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Continuous-variable systems protected by bosonic quantum codes have emerged as a promising platform for
quantum information. To date, the design of code words has centered on optimizing the state occupation in the
relevant basis to generate the distance needed for error correction. Here, we show tuning the phase degree of
freedom in the design of code words can affect, and potentially enhance, the protection against Markovian errors
that involve excitation exchange with the environment. As illustrations, we first consider phase engineering
bosonic codes with uniform spacing in the Fock basis that correct excitation loss with a Kerr unitary and show
that these modified codes feature destructive interference between error code words and, with an adapted “two-
level” recovery, the error protection is significantly enhanced. We then study protection against energy decay
with the presence of mode nonlinearities and analyze the role of phase for optimal code designs. We extend the
principle of phase engineering to bosonic codes defined in other bases and multiqubit codes, demonstrating its
broad applicability in quantum error correction.
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I. INTRODUCTION

Quantum operations with continuous variables represent
a promising path towards scalable quantum computing and
communication [1–4]. Like in qubit-based systems, a ma-
jor challenge for faithful bosonic quantum information is
to store, manipulate, and communicate information in the
presence of noise, such as excitation loss, quadrature drift,
dephasing, and cavity nonlinearities. To overcome excita-
tion loss that fundamentally limits cavity lifetime, multimode
codes were introduced [5–10]. Later, to utilize the large
Hilbert space of a bosonic mode and perform hardware-
efficient operations, single-mode codes for excitation loss
such as cat codes [11–15], binomial (bin) codes [16], and
the more generic rotation-symmetric bosonic codes [17] were
developed. Meanwhile, progress in superconducting circuit
quantum electrodynamics (cQED), e.g., real-time adaptive
control [13], fault-tolerant readout of excitation parity [18,19],
and universal control of cavity [20–23], has opened up pos-
sibilities once thought unreachable, including implementing
arbitrary quantum channels [24,25]. With the advances, error-
corrected cat and bin qubits and the associated universal
gate sets have been demonstrated [13,26–29]. These capabil-
ities together make possible higher-level tasks with bosonic
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systems, such as gate teleportation [30] and distributing error-
corrected entangled states [31].

The aforementioned codes for excitation loss are designed
in the Fock basis, with code words spanned by well-separated
subsets of basis states (i.e., parity structure)—the protection
against error comes entirely from the separation. Despite the
clear physics, this approach of code construction uses the
Hilbert space inefficiently, as only some of the degrees of
freedom available are considered. In this work, we explore
the conjugate degree of freedom to basis-state occupation—
the phase carried by each basis-state component in code
words—and demonstrate its critical role for efficient bosonic
quantum error correction (QEC). First, by examining how
phase-imparting unitaries propagate through error processes,
we show that tuning the phase degree of freedom in bosonic
codes can affect the protection against Markovian errors that
involve excitation exchange with the environment. To illus-
trate the idea, we modify the encoding procedures for bin
and cat codes with a Kerr unitary that periodically alters the
sign of probability amplitudes in code words and show that, by
creating destructive interference error code words, the sign al-
teration (SA) effectively suppresses bit-flip-type decoherence.
A two-level recovery that utilizes both the parity structure
and destructive interference is employed to yield enhanced
restoration at practical loss rates. For quantum dynamics in-
volving both energy exchange and mode nonlinearities, prior
arts on encoding are rare. We employ biconvex optimization
of encoding and decoding [32–34] to generate optimal codes
from scratch and show the critical role of phase in achieving
optimality.
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FIG. 1. Propagation of unitary channel V through error process
N . Successful propagation, as shown here, means it can be absorbed
into R and has no effect on how an encoding protects against N .
Otherwise, V is a degree of freedom that can alter, and potentially
enhance, the correction of N .

Extending the principle beyond the Fock basis, we mod-
ify Gottesman-Kitaev-Preskill (gkp) codes defined in the
position-momentum basis that protect against quadrature
drift. We rediscover that gkp over nonrectangular lattices,
which offers better protection than rectangular-lattice gkp,
can be converted from the latter by SA [3]. For multiqubit
codes, we phase engineer the nine-qubit Shor’s code and
achieve improved correction of Pauli errors and qubit am-
plitude damping. These examples demonstrate the generality
of exploiting the phase degree of freedom to design efficient
QEC schemes across physical platforms.

II. PRINCIPLE

A QEC process E consists of encoding Uc, noise N ,
and recovery R and decoding U‡

c , i.e., E = U‡
c ◦ R ◦ N ◦

Uc. As passive decoherence processes can mostly be treated
as Markovian, we focus on Markovian dynamics with the
Lindbladian generator D[Â](ρ̂) = Âρ̂Â† − 1

2 {Â†Â, ρ̂} (Â is
the jump operator). If a unitary channel V (ρ) = V̂ ρV̂ † can
propagate through N = eD[Â]t (Fig. 1) and still end up unitary,
i.e.,

N ◦ V = V ◦ N , (1)

it will not affect any QEC protocol on Uc, as V̂ can be ab-
sorbed into R. In Appendix A, we show that Eq. (1) holds if
[Â, ĤV ] = rÂ, where ĤV is the generating Hamiltonian for V̂
and r ∈ R. This criterion associates the error channel N with
the set of unitaries that leave it invariant and helps identify
quantum operations V̂ that are transparent to error process N .
[Â, ĤV ] = 0 is the simplest way for V̂ to be error transparent
[19,35–37], while, more generally, [Â, ĤV ] = rÂ allows for
path-independent quantum gates [22,23].

