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Abstract—The propagation of acoustic waves under water is a
highly complex and stochastic process. Such channel dynamics
renders large performance variation in underwater acoustic
(UWA) communications. Prediction of the UWA communication
performance is critical for selection and adaptation of the com-
munication strategies. This work explores the use of supervised
learning for performance prediction in UWA communications.
This work first quantifies the transmitter design, the UWA
channel characteristics and the receiver design by numerical
and categorical parameters. For a chosen performance metric
(e.g., the bit error rate or the packet error rate), the perfor-
mance prediction is cast individually into a numerical prediction
problem and a classification problem. Using the data sets from
two field experiments, the performance of typical supervised
learning methods are examined. The data processing results
reveal that some supervised learning methods can achieve fairly
good numerical prediction or classification performance, and
the discriminative models typically outperform the generative
models.

Index Terms—Performance prediction, supervised learning,
numerical prediction, classification, underwater acoustic commu-
nications

I. INTRODUCTION

The propagation of acoustic waves in the underwater en-
vironment is a highly complex stochastic process. For under-
water acoustic (UWA) communications, establishing a theo-
retical relationship among the transmitter design, the channel
characteristics and the receiver decoding performance, is a
nontrivial task. In this work, we explore the use of different
supervised learning methods for the communication perfor-
mance prediction. The obtained model can guide the selection
and adaptation of strategies for point-to-point communications
and networking [1], [2].

There are some relevant works in literature. In the setting of
wireless sensor networks, supervised learning schemes were
introduced in [3] to predict the bit-error-rate (BER) perfor-
mance, which serves as inputs for the routing decision making.
There were several recent attempts for performance prediction
in the underwater research area. A logistic regression method
was used in [4] to estimate the packet success rate (PSR) based
on environmental factors. For adaptive modulation, a boosted
decision tree method was introduced in [2] to estimate the
BER of different transmission schemes based on the UWA
channel parameters. It noted, as did in [5], that using the
minimum possible transmission power can reduce the risk
of adversaries eavesdropping on transmissions, which is one
benefit of reducing transmission power when possible.
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This work conducts a thorough study on supervised learning
for the performance prediction in UWA communications. It is
cast individually as a numerical prediction problem and as a
classification problem. Two field experimental data sets are
tested, including one data set collected from the Keweenaw
Waterway in August 2014 (abbreviated as KWAUG14) [6],
and the other data set from the SPACEOS8 experiment held
off of Martha’s Vineyard in 2008 [7]. Both experiments
were in shallow water and the transmission waveform was
modulated by the orthogonal frequency-division multiplexing
(OFDM) technique. With those data sets, the performance of
a variety of supervised learning schemes are examined, and
recommendations are made.

II. PROBLEM STATEMENT

The UWA communication performance depends on the
transmitter design, the channel characteristics and the receiver
design. Depending on applications, the performance metric
could be the bit error rate, the symbol error rate, or the packet
error rate. The goal of performance modeling is to build a
model that maps the transmitter design, the channel charac-
teristics and the receiver design to the chosen performance
metric.

The key to the performance modeling lies in the param-
eterization of the transmitter, the channel and the receiver;
and how to quantify them by numerical parameters and cat-
egorical parameters. In this work, we assume fixed hardware
implementation of the transmitter and the receiver, and mainly
focus on the software algorithms, including the transmission
schemes and the receiver processing methods.

The transmitter is described by categorical parameters in-
cluding the modulation type (e.g., BPSK or QPSK), the
transmission strategy (e.g., single-carrier, multi-carrier or
frequency-shift keying) and the error correction coding meth-
ods; and the numerical parameters include the transmission
power, the pilot overhead, the coding rate, and transmission
strategy-specific parameters. The channel is characterized by
several commonly used channel parameters including the
channel gain-to-noise ratio, the channel delay spread, and the
fast fading statistics [6]. Weather and environmental conditions
can also be included as channel parameters. The receiver
is characterized by the number of receiving channels and
the data processing algorithm. The data processing algorithm
can be quantified as categorical parameters (e.g., non-iterative
or iterative, interference-aware or interference-ignorant). The
design parameters in the selected data processing algorithm
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can be included as numerical parameters (e.g., the number of
iterations in the iterative receiver).

With the above parameterization, the performance modeling
naturally becomes a numerical prediction problem. Further-
more, for engineering purposes it may be sufficient to only
determine the range of the communication performance. This
makes the performance modeling a classification problem.

ITI. SUPERVISED LEARNING METHODS FOR
PERFORMANCE PREDICTION

In this work, several supervised learning methods [8] are
examined for numerical prediction and classification. They are
briefly described in the following.

