names	Genus and species of plant recorded in understory vegetation surveys

490	C. Data anomalies: Two surveys were performed per year, except for 2015, 2016, and 2019;
491	only one survey was performed for each of those years. Notes on taxonomy, including changes
492	across the 20 surveys, are recorded in rows 2-4. Row 2 (Notes) indicates the name that a plant
493	was assigned during each of the 20 surveys. Row 3 (Changes) provides details on name changes,
494	including lumping, splitting, and new identifications. Row 4 (SKS#) provides the voucher
495	number matching each species to a specimen used to confirm identification by botanists at the
496	National Museums of Kenya in conjunction with DNA barcoding (Gill et al. 2019). Taxonomic
497	identities are considered provisional if labeled as morphospecies, as genus with "sp.", or as
498	"unknown." Identifications of morphospecies are pending ongoing taxonomic investigation and
499	DNA barcoding. Taxa are recorded as NA in surveys for which those taxa were not recognized.
500	We include all 20 surveys conducted from 2008-2019 to facilitate tracking of nomenclatural
501	updates that have been guided by detailed botanical investigations and DNA barcoding over this
502	period (cf. Kartzinel et al. 2014). For Surveys 1-14, trees (e.g., Acacia spp., Boscia angustifolia)
503	and other overstory species (e.g., Opuntia stricta, Euphorbia spp.) were not counted. Starting in
504	Survey 15, seedlings and saplings of these species were included in the surveys as components of
505	the understory. For Surveys 1-14, these species are listed as NA. Elsewhere throughout the data
506	set, NA indicates data that are missing or suffered from transcription errors.

508 4. VEGETATION DATA – SMALL (0.25 m²) QUADRATS

- 509 A. Data set file
- 510 Identity: UNDERSTORY_SMQUAD_2008-2019.csv
- 511 Size: 28.7 MB
- 512 **Contents:** Understory vegetation data recorded in small quadrats (0.25 m²) at each rebar stake
- 513 during 20 semiannual surveys from October 2008 to March 2019.

514 **B. Variable information**

Column	Attribute	Definition
9	Bare ground	Percent cover
10:331	Species names	Genus and species of plant recorded in understory vegetation surveys

515

C. Data anomalies: Two surveys were performed per year, except for 2015, 2016, and 2019; 516 517 only one survey was performed for each of those years. Notes on taxonomy, including changes 518 across the 20 surveys, are recorded in rows 2-4. Row 2 (Notes) indicates the name that a plant 519 was assigned during each of the 20 surveys. Row 3 (Changes) provides details on name changes, 520 including lumping, splitting, and new identifications. Row 4 (SKS#) provides the voucher 521 number matching each species to a specimen used to confirm identification by botanists at the 522 National Museums of Kenya in conjunction with DNA barcoding (Gill et al. 2019). Taxonomic 523 identities are considered provisional if labeled as morphospecies, as genus with "sp.", or as "unknown." Identifications of morphospecies are pending ongoing taxonomic investigation and 524 525 DNA barcoding. Taxa are recorded as NA in surveys for which those taxa were not recognized. 526 We include all 20 surveys conducted from 2008-2019 to facilitate tracking of nomenclatural updates that have been guided by detailed botanical investigations and DNA barcoding over this 527

- 528 period (cf. Kartzinel et al. 2014). For Surveys 1-14, trees (e.g., Acacia spp., Boscia angustifolia)
- 529 and other overstory species (e.g., *Opuntia stricta, Euphorbia* spp.) were not counted. Starting in
- 530 Survey 15, seedlings and saplings of these species were included in the surveys as components of
- the understory. For Surveys 1-14, these species are listed as NA. Elsewhere throughout the data
- set, NA indicates data that are missing or suffered from transcription errors. For surveys 1-14,
- data are binary presence/absence data (values = 0 or 1), and surveys 15-20 include percent cover
- 534 data.
- 535
- 536 5. VEGETATION DATA LARGE (1 m²) QUADRATS
- 537 A. Data set file
- 538 Identity: UNDERSTORY LGQUAD 2008-2019.csv
- 539 Size: 28.7 MB
- 540 **Contents:** Understory vegetation data recorded in large quadrats (1 m²) at each rebar during 20
- semiannual surveys from October 2008 to March 2019.
- 542 **B. Variable information**

Column	Attribute	Definition
9	Bare ground	Percent cover
10:331	Species names	Genus and species of plant recorded in understory vegetation surveys

- 543
- 544 **C. Data anomalies:** Two surveys were performed per year, except for 2015, 2016, and 2019;
- only one survey was performed for each of those years. Notes on taxonomy, including changes
- 546 across the 20 surveys, are recorded in rows 2-4. Row 2 (Notes) indicates the name that a plant
- 547 was assigned during each of the 20 surveys. Row 3 (Changes) provides details on name changes,

548	including lumping, splitting, and new identifications. Row 4 (SKS#) provides the voucher
549	number matching each species to a specimen used to confirm identification by botanists at the
550	National Museums of Kenya in conjunction with DNA barcoding (Gill et al. 2019). Taxonomic
551	identities are considered provisional if labeled as morphospecies, as genus with "sp.", or as
552	"unknown." Identifications of morphospecies are pending ongoing taxonomic investigation and
553	DNA barcoding. Taxa are recorded as NA in surveys for which those taxa were not recognized.
554	We include all 20 surveys conducted from 2008-2019 to facilitate tracking of nomenclatural
555	updates that have been guided by detailed botanical investigations and DNA barcoding over this
556	period (cf. Kartzinel et al. 2014). For Surveys 1-14, trees (e.g., Acacia spp. and Boscia
557	angustifolia) and other overstory species (e.g., Opuntia stricta and Euphorbia sp.) were not
558	counted. Starting in Survey 15, seedlings and saplings of these species were included in the
559	surveys as components of the understory. For Surveys 1-14, these species are listed as NA.
560	Elsewhere throughout the data set, NA indicates data that are missing or suffered from
561	transcription errors. For surveys 1-14, data are binary presence/absence data (values = 0 or 1),
562	and surveys 15-20 include percent cover data.
563	
564	6. VEGETATION DATA – VERTICAL VEGETATION STRUCTURE

- 565 A. Data set file
- 566 Identity: VERTICAL_VEGETATION_2016-2018.csv
- 567 Size: 3.8 MB
- 568 **Contents:** Annual surveys of vertical vegetation taken at the 49 stakes in each plot.
- 569 **B. Variable information**

Column	Attribute	Definition
--------	-----------	------------

8	Voucher Number	Specimen number for identification at National Museums of Kenya
9	Stem	Stem (1) or non-stem (0; e.g., leaf, flower)
10 Height		Height at which plant touched tree pole (cm)