On the other hand,

[Â, ĤV ] �= rÂ (2)

defines the set of V̂ that alter how Uc protects against N . When
separate evolution of ĤV and Â is achievable, Eq. (2) open the
possibility of using V to enhance encoding Uc and produce
more distinguishable error states for R to recover. Specif-
ically, for Markovian errors involving excitation exchange,
excitation loss or gain, and thermal loss [34,38], we show
that Eq. (2) is satisfied with phase-imparting Hamiltonians
ĤVl = hl n̂l (l � 2), where n̂ = â†â is the bosonic number
operator and â is the annihilation operator. Proper choices of
ĤVl and interaction time can increase the separation between
code words after errors and enable more faithful restoration
(see Appendix A). We note that V̂ should not be a logical gate
on the original encoded subspace defined by Uc, as the code
words (and hence QEC performance) will remain unaltered.

TABLE I. Maximum code-word overlap induced by Ê †
k ÊS+k

for bin(5, 5) and sab(5, 5) at γ = 0.1. The three leading terms
(k = 0, 1, 2) are shown for comparison.

εk bin(5, 5) sab(5, 5)

k = 0 5.1 × 10−2 2.5 × 10−2

k = 1 2.8 × 10−2 5.9 × 10−3

k = 2 3.4 × 10−3 1.8 × 10−3

III. SIGN-ALTERED bin CODE FOR EXCITATION LOSS

Here, we apply the criterion [Eq. (2)] to protect against the
excitation-loss channel Nγ (γ is the loss rate) generated by
â and show that evolution under the Kerr Hamiltonian ĤKr =
−Kn̂2/2 allows the bin code to better overcome Nγ .

In its operator-sum representation, Nγ (ρ) = ∑
k ÊkρÊ†

k ,

with the Kraus operator Êk =
√

γ k

k! (1 − γ )
n̂
2 âk associated with

losing k excitations [5,15,16]. Parametrized with N and S, the
original bin(N, S) code encodes a qubit and corrects S − 1
losses for N � S,

|0bin/1bin〉 = 1√
2N−1

[0,N]∑
p even/odd

√(
N
p

)
|pS〉. (3)

Applying ĤKr to the encoded subspace for duration tS =
π/2KS2 implements the unitary V̂S = eiπ n̂2/(2S)2

, which peri-
odically flips the signs in |0bin〉 while keeping those in |1bin〉
unchanged (up to a global phase). As a result, we obtain the
sign-altered binomial (sab) code with

|0sab〉 = 1√
2N−1

[0,N]∑
p even

(−1)
p
2

√(
N
p

)
|pS〉 (4)

and |1sab〉 = ei π
4 |1bin〉.

With the same parity structure, the sab(N, S) code also
corrects S − 1 losses perfectly. The improvement emerges
as we consider the overlap between higher-order error code

words 〈μk
σ |μS+k

σ̄ 〉, where |μk
σ 〉 := Êk|μσ 〉/

√
〈μσ |Ê†

k Êk|μσ 〉.
The parity structure guarantees 〈μk

σ |μk+l
σ̄ 〉 = 0, with l < S,

so 〈μk
σ |μS+k

σ̄ 〉 are the leading terms contributing to a logical
bit flip. In Table I, we consider bin(5, 5) and sab(5, 5) at
γ = 0.1 as an example and compare maximum error-word
overlap,

εk := max
{∣∣〈μk

0

∣∣μS+k
1

〉∣∣, ∣∣〈μk
1

∣∣μS+k
0

〉∣∣}, (5)

which upper bounds the amount of resulting σ̂x and σ̂y errors
combined (i.e., logical bit-flip error). With direct substitution,
one can see (−1)

p
2 in Eq. (4) induces destructive interference

between error code words and reduces εk , which typically is
the leading type of decoherence for the amplitude-damping
channel with equally spaced codes. We note that a faithful
restoration also depends on correction of phase-flip error and
will be examined by evaluating the widely adopted channel
fidelity in the next section.

Experimentally, the Kerr unitary V̂S can be applied either
by storing the bin-encoded state in a Kerr cavity or using
SNAP gates [20]. We note similar preprocessing—Gaussian
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presqueezing—was shown to improve the fidelity of non-
Gaussian states over lossy transmission [39,40].

IV. TWO-LEVEL RECOVERY

Faithful restoration of quantum information relies on a
recovery adapted to the encoding and error process. With
destructive interference between sab error code words, we
need to incorporate an R that makes use of their enlarged
separation. We first recall the original recovery proposed for
bosonic codes with spacing S [15,16,18]: The recovery R(1) =
{R̂(1)

0 , R̂(1)
1 , . . . , R̂(1)

S−1} has Kraus operator R̂(1)
i = Û (1)

i �̂i mod S ,
where �̂i mod S is the projection operator into the subspace
with excitation number i modulo S and unitary Û (1)

i performs
state transfer |μ(S−i) mod S

σ 〉 ↔ |μσ 〉. R(1) uses this parity struc-
ture to correct the first S − 1 excitation losses, while losses
beyond S − 1 are incorrectly restored. As such, we call it
“one-level” recovery.