A. Regression Methods

Several models are considered and compared for their abil-
ities for performance prediction. Some models are chosen for
their simplicity, while others are selected for their capabilities.
For example, the “dummy” or “zero rule” method is included
to show the bound achieved by always predicting the same
value.

o Linear regression: A well-known numerical approach;
each feature contributes linearly to the predicted output.

e Linear regression with approximate Radial Basis Func-
tion sampling: Using the Random Kitchen Sinks [9]
algorithm to efficiently approximate a radial basis func-
tion (RBF) sampling, which transforms the data into a
different space.

e Neural network: A series of connected neurons contribute
to each other through learned weights. In this work, two
different neural network frameworks are considered, one
with a single layer of ten neurons and the other with two
layers of ten neurons.

o K -Nearest Neighbors: The concept of K-Nearest Neigh-
bors (KNN) is to use the data as the model. The output
value is assigned as the interpolation of the K nearest
data points in the training set. The value of K is taken as
9 in this work. Increasing the value of K acts as a form
of regularization.

e Dummy or Zero Rule (ZeroR): The dummy regression
method simply predicts the same value every time. In
this work, the median value of the training set is used.
This provides an engineering performance lower bound:
if a model has performance lower than this, it should
probably not be considered.

e Decision tree: A graph is created where each node splits
into edges based on feature values. There are a variety
of algorithms that can be utilized. The Classification and
Regression Tree (CART) algorithm [10] implemented in
Scikit-Learn [11] is used in this work.

To evaluate the performance of the regression methods, two
metrics are considered, including the normalized root mean
squared error (NRMSE) and the Pearson correlation coefficient
[12] (generally referred to as correlation coefficient) between
the true sample values and the predicted sample values. A
coefficient of 1 here means that the prediction is linearly

related to the actual values. For the dummy method that always
guesses a constant, the correlation coefficient is undefined due
to the zero variance.

B. Classification Methods

In some applications, it may not be necessary to predict the
value of the selected performance metric, but rather estimate
the range that the value will lie within. For example one could
segment the BER values at the limit for successful complete
error correction. This transforms the regression problem into
a classification problem.

e Logistic regression: A common binary classifier; each
data point is assigned a probability of being within a
given class. It can be easily extended to a multi-class
case by using a one-vs-all approach, where each class is
considered separately and the given class is the one with
the highest probability.

e Neural network: The basic structure used is identical
to the one used for numerical regression. Two different
neural network frameworks are considered, one with a
single layer of ten neurons and the other with two layers
of ten neurons. For classification, the output consists of
the likelihood of each class. The class with the maximal
likelihood is selected for each set of inputs.

e K-Nearest Neighbors: Similarly to regression, the train-
ing data provides the model. The output value is assigned
as the most common value of the K-nearest data points
in the training set.

e Dummy or ZeroR: The dummy classification method is
essentially the same as the dummy regression method.
The method used in this work guesses classes using
the distribution of the classes in the training data. A
simpler approach is to guess the same class every time,
for unbalanced classes this can give deceivingly high true
positive rates.

e Decision rule: A series of rules based on feature values,
similar in structure to an IF/ELSEIF statement.

e Decision tree: Similar to the regression decision tree, the
CART algorithm is used for classification.

e Naive Bayesian network: The model attempts to use a
chain of learned probabilities to make a classification. The
naive Bayesian network is used in this work. Although it
makes the assumption that each feature is independent,
this classifier is appealing due to it’s simplicity and
computational efficiency.

e Random forest: A random forest is a collection of random
trees. The power of the random forest is that each tree
is slightly different and decisions about classification are
made as an ensemble.

Three different performance metrics are used to compare
the classifiers, including the true positive rate (TPR), the false
positive rate (FPR) and precision. In the binary classification
problem with two classes (class 0 and class 1), class O is
also referred as the negative class and class 1 is also referred
as the positive class. The TPR is defined as the percentage
of data points in class 1 that are correctly identified (i.e., the
probability of detection). The FPR is defined as the percentage
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Fig. 1. KWAUG14: Temporal evolution of the BER sequence and the channel
statistics. The SNRs are in decible (dB); and the unit of the RMS delay spread
is milliseconds.

of data points in class O that are incorrectly identified as class 1
(i.e., the probability of false alarm). Precision is defined as the
number of true positives (class 1) divided by the total number
of positives classified (correctly or incorrectly). A value of 1 is
desirable, as it indicates that everything classified as a positive
is correct.

For classification, there exists a well-known problem called
the unbalanced class problem, where certain classes do not
occur often. An oversampling technique called SMOTE [13],
which stands for synthetic minority oversampling technique,
can be applied. It uses linear combinations of existing data
points to generate new data points and increase the populations
of the minority classes.