570

571	C. Data anomalies: Three vertical vegetation surveys were performed between December 2016
572	and December 2018. A partial survey in October 2017 (Survey 1B) includes only the South
573	plots. During Surveys 1-2, Achyranthes aspera was identified to subspecies, but in Survey 3 it
574	was identified only to species. During data curation for this publication, several species names
575	were updated from those that have been used in previous studies from UHURU: an unknown
576	Eragrostis species was identified as Eragrostis cylindriflora, an unknown Malvaceae was
577	identified as Hibiscus sparseaculeatus, an unknown Pavonia species was identified as Pavonia
578	patens, and an unknown Pollichia species was identified as Atriplex semibaccata. Sida alba was
579	changed to Sida ovata, Abutilon mauritianum was changed to Pavonia burchellii, and Cyathula
580	cylindrica was changed to Cyathula orthacantha. All instances of Cyathula orthacantha
581	associated with Voucher # RRH_13_040 as described in Gill et al. (2019) were changed to
582	Pupalia lappacea. Nomenclatural updates (cf. Kartzinel et al. 2014) have been guided by
583	detailed botanical investigations of voucher specimens at the National Museums of Kenya as
584	well as DNA barcoding, and are consistent with changes made in the understory, tree census, and
585	tree survey datasets.
586	
507	7 VECETATION DATA I ONCITUDINAL TREE CURVENC

587 **7. VEGETATION DATA – LONGITUDINAL TREE SURVEYS**

- 588 A. Data set file
- 589 Identity: TREE_SURVEYS_2009-2019.csv

590 Size: 1.3 MB

591 **Contents:** Annual tree surveys and measurements for each plot (2009–2019).

592 **B. Variable information**

Column	Attribute	Definition	
9	Tag Number	Current tag number that identifies a tree.	
10	Dead	Whether the tree is dead ($Y = Yes$; $N = No$).	
11	Height	Tree height (m).	
12	Length	Length of canopy extent (m).	
13	Width	Length of canopy perpendicular to first measurement (m).	
14	Circumference	Circumference of tree (cm).	
15	Number of stems	Number of stems at ground level.	

593

C. Data anomalies: Re-measuring tree heights and circumferences can be imprecise due to 594 factors including variability in how high on the stem the calipers or measuring tape was placed or 595 the inadvertent measurement of the wrong basal stem on a tagged tree. Nonetheless, tree heights 596 597 and diameters can change dramatically from year to year, due to damage by elephants, drought, 598 etc. We scrutinized data and identified all trees with changes in height or circumference greater 599 than three standard deviations between any two consecutive surveys to identify and correct inadvertent miscalculations, transcription errors, or other verifiable mistakes; otherwise, we 600 601 assumed measurements to be accurate, even when differing markedly between successive years.

- No tree survey was conducted in 2018. Some trees and plots were inadvertently measured twice
- 603 in the same year—these values can be used to estimate measurement error. Many additional trees
- were tagged in 2012 following the same monitoring protocol as the other trees, but some of these
- additional trees were not monitored after 2015; these trees are denoted by a tree tag number
- 606 beginning with "JM".
- 607
- 608 8. VEGETATION DATA TREE CENSUS SUMMARY
- 609 **A. Data set file**
- 610 Identity: TREE_CENSUS_SUMMARY.csv
- 611 Size: 259 KB
- 612 **Contents:** Summary spreadsheet at the plot level showing number of individuals of each species
- 613 in each size class in each year per plot (2009-2019).

614 **B. Variable information**

Column	Attribute	Definition	
8–14	Size classes	Trees per size class per subplot	
15	Total	Total trees per species per subplot	

- 616 C. Data anomalies: No census was conducted in 2011 or 2015. No data are available for
- 617 N1MESO and N3OPEN in 2019. Some data were missing for S2MESO and S3MESO in 2016,
- 618 S3MESO in 2017, and C1TOTAL and C3TOTAL in 2019 (so summarized data may be
- 619 meaningfully undercounted in these plots in these years). *Euphorbia* spp. were present but not

- 620 recorded in 2009; *Opuntia* spp. were present but not recorded until 2012. Otherwise, when tree
- species are not listed in a year, this indicates that the tree species was not present in that year.
- 622

623 9. VEGETATION DATA – TREE CENSUS DETAILED

- 624 **A. Data set file**
- 625 Identity: TREE_CENSUS_DETAILED.csv
- 626 Size: 2.7 MB
- 627 **Contents:** Spreadsheet showing the data for each 10×10 m sampled section of each plot (2009-
- 628 2019).

629 **B. Variable information**

Column	Attribute	Definition	
9-15	Size classes	The number of trees for the corresponding species in each size class	
16	Total	The total number of trees measured.	

630

631 C. Data anomalies: No census was conducted in 2011 or 2015. No data are available for

N1MESO and N3OPEN in 2019. Some data were missing for S2MESO and S3MESO in 2016,

633 S3MESO in 2017, and C1TOTAL and C3TOTAL in 2019 (so summarized data may be

634 meaningfully undercounted in these plots in these years). *Euphorbia* spp. were present but not

recorded in 2009; *Opuntia* spp. were present but not recorded until 2012. Otherwise, when tree

- 636 species are not listed in a year, this indicates that the tree species was not present in that year. In
- 637 some sections in some years, two rows for the same species were inadvertently recorded with

- different numbers of trees. We recommend that data users average these entries to account for
- 639 these data errors.
- 640

641 **10. VEGETATION DATA - FLOWER AND FRUIT PHENOLOGY**

- 642 **A. Data set file**
- 643 Identity: PHENOLOGY_2012-2019.csv
- 644 Size: 1.2 MB
- 645 **Contents:** Spreadsheet detailing the presence of flowers and fruit on species of plants at each
- 646 site of the UHURU experiment.

647 **B. Variable information**

Column	Attribute	Definition
4	Flower or fruit	Whether the observation represents flowers or fruits
5-7	Presence at sites	Presence of flowers or fruits during the month and year denoted by the row (1: present, 0: absent or missing from site)

648

C. Data anomalies: June and December 2012 data quantified numbers of flowers and fruits for a small subset of plant species. From August 2013, monthly phenology data were collected. These data include a broader range of species than 2012 data, but only specify whether a species was flowering (not fruiting) in a given site. From January 2017, the data include the presence of both flowers and fruits (separately) for each species in each site. Zeros may indicate either that no flowers or fruits were present, or that the species itself was not present or not detected in a plot; analyses based on absence of flowering/fruiting should therefore be conducted with caution.