For sab, we use a recovery R(2) developed in Ref. [41]
that, in addition to correcting the first S − 1 losses, exploits
the component in |μS+k

σ̄ 〉 (k = 0, 1, . . . , S − 1) orthogonal to
|μk

σ 〉: |μS+k
σ̄ 〉 − 〈μk

σ |μS+k
σ̄ 〉|μk

σ 〉. Detailedly, the first level of
R(2), similar to R(1) [16], uses the parity structure to fully
correct the first S − 1 losses. Each Kraus operator consists of
a projection and a restoring unitary,

R̂(2)
k =

∑
σ

(|μσ 〉〈μk
σ

∣∣ + Û res
k

)
P̂k . (6)

Here, k = 0, 1, . . . , S − 1, P̂k = ∑
σ |μk

σ 〉〈μk
σ | projects to

each error subspace, and Û res
k finishes the unitary rotation in

Span{|μσ 〉, |μk
σ 〉}; for k �= 0, it is simply |μk

σ 〉〈μσ |.
Also, R(2) has a second level with S Kraus operators,

R̂(2)
S+k =

∑
σ

(|μσ̄ 〉〈νk
σ̄

∣∣ + Û res
S+k

)
P̂S+k, (7)

where, for k = 0, 1, . . . , S − 1, the normalized |νk
σ̄ 〉 ∝

|μS+k
σ̄ 〉 − 〈μk

σ |μS+k
σ̄ 〉|μk

σ 〉 is recoverable and P̂S+k =∑
σ |νk

σ̄ 〉〈νk
σ̄ |. To make R(2) a completely positive, trace-

preserving (CPTP) map, we add R̂(2)
2S+1 = M̂res(ÎH − ∑2S

i=0 P̂i ),
where ÎH is the identity operator on the bosonic Hilbert space
and M̂res is an arbitrary unitary acting on the complementary
subspace of {|μσ 〉} ∪ {|μk

σ 〉} ∪ {|νk
σ̄ 〉}, where σ = 0, 1 and

0 � k � S − 1.
R(2) was initially proposed for bin against excitation loss

[41], yet the enhancement is much more pronounced for sab
due to the enlarged separation between error words caused
by destructive interference. Since S to 2S − 1 losses are now
partially corrected, we call R(2) “two-level” recovery. With
a two-level ancilla coupled to the bosonic mode, recipes
for constructing an arbitrary bosonic quantum channel have
been proposed [24,25]. With rapid advances in supercon-
ducting cQED such as fault-tolerant readout [19] and cavity
universal control [20,21], R(2) is within reach of current
technologies.

To quantify the overall error suppression of QEC protocols
(i.e., both bit flip and phase flip), we adopt channel fidelity—
a specific entanglement fidelity—defined as F := 〈	|IA ⊗
EB(|	〉〈	|)|	〉 [41–43], where I is an identity channel and
|	〉 = (|00〉 + |11〉)/

√
2 is a Bell state. In Fig. 2, we present

FIG. 2. Channel infidelities (in logarithmic scale) for (a)–(c) bin
with R(1), sab with R(2), and sab with Ro, respectively, at γ = 0.1
and (d)–(f) same as (a)–(c), except γ = 0.25. Each pixel is a code
with associated S and N .

the favorable performance of R(2) and sab by comparing the
channel infidelities 1 − F for bin undergoing Nγ followed
by R(1) and those for sab undergoing the same Nγ followed
by R(2) and optimal recovery Ro obtained via convex opti-
mization [41,42], respectively. The optimal recovery Ro is
numerically computed to maximize F given a Uc and hence re-
veals the best-case performance of Uc, yet it may lack physics
intuition and ease of implementation, as it is restricted to be
only CPTP [42].

We see from Fig. 2(a) that, at γ = 0.1, the desired bin
codes under R(1) are found along S ≈ 2N , while the en-
tire N > S region is forbidden. In comparison, sab codes
with R(2) [Fig. 2(b)] achieve much lower infidelities overall
and open up the N > S region, clearly demonstrating the
advantage of phase engineering for the creation of destruc-
tive interference and adapted recovery. Figure 2(c) shows the
minimized channel infidelities for sab under Ro. Compar-
ing Figs. 2(b) and 2(c), we see that R(2) works very well
with sab at small γ , yielding near-optimal protection; the
results hence demystify Ro for equally spaced codes: It is
critical to resolve partially overlapped error words for faithful
restoration. At a higher loss rate, γ = 0.25 [Figs. 2(d)–2(f)],
since R(2) provides only two levels of correction, it begins
to perform suboptimally in regions with excessive loss, i.e.,
n̄γ � S [Figs. 2(f) and 2(e)], indicating the need to resolve
higher-order error words for optimal restoration. Nonetheless,
sab with R(2) still significantly outperforms bin with R(1),
offering a robust and practically feasible bosonic QEC scheme
against excitation loss.

cat is another equally spaced code and can be sim-
ilarly enhanced, as detailed in Appendix B. Notably, the
two-component cat code [12], the simplest of the code
family with no correction of loss, will approximately cor-
rect one loss after SA. The same as sab, the SA can be
implemented by V̂S , while now 2S is the number of coher-
ent states in superposition. V̂S is not a logical gate on the
cat code as it satisfies Eq. (2), and this explains why a
proper amount of Kerr improves the cat code’s performance
([41], Fig. 9(a)).
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TABLE II. Results from biconvex optimization under energy
constraint n̄c = 2 for single-mode RCQCs and CCQCs at γ = 0.1
and different values of intrinsic Kerr nonlinearity Kt . Wigner func-
tions of 1

2 P̂c are shown for the optimized codes, respectively, with
associated channel infidelities 1 − F below them. The infidelities for
bin(2, 2) are shown as a benchmark.