IV. EXPERIMENTAL DATA PROCESSING: KWAUG14

This data set is from a static experiment conducted
in the Keweenaw Waterway, August 2014 (abbreviated as
KWAUG14) [6]. The experiment lasted about 4.5 days. A
waveform of 8.8 seconds in the frequency band [14,20] kHz
was transmitted with a fixed power every 15 minutes over a
link of 312 meters. The waveform is modulated by OFDM
with a QPSK constellation. Each transmission consists of 20
OFDM blocks. Each OFDM block has 1024 subcarriers with
a quarter being pilot subcarriers and 96 being null subcarriers.

The BER is taken as the performance metric. The channel
parameters used include:

o The time-domain SNR: the received signal-power-to-the-
noise-power ratio (SNR) in the time domain;

e The pilot SNR: the ratio of the received power on the pilot
subcacarriers to that on the null subcarrers, measured in
the frequency domain;

o The channel root-mean-square (RMS) delay spread: the
channel dispersion in delay, weighted by the path ampli-
tudes [6].

In total, there are 8600 data points. Fig. 1 depicts the evolution
of the BER sequence and the channel features in time. The
data is split into training and test sets, with 80% of data for
training and 20% of data for testing.
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Fig. 2. KWAUGI4: Numerical prediction performance. Method 1: linear
regression; method 2: RBF linear regression; method 3: neural net with 1
layer; method 4: neural net with 2 layers; method 5: KNN; method 6: ZeroR;
and method 7: decision tree.
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Fig. 3. KWAUGI4: (a) BER distribution and original BER classes with
classes color coded. The low BER class consists of 7692 points and the high
BER class contains of 968 points. (b) BER classes after SMOTE. Class size
for the low BER points remains 7692 and SMOTE increases the number of
high BER points to 7692 as well.

A. Regression Results

The performance of several regression methods are shown in
Fig. 2. The decision tree and the KNN achieve the best perfor-
mance, with the NRMSE value around 0.25. The performance
of linear regression, the RBF transformed linear regression
and the neural network with 1 layer are similar. As expected,
ZeroR has the worst performance.

B. Classification Results

The data set is segmented into two classes according to the
BER value. Because a low BER is preferable, the data points
with a BER below 0.1 are assigned as class 1. The other data
points are assigned as class 0. Due to the nature of the channel,
the vast majority of points are clustered in the lower BER class
(i.e., class 1). The SMOTE technique is used to address the
unbalanced class problem. The class populations before and
after SMOTE can be seen in Fig. 3.

The performance of several classification methods without
and with the SMOTE technique are shown in Fig. 4. One
can observe that the KNN approach has the best performance
(based on precision) for the original data, followed closely
by logistic regression, the random forest, and both neural
networks. Once SMOTE is applied, an interesting effect is
observed. The performance of the single-layer neural network
degrades significantly. This is most likely due to overfitting
of the model causing the model to only classify points as
high BER (i.e., class O or a negative). The primary benefit of
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Fig. 4. KWAUG/I4: Classification performance. Method 1: logistic regression;
method 2: neural net with 1 layer; method 3: neural net with 2 layers; method
4: KNN; method 5: ZeroR; method 6: decision rule; method 7: decision tree;
method 8: naive Bayesian network; and method 9: random forest.

SMOTE can be seen in the FPR results. The decision becomes
less biased towards the low BER class (i.e., class 1 or positive)
for the decision rule, decision tree, naive Bayesian network,
and the random forest. Precision is boosted for the random
forest with SMOTE, although slight degradation is observed
for most other classifiers.

V. EXPERIMENTAL DATA PROCESSING: SPACEO8

A second data set used to evaluate the regression and clas-
sification methods is from the Surface Processes and Acoustic
Communication Experiment (SPACE08). This experiment was
conducted off the coast of Martha’s Vineyard at the Air-Sea
Interaction Tower, operated by Woods Hole Oceanographic
Institution from Oct. 14 to Nov. 1, 2008 [7]. The water depth
was about 15 meters. Six bottom adjacent receiving arrays
were placed on two paths 90 degrees apart, with three arrays
on each path and located at 60, 200, and 1000 meters from
the source. The three arrays on one path from near to far are
labeled as S1, S3, and S5, respectively. The other three arrays
on the other path from near to far are labeled as S2, S4, and
S6, respectively. Arrays S1 and S2 both had 48 hydrophone
elements, S3 and S4 had 24 hydrophone elements, and S5
and S6 had 12 hydrophone elements. During the experiment,
an OFDM-modulated communication waveform within the
frequency band [8, 18] kHz was transmitted every two hours.
In the transmission waveform, three constellations are included
(QPSK, 8-QAM, and 16-QAM), and there are 20 OFDM
blocks for each constellation. Each OFDM block has 1024
subcarriers, which are specifically designed with 128 being
pilot subcarriers, 384 being data subcarriers and the rest being