6	5	6

657 11. VEGETATION DATA - ACACIA SEED RAINFALL

- 658 A. Data set file
- 659 Identity: ACACIA_SEED_RAIN_2016-2019.csv
- 660 Size: 83 KB
- 661 Contents: Seed rain from Acacia etbaica and Acacia mellifera across the rainfall gradient from
- 662 December 2016 to October 2019.

663 **B. Variable information**

Column	Attribute	Definition
2	Tree ID	Unique identifier for each tree, including species and ID number (AE = $Acacia \ etbaica$; AM = $Acacia \ mellifera$)
3	Species	Acacia tree species (Acacia_etbaica or Acacia_mellifera)
4	Height class	Trees divided into categories based on height (2-3 m, 3-4 m, or >4 m)
6	Weight	Weight of seeds caught in net underneath tree canopy (g; marked as "not checked" if tree was not checked in a given week)

664

665 **C. Data anomalies:** Missing data are indicated by NA.

- 667 **12. ANIMAL DATA DUNG SURVEYS**
- 668 A. Data set file
- 669 Identity: DUNG_SURVEYS.csv
- 670 Size: 532 KB

671 **Contents:** Dung count survey data, 2009–2019

672 **B. Variable information**

Column	Attribute	Definition
9	Line	Transect line number (corresponding with the tree census and small mammal trapping grid)
10-40	Source of dung	Species of origin and age (old vs. new dung assessed by color).

673

674 **C. Data anomalies:** Dung of several species pairs cannot be differentiated reliably in the field.

675 These include hares (*Lepus* cf. *L. capensis* and *L.* cf. *L. saxatilis*; Kartzinel et al. 2019), plains

and Grevy's zebra (*Equus quagga* and *E. grevyi*), African buffalo (*Syncerus caffer*) and domestic

677 cattle (*Bos indicus*). We made no effort to differentiate predator dung (rare) according to species;

678 instead, we lumped them within three size classes: large, medium, and small. A transcription

679 error occurred when recording block number in the Central plots during the January 2011 survey.

As a result, Block 2 and Block 3 are coded as NA to reflect the uncertainty. No data are available

681 for the Central and South sites for Survey 19.

682

683 **13. ANIMAL DATA – SMALL MAMMAL SURVEYS**

- 684 A. Data set file
- 685 Identity: SMALL_MAMMALS_2009-2019.csv

686 Size: 2.7 MB

687 **Contents:** Small mammal captures during capture periods 1–63 (May 2009 – December 2019).

688 **B. Variable information**

Column	Attribute	Definition
10	Night	Trap night (per site per survey)
11	Species	Acke = $Acomys \ kempi$ = Kemp's spiny mouse Acpe = $Acomys \ percivali$ = Percival's spiny mouse Aehi = $Aethomys \ hindei$ = Hinde's rock rat Arna = $Arvicanthis \ nairobae$ = Nairobi grass rat Arni = $Arvicanthis \ nairobae$ = Nairobi grass rat Crel = $Crocidura \ snitcicus$ = African grass rat Crel = $Crocidura \ gracilipes$ = Peter's musk shrew Crog = $Crocidura \ gracilipes$ = Peter's musk shrew Croc = $Crocidura \ spp.$ = white-toothed shrews Dend = $Dendromus \ spp.$ = climbing mice Elru = $Elephantulus \ rufescens$ = rufous elephant shrew Geni = Gerbiliscus nigricaudus = black-tailed gerbil Gero = $Gerbilliscus \ robustus$ = fringe-tailed gerbil Grdo = $Grammomys \ dolichurus$ = woodland thicket rat Grmi = $Graphiurus \ microtis$ = small-eared dormouse Mana = $Mastomys \ natalensis$ = Natal multi-mammate rat NA = used for traps that were closed but empty as well as traps that were missing or damaged; also used for plots in which no animals were caught that night Rara = $Rattus \ rattus$ = black rat Same = $Saccostomus \ mearnsi$ = northern pouched mouse Stpa = $Steatomys \ parvus$ = tiny fat mouse Taha = $Taterillus \ harringtoni$ = Harrington's tateril Uarvi = $Arvicanthis \ spp.$ = grass rats Umus = $Mus \ spp.$ = pygmy mice Unkn = unknown Zehi = $Zelatomys \ hildegardeae$ = Hildegarde's broad-headed stink mouse
12	Capture	C = capture; R = recapture
13	Sex	F = female; M = male

14	Condition	L = lactating N = none (no reproductive condition) P = pregnant PL = pregnant and lactating S = scrotal
15	Age	A = adult; S = subadult; J = juvenile
16	Left hind foot	Length of left hind foot (mm)
17	Left tag	Tag number at survey
18	Original tag	Original tag number. Particularly useful for cross-referencing with left_tag column when a tag was missing or replaced
19	ID	Individual identifier
20	Marks	Number of paint marks left on animals without ear tags
21	Weight	Weight (g)
22	Notes	Indicate areas where individual identifications or measurement interpretations require caution. In particular, this column indicates if ID tags were lost or replaced, or if an individual escaped during evaluation. The condition of some individual captures could be consequential, such as individuals captured dead or with broken limbs. Also may indicate when a non-small mammal species is caught, such as a bird, squirrel, or dwarf mongoose.

C. Data anomalies: NA indicates no data. Based on mitochondrial DNA barcoding data, along

with geographic range and morphological data, the species listed as Mus sorella (MUSO) on the 691 original field data sheets is now identified as the tiny fat mouse, *Steatomys parvus* (STPA). 692 693 Harrington's tateril (Taterillus harringtoni) was initially misclassified as juvenile fringe-tailed 694 gerbil (Gerbilliscus robustus) but was identified in May 2011 via DNA barcoding (Goheen et al. 695 2013). We now differentiate between the two species based on hindfoot length (<34 mm for T. harringtoni), mass (<60 g for T. harringtoni), and tail (tufted for T. harringtoni). Mitochondrial 696 DNA barcoding has also been used to confirm the presence of at least 3 Mus phylotypes in the 697 698 plots that we cannot reliably distinguish in the field; all are listed as Umus (Mus spp.) in the dataset. Two Crocidura species (C. elgonius and C. gracilipes) are distinguished by size at 699 maturity; C. elgonius are <7 g, and C. gracilipes are >7 g. 700

701

690

702 Class V. Supplemental descriptors

A. Data acquisition: Data can be accessed at the link located in the supporting information for
 this data paper.

B. Quality assurance/quality control procedures: Measures taken for quality control are
detailed in each data set description above. Data were recorded in the field on paper, entered into
spreadsheets via Microsoft Excel, and checked for outliers or omissions at that time, and
subsequently scrutinized for similar issues during data curation for this publication. Any known
data anomalies are reported with the corresponding data set. Original data sheets are stored at
Mpala Research Centre.
C. Related materials: NA