V. OPTIMALITY VERSUS COMPLEX NOISE

So far we have considered enhanced protection against
excitation loss with sign-altered bosonic codes. In reality,
when the bosonic mode is not perfectly harmonic, quantum
dynamics are dictated jointly by energy-exchanging decoher-
ence processes and cavity nonlinearities. As jumps resulted
from decoherence can destroy the unitarity of evolution un-
der cavity nonlinearities, these joint channels generally have
complex, nonanalytical Kraus operators and hence are rarely
studied despite their practical relevance. Here, we study such
a channel—the joint channel of excitation loss and Kerr—
and show the critical role of the phase degree of freedom in
optimal code construction.

The joint channel has the superoperator [44]

Nγ , Kt = e− 1
2 iKt[n̂2,·]−ln(1−γ )D[â](·). (8)

We use the technique of biconvex optimization of recovery
and encoding for channel fidelity [32,33] to generate opti-
mized encoding schemes. Specifically, we employ a variant
that imposes an energy constraint on the encoding sub-
space to make the result practically feasible [34] (details in
Appendix C). To see unambiguously the role of phase
for optimal code construction, we compare the results for
the optimized real-coefficient quantum code (RCQC) and
complex-coefficient quantum code (CCQC), for which the
code projector P̂c that fully characterizes a code is allowed
to take arbitrary complex values.

In Table II we show the Wigner functions for the maxi-
mally mixed state 1

2 P̂c and associated infidelities 1 − F of the
optimized RCQCs and CCQCs at γ = 0.1 and different Kt
with an energy constraint n̄ = 2. As a benchmark we show
the infidelities for bin(2, 2) (n̄c = 2), which protects against
pure excitation loss [41]. For all Kt , both scenarios yield
codes better than bin(2, 2), demonstrating the advantage of
channel adaptation achieved by biconvex optimization. With
pure excitation loss (i.e., at Kt = 0) the optimized RCQC and

CCQC are equivalent, up to a global rotation. For Kt �= 0,
nontrivial phases in CCQC allow for codes more efficient than
RCQC. The results here demonstrate the benefit of mobilizing
the entirety of degrees of freedom available to efficiently
overcome practical noises.

VI. SIGN-ALTERED gkp AND MULTIQUBIT CODES

While we have focused on codes defined in the Fock
basis, the same idea of phase engineering applies to code
constructs in other bases. For example, one can modify
rectangular-lattice gkp code, defined in position-momentum
space for quadrature drift [3], as |μσ 〉 = ∑

s∈Z
(−1)σ |q =

α(σ + 2s)〉, where σ = 0, 1, and 2α is the spacing between
position eigenstates. Similar to sab and sac, the SA (a
symplectic transformation) can be imposed by following the
original Ugkp with V̂ = eiπ q̂2/4α2

that transforms the origi-
nal stabilizer Ŝ1 = e−i p̂α to Ŝ′

1 = e−i( p̂−π q̂/2α2 )α while leaving
Ŝ2 = e2π iq̂/α unchanged. The new stabilizers define a nonrect-
angular gkp lattice, and at α2 = √

3π/2 it is hexagonal: the
optimal packing in two dimensions with a larger smallest-
uncorrectable shift [3,34,45].

The interference effects further extend into the multiqubit
regime. Consider Shor’s [[9, 1, 3]] code that corrects arbitrary
single-qubit Pauli errors with code words |−shor〉 ∝ |1̃0̃0̃〉 +
|0̃1̃0̃〉 + |0̃0̃1̃〉 + |1̃1̃1̃〉 and |+shor〉 = σ̂⊗9

x |−shor〉, where ĩ =
iii stands for blocks of three qubits. It detects weight-three σ̂x

errors, except for the logical operators σ̂ (i)
x σ̂ (i+1)

x σ̂ (i+2)
x , with

i = 1, 4, 7. Consider a sign-altered variant with |−shor′ 〉 ∝
|1̃0̃0̃〉 − |0̃1̃0̃〉 + |0̃0̃1̃〉 − |1̃1̃1̃〉 and |+shor′ 〉 = |+shor〉. The
new code, which is an example of code-word-stabilized
code [46], detects all weight-three σ̂x errors, including
σ̂ (i)

x σ̂ (i+1)
x σ̂ (i+2)

x , as well as more weight-three hybrid σ̂x and
σ̂y errors, while also offering the same protection over σ̂z as
the original Shor code (more details are given in Appendix B).
A similar modification improves Shor and Steane codes over
qubit amplitude damping, a realistic concern for qubit systems
[47]. We note that, for stabilizer codes, it has been shown
to be adequate to consider RCQC [48,49], so any nontrivial
multiqubit CCQC will not be a stabilizer code.