TABLE I
SPACEOQ8: TOTAL NUMBERS OF DATA POINTS

Receiver S1 S2 S3 S4 S5 S6
QPSK 42240 | 37079 | 28312 | 28310 19879 | 20347
8-QAM 42158 | 37050 | 28319 | 28307 19902 | 20355
16-QAM 42255 | 36896 | 28319 | 28289 19870 | 20311
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Fig. 5. SPACEO8: BER histogram at each receiver and for each constellation.
Solid line: QPSK; dashed line: 8-QAM,; dotted line: 16-QAM.

null subcarriers (please see [14] for the detailed subcarrier
distribution).

In this work, the waveform recorded by each hydrophone
and for each constellation is decoded separately, without
performing the multi-channel combining. The BER is taken
as the performance metric. The same channel parameters as
in KWAUG14 are used. Table I lists the total number of data
points at each receiver and for each constellation. The BER
distribution for each receiver and each constellation is depicted
in Fig. 5. A crossplot in Fig. 6 illustrates the relationship
among the BER and the channel features. The time-domain
SNR is computed based on the estimated channel impulse
response.

Similar to KWAUGI14, the data is split into training and test
sets, with 80% of data for training and 20% of data for testing.

A. Numerical Prediction Results

The performance of several regression methods are shown
in Fig. 7. Similarly to the KWAUG14 data set, the decision tree
and the KNN give the best results. The neural networks also
perform well, as does the RBF transformed linear regression.
The ZeroR method shows a range of errors across the data
sets that span the performance range of most other methods,
giving better results when data sets are more tightly clustered.

B. Classification Results

As shown in Fig. 5, the BER distribution varies across
the receivers and the constellation types, and for some data
sets, the BER distributions do not overlap. Therefore it is
impossible to segment the data using a common BER value
for all the data sets. In this work, the data at each receiver
and for each constellation is segmented at the median BER
value for that given data set. Values below the median BER
are considered desirable and assigned as class 1, values above
the median are assigned as class 0.



GLOBAL OCEANS 2020. TOPIC: 2.8 ACOUSTIC TELEMETRY AND COMMUNICATION 5

timeSHR
-3

w B B

delaySpread
B K

o mos oo @

5
delaySpread

BER PilotSNR timeSNR

Fig. 6. SPACEOS: An example of the crossplot at S3 and for 8-QAM. The
SNRs are in dB; and the unit of the delay spread is milliseconds.
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Fig. 7. SPACEO8: Numerical prediction performance. Method 1: linear

regression; method 2: RBF linear regression; method 3: neural net with 1
layer; method 4: neural net with 2 layers; method 5: KNN; method 6: ZeroR;
and method 7: decision tree.

The performance of several classification methods are de-
picted in Fig. 8. Most of the classifiers perform well. The best
consistent performance is seen on the random forest and the
two neural networks. Sometimes the two-layer neural network
outperforms the single-layer version or vice versa, but gen-
erally they perform similarly. The decision rule, the decision
tree and the naive Bayesian network slightly outperform the
logistic regression and KNN. The ZeroR method has the worst
performance.
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Fig. 8. SPACEOQS: Classification performance. Method 1: logistic regression;
method 2: neural net with 1 layer; method 3: neural net with 2 layers; method
4: KNN; method 5: ZeroR; method 6: decision rule; method 7: decision tree;
method 8: naive Bayesian network; and method 9: random forest.

VI. CONCLUSIONS

This work investigated supervised learning for performance
prediction in UWA communications. After quantifying the
transmitter, the channel and the receiver by numerical and
categorical parameters, the performance prediction was cast
individually as a numerical prediction problem and as a
classification problem. Meaningful insights were obtained by
examining supervised learning methods using field experimen-
tal data sets. The data processing results showed that fairly
good numerical prediction or classification performance can be
achieved. For the numerical prediction, discriminative models
such as decision trees and neural networks performed better
than the generative models like linear regression and linear
regression with RBE. For the classification, discriminative
models also achieved better performance than the generative
models such as logistic regression and the naive Bayesian
network. The KNN method performed generally well for both
numerical predication and classification.

In the future, the concept of transfer learning will be
explored. In this work, separate models were created for
each individual data set. With transfer learning, it could be
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beneficial to apply a model trained on one data set to an
entirely different data set. The parameters such as the relative
water depth, distance between the transmitter and the receiver,
and the modulation type, could be included as variables into
the modeling process.
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