712 **D. Computer programs and data-processing algorithms:** NA

713	E. Archiving: Data are archived at the link located in the supporting information for this data
714	paper.
715	F. Publications
716	Brown, B.R.P. 2021. Communities within a community: the gut microbiomes of co-occurring
717	small mammals in a Kenyan savanna. Ph.D. Thesis, Brown University.
718	Brown, B.R.P., J.R. Goheen, S.D. Newsome, R.M. Pringle, T.M. Palmer, L. Khasoha, and T.R.
719	Kartzinel. Host phylogeny and functional traits differentiate gut microbiomes in a diverse
720	natural community of small mammals. In review.
721	Coverdale, T.C. 2018. Patterns of plant defense, diversity, and fitness in an African savanna.
722	Ph.D. Thesis, Princeton University.
723	Coverdale, T.C., I.J. McGeary, R.D. O'Connell, T.M. Palmer, J.R. Goheen, M. Sankaran, D.J.
724	Augustine, A.T. Ford, and R.M. Pringle. Strong but opposing effects of associational
725	resistance and susceptibility on defense phenotype in an African savanna plant. Oikos
726	128:1772-1782.
727	Coverdale, T.C., J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2018. Good neighbors make good
728	defenses: associational refuges reduce defense investment in African savanna plants.
729	Ecology 99:1724-1736.
730	Coverdale, T.C., T.R. Kartzinel, K.L. Grabowski, R.K. Shriver, A.A. Hassan, J.R. Goheen, T.M.
731	Palmer, and R.M. Pringle. 2016. Elephants in the understory: opposing direct and indirect
732	effects of consumption and ecosystem engineering by megaherbivores. Ecology 97:3219-
733	3230.
734	Coverdale, T.C., R.D. O'Connell, M.C. Hutchinson, A. Savagian, T.R. Kartzinel, T.M. Palmer,
735	J.R. Goheen, D.J. Augustine, M. Sankaran, C.E. Tarnita, and R.M. Pringle. Large

736	herbivores suppress liana infestation in an African savanna. 2021. Proceedings of the
737	National Academy of Sciences 118:e2101676118.
738	Ford, A.T. 2014. A mechanistic study of trophic interactions in an African savanna. Ph.D.
739	Thesis, University of British Columbia.
740	Ford, A.T., J.R. Goheen, D.J. Augustine, M.F. Kinnaird, T.G. O'Brien, T.M. Palmer, R.M.
741	Pringle and R. Woodroffe. 2015. Recovery of African wild dogs suppresses prey but does
742	not trigger a trophic cascade. Ecology 96:2705-2714.
743	Ford, A.T., J.R. Goheen, T.O. Otieno, L. Bidner, L.A. Isbell, T.M. Palmer, D. Ward, R.
744	Woodroffe, and R.M. Pringle. 2014. Large carnivores make savanna tree communities
745	less thorny. Science 346:346-349.
746	Fraser, L.H., J. Pither, A. Jentsch, M. Sternberg, M. Zobel, D. Askarizadeh, S. Bartha, C.
747	Beierkuhnlein, J.A. Bennett, A. Bittel, B. Boldgiv, I.I. Boldrini, E. Bork, L. Brown, M.
748	Cabido, J. Cahill, C.N. Carlyle, G. Campetella, S. Chelli, O. Cohen, AM. Csergo, S.
749	Díaz, L. Enrico, D. Ensing, A. Fidelis, J.D. Fridley, B. Foster, H. Garris, J.R. Goheen,
750	H.A.L. Henry, M. Hohn, M.H. Jouri, J. Klironomos, K. Koorem, R. Lawrence-Lodge, R.
751	Long, P. Manning, R. Mitchell, M. Moora, S.C. Müller, C. Nabinger, K. Naseri, G.E.
752	Overbeck, T.M. Palmer, S. Parsons, M. Pesek, V.D. Pillar, R.M. Pringle, K. Roccaforte,
753	A. Schmidt, Z. Shang, R. Stahlmann, G.C. Stotz, S. Sugiyama, S. Szentes, D. Thompson,
754	R. Tungalag, S. Undrakhbold, M. van Rooyen, C. Wellstein, J.B. Wilson, T. Zupo. 2015.
755	Worldwide evidence of a unimodal relationship between productivity and plant species
756	richness. Science 349:302-305.

757	Gill, B.A., P.M. Musili, S. Kurukura, A.A. Hassan, W.J. Kress, M. Kuzmina, J.R. Goheen, R.M.
758	Pringle, and T.R. Kartzinel. 2019. Plant DNA metabarcode library and community
759	phylogeny for a semi-arid savanna in Kenya. Molecular Ecology Resources 19: 838-846.
760	Goheen, J.R., D.J. Augustine, K.E. Veblen, D.M. Kimuyu, L.M. Porensky, T.M. Palmer, L.M.
761	Porensky, R.M. Pringle, J. Ratnam, C. Riginos, M. Sankaran, G.K. Charles, A.T. Ford,
762	A.A. Hassan, R. Jakopak, T.R. Kartzinel, S. Kurukura, A.M. Louthan, W.O. Odadi, T.O.
763	Otieno, A.M. Wambua, H.S. Young, and T.P. Young. 2018. Conservation and
764	management lessons from large-mammal manipulations in East African rangelands:
765	KLEE, GLADE, and UHURU experiments. Annals of the New York Academy of
766	Sciences 1429:31-49.
767	Goheen, J.R., T.M. Palmer, G.K. Charles, K.M. Helgen, S.N. Kinyua, J.E. Maclean, B.L. Turner,
768	H.S. Young, and R.M. Pringle. 2013. Piecewise disassembly of a large-herbivore
769	community across a rainfall gradient: the UHURU experiment. PLoS One 8: e55192.
770	Graham, S.I., M.F. Kinnaird, T.G. O'Brien, T.G. Vägen, L.A. Winowiecki, T.P. Young, and H.S.
771	Young. 2019. Effects of land-use change on community diversity and composition are
772	highly variable among functional groups. Ecological Applications 29:e01973.
773	Guy, T.J. 2017. Large mammals, rainfall variation, and the structure of plant-pollinator networks
774	in an African savanna. M.Sc. Thesis, University of Florida.
775	Guy, T.J., M.C. Hutchinson, K.C.R. Baldock, E. Kayser, B. Baiser, P.P.A. Staniczenko, J.R.
776	Goheen, R.M. Pringle, and T.M. Palmer. Large herbivores restructure plant-pollinator
777	networks. Current Biology 31:2964-2971.
778	Hutchinson, M.C. 2021. Foraging in a variable world: species interactions across ecological
779	gradients. Ph.D. Thesis, Princeton University.