VII. CONCLUSION

In contrast to conventional designs of bosonic codes whose
error-correction capability comes from separation between
code words in the computational basis, we explored the con-
jugate degree of freedom, the phases carried by basis states, to
devise efficient quantum codes for various errors. We showed
it is possible to add phase-imparting unitaries to encoding
procedures to enhance protection against Markovian errors
involving excitation exchange. As illustrations, we considered
the excitation-loss channel and modified binomial and cat
codes with a Kerr unitary that makes the error code words
destructively interfere and hence enlarges their separation.
With a recovery that effectively captures the enlarged sep-
aration, the modified codes present noticeable improvement
over the original ones. In the presence of mode nonlinear-
ities, energy-exchanging decoherence processes can lead to
complex quantum dynamics. We considered the joint channel
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of excitation loss and cavity Kerr and showed the critical role
of phase for optimal code construction. Finally, we showed
phase engineering extends beyond bosonic codes and can help
multiqubit codes better overcome qubit errors.

With the general principle of phase engineering and ex-
plicit examples of qubit codes developed here, it should
be straightforward to extend to codes that encode a qudit.
Nonetheless, it remains to be systematically studied how the
phase degree of freedom should be tuned for different encod-
ing schemes and channels and how to construct associated
recoveries that efficiently capture the enlarged distance be-
tween error words. We hope these developments will further
deepen our understanding of channel-adapted quantum error
correction and inspire more efficient code designs for various
physical platforms.
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APPENDIX A: PROPAGATION OF UNITARY CHANNEL
THROUGH MARKOVIAN PROCESS

We consider the conditions under which a unitary channel
V (ρ) = V̂ ρV̂ † can propagate through Markovian process N ,
i.e.,

N ◦ V = V ◦ N . (A1)

This is important as unitary channels that do not propagate
through can be used to alter, and potentially enhance, how a
given quantum code protects against N . Here, we focus on the
Markovian process generated by the Lindbladian generator
D[Â](ρ̂) = Âρ̂Â† − 1

2 {Â†Â, ρ̂}; it models a wide array of error
channels in bosonic systems. To find V̂ that satisfy Eq. (A1),
we consider the following equivalent condition:

NVN−1 = eD[Â]t e−i[ĤV , · ]τ e−D[Â]t = e−i[ĤV , · ]τ , (A2)

where ĤV is the generating Hamiltonian for V̂ and τ is the
associated interaction time. t is the duration of the Markovian
channel N ; to not lose generality, Eq. (A2) should hold for
any t . Using the Baker-Campbell-Hausdorff (BCH) relation

eCeBe−C = e
B+[C,B]+···+ 1

n! [C, [C, . . . [C︸ ︷︷ ︸
n

,B]...]]

, (A3)

we can simplify Eq. (A2) and immediately identify the suffi-
cient and necessary condition

[D[Â], [ĤV , · ]] = 0. (A4)

The “sufficient” part can be seen via direct substitution, while
the condition is also necessary as 1

n! [C, [C, . . . [C︸ ︷︷ ︸
n

, B] . . . ]],

with n � 1 in Eq. (A3) are higher orders in t and the only
possibility to have

∑∞
n=1

1
n! [C, [C, . . . [C︸ ︷︷ ︸

n

, B] . . . ]] = 0 given

any t is [C, B] = 0.
Expanding [D[Â], [ĤV , · ]](ρ) gives

[D[Â], [ĤV , · ]](ρ) = D[Â](ĤV ρ − ρĤV ) − [ĤV ,D[Â](ρ)]

= Â(ĤV ρ − ρĤV )Â†

− 1
2 {Â†Â, (ĤV ρ − ρĤV )}

−[ĤV , ÂρÂ† − 1
2 {Â†Â, ρ}]

= [Â, ĤV ]ρÂ† − 1
2 {Â†[Â, ĤV ], ρ}

−Âρ([Â, ĤV ])† + 1
2 {([Â, ĤV ])†Â, ρ}.

As one can see, [D[Â], [ĤV , · ]](ρ) vanishes for any ρ if

[Â, ĤV ] = rÂ r ∈ R. (A5)

This condition contains the special scenario [Â, ĤV ] = 0 (i.e.,
r = 0), which is connected to the notion of error-transparent
quantum operations [35,36] where quantum gates are de-
signed such that they would not be disturbed by the occurrence
of error.

In a bosonic system, ĤVl = hl n̂l (l ∈ Z+) (n̂ = â†â is the
bosonic number operator, and â is the annihilation operator)
imparts a phase to the logical subspace, and we show below
that ĤVl can alter how quantum codes protect against bosonic
channels that induce excitation exchange. Jump operators
associated with excitation exchange can be generically ex-
pressed (in normal order) as Â↓(p, q) = n̂qâp and Â↑(p, q) =
(â†)pn̂q. Consider Â↓(p, q); then

[n̂qâp, n̂l ] = n̂q[âp, n̂l ]

= pn̂q
l−1∑
i=0

(n̂)l−1−iâp(n̂)i.

One can see, except for l = 1 (for which ĤV1 generates a
global rotation), [Â↓(p, q), ĤVl ] will not be proportional to
n̂qâp. Similarly, for Â↑(p, q),

[(â†)pn̂q, n̂l ] = [(â†)p, n̂l ]n̂q

= −p
l−1∑
i=0

(n̂)l−1−i(â†)p(n̂)in̂q

will not be proportional to n̂q(â†)p except for l = 1. On the
other hand, if Â ∝ n̂l (e.g., A = √

κφa†a for dephasing chan-
nel), the error channel does not involve excitation exchange
with the environment and is naturally transparent to ĤVl . In
this case, phase engineering will not alter the performance of
any code for the error channel.

These results indicate that it is possible to use ĤVl =
hl n̂l (l > 1) to engineer bosonic codes such that they can
protect error channels that involve excitation exchange. In this
work, we mainly focus on the excitation-loss channel with
Â↓(1, 0) = √

κ â and the Kerr Hamiltonian ĤV2 = −Kn̂2/2.
We note that the most general case for a unitary channel V

to keep its unitarity after propagation through N is N ◦ V =
U (t ) ◦ N , where U (t ) is a time-dependent, yet deterministic,
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unitary channel, which can be absorbed into the recov-
ery. This would relax Eq. (A2) to eD[Â]t e−i[ĤV , · ]τ e−D[Â]t =
e−i[

∫ τ

0 ĤU (τ ′ )dτ ′, · ] for any t , which implicitly requires the re-
sulting unitary channel to depend only on the duration of
decoherence process and not on the specific timing of jump
occurrences. This “path independence” has been studied in the
context of error-transparent quantum operations [22]. There,
however, error-transparent gates are conditioned on the initial
and final states measured—different final states will result in
different gates. With no measurement allowed here, we do
not expect (but cannot assertively exclude) a criterion more
general than Eq. (A5).

Finally, we consider generic Markovian dynamics with
M jump operators, for which the Liouville superoperator
reads L(ρ) = ∑M

i=1 D[Âi](ρ). Following the same derivation,
[L( · ), [ĤV , · ]](ρ) = ∑M

i=1[Âi, ĤV ]ρÂ†
i − 1

2 {Â†
i [Âi, ĤV ], ρ}

− Âiρ([Âi, ĤV ])† + 1
2 {([Âi, ĤV ])†Âi, ρ}. One obvious

solution for vanishing [D[Â], [ĤV , · ]](ρ) is an extension
of Eq. (A5):

[Âi, ĤV ] = riÂi ri ∈ R, i ∈ [1, M]. (A6)

In addition, a vanishing [D[Â], [ĤV , · ]](ρ) is also pos-
sible if terms associated with different jump operators
cancel out. For example, with L(ρ) = D[Â1](ρ) + D[Â2](ρ),
[D[Â], [ĤV , · ]](ρ) vanishes if [Â1, ĤV ] = Â2 and [Â2, ĤV ] =
Â1. However, since each jump operator contains an error rate,
only under unique combinations of error rates will terms
associated with different jump operators cancel each other
out.

APPENDIX B: ADDITIONAL QUANTUM CODES
FROM SIGN ALTERATION

1. Modified cat code for excitation loss

Consider the simplest cat code |μcat
σ 〉 ∝ ∑∞

n=0
α2n+σ√
(2n+σ )!

|2n + σ 〉 for σ ∈ {0, 1}. This code does not detect

even a single loss event â, as â|μcat
1 〉 ∝ |μcat

0 〉 and vice versa.
However, a simple modification produces the sign-altered cat
(sac) code words |μsac

σ 〉 ∝ ∑∞
n=0

α2n+σ√
(2n+σ )!

(−1)σ+1|2n + σ 〉
that do not significantly overlap upon a loss event. While
â|μsac

1 〉 is still in the support of |μsac
0 〉 (i.e., in the even Fock

state subspace), the overlap between â|μsac
1 〉 and |μsac

0 〉
is exponentially suppressed with α due to destructive
interference. Thus, SA can extend a cat code that
does not correct a loss error to one that approximately
does. This behavior can also be understood in terms of
bosonic coherent states |α〉 (with â|α〉 = α|α〉). In this
basis, |μsac

0 〉 ∝ |iα〉 + | − iα〉, |μsac
1 〉 ∝ |α〉 − | − α〉, and

〈μsac
0 |â|μsac

1 〉 → 0 since the coherent states of |μsac
0 〉 are

well separated from those of â|μsac
1 〉.

Generically, the code words of cat codes are cat states,
superpositions of 2S coherent states lying equidistantly on a
circle in the phase space [15]. In the Fock basis, they can be
expressed as

|Cn
α〉 =

√
2S

N n
α

∞∑
m=0

e− α2

2 αn+2mS

√
(n + 2mS)!

|n + 2mS〉, (B1)

FIG. 3. Channel infidelities (in logarithmic scale) for (a)–(c) cat
code with one-level recovery (as indicated by the superscript), sac
code with two-level recovery, and sac code with optimal recovery,
respectively, at γ = 0.1 and (d)–(f) the same as (a)–(c), except for
γ = 0.25. Each point represents a code with associated S and α.

where n = 0, 1, . . . , 2S − 1, N n
α = 2S〈α|�̂n mod S|α〉 is the

normalization factor, and lim
α→∞N n

α = 1. Without losing gen-

erality, α is assumed to be real here, and we choose
Span{|C0

α〉, |CS
α〉} to be the logical subspace; for cat codes

there is freedom in the choice of the “d subspace,” and
Span{|Cd

α 〉, |Cd+S
α 〉} is the logical subspace ([15]).