780	Kartzinel, T.R., J.R. Goheen, G.K. Charles, E. DeFranco, J.E. MacLean, T. Otieno, T.M. Palmer
781	and R.M. Pringle. 2014. Plant and small-mammal responses to large-herbivore exclusion
782	in an African savanna: five years of the UHURU experiment. Ecology 95:787.
783	Kartzinel, T.R., P.A. Chen, T.C. Coverdale, D.L. Erickson, W.J. Kress, M.L. Kuzmina, D.I.
784	Rubenstein, W. Wang, and R.M. Pringle. 2015. DNA metabarcoding illuminates dietary
785	niche partitioning by African large herbivores. Proceedings of the National Academy of
786	Sciences 112:8019-8024.
787	Kartzinel, T.R., J.C. Hsing, P.M. Musili, B.R. Brown, B.R. and R.M. Pringle. 2019. Covariation
788	of diet and gut microbiome in African megafauna. Proceedings of the National Academy
789	of Sciences 116:23588-23593.
790	Kartzinel, TR and RM Pringle. 2020. Multiple dimensions of dietary diversity in large
791	mammalian herbivores. Journal of Animal Ecology 89:1482-1496.
792	Koerner, S.E., M.D. Smith, D.E. Burkepile, N.P. Hanan, M.L. Avolio, S.L. Collins, A.K. Knapp,
793	N.P. Lemoine, E.J. Forrestel, S. Eby, D.I. Thompson, G.A. Aguado-Santacruz, J.P.
794	Anderson, T.M. Anderson, A. Angassa, S. Bagchi, E.S. Bakker, G. Bastin, L.E. Baur,
795	K.H. Beard, E.A. Beever, P.J. Bohlen, E.H. Boughton, D. Canestro, A. Cesa, E.
796	Chaneton, J. Cheng, C.M. D'Antonio, C. Deleglise, F. Dembélé, J. Dorrough, D.J.
797	Eldridge, B. Fernandez-Going, S. Fernández-Lugo, L.H. Fraser, B. Freedman, G. García-
798	Salgado, J.R. Goheen, L. Guo, S. Husheer, M. Karembé, J.M.H. Knops, T. Kraaij, A.
799	Kulmatiski, MM. Kytöviita, F. Lezama, G. Loucougaray, A. Loydi, D.G. Milchunas,
800	S.J. Milton, J.W. Morgan, C. Moxham, K.C. Nehring, H. Olff, T.M. Palmer, S. Rebollo,
801	C. Riginos, A.C. Risch, M. Rueda, M. Sankaran, T. Sasaki, K.A. Schoenecker, N.L.
802	Schultz, M. Schütz, A. Schwabe, F. Siebert, C. Smit, K.A. Stahlheber, C. Storm, D.J.

803	Strong, J. Su, Y.V. Tiruvaimozhi, C. Tyler, J. Val, M.L. Vandegehuchte, K.E. Veblen,
804	L.T. Vermeire, D. Ward, J. Wu, T.P. Young, Q. Yu, and T.J. Zelikova. 2018. Change in
805	dominance determines herbivore effects on plant biodiversity. Nature Ecology &
806	Evolution 2:1925-1932.
807	Long, R.A., A. Wambua, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2017. Climatic variation
808	modulates the indirect effects of large herbivores on small-mammal habitat use. Journal
809	of Animal Ecology 86:739-748.
810	Louthan, A.M. 2016. The relative strength of abiotic and biotic controls on species range limits.
811	Ph.D. Thesis, University of Colorado.
812	Louthan, A.M., D.F. Doak, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2013. Climatic stress
813	mediates the impacts of herbivory on plant population structure and components of
814	individual fitness. Journal of Ecology 101:1074-1083.
815	Louthan, A.M., D.F. Doak, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2014. Mechanisms of
816	plant-plant interactions: concealment from herbivores is more important than abiotic-
817	stress mediation in an African savannah. Proceedings of the Royal Society Series B:
818	Biological Sciences 281:20132647.
819	Louthan, A., E. Valencia, D.J. Martins, T. Guy, J. Goheen, T. Palmer, and D. Doak. 2019. Large
820	mammals generate both top-down effects and extended trophic cascades on floral-visitor
821	assemblages. Journal of Tropical Ecology 35:185-198.
822	Louthan, A.M., R.M. Pringle, J.R. Goheen, T.M. Palmer, W.F. Morris, and D.F. Doak. 2018.
823	Aridity weakens population-level effects of multiple species interactions in Hibiscus
824	meyeri. Proceedings of the National Academy of Sciences of the United States of
825	America 115:543-548.
	45

826	Ngatia, L.W. 2012. Grass productivity and carbon storage in relation to rainfall, soil nutrients,
827	and herbivory in an East African savanna. Ph.D. Thesis, University of Florida.
828	Ngatia, L.W., K.R. Reddy, P.K.R. Nair, R.M. Pringle, T.M. Palmer, and B.L. Turner. 2014.
829	Seasonal patterns in decomposition and nutrient release from East African savanna
830	grasses grown under contrasting nutrient conditions. Agriculture, Ecosystems &
831	Environment 188:12-19.
832	Otieno, T.O. 2016. Foraging preferences for impala and dik-dik under different levels of
833	perceived risk in a savanna ecosystem. M.Sc. Thesis, Karatina University.
834	Pringle, R.M. 2012. How to be manipulative: intelligent tinkering is key to understanding
835	ecology and rehabilitating ecosystems. American Scientist 100:30-37.
836	Pringle, R.M., J.R. Goheen, T.M. Palmer, G.K. Charles, E. DeFranco, R. Hohbein A.T. Ford, B.
837	Torto, and C.E. Tarnita. 2014. Low functional redundancy among mammalian browsers
838	in regulating an encroaching shrub (Solanum campylacanthum) in African savannah.
839	Proceedings of the Royal Society B: Biological Sciences 281:20140390.
840	Pringle, R.M., K.M. Prior, T.M. Palmer, T.P. Young, and J.R. Goheen. 2016. Large herbivores
841	promote habitat specialization and beta diversity of African savanna trees. Ecology
842	97:2640-2657.
843	Titcomb, G., B.F. Allan, T. Ainsworth, L. Henson, T. Hedlund, R.M. Pringle. T.M. Palmer, L.
844	Njoroge, M.G. Campana, R.C. Fleischer, J.N. Mantas, and H.S. Young 2017. Interacting
845	effects of wildlife loss and climate on ticks and tick-born disease. Proceedings of the
846	Royal Society B 286:20170475.
847	Titcomb, G., R.M. Pringle, T.M. Palmer and H.S. Young. 2018. What explains tick proliferation
848	following large-herbivore exclusion? Proceedings of the Royal Society B 286:20180612.