The generic sac code is defined as follows:

∣∣μsac
0

〉 =
√

2S

N 0
α

∞∑
m=0

(−1)m e− α2

2 α2mS

√
2mS!

|2mS〉, (B2)

∣∣μsac
1

〉 =
√

2S

N S
α

∞∑
m=0

e− α2

2 α(2m+1)S

√
(2m + 1)S!

|(2m + 1)S〉. (B3)

The above code words can be generated in the same way as
the sab code, i.e., Usac(·) = V̂SUcat(·)V̂ †

S . We can see from
Fig. 3 that, similar to sab, for sac the α2γ ≈ S region is
opened up due to the additional suppression of errors in-
duced by S to 2S − 1 losses and, at small loss, R(2) yields
a QEC performance close to optimal. Nonetheless, unlike bin
codes, the performance of cat codes at finite α is constrained
by dephasing caused by 〈μsac

0 |n̂m|μsac
0 〉 �= 〈μsac

1 |n̂m|μsac
1 〉 for

m ∈ Z+. This is why at small loss rates the optimal codes are
found around “sweet spots” (deep blue regions in Fig. 3), spe-
cific choices of α that minimize dephasing [15]. As a result,
the SA-led suppression of bit-flip-type decoherence does not
improve QEC performance as significantly as it does for sab
codes.

2. Modified Shor’s [[9, 1, 3]] code
for Pauli errors

Given a code with projection P and error E , the error is
said to be detectable if PEP ∝ P. A set of errors E = {E} is
said to correctable if PE†FP ∝ P for all E , F ∈ E. Here, we
showcase a sign-altered variant of the Shor code that better
protects against Pauli errors.
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With stabilizers σ (1)
z σ (2)

z , σ (2)
z σ (3)

z , σ (4)
z σ (5)

z ,
σ (5)

z σ (6)
z , σ (7)

z σ (8)
z , σ (8)

z σ (9)
z , σ (1)

x σ (2)
x σ (3)

x σ (4)
x σ (5)

x σ (6)
x , and

σ (4)
x σ (5)

x σ (6)
x σ (7)

x σ (8)
x σ (9)

x , the Shor code

|+shor〉 = 1
2 (|000 000 000〉 + |000 111 111〉
+ |111 000 111〉 + |111 111 000〉),

|−shor〉 = 1
2 (|111 000 000〉 + |000 111 000〉
+ |000 000 111〉 + |111 111 111〉) (B4)

corrects arbitrary single-qubit errors. For two-qubit errors, the
code offers only partial correction as σ (i)

x σ (i+1)
x σ (i+2)

x , where
i = 1, 4, 7 are logical σx operators. We then consider the fol-
lowing modified Shor code:

|+shor′ 〉 = 1
2 (|000 000 000〉 − |000 111 111〉
+ |111 000 111〉 − |111 111 000〉),

|−shor′ 〉 = 1
2 (|111 000 000〉 + |000 111 000〉
+ |000 000 111〉 + |111 111 111〉). (B5)

The stabilizer set of this code consists of the same six
σz stabilizers as the Shor code, σ (1)

x σ (2)
x σ (3)

x σ (7)
x σ (8)

x σ (9)
x and

σ (1)
y σ (2)

x σ (3)
x σ (4)

y σ (5)
x σ (6)

x σ (7)
z . Its logical operators are σ̄x =

σ⊗9
z and σ̄z = σ (1)

x σ (2)
x σ (3)

x σ (4)
z , which is now weight-four.

Like the Shor code, the modified code corrects arbitrary
single-qubit errors and detects arbitrary two-qubit Pauli er-
rors. In addition, one can see that

σ (1)
x σ (2)

x σ (3)
x |+shor′ 〉 = 1

2 (|111 000 000〉 − |000 111 000〉
+ |000 000 111〉 − |111 111 111〉),

σ (1)
x σ (2)

x σ (3)
x |−shor′ 〉 = 1

2 (|000 000 000〉 + |000 111 111〉
+ |111 000 111〉 + |111 111 000〉),

(B6)

which leads to Pσ (1)
x σ (2)

x σ (3)
x P = 0. In fact, the code now

detects E = σ (i)
x σ (i+1)

x σ (i+2)
x for i = 1, 4, 7 and hence all

weight-three σx errors. Similarly, one can check that fewer
weight-three hybrid σx and σy errors are now undetectable. For
error correction, one can also design recoveries to capture the
additional QEC matrix elements that are now zero. The trade-
off for the improved error detection and correction is that the
new code is no longer a Calderbank-Shor-Steane (CSS) code.

3. Modified Shor’s [[9, 1, 3]] code and Steane’s [[7, 1, 3]] code
for qubit amplitude damping

For the single-qubit amplitude-damping channel with rate
γ , the Kraus operators are

A0 = I + (
√

1 − γ − 1)σ+σ−, (B7)

A1 = √
γ σ−, (B8)

where σ− = |0〉〈1| = σ
†
+.

Consider the correction of qubit amplitude-damping errors
with the Shor code in Eq. (B5). The logical code words
can be conveniently expressed as |−〉 ∝ |1̃0̃0̃〉 + |0̃1̃0̃〉 +
|0̃0̃1̃〉 + |1̃1̃1̃〉 and |+shor〉 = σ⊗9

x |−shor〉, where ĩ = iii stands
for blocks of three qubits. The code detects arbitrary two-
qubit damping errors and ceases to protect against some

of the three-qubit errors, such as σ̃
(i)
− = σ

(i)
− σ

(i+1)
− σ

(i+2)
− for

i ∈ {1, 4, 7} and σ
(i)
− = |0〉i〈1|i. Now consider the modified

code word |−shor′′ 〉 ∝ |1̃0̃0̃〉 + |0̃1̃0̃〉 + |0̃0̃1̃〉 − |1̃1̃1̃〉. Taking
i = 1 as an example, σ̃

(1)
− |−shor′′ 〉 ∝ |0̃0̃1̃〉 − |0̃1̃1̃〉 then does

not overlap with |+shor′′ 〉 = |+shor〉. While such errors cannot
be fully detected as 〈−code|σ̃ (i)

− |+code〉 �= 0 for both versions
of the code, it is possible to capture the enhancement with
an analogous two-level quantum recovery developed for those
single-mode codes.

Similarly, we can modify the logical code words of the
Steane code by altering the coefficient of the |1111111〉 com-
putational basis state from +1 to −1:

|0stn′ 〉 = 1√
8

(|0000000〉 + |1010101〉 + |0110011〉

+ |1100110〉 + |0001111〉 + |1011010〉
+ |0111100〉 + |1101001〉),

|1stn′ 〉 = 1√
8

(−|1111111〉 + |0101010〉 + |1001100〉

+ |0011001〉 + |1110000〉
+ |0100101〉 + |1000011〉 + |0010110〉). (B9)

Just like the original Steane code, stn′ can provably cor-
rect arbitrary single-qubit Pauli errors. Since a larger set of
weight-three errors is now not completely detectable, stn′ is a
worse-performing code against local Pauli noise. However, it
is slightly better performing when it comes to qubit amplitude
damping.

Both the Steane code and stn′ correct one amplitude-
damping error and fail to correct two losses in the same
way. A difference occurs when it comes to three-loss er-
rors σ

(i)
− σ

( j)
− σ

(k)
− : Such errors become detectable for stn′,

for example, σ
(2)
− σ

(4)
− σ

(6)
− |1stn′ 〉 ∝ −|1010101〉 + |0000000〉,

which is orthogonal to |0stn′ 〉. The same occurs for {i, j, k} =
{1, 4, 5}, {3, 4, 7} and five other combinations corresponding
to the five remaining basis elements of |1stn′ 〉. The remaining
possible loss triples annihilate both |0stn′ 〉 and |1stn′ 〉. There-
fore, all loss triples are detectable. However, the modification
does not improve the code against two-loss errors, and we
observe that the channel fidelity (calculated using optimal
recovery) improves at most in the third decimal place

APPENDIX C: CONVEX AND BICONVEX OPTIMIZATION
OF CHANNEL FIDELITY

1. Channel fidelity and convex optimization for optimal recovery

Given an encoding Uc for an error process N , one shall de-
sire to find a recovery R that faithfully restores the corrupted
quantum information; obviously, a good R will be highly
adapted to Uc and N . While the definition of “faithfully” is
not unique, a widely used metric that quantifies how channel
E = U‡

c ◦ R ◦ N ◦ Uc preserves quantum information is the
channel fidelity [32,41]. Consider preparing two qubits, A
and B, in a maximally entangled state |	〉 = (|0A0B〉 +
|1A1B〉)/

√
2 and then sending qubit B through the qubit chan-

nel E (qubit A remains untouched). Channel fidelity of E is
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defined as

F := 〈	|IA ⊗ EB(|	〉〈	|)|	〉, (C1)

where IA is an identity channel on qubit A. In its Kraus repre-
sentation, E (ρ) = ∑4

i=1 AkρA†
k , and channel fidelity takes the

form

F = 1

4

4∑
i=1

|Tr[Ak]|2. (C2)

Compared to other fidelity measures that can be used to
quantify how a channel preserves quantum information such
as minimum fidelity [42,50] and code-word overlap [51],
F stands out as the computation of optimal recovery Ro

that maximizes channel fidelity for E = U‡
c ◦ R ◦ N ◦ Uc is a

semidefinite programming problem and can be very efficiently
solved [33,41–43]. Specifically, with the input map N ◦ Uc,
which maps from the code subspace to the bosonic space,
computation of the optimal U‡

c ◦ R—a reverse map—is a
convex optimization. The fact that optimal channel fidelity can
be easily computed in this way makes comparison of different
encoding schemes for a given error channel easily trackable.

Regardless of the choice of channel measure, the numeri-
cally computed optimal recovery Ro only needs to be CPTP
and hence in general can lack physical intuition and ease of
implementation [42]—this is certainly the case for Ro ob-
tained from convex optimization of channel fidelity. For more
details of the convex optimization technique, we refer readers
to Refs. [33,41–43].

2. Biconvex optimization of channel fidelity for optimal
encoding and recovery

While computation of the optimal U‡
c ◦ R that maximizes

channel fidelity with N ◦ Uc is a convex problem, given a
recovery R, computation of optimal encoding Uc for N is
also convex. With iterative optimization of recovery R and
encoding Uc, after enough sampling for good convergence,
one can identify the optimal encoding Uo

c and recovery Ro for
N [33]. Recently, it was shown in Ref. [34] that, in the reverse
optimization of Uc given R and N , one can apply an energy
constraint to the encoding subspace while keeping the convex-
ity of the problem. This allows us to obtain optimal encoding
schemes under energy constraints that are practical in terms
of energy requirements. We refer readers to Refs. [33,34] for
more details.
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