Ecology

849	Wells, H.B.M., R.D. Crego, Ø.H. Opedal, L. Malingati, J.M. Alston, C.G. Reed, S. Weiner, S.
850	Kurukura, A. Hassan, M. Namoni, J. Akadeli, D.M. Kimuyu, T.P. Young, T.R. Kartzinel,
851	T.M. Palmer, R.M. Pringle, and J.R. Goheen. Long-term experiments reveal effects of
852	megaherbivores on mesoherbivore occurrence and use intensity, mediated by species'
853	traits. Journal of Animal Ecology (doi:10.1111/1365-2656.13565).
854	Young, H.S., McCauley, D.J., Dirzo, R., Nunn, C.L., Campana, M.G., Agwanda, B., Otarola-
855	Castillo, E.R., Castillo, E.R., Pringle, R.M., Veblen, K.E. and Salkeld, D.J., 2017.
856	Interacting effects of land use and climate on rodent-borne pathogens in central Kenya.
857	Philosophical Transactions of the Royal Society B: Biological Sciences 372:20160116.
858	Young, H.S., D.J. McCauley, R. Dirzo, J.R. Goheen, B. Agwanda, A.W. Ferguson, S.N. Kinyua,
859	M.M. McDonough, T.M. Palmer, R.M. Pringle, T.P. Young, and K.M. Helgen. 2015.
860	Context-dependent effects of large-wildlife declines on small-mammal communities in
861	central Kenya. Ecological Applications 25:348-360.
862	Young, H.S., D.J. McCauley, K.M. Helgen, J.R. Goheen, E. Otárola-Castillo, T.M. Palmer, R.M.
863	Pringle, T.P. Young, R. Dirzo. 2013. Effects of mammalian herbivore declines on plant
864	communities: observations and experiments in an African savanna. Journal of Ecology
865	101:1030-1041.
866	

867 G. History of data set usage: Data are currently in use by several of the authors on this data paper to answer research questions related to the goals of the UHURU experiment. Publications 868 that have included data from the UHURU experiment are listed in Section V.F. 869

870	1. Data request history: Data from the UHURU experiment are frequently requested for
871	research conducted by outside research groups. We encourage researchers to contact J. Goheen
872	and R. Pringle to check whether more recent but as-yet-unpublished UHURU data are available.
873	2. Data set updates history: Data from the UHURU experiment were originally published in
874	2014 (Kartzinel et al. 2014). Since publication of this original data paper, we have (a) collected
875	additional data according to the original protocols, (b) improved the taxonomic resolution and
876	accuracy of plant and small mammal identifications, and (c) begun collecting several new data
877	sets. Here, we present updated and extended data from the UHURU experiment (current through
878	2019).
879	Literature Cited
880	Alston, J. M., B. M. Maitland, B. T. Brito, S. Esmaeili, A. T. Ford, B. Hays, B. R. Jesmer, F. J.
881	Molina, and J. R. Goheen. 2019. Reciprocity in restoration ecology: when might large
882	carnivore reintroduction restore ecosystems? Biological Conservation 234: 82-89.
883	Anderson, T. M., M.E. Ritchie, and S.J. McNaughton. 2007. Rainfall and soils modify plant
884	community response to grazing in Serengeti National Park. Ecology 88: 1191-1201.
885	Bakker, E.S., M.E. Ritchie, H. Olff, D.G. Michunas, and J.M.H. Knops. 2006. Herbivore impact
886	on grassland plant diversity depends on habitat productivity and herbivore size. Ecology
887	Letters 9: 780-788.
888	Blundell, M. 1982. The wild flowers of Kenya. Collins, London, UK.
889	Bogdan, A.V. 1976. A revised list of Kenya grasses (with keys for identification). Government
890	Printer, Nairobi, Kenya.

891	Brodie, J.F., O.E. Helmy, W.Y. Brockelman, and J.L. Maron. 2009. Bushmeat poaching reduces
892	the seed dispersal and population growth rate of a mammal-dispersed tree. Ecological
893	Applications 19:854-863.
894	Campbell, C., I.D. Campbell, C.B. Blyth, and J.H. McAndrews. 1994. Bison extirpation may
895	have caused aspen expansion in western Canada. Ecography 17:360-362.
896	Caylor K.K., J. Gitonga, and D.J. Martins. 2017 Mpala Research Centre Meteorological and
897	Hydrological Dataset [North Station]. Laikipia, Kenya: Mpala Research Centre.
898	Chase, J.M., M.A. Leibold, A.L. Downing, and J.B. Shurin. 2000. The effects of productivity,
899	herbivory, and plant species turnover in grassland foodwebs. Ecology 81: 2485-2497.
900	Coverdale, T.C., J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2018. Good neighbors make good
901	defenses: associational refuges reduce defense investment in African savanna plants.
902	Ecology 99: 1724-1736.
903	Coverdale, T.C., R.D. O'Connell, M.C. Hutchinson, A. Savagian, T.R. Kartzinel, T.M. Palmer,
904	J.R. Goheen, D.J. Augustine, M. Sankaran, C.E. Tarnita, and R.M. Pringle. 2021. Large
905	herbivores suppress liana infestation in an African savanna. Proceedings of the National
906	Academy of Sciences of the United States of America 118:e2101676118
907	Daskin, J.H., and R.M. Pringle. 2016. Does primary productivity modulate the indirect effects of
908	large herbivores? A global meta-analysis. Journal of Animal Ecology 85:857-868.
909	Faith, J.T., J. Rowan, and A. Du. 2019. Early hominins evolved within non-analog ecosystems.
910	Proceedings of the National Academy of Sciences of the United States of America
911	116:21478-21483.
912	Ford, A.T., and J.R. Goheen. 2015. An experimental study on risk effects in a dwarf antelope,
913	Madoqua guentheri. Journal of Mammalogy 96: 918-926.

- 914 Ford, A.T., J.R. Goheen, D.J. Augustine, M.F. Kinnaird, T.G. O'Brien, T.M. Palmer, R.M.
- 915 Pringle and R. Woodroffe. 2015. Recovery of African wild dogs suppresses prey but does
 916 not trigger a trophic cascade. Ecology 96:2705-2714.
- 917 Frank, D.A. 2005. The interactive effects of grazing ungulates and aboveground production on
- 918 grassland diversity. Oecologia 143: 629-634.
- Frank, D.A., and S.J. McNaughton. 1990. Aboveground biomass estimation with the canopy
 intercept method: a plant growth form caveat. Oikos 57: 57-60.
- 921 Gill, B.A., P.M. Musili, S. Kurukura, A.A. Hassan, W.J. Kress, M. Kuzmina, J.R. Goheen, R.M.
- 922 Pringle, and T.R. Kartzinel. 2019. Plant DNA metabarcode library and community
- phylogeny for a semi-arid savanna in Kenya. Molecular Ecology Resources 19: 838-846.
- 924 Goheen, J.R., D.J. Augustine, K.E. Veblen, D.M. Kimuyu, L.M. Porensky, T.M. Palmer, L.M.
- 925 Porensky, R.M. Pringle, J. Ratnam, C. Riginos, M. Sankaran, G.K. Charles, A.T. Ford,
- 926 A.A. Hassan, R. Jakopak, T.R. Kartzinel, S. Kurukura, A.M. Louthan, W.O. Odadi, T.O.
- 927 Otieno, A.M. Wambua, H.S. Young, and T.P. Young. 2018. Conservation and
- 928 management lessons from large-mammal manipulations in East African rangelands:
- 929 KLEE, GLADE, and UHURU experiments. Annals of the New York Academy of
- 930 Sciences 1429: 31-49.
- 931 Goheen, J.R., T.M. Palmer, G.K. Charles, K.M. Helgen, S.N. Kinyua, J.E. Maclean, B.L. Turner,
- H.S. Young, and R.M. Pringle. 2013. Piecewise disassembly of a large-herbivore
- 933 community across a rainfall gradient: the UHURU experiment. PLoS One 8: e55192.
- 934 Gruner, D.S., J.E. Smith, E.W. Seabloom, S.A. Sandin, J.T. Ngai, H. Hillebrand, W.S. Harpole,
- 935 J.J. Elser, E.E. Cleland, M.E.S. Bracken, E.T. Borer, B.M. and Bolker. 2008. A cross-

936	system synthesis of consumer and nutrient resource control on producer biomass.
937	Ecology Letters, 11: 740-755.
938	Guimarães, P. R., M. Galetti, and P. Jordano. 2008. Seed dispersal anachronisms: rethinking the
939	fruits extinct megafauna ate. PLoS One 3: e1745.
940	Guy, T.J., M.C. Hutchinson, K.C.R. Baldock, E. Kayser, B. Baiser, P.P.A. Staniczenko, J.R.
941	Goheen, R.M. Pringle, and T.M. Palmer. Large herbivores restructure plant-pollinator
942	networks. Current Biology 31:2964-2971.
943	Guyton, J.A., J. Pansu, M.C. Hutchinson, T.R. Kartzinel, A.B. Potter, T.C. Coverdale, J.H.
944	Daskin, A.G. da Conceição, M.J.S. Peel, M.E. Stalmans, and R.M. Pringle. 2020. Trophic
945	rewilding revives biotic resistance to shrub invasion. Nature Ecology & Evolution 4: 712-
946	724.
947	Hillebrand, H., D.S. Gruner, E.T. Borer, M.E.S. Bracken, E.E. Cleland, J.J. Elser, W.S. Harpole,
948	J.T. Ngai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Consumer versus resource
949	control of producer diversity depends on ecosystem type and producer community
950	structure. Proceedings of the National Academy of the United States of America 104:
951	10904-10909.
952	Huntly, N. 1991. Herbivores and the dynamics of communities and ecosystems. Annual Reviews
953	of Ecology and Systematics 22: 477-503.
954	Janzen, DH and PS Martin. 1982. Neotropical anachronisms: the fruits the gomphotheres ate.
955	Science 215:19-27.
956	Kartzinel, T.R., J.R. Goheen, G.K. Charles, E. DeFranco, J.E. MacLean, T. Otieno, T.M. Palmer
957	and R.M. Pringle. 2014. Plant and small-mammal responses to large-herbivore exclusion
958	in an African savanna: five years of the UHURU experiment. Ecology 95:787.

959	Kartzinel, T.R., J.C. Hsing, P.M. Musili, B.R. Brown, B.R. and R.M. Pringle. 2019. Covariation
960	of diet and gut microbiome in African megafauna. Proceedings of the National Academy
961	of Sciences 116:23588-23593.
962	Kartzinel, T.R. and R.M. Pringle. 2020. Multiple dimensions of dietary diversity in large
963	mammalian herbivores. Journal of Animal Ecology 89:1482-1496
964	Keesing, F.L. 1998. Impacts of ungulates on the demography and diversity of small mammals in
965	central Kenya. Oecologia 116: 381-389.
966	Koerner, S.E., M.D. Smith, D.E. Burkepile, N.P. Hanan, M.L. Avolio, S.L. Collins, A.K. Knapp,
967	N.P. Lemoine, E.J. Forrestel, S. Eby, D.I. Thompson, G.A. Aguado-Santacruz, J.P.
968	Anderson, T.M. Anderson, A. Angassa, S. Bagchi, E.S. Bakker, G. Bastin, L.E. Baur,
969	K.H. Beard, E.A. Beever, P.J. Bohlen, E.H. Boughton, D. Canestro, A. Cesa, E.
970	Chaneton, J. Cheng, C.M. D'Antonio, C. Deleglise, F. Dembélé, J. Dorrough, D.J.
971	Eldridge, B. Fernandez-Going, S. Fernández-Lugo, L.H. Fraser, B. Freedman, G. García-
972	Salgado, J.R. Goheen, L. Guo, S. Husheer, M. Karembé, J.M.H. Knops, T. Kraaij, A.
973	Kulmatiski, MM. Kytöviita, F. Lezama, G. Loucougaray, A. Loydi, D.G. Milchunas,
974	S.J. Milton, J.W. Morgan, C. Moxham, K.C. Nehring, H. Olff, T.M. Palmer, S. Rebollo,
975	C. Riginos, A.C. Risch, M. Rueda, M. Sankaran, T. Sasaki, K.A. Schoenecker, N.L.
976	Schultz, M. Schütz, A. Schwabe, F. Siebert, C. Smit, K.A. Stahlheber, C. Storm, D.J.
977	Strong, J. Su, Y.V. Tiruvaimozhi, C. Tyler, J. Val, M.L. Vandegehuchte, K.E. Veblen,
978	L.T. Vermeire, D. Ward, J. Wu, T.P. Young, Q. Yu, and T.J. Zelikova. 2018. Change in
979	dominance determines herbivore effects on plant biodiversity. Nature Ecology &
980	Evolution 2:1925-1932.

981	le Roux, E., L.S. van Veenhuisen, G.I. Kerley, and J.P. Cromsigt. 2020. Animal body size
982	distribution influences the ratios of nutrients supplied to plants. Proceedings of the
983	National Academy of Sciences 117: 22256-22263.
984	Long, R.A., A. Wambua, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2017. Climatic variation
985	modulates the indirect effects of large herbivores on small-mammal habitat use. Journal
986	of Animal Ecology 86: 739-748.
987	Louthan, A.M., D.F. Doak, J.R. Goheen, T.M. Palmer, and R.M. Pringle. 2013. Climatic stress
988	mediates the impacts of herbivory on plant population structure and components of
989	individual fitness. Journal of Ecology 101: 1074-1083.
990	Lundgren, EJ, D Ramp, J Rowan, O Middleton, SD Schowanek, O Sanisidro, SP Carroll, M
991	Davis, CJ Sandom, JC Svenning, and AD Wallach. 2020. Introduced herbivores restore
992	Late Pleistocene ecological functions. Proceeding of the National Academy of Sciences
993	117:7871-7878.
994	Martin, J.L., S.A. Stockton, S. Allombert, and A.J. Gaston. 2010. Top-down and bottom-up
995	consequences of unchecked ungulate browsing on plant and animal diversity in temperate
996	forests: lessons from a deer introduction. Biological Invasions 12: 353-371.
997	Milchunas, D.G., and W.K. Lauenroth. 1993. Quantitative effects of grazing on vegetation and
998	soils over a global range of environments. Ecological Monographs 63: 327-366.
999	Paine, R.T. 2010. Macroecology: does it ignore or can it encourage further ecological syntheses
1000	based on spatially local experimental manipulations? American Naturalist 176: 385-393.
1001	Pringle, R.M., T.P. Young, D.I. Rubenstein, D.J. McCauley. 2007. Herbivore-initiated
1002	interaction cascades and their modulation by productivity in an African savanna.

1003	Proceedings of the National Academy of Sciences of the United States of America 104:
1004	193-197.
1005	Pringle, R.M., J.R. Goheen, T.M. Palmer, G.K. Charles, E. DeFranco, R. Hohbein, A.T. Ford, B.
1006	Torto, and C.E. Tarnita. 2014. Low functional redundancy among mammalian browsers
1007	in regulating an encroaching shrub (Solanum campylacanthum) in African savannah.
1008	Proceedings of the Royal Society B: Biological Sciences 281: 20140390.
1009	Pringle, R.M., K.M. Prior, T.M. Palmer, T.P. Young, and J.R. Goheen. 2016. Large herbivores
1010	promote habitat specialization and beta diversity of African savanna trees. Ecology
1011	97:2640-2657.
1012	Schmitz, O.J. 2010. Resolving ecosystem complexity (MPB-47). Princeton University Press,
1013	Princeton, U.S.A.
1014	Seifert, A.W., S.G. Kiama, M.G. Seifert, J.R. Goheen, T.M. Palmer, M. Maden. 2012. Skin
1015	shedding and tissue regeneration in African spiny mice (Acomys). Nature 489: 561-565.
1016	Smith, FA, JI Hammond, MA Balk, SM Elliott, SK Lyons, MI Pardi, CP Tomé, PJ Wagner, and
1017	ML Westover. 2015. Exploring the influence of ancient and historic megaherbivore
1018	extirpations on the global methane budget. Proceedings of the National Academy of
1019	Sciences of the United States of America 113:874-879.
1020	Staver, A.C., W.J. Bond, W.D. Stock, S.J. van Rensburg, and M.S. Waldram. 2009. Browsing
1021	and fire interact to suppress tree density in African savanna. Ecological Applications 19:
1022	1909-1919.
1023	Staver, A.C. and W.J. Bond. 2014. Is there a 'browse trap'? Dynamics of herbivore impacts on
1024	trees and grasses in an African savanna. Journal of Ecology 102: 595-602.

1025	Stuart, C. and T. Stuart. 2000. A field guide to the tracks and signs of Southern and East African
1026	wildlife. Struik Publishers, Cape Town, South Africa.
1027	Thibault, K.M., Ernest, S.M. and Brown, J.H. 2010. Redundant or complementary? Impact of a
1028	colonizing species on community structure and function. Oikos 119:1719-1726.
1029	van Langevelde, F., C.A.D.M. van de Vijver, L. Kumar, J. van de Koppel, N. de Ridder, J. van
1030	Andel, A.K. Skidmore, J.W. Hearne, L. Stroosnijder, W.J. Bond, H.H.T. Prins, and M.
1031	Rietkerk. 2003. Effects of fire and herbivory on the stability of savanna ecosystem.
1032	Ecology 84: 337-350.
1033	van Oudtshoorn, F. 2009. Guide to grasses of southern Africa. Briza Publications, Pretoria,
1034	South Africa.
1035	Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6:18-23.
1036	Walker, B.H., R.H. Emslie, R.N. Owen-Smith, and R.J. Scholes. 1987. To cull or not to cull:
1037	lessons from a southern African drought. Journal of Applied Ecology 24: 381-401.
1038	Weisberg, P.J., N.T. Hobbs, J.E. Ellis, and M.B. Coughenour. 2002. An ecosystem approach to
1039	population management of ungulates. Journal of Environmental Management 65: 181-
1040	197.
1041	Wells, H.B.M., R.D. Crego, Ø.H. Opedal, L. Malingati, J.M. Alston, C.G. Reed, S. Weiner, S.
1042	Kurukura, A. Hassan, M. Namoni, J. Akadeli, D.M. Kimuyu, T.P. Young, T.R. Kartzinel,
1043	T.M. Palmer, R.M. Pringle, and J.R. Goheen. Long-term experiments reveal effects of
1044	megaherbivores on mesoherbivore occurrence and use intensity, mediated by species'
1045	traits. Journal of Animal Ecology, early view.
1046	Young, H.S., D.J. McCauley, K.M. Helgen, J.R. Goheen, E. Otárola-Castillo, T.M. Palmer, R.M.
1047	Pringle, T.P. Young, and R. Dirzo. 2013. Effects of mammalian herbivore declines on

plant communities: observations and experiments in an African savanna. Journal of 1048 Ecology 101: 1030-1041. 1049

1050 Young, Hillary S., D.J. McCauley, R. Dirzo, J.R. Goheen, B. Agwanda, C. Brook, E. Otárola-

1051 Castillo, A.W. Ferguson, S.N. Kinyua, M.M. McDonough, T.M. Palmer, R.M. Pringle,

1052 T.P. Young, and K.M. Helgen. 2015. Context-dependent effects of large-wildlife declines

- 1053 on small-mammal communities in central Kenya. Ecological Applications 25: 348-360.
- 1054 Young, T.P., T.M. Palmer, and M.E. Gadd. 2005. Competition and compensation among cattle,

i-arid sa 1055 zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biological Conservation

1056 122: 351-